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RESEARCH PAPER

FRACTIONAL GENERALIZATIONS OF

ZAKAI EQUATION AND SOME

SOLUTION METHODS

Sabir Umarov 1, Fred Daum 2, Kenric Nelson 3

Abstract

The paper discusses fractional generalizations of Zakai equations aris-
ing in filtering problems. The derivation of the fractional Zakai equation,
existence and uniqueness of its solution, as well as some methods of solu-
tion to the fractional filtering problem, including fractional version of the
particle flow method, are presented.

MSC 2010 : Primary 60G35; Secondary 35R11, 93E10, 60G05, 35Q84

Key Words and Phrases: fractional filtering, fractional Zakai equation,
fractional Fokker-Planck-Kolmogorov equation, particle flow

1. Introduction

One of Albert Einstein’s Annus Mirabilis 1905 papers [6] was devoted
to the theoretical explanation of the Brownian motion. A little earlier (in
1900) Bachelier published his doctoral dissertation “Théorie de la spécu-
lation” (“The Theory of Speculation”) modeling Brownian motion from
the economics point of view. In 1908 Langevin published his work with
a stochastic differential equation which was “understood mathematically”
only after a stochastic calculus was introduced by Itô in 1944-48. The
Fokker-Planck equation, a deterministic form of describing the dynamics of
a random process in terms of transition probabilities, was invented in 1913-
17. Its complete “mathematical understanding” become available after
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FRACTIONAL GENERALIZATIONS OF . . . 337

the appearance of the distribution (generalized function) theory (Sobolev
(1938), Schwartz (1951)) and was embodied in Kolmogorov’s backward and
forward equations. Today the triple relationship between Brownian motion,
Itô stochastic differential equations driven by Brownian motion and their
associated Fokker-Planck-Kolmogorov (FPK) partial differential equations
is well known.

In 1961 Kalman and Bucy solved a linear filtering problem, which is
(mathematically) a wide generalization of the above concept. Namely, in
the filtering problem one is interested in a stochastic process under addi-
tional information obtained from observation/measurement. As a result,
FPK counterpart of the filtering process is not deterministic, but is a sto-
chastic partial differential equation. The latter is called a Zakai equation,
which was first derived by Zakai [26] in 1969.

This paper is devoted to fractional generalizations of the relationship
between the driving process, corresponding SDEs, and associated fractional
FPK and Zakai equations. For simplicity, we restrict our considerations to
the case of time-changed Brownian motion, as the driving process. The
driving process of a stochastic differential equation plays a key role in the
evolution of the solution to the corresponding SDE. The processes associ-
ated with fractional order FPK and Zakai equations are usually driven by
complex processes. Even in the simplest case of the fractional KFP equa-
tion ∂βu = Δu, where Δ is the Laplace operator, and ∂β is a fractional
derivative of order 0 < β < 1, which is the case of time-changed Brownian
motion, the driving process is a semimartingale, but not a Lévy process.

In the last few decades, fractional FPK type equations have been used
in modeling various complex processes in physics, finance, hydrology, cell
biology, etc. Complexity includes phenomena such as weak or strong cor-
relations, different sub- or super-diffusive modes, memory and jump ef-
fects. For example, experimental studies of the motion of proteins or other
macromolecules in a cell membrane show apparent subdiffusive motion
with several simultaneous diffusive modes. In various engineering appli-
cations one has additional information available continuously due to mea-
surements/observations, and the best estimate of the state process using
this additional information is of interest.

Fractional Zakai type equations describe filtering problems whose state
and observation processes are driven by a time-changed Brownian motion
(or other standard driving processes). In Sections 3-4 we will show a deriva-
tion of the fractional Zakai equation, in which the time change process is
the inverse to a Lévy stable subordinator with the stability index β ∈ (0, 1)
and discuss existence and uniqueness of a solution, as well as some methods
of solution.
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338 S. Umarov, F. Daum, K. Nelson

2. Auxiliaries

Fractional order FPK and Zakai equations use fractional integrals and
derivatives. In this section we briefly introduce notions related to fractional
calculus and stochastic processes, including time-changed processes. Let
g(t) be a continuous function on [0,∞). By definition, the fractional integral
of order β > 0 is

Jβg(t) =
1

Γ(β)

∫ t

0
(t− u)β−1g(u)du, t > 0, (2.1)

where Γ(·) is Euler’s gamma function. By convention, J0 = I, the identity
operator, and obviously, J1g(t) := Jg(t) is the usual integration opera-
tor. The fractional derivative of order β ∈ (0, 1) in the sense of Riemann-
Liouville is

