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Abstract 

This study provides stepwise benchmarking practices of each port to enhance environmental performance 

using joint application of data mining technique referred as Kohonen’s Self-Organizing Map (KSOM) and 

Recursive Data Envelopment Analysis (RDEA) to address the limitation of conventional DEA. A sample 

of 20 container ports in the U.S were selected, and data on input variables (number of quay crane, acres, 

berth and depth), output variables (number of calls, throughput and deadweight tonnage, and CO2 

emissions) are used for data analysis. Among the selected samples, eight container ports are found to be 

environmentally inefficient. However, there appears to be a high potential to become environmentally 

efficient port. In conclusion, it can be inferred that, stepwise benchmarking process using two combined 

methodologies substantiates that, more applicable benchmarking target set of Decision Making Units 

(DMUs) is be projected that consider similarity of physical and operational characteristics of homogenous 

ports for improving environmental efficiency. 

 

Keyword: Port Performance, Port Benchmarking, Environmental Efficiency, KSOM-RDEA, Data 
Mining 
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1. Introduction 

Sustainability in every sector is crucial in order to maintain productivity for a prolonged period for current 

and future generations. Therefore, contemporary environmental impact has been of a prime concern in our 

society, hence, mitigating environmental impact of container port has become one of the lingering issues 

in management of sustainable port development.  In this regard, the maritime sector plays an important 

role in growing the economic sector of a country and keeps moving industries around the world. 

Developing sustainability has become one of the most significant strategic goals in maritime operation 

because container ports play a critical role as international trade gates for every country (Song and Lee, 

2012). Intermodalism is more effective and efficient by reducing the time of transferring goods from ship 

to shore and on-dock transportation. Ports have positive effect on national as well as regional economies 

(Deng et al., 2013), however, the environmental aspects of container ports are crucial in order to maintain 

sustainable, green logistics at ports since maritime activities have been recognized to be prime pollutant 

emitters in the U.S. generating environmental pollution, including but not limited to CO2, SO2, NOx, and 

SOx.  Previous studies have highlighted that U.S Transport sector accounts for about 27% of overall energy 

consumption. Although the shipping sector uses only 2.5% of the global transport energy demand, but it 

only transports 90% of internationally traded goods. The container ships are considered to be as the 

backbone of the global economy, hence research and development regarding the economic and 

environmental aspect of port is significant (REN21, 2017).  The common port activities include delay in 

port, loading and unloading processes using cranes, and transporting containers from ships to inland depots 

by truck and rail.   Managing port operations is cumbersome because it deals with a variety of cargoes 

with different types of vessels from different countries. Poor operations management will cause port 

congestion and delay which will affect the whole operation of a port. Therefore, it is vital to measure the 

performance of a port in order to clearly identify the area to improve in the entire operation process. 

Performance measurement is common in industries where it identifies key elements to make sure daily 

operations are in good condition and running smoothly (Bergantino et al.  2013). Monitoring port 

performance is crucial for improving effectiveness and efficiency. Port operations are influenced by many 
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random factors, so the available resources such as the quay crane and berths should be utilized in efficient 

ways in order to reduce handling time, port congestion and any disruption during operations (Bichou, 

2013). 

Efficiency of port activities or operations is a critical aspect in order to achieve sustainability. 

International trade increases each year, leading to an increase in sea transport demand since it is a derived 

demand. Identifying facilities and services among ports in the U.S would be useful to government or port 

authorities to improve their port efficiency. As a key element of international trade, container ports in the 

U.S. should maintain their efficient performance in terms of container handling in loading and unloading 

processes while considering environmental aspects.  Analyzing port efficiency by including CO2 

emissions is an effective way to measure the performance and develop policies to reduce the carbon 

footprint from port activities.  

2. Literature Review  

Port efficiency is one of the most important criteria in evaluating the port’s daily operations performance. 

Improving the quality of port operations activities such as container handling will reduce the percentage 

of time delay in container movements. Efficient utilization of available equipment in container handling 

is a crucial part when dealing with high numbers of containers that creates complexity in the movements 

of containers from vessel to stacking area. Measuring the efficiency of these operations can lead to better 

insight for tackling specific problems that should be improved. Many studies on port operations were 

conducted by various researchers with different ideas and approaches to improve port efficiency.  