Dβg(t) =
d

dt
J1−βg(t) =

1

Γ(1− β)

d

dt

∫ t

0

g(u)du

(t− u)β
, t > 0, (2.2)

and in the sense of Caputo-Djrbashian is

Dβ
∗ g(t) =

1

Γ(1− β)

∫ t

0

g′(u)du

(t− u)β
. (2.3)

By convention, set Dβ = Dβ
∗ = d/dt for β = 1. These two fractional

derivatives satisfy the following relationship [9]:

Dβg(t) = Dβ
∗ g(t) + g(0+)

t−β

Γ(1 − β)
, t > 0, (2.4)

and their Laplace transforms are given by [9]:

[̃Dβg](s) = sβ g̃(s)−
(
J (1−β)g

)
(0+), (2.5)

˜
[Dβ

∗ g](s) = sβ g̃(s)− sβ−1g(0+), (2.6)

where g̃(s) ≡ L[g](s) =
∫∞
0 g(t)e−stdt denotes the Laplace transform of g.

By definition, a time-change process is a stochastic process with contin-
uous nondecreasing sample paths starting at 0. For details concerning gen-
eral time-changed stochastic processes, see [14]. Let the process St, t ≥ 0,
be a Lévy stable subordinator with the stability index β ∈ (0, 1), that is
a stable process with S0 = 0, continuous in probability, has independent

increments and characteristic function E(e−ξSt) = e−tξβ . Since St is strictly
increasing, its inverse process Et is continuous and nondecreasing, but not
a Lévy process. Further, let Et be the first hitting time process for St. The
process Et is also called an inverse to St. The relation between Et and St
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FRACTIONAL GENERALIZATIONS OF . . . 339

can be expressed as Et = min{τ : Sτ ≥ t}. Let ft(τ) be the density function
of Et for each fixed t > 0. If fS1

(t) is the density function of S1, then

ft(τ) =
∂

∂τ
P (Et ≤ τ) =

∂

∂τ

(
1− P (Sτ < t)

)
= − ∂

∂τ
P (S1 <

t

τ1/β
) (2.7)

= − ∂

∂τ
[JfS1

](
t

τ1/β
) = − ∂

∂τ

∫ t

τ1/β

0
fS1

(u)du =
t

βτ1+
1
β

fS1
(
t

τ
1
β

).

Since fS1
(u) ∈ C∞(0,∞), it follows from representation (2.7) that ft(τ) ∈

C∞(R2
+), where R2

+ = (0,∞) × (0,∞). Further properties of ft(τ) are
presented in the following lemmas.

Lemma 2.1. Let ft(τ) be the function given in (2.7). Then:

(a) limt→+0 ft(τ) = δ0(τ) in the sense of the topology of the space of
tempered distributions D′(R);

(b) limτ→+0 ft(τ) =
t−β

Γ(1−β) , t > 0;

(c) limτ→∞ ft(τ) = 0, t > 0;

(d) Lt→s[ft(τ)](s) = sβ−1e−τsβ , s > 0, τ ≥ 0, where Lt→s denotes the
Laplace transform with respect to the variable t.

Lemma 2.2. Function ft(τ) defined in (2.7) for each t > 0 satisfies the
equation

Dβ
∗,tft(τ) = − ∂

∂τ
ft(τ)−

t−β

Γ(1− β)
δ0(τ), (2.8)

in the sense of tempered distributions.

For proofs of these lemmas we refer the reader to [11, 12, 24, 25]. It
follows from these lemmas the following statement, which will be used in
Section 3.

Corollary 2.1. The function ft(τ) defined in (2.7) for each t > 0
satisfies the equation

ft(τ) = − ∂

∂τ
Jβ
t ft(τ). (2.9)

P r o o f. Applying the fractional integration operator Jβ to equation
(2.8), we have

ft(τ)− lim
t→0+

ft(τ) = − ∂

∂τ
Jβ
t ft(τ)−

δ0(τ)

Γ(1− β)
Jβ
t t

−β,
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340 S. Umarov, F. Daum, K. Nelson

in the sense of distributions. Due to part (a) of Lemma 2.1 we have
limt→0+ ft(τ) = δ0(τ). This fact together with the equation Jβt−β = Γ(1−
β) implies (2.9). �

Now consider a stochastic differential equation (SDE)

dXt = b(Xt)dt+ σ(Xt)dBt, Xt=0 = X0, (2.10)

where X0 ∈ Rn is a random variable independent of m-dimensional Brown-
ian motion Bt, the vector-function b(x) = (b1(x), . . . , bn(x)) and the n×m
matrix-function σ(x) satisfy the Lipschitz and growth conditions:

‖b(x)− b(y)‖2 + ‖|σ(x) − σ(y)‖|2 ≤ C1‖x− y‖2, ∀x, y ∈ Rn; (2.11)

‖b(x)‖2 + ‖|σ(x)‖|2 ≤ C2(1 + ‖x‖2), ∀x ∈ Rn, (2.12)

where ‖ · ‖ and ‖| · ‖| are vector- and matrix-norms, respectively. The
function

p(t, x) = E[f(Xt)|X0 = x] (2.13)

defined as a conditional expectation of f(Xt) under the condition X0 = x
satisfies the forward Fokker-Planck-Kolmogorov equation

∂p(t, x)

∂t
= −

n∑
j=1

∂

∂xj

(
bj(x)p(t, x)

)
+

1

2

n∑
i,j=1

∂2

∂xi∂xj

(
ai,j(x)p(t, x)

)

= −div(bp) +
1

2
Tr

[
Q
∂2p

∂x2

]
, (2.14)

on the half-space Rn+1
+ ≡ {(t, x) ∈ Rn+1 : t > 0, x ∈ Rn}, and the initial

condition
p(0, x) = f(x), x ∈ Rn. (2.15)

In equation (2.14) ai,j(x), i, j = . . . , n, are entries of the matrix-function
Q(x), which is the product of the matrix-function σ(x) with its transpose
σT (x). The operator on the right of (2.14) is the adjoint A∗ to the second
order elliptic differential operator A defined as

Aϕ(x) =
1

2

n∑
i,k=1

aik(x)
∂2ϕ(x)

∂xi∂xk
+

n∑
k=1

bk(x)
∂ϕ(x)

∂xk
, (2.16)

with the domain D(A) = W 1(Rn).
SDEs associated with fractional FPK equations are driven by time-

changed processes. Consider SDE with a time-changed driving process

dYt = b(Xt)dSt + σ(Yt)dBSt , Yt=0 = X0, (2.17)

We show that now the function

v(t, y) = E[f(Yt)|Y0 = y] =

∫ ∞

0
ft(τ)p(τ, y)dτ (2.18)
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FRACTIONAL GENERALIZATIONS OF . . . 341

satisfies fractional FPK equation

Dβ
∗ v(t, y) = A∗v(t, y)

= −div
(
b(y)v(t, y)

)
+

1

2
Tr

[
Q(x)

∂2v(t, x)

∂x2

]
, (2.19)

and the initial condition v(0, y) = f(y). Indeed, using Lemma 2.2, one has

Dβ
∗,tv(t, x) =

∫ ∞

0
Dβ

∗tft(τ)p(τ, x)dτ

= −
∫ ∞

0

[ ∂

∂τ
ft(τ) +

t−β

Γ(1− β)
δ0(τ)

]
p(τ, x)dτ

= − lim
τ→∞

[ft(τ)p(τ, x)] + lim
τ→0

[ft(τ)p(τ, x)]

+

∫ ∞

0
ft(τ)

∂

∂τ
p(τ, x)dτ − t−β

Γ(1− β)
p(0, x). (2.20)

Due to part (c) of Lemma 2.1 the first term vanishes, since p(τ, x) is
bounded, while due to part (b) the second and last terms cancel. Tak-
ing into account equation (2.14),

Dβ
∗,tv(t, x) =

∫ ∞

0
ft(τ)A

∗p(τ, x)dτ = A∗v(t, x). (2.21)

Moreover, by property (a) of Lemma 2.1,

lim
t→+0

v(t, x) =< δ0(τ), p(τ, x) >= p(0, x) = f(x).

3. Time-changed filtering problem and fractional Zakai equation

In the previous section we were interested in a solution conditioned on
the value at the initial time t = 0; see equation (2.13). In the filtering
problem one has information of the past for all times s, 0 ≤ s < t, coming
from observations. Suppose