One of the solution to improve the port effectiveness is outsourcing.  Outsourcing is one of the elements 

in logistics that can reduce the dependency on other operational activities while focusing on the core 

business. This means the port management can focus on the overall control of the port by allowing other 

third-party companies to operate the cargo handling operations. Research by Talley et al. (2014) concluded 

that port services would be more effective by outsourcing their port’s operations activities to a third-party 



 
 

4 
 

service provider. The service provider would utilize all resources available at the port in order to handle 

cargoes in an optimal time and cost.  

Sakar and Cetin (2012) proposed a concept of sustainable port by taking into account the 

stakeholders’ involvements in the planning of port activities. Stakeholder’s involvements are important in 

the planning process due to its capability in strengthening and sustaining good businesses. Collaboration 

and integration between port authorities and the stakeholders can also lead to a more sustainable port along 

the supply chain (Denktas, 2012). Linking all stakeholders together in every aspect of port activities can 

improve the information flow while increasing the accuracy rate of information given. Moreover, Puig et 

al (2014) studied the operational performance of sustainable ports by identifying and selecting the 

Environmental Performance Indicators (EPIs), concluding that all entities in the port activities share 

common ideas of satisfying economic demands together with sustainable development.  

Mora et al. (2005) carried out a study on an environmental analysis of port activities and found 21 potential 

environmental impacts in different port activities and improvements that should have been applied in the 

management of those activities. Mora et al. (2005) determined port authorities should take into account 

the environmental aspects in port operations in order to gain sustainability. Moreover, Gibbs et al. (2014) 

found that emissions from vessel at berth contribute emissions ten times greater than those from the other 

port handling operations. 

In this regard, DEA is a nonparametric method which measure the efficiency of a decision-making 

unit (DMU) by considering multiple input and output (Cooper et al., 2007). Charnes et al. (1978) proposed 

the constant returns to scale data envelopment analysis (CCR-DEA). Banker et al. (1984) extended CCR-

DEA to variable returns to scale DEA (BCC-DEA). Since then, DEA has been a widely used approach to 

identify the best management and benchmark practice within a set of DMUs and to measure efficiency in 

frontier analysis. The DEA model has been used to measure the efficiency and productivity as a 

benchmarking practice to many areas such as banks, transportation, and logistics (Schaffnit et al., 1997; 

Ross and Droge, 2002). With regard to the port industry, many studies have been conducted on efficiency 

and productivity using the DEA model, including a study about 16 ports in Australia and Europe (Tongzon, 
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2001), a comparison study between DEA and stochastic frontier analysis (SFA) (Cullinane et al., 2005; 

Cullinane and Wang, 2006), benchmarking port efficiency (Sarriera et al., 2013; Sharma and Yu, 2009; 

Munisamy and Singh, 2011), and coastal container terminal in China (Dan, 2013).  Interestingly, Sharma 

and Yu (2009) developed a model that overcomes the traditional DEA bechmarking method by using 

stratification method called recursive data envelopment analysis (RDEA) to propose stepwise 

benchmarking process. In addition, Mithuan and Son (2009) proposed a new method of stepwise 

benchmarking target selection by combining self organizing map (SOM) with RDEA that is proven to be 

more realistic and effective method by which inefficient decision making units (DMUs) can select 

benchmarks in a same group. However, there is a certain limitation in that it is difficult to benchmark the 

most efficient DMU if there are few DMUs in the same group and it limits the benchmarking range to the 

same group. In contrast, this study applies stepwise benchmark target selection method based on similarity 

developed by Park et al. (2012) that considers a minimization-improving performance measure for 

improving port environmental efficiency.  

Conventional practices of port operation only look at the port efficiency in a single aspect of 

minimizing cost and maximizing profit. Today, sustainability is concerned in every area of logistics 

activities at ports and the whole supply chain in general. Therefore, studies regarding environmental 

efficiency of port that take into account environmental impact are topics of interest for industry and 

academic researchers (Chang, 2013; Haralambides and Gujar, 2012). DEA model has been applied to 

many studies and the efficiency evaluations are significantly altered once the environmental aspects are 

factored into the model.  With regard to measuring environmental efficiency, DEA model has been widely 

applied, such as 30 Organization for Economic Co-operation and Development (OECD) countries (Zhou 

et al., 2006), 26 OECD countries (Zhou et al.,  2007), airport (Lozano and Gutiérrez, 2011) and 

transportation sector in the U.S. (Park et al., 2016).  Zhou et al. (2006), Zhou et al. (2007), Lozano and 

Gutiérrez (2011) and Park et al. (2016) used SBM-DEA model by taking into account air pollutants as 

undesirable output in the model.   
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As far as managing environmental system of ports is concerned, there has been an increasing 

application of environmental management system (EMS), as a systematic method to prevent port from 

pollution (Florida and Davison, 2001).  As Lam and Notteboom (2014) contends that constant monitoring 

is the one of the critical features of EMS.  Peris-Mora et al. (2005) proposed a set of main environmental 

indicators for sustainable management of port for port authority that has been used in the port of Valencia. 