Zt =

∫ t

0
h(Xs)ds+Wt, (3.1)

are Rm-valued measurements, or observations related to the process Xt in
the noisy environment. Let Zt be a σ-algebra generated by the measure-
ment process Zt. One of the formulations of the filtering problem is to find
the best estimation of Xt at time t in the mean square sense, given Zt.
Namely, to find a stochastic process X∗

t such that

E[‖Xt −X∗
t ‖2] = inf

{Yt}
E[‖Xt − Yt‖2],

where inf is taken over all stochastic processes Yt ∈ L2(P) under the condi-
tion that the sigma-algebra Zt is given. It follows from the abstract theory
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342 S. Umarov, F. Daum, K. Nelson

of functional analysis that X∗
t is the projection of Xt onto the space of

stochastic processes L(Zt) = {Y ∈ L2(P) : given Zt}. The latter can be
written in the form X∗

t = E[f(Xt)|Zt], generalizing (2.13) from the initial
condition X0 = x to the entire history Zt. Hence, the filtering problem
comprises of an SDE

dYt = b(Yt)dt+ σ(Yt)dBt, Yt=0 = X0, (3.2)

called a state process, and an observation process

dZt = h(Yt)dt+ dWt, Z0 = 0, (3.3)

obtained from (3.1) by differentiating. Brownian motion Wt is assumed
to be independent of Bt and the initial random variable X0. This prob-
lem was first posed in 1960th and is still under active development due to
its significant applications. The linear case was studied by Kalman and
Bucy [15] in the 1960th. They reduced the linear filtering problem to a
linear SDE and a deterministic Riccati type differential equation. In the
case of non linear filtering Kushner [17], Lipster and Shiryaev [18], and Fu-
jisaki, Kallianpur and Kunita [7] obtained a non linear infinite dimensional
stochastic differential equations for the posterior conditional density of Xt

given Zt. However, two issues arise:

(1) it is not easy to solve these equations, and
(2) it is computationally ’expensive’ due to the two stage calculation

procedure (prediction and correction) in the real time.

In 1969 Zakai [26] suggested a simpler way, reducing the solution of the
filtering problem to a partial stochastic differential equation for the poste-
rior unnormalized conditional density Φ(t, x) = p(t, x|Zt) for Xt. Below we
briefly sketch the idea of this method. Introduce the process

ρ(t) = exp{−
m∑
k=1

∫ t

0
hk(Ys)dWs −

1

2

∫ t

0
|h(Ys)|2ds}

and the probability measure dP0 = ρ(t)dP. Further, let

Λt = Ê
( dP

dP0

∣∣Zt

)
, (3.4)

where the expectation Ê is under the reference measure P0. Then, as is
known, the optimal filtering solution of the filtering problem (3.2), (3.3) is
given by the following Kallianpur-Striebel’s formula (see, e.g. [22])

E[f(Yt)|Zt] =
Ê[f(Yt)Λt|Zt]

Ê[Λt|Zt]
. (3.5)

Moreover, under some mild conditions the unnormalized filtering measure
pt(f) = Ê[f(Yt)Λt|Zt] satisfies the following stochastic differential equation,
called the Zakai equation:
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FRACTIONAL GENERALIZATIONS OF . . . 343

pt(f) = p0(f) +

∫ t

0
ps(Af)ds+

m∑
k=1

∫ t

0
ps(hkf)dZ

k
s , (3.6)

where A is a second order elliptic differential operator given by equation
(2.16). Further, introducing the filtering density U(t, x) through

pt(f) =

∫
Rn

f(x)U(t, x)dx, (3.7)

one can show that U(t, x) solves the following partial stochastic differential
equation (called an adjoint Zakai equation)

dU(t, x) = A∗U(t, x)dt+

m∑
k=1

hk(x)U(t, x)dZk(t), (3.8)

with the initial condition U(0, x) = p0(x). Here A∗ is the adjoint operator
of A defined in (2.16). Thus, if one has a solution of equation (3.8), then
one will be able to establish a solution to the original filtering problem
using Kallianpur-Striebel’s formula (3.5). Equation (3.8) reduces to KFP
equation (2.14) if the observation process Zt stays constant in time, which
means no additional information coming from measurement/observation is
used.

Now consider a filtering problem the state process and observation pro-
cess of which are driven by time-changed Brownian motions. Namely, sup-
pose the state process is

dXt = f(Xt)dTt + σ(Xt)dBTt , Xt=0 = X0, (3.9)

and the observation process is

dZt = h(t,Xt)dTt + dWTt , Z0 = 0, (3.10)

where Tt is the inverse of the Lévy stable subordinator with the stability
index β ∈ (0, 1), and independent of Bt and Wt. We show that the Zakai
equation corresponding to this problem has the form

Φ(t, x) = p0(x) +

∫ t

0
A∗Φ(s, x)dTs +

∫ t

0
hs(x)Φ(s, x)dZTs . (3.11)

A few remarks before deriving this equation. The stochastic integral in
equation (3.11) is well defined in the sense of Îto’s integral. If β → 1 then
we recover the classical Zakai equation, since Tt = t in this case. Hence,
equation (3.11) generalizes the classic Zakai equation (3.8) for the case
of filtering problem with time-changed driving processes. Note also that
the time-changed process BT is not Markovian and has no independent
increments. Therefore, the model (3.9), (3.10) can be applied to a class
of correlated state processes. An important question is the existence and
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344 S. Umarov, F. Daum, K. Nelson

uniqueness (in an appropriate sense) of a solution for this new Zakai equa-
tion. We will discuss this question in this section as well as some solution
methods useful from the application point of view.

The fractional, or time changed version of the Zakai equation in the
general case of time-changed Lévy processes is obtained in paper [23] for
filtering problems driven by Lévy processes. For completeness, we demon-
strate the derivation of the fractional Zakai equation in our particular case
of filtering problem (3.9) - (3.10). We assume that the following conditions
on the input data of the filtering problem:

(C1) the vector-functions f(x), h(x), and n × m-matrix-function σ(x)
satisfy the Lipschitz and linear growth conditions:

‖f(x)− f(y)‖2 + ‖h(x) − h(y)‖2 + ‖|σ(x) − σ(y)‖|2

≤ C1‖x− y‖2, ∀x, y ∈ Rn;

‖b(x)‖2 + ‖h(x)‖2 + ‖|σ(x)‖|2 ≤ C2(1 + ‖x‖2), ∀x ∈ Rn,

where ‖ · ‖ and ‖| · ‖| are vector- and matrix-norms, respectively.
(C2) the time-change process Tt and Brownian motions Bt and Wt are

independent processes;
(C3) the initial random vector X0 is independent of processes Bt, Wt, and

Tt and has an infinite differentiable density function p0(x) decaying
at infinity faster than any power of |x|.

Theorem 3.1. Let the conditions (C1) - (C3) be verified. Then the
filtering density Φ(t, x) associated with the filtering measure φt(f)

= Ê[f(Xt)ΛTt |Vt], where Vt is the filtration generated by Vt = ZTt , satisfies
the following Zakai equation

Φ(t, x)− Φ(0, x) =

∫ t

0
A∗Φ(s, x)dTs +

m∑
k=1

∫ t

0
hk(x)Φ(s, x)dZ

(k)
Ts

. (3.12)

P r o o f. Let conditions (C1) - (C3) be verified. Then, in particular,
the conditions for the existence of an unnormalized filtering distribution
pt(f) = Ê[f(Yt)Λt|Zt] which solves the Zakai equation (3.6), is also verified.
Here Yt is a solution to stochastic differential equation (3.2). According to
Theorem 3.3 in [12] the time-changed process Xt = YTt solves stochastic
differential equation (3.9).

The connection Xt = YTt between the state processes Xt and Yt im-
plies the connection Vt = ZTt between the observation processes Vt and Zt.
Indeed, letting Tt = τ, or the same Dτ = t, one obtains from the relation
dVt = h(YTt)dTt + dWTt and (3.3) that Zτ = VDτ , or the same Vt = ZTt . It
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FRACTIONAL GENERALIZATIONS OF . . . 345

follows that the filtration Vt coincides with the filtration Z◦Tt ≡ ZTt gener-
ated by the time changed observation process ZTt . Hence, the unnormalized

filtering distribution φt(f) = Ê[f(Xt)ΛTt |Z ◦ T t] corresponding to the fil-
tering problem (3.9), (3.10) is the time-changed process φt(f) = pTt(f).
Therefore, due to equation (3.1) the process φt(f) satisfies

φt(f) = pTt(f) = p0(f) +

∫ Tt

0
ps(Af)ds+

m∑
k=1

∫ Tt

0
ps(hkf)dZ

(k)
s . (3.13)

Further, using the change of variable formula (see [14], Proposition 10.21)∫ Tt

0 HsdSs =
∫ t
0 HTs−dSTs , for stochastic integrals driven by a semimartin-

gale St, we obtain∫ Tt

0
ps(Af)ds =

∫ t

0
Ê[Af(YTs)ΛTs |ZTs ]dZ

(k)
Ts

=

∫ t

0
Ê[Af(Xs)ΛTs |ZTs ]dZ

(k)
Ts

=

∫ t

0
φs(Af)dZ

(k)
Ts

, (3.14)

and

m∑
k=1

∫ Tt

0
ps(hkf)dZ

(k)
s =

m∑
k=1

∫ t

0
Ê[hk(YTs)f(YTs)ΛTs |ZTs ]dZ

(k)
Ts

=

m∑
k=1

∫ t

0
Ê[hk(Xs)f(Xs)ΛTs |ZTs ]dZ

(k)
Ts

=
m∑
k=1

∫ t

0
φs(hkf)dZ

(k)
Ts

. (3.15)

Equations (3.13), (3.14), and (3.15) imply the desired equation (3.12). �

Let Tt be the inverse to a stable Lévy subordinator Dt of a stability
index β ∈ (0, 1) and let the stochastic processes Πt(f) and Πt,Z(f) are
defined by

Πt(f) = Apt(f)=

∫ ∞

0
gt(τ)pτ (f)dτ, Πt,Z(f) = Cpt(f)=

∫ ∞

0
gt(τ)pτ (f)dZτ ,

(3.16)
where gt(τ) is the density function of the process Tt and pt(f) is the un-
normalized filtering distribution of the Zakai equation (3.6) corresponding
to the filtering model (3.2)-(3.3). Then it follows from equation (3.12) that
the following stochastic relation holds:

Πt(f)− p0(f) = Jβ
t

(
Πt(Af) +

m∑
k=1

Πt,Z(k)(hkf)
)
, (3.17)

where Jβ
t is the fractional integration operator of order β.
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Let B maps the class of stochastic processes Πt(f) to the class of pro-
cesses Πt,Z(f), that is Πt,Z(f) = BΠt(f). One can verify easily that the
operator B can be expressed with the help of operators A and C in equa-
tion (3.16). Namely,

B = CA−1. (3.18)

Using L2(P)-norm and calculus of stochastic processes one can show that
A is a one-to-one bounded linear operator and C is a bounded linear oper-
ator. Therefore, it follows that operator B is well defined bounded linear
operator. We note that equation (3.17) can be written in the form

Πt(f)− p0(f) = Jβ
t

(
Πt(Af) +

m∑
k=1

BkΠt(hkf)
)
, (3.19)

where

BkΠt(f) = Πt,Z(k)(f). (3.20)

The differential form of (3.17) involves a fractional derivative in the Riemann-
Liuoville sense

dΠt(f) = D1−β
t Πt(Af)dt+

m∑
k=1

D1−β
t BkΠt(hkf)dt, Πt=0(f) = p0(f).

(3.21)
The latter in terms of unnormalized densities associated with the process
Πt(f) can be represented in the form

Dβ
∗U(t, x) = A∗U(t, x) +

m∑
k=1

hk(x)BkU(t, x), U(0, x) = f(x), (3.22)

where Dβ
∗ is the fractional derivative in the sense of Caputo. Equation

(3.22) generalizes fractional FPK equation (2.19) to the case of fractional
filtering problems.

Theorem 3.2. Let the conditions (C1)-(C3) be verified. Then there
exists a unique filtering density Φ(t, x) satisfying the fractional Zakai equa-
tion (3.12). Moreover, there exist uniquely defined stochactioc processes in
equation (3.16) satisfying initial value problem (3.21).

P r o o f. Suppose there are two filtering densities Φ1(t, x) and Φ2(t, x)
such that both satisfy equation (3.12). Then the process Ψ(t, x) = Φ2(t, x)−
Φ1(t, x) satisfies the following equation

Ψ(t, x) =

∫ t

0
A∗Ψ(s, x)dTs +

m∑
k=1

∫ t

0
hk(x)Ψ(s, x)dZ

(k)
Ts

. (3.23)
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This ia a SDE driven by time-changed processes Ts given ZTs . Its counter-
part with non time-changed process has the form

V (t, x)− V0(x) =

∫ t

0
A∗V (s, x)ds +

m∑
k=1

∫ t

0
hk(x)V (s, x)dZ(k)

s , (3.24)

with V0(x) ≡ 0. The solutions V (t, x) and Ψ(t, x) are related through
Ψ(t, x) = V (Tt, x). Equation (3.24) has a unique solution (see, e.g. [10,
8, 21, 16]). Since the initial condition is V (0, x) = 0, then the correspond-
ing solution V (t, x) ≡ 0 in the sense of L2(P). This implies Ψ(t, x) ≡ 0,
or the same, Φ1(t, x) = Φ2(t, x) in the sense of L2(P). The latter, in turn,
implies that the process defined in equation (3.16) is unique. �

4. On some solution methods

Knowing a solution of a nonlinear filtering problem one can use it for
solution of the associated fractional nonlinear filtering problem. Two ap-
proaches to the solution of nonlinear filtering problems are commonly used.
Namely,

(1) direct solution of filtering problem (3.9)-(3.10).
(2) solution of the Zakai equation followed by the Kallianpur-Striebel

formula.

For the filtering problem with no time-changed driving processes both ap-
proaches are well studied; see, e.g. works [16, 22, 3, 13] for the first ap-
proach, and [26, 1, 2, 20, 19] for the second approach. Below we briefly
sketch the ideas of some methods of solution of nonlinear filtering problems
(first approach) and of fractional Zakai type equations (3.12) and (3.21)
(second approach). Both type of Zakai equations (3.12) and (3.21) (or
its equivalent form (3.22)) are of great interest in various applications of
fractional filtering problems. For solution of these equations the following
formulas are important:

Φt(f) = pTt(f) (4.1)

and

Πt(f) =

∫ ∞

0
gt(τ)pτ (f)dτ. (4.2)

Therefore, in the first step one needs to find the stochastic process pt(f)
which solves the classical Zakai equation. Then using the above formulas
one can find solutions to fractional Zakai equations. Like the non-fractional
case, one can develop analytic and numerical methods, and methods for
solution of filtering problem directly, or through the associated Zakai equa-
tion. Accordingly, in the fractional case the methods can be developed for
solution of three following situations:
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(i) Direct solution of the fractional filtering problem;
(ii) Solution of the fractional filtering problem through the Zakai equa-

tion (3.12);
(iii) Solution of the fractional filtering problem through the Zakai equa-

tion (3.22).

Case (i). If Yt is a solution of the filtering problem with the state process
(3.2) and the observation process (3.3), then the process Xt = YTt solves
the fractional filtering problem (3.9)-(3.10) (see the proof of Theorem 3.1).
Therefore, if p(t, x) is the conditional density of Yt then the conditional
density of Xt is calculated by conditioning on Tt, that is

p̃(t, x) = fXt|ZTt
(x) =

∫ ∞

0
p(τ, x)P(Tt ∈ dτ)

=

∫ ∞

0
gt(τ)p(x, τ)dτ. (4.3)

Case (ii). In this case the unique solution Φ(t, x) to the fractional Zakai
equation (3.12) is Φ(t, x) = V (Tt, x), where V (t, x) is an unnormalized
solution to the Zakai equation

dV (t, x) = A∗V (t, x)dt+

m∑
k=1

hk(x)V (t, x)dZ
(k)
t , V (0, x) = f(x).

Again, like Case (i) the expectation of Φ(t, x) can be computed using the
formula

E
(
Φ(t, x)

)
= E

(
V (Tt, x)

)
=

∫ ∞

0
E(V (τ, x))P(Tt ∈ dτ)

=

∫ ∞

0
gt(τ)E(V (τ, x))dτ. (4.4)

Case (iii). In this case, it follows from the first equation in (3.16),
that the unique solution to the fractional Zakai equation (3.22) can be
represented as

U(t, x) =

∫ ∞

0
V (τ, x)P(Tt ∈ dτ) =

∫ ∞

0
gt(τ)V (τ, x)dτ. (4.5)

Thus, in all three cases (i)-(iii) for solutions of fractional filtering problem
we obtain the same type integral (see equations (4.3), (4.4), and (4.5))∫∞
0 gt(τ)G(τ, x)dτ, where G(t, x) is a stochastic process, which solves an

Îto type SDE (non fractional filtering problem). The details of calculation
of integrals (4.3), (4.4), and (4.5) for solution of fractional filtering problem
and fractional Zakai equation will be discussed in a separate paper.
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5. On the particle flow method for fractional filtering problems

Due to the Bayes rule for the posterior conditional density one has

p(x, λ) =
g(x)h(x)λ

K(λ)
, K(0) = 1,

where g(x) is the prior, h(x, λ) is the likelihood, andK(λ) is the normalizing
factor. Obviously, λ = 0 corresponds to the prior p(x, 0) = g(x) and λ = 1

gives the posterior p(x, 1) = g(x)h(x)
K(1) . In log terms this equation takes the

form

ln p(x, λ) = ln g(x) + λ lnh(x)− lnK(λ). (5.1)

If the flow obeys SDE dX = f(X, λ)dλ+dW, whereW is a Brownian motion
with the covariance matrix Q, then the density p(x, λ) of X satisfies the
Fokker-Planck equation

∂p

∂λ
= −div(fp) +

1

2
Tr

[
Q
∂2p

∂x2

]
. (5.2)

Combining equations (5.1) and (5.2) one has a system of PDEs

div q = η0, (5.3)

where

q = fp and η0(λ, x) = Tr
[
Q
∂2p(λ, x)

∂x2

]
− p(λ, x)

[
lnh(x)− d lnK(λ)

dλ

]
.

(5.4)
At this stage various possibilities arise as discussed in series of papers by F.
Daum and co-workers (see, e.g. [4, 5] and references therein). For instance,
if one assumes that there is no diffusion (Q = 0), then η becomes

η0(λ, x) = −p(λ, x)
[
lnh(x) − d lnK(λ)

dλ

]
. (5.5)

It is well-known from the general theory of of PDEs that equation (5.3) has
a solution only if the right hand side η0 is orthogonal to 1, that is∫

Ω

η0(λ, x)dx = 0. (5.6)

Here Ω is the range of the random vector Xt.
Let φ(x, λ) is a conditional density of the fractional filtering problem:

φ(x, λ) = fXλ|ZTλ
(x); g(x) is the prior density, h(x) is the likelihood, and

K(λ) is the normalization factor. Then the Bayes rule implies

lnφ(x, λ) = ln g(x) + λ lnh(x) − lnK(λ). (5.7)

In this case the flow obeys SDE dXλ = f(Xλ, λ)dTλ + dWTλ
, where T is a

time-change process, W is a Brownian motion with the covariance matrix
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Q. Then the density φ(x, λ) ofX satisfies the stochastic differential equation
(3.22), that is

Dβ
∗φ(λ, x) = A∗φ(λ, x) +

m∑
k=1

hk(x)Bkφ(λ, x), φ(0, x) = δ0(x), (5.8)

where Dβ
∗ is the fractional derivative in the sense of Caputo, A∗ is the

adjoint operator to A, defined in (2.16), and operators Bk are defined in
(3.20).

We first consider the case of particle flow without diffusion. This case
for non fractional filtering was discussed in papers [4, 5]. It is obvious, that
if there is no noise, then Bk ≡ 0, and equation (5.8) takes the form

Dβ
∗φ(λ, x) = −div

(
f(λ, x)φ(λ, x)

)
, φ(0, x) = δ0(x), (5.9)

The left side of (5.9) due to equation (5.7) equals

Dβ
∗φ(λ, x) = J1−β dφ(λ, x)

dλ
= J1−β

[
φ(λ, x)

(
lnh(x) − d lnK(λ)

dλ

)]

=
1

Γ(1− β)

λ∫

0

(λ− μ)−β
[
φ(μ, x)

(
lnh(x) − d lnK(μ)

dμ

)]
dμ,

(5.10)

where Γ(·) is the Euler gamma function. Therefore, the problem of particle
flow reduces to the following partial differential equation

div(φf(λ, x)) = η(λ, x), (5.11)

where

η(λ, x) = − 1

Γ(1− β)

λ∫

0

(λ−μ)−β
[
φ(μ, x)

(
lnh(x)− d lnK(μ)

dμ

)]
dμ. (5.12)

Equation (5.12) generalizes the form (5.5) for the function η0(λ, x), coincid-
ing with it if β = 1.We note that if the function η0(λ, x) in (5.5) satisfies the
orthogonality condition (5.6) then the function η(λ, x) in equation (5.12)
also satisfies condition (5.6). Indeed, due to the Fubini theorem, one has

∫

Ω

η(λ, x)dx
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= − 1

Γ(1− β)

∫

Ω

⎛
⎝

λ∫

0

(λ− μ)−β
[
φ(μ, x)

(
lnh(x)− d lnK(μ)

dμ

)]
dμ

⎞
⎠ dx

= − 1

Γ(1− β)

λ∫

0

(λ− μ)−β

∫

Ω

[
φ(μ, x)

(
lnh(x)− d lnK(μ)

dμ

)]
dxdμ

= − 1

Γ(1− β)

λ∫

0

(λ− μ)−β

⎛
⎝
∫

Ω

η0(μ, x)dx

⎞
⎠ dμ = 0,

since φ(λ, x) = p(λ, x). Therefore, equation (5.11) has a solution. Equa-
tion (5.11) is an underdetermined equation, and therefore, has no unique
solution. Depending on researcher’s interest it can be found an appropriate
solution.

In the general case with non-zero diffusion, the right hand side of equa-
tion (5.12) has the form

η(λ, x) =
1

Γ(1− β)

λ∫

0

(λ− μ)−β
[
Tr

[
Q
∂2p(λ, x)

∂x2

]

− φ(μ, x)
(
lnh(x)− d lnK(μ)

dμ

)]
dμ, (5.13)

generalizing equation (5.4). The PDE (5.11) can be simplified similar to
non-fractional case, see [4, 5].
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