Environmental survey is used for 27 EU inland ports to quantify environmental performance and 

environmental index and has been computed using various features such as; waste, energy consumption, 

air quality, and carbon footprint (Seguí et al., 2016).  Puig et al., (2017) analyzed the 2016 environmental 

benchmark performance of the EcoPorts members in European country using Self-Diagnosis Method 

(SDM), that provide key environmental priority for benchmarking and managing environmental 

performance of air quality, energy consumption, and noise. The above mentioned studies have addressed 

ecological issues in ports and port management policy with respect to green port development. It appears 

that research on green ports from environmental efficiency policy and management perspective is scarce.  

However, few studies exist on environmental performance related to port that provide comparison of 

environmental efficiency of local and global perspective utilizing standard DEA benchmarking model.  

The main sources of environmental externalities in port operation are known to be atmospheric 

and water pollution. Chin and Low (2010) incorporated external environmental factor as an undesirable 

output in measuring environmental efficiency using DEA by comparing the 13 largest worlds’ ports.  

Haralambides and Gujar (2012) discussed that combined undesirable factors into consideration in eco-

DEA for measuring efficiency provides better efficiency score achieving balance between production and 

environmental externalities. More recently, Chang (2013) attempted to measure environmental efficiency 

of 23 Korean ports using slack based DEA by treating CO2 emissions as undesirable, and Liu and Lim 

(2015) measured environmental efficiency of U.S ports by incorporating toxic air pollution. Not only is 

there a need to assess environmental efficiency performance of port, there is a gap in the existing body of 

literature when it comes to environmental efficiency benchmarking study.  As far as the author’s 

understanding is concerned, there are no empirical comparative studies devoted to benchmarking study 
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for environmental efficiency of the U.S ports.  Therefore, the purpose of this paper is to perform 

benchmarking analysis of environmental efficiency of U.S. container ports.  Previous studies did not 

conduct benchmarking studies to provide environmental performance of the ports. Limited studies can be 

found related to benchmarking port efficiency (Hun et al., 2010; Sharma and Yu, 2009; Park and Sung 

2016). In line with such motivation, this study will benchmark the environmental efficiency of container 

ports against best-practices in the U.S ports.   

This study leverages two hierarchical methodological approaches to enhance the ability of DEA 

by applying Recursive Data Envelopment Analysis (RDEA) to provide a reference target to inefficient 

units based on their maximum capacity to improve environmental efficiency to its optimal level. Despite 

the fact that benchmarking in standard DEA that allows for the identification of targets for improvements, 

it still has certain limitations. One of the drawbacks in standard DEA benchmarking is that inefficient 

DMUs project only the efficient frontier, which ignores the differences in the efficiency score. Another 

drawback of the standard DEA model is that inefficient DMUs and its benchmarking target may not be 

similar to the operating practices (Doyle and Green, 1994).   The cluster analysis is carried out using the 

unsupervised clustering tool Kohonen’s self-organizing map (KSOM) to cluster DMUs in accordance with 

input similarity to be able to obtain appropriate benchmarking of environmental efficiency levels gained 

by RDEA analysis. Finally, a benchmarking projection diagram is constructed to provide the stepwise 

benchmarking process for benchmarking environmentally efficient ports. The rest of the paper is organized 

as follows: In section 3, methodology is explained in detail. In section 4, the results and discussion are 

presented. Finally, in section 5, conclusion and direction of future research are provided.  

3. Methodology 

3.1 Data 

This study attempts to measure environmental efficiency of US ports and provide stepwise benchmarking 

using RDEA and KSOM. For this purpose, the most recent available data is 2013 data on the top twenty 

US ports in terms of relevant input and output variables used for the model. The DMU was the individual 

container ports. Input variables for the model were the number of quay crane, area of terminal (m2), length 
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of berth (meter), and depth (ft) in each port. Based on the literature the input variables used is gathered 

from various sources (Kwak et al.., 2015; Won et al., 2007; Cullinane and Song, 2006).  Labor input is 

expunged as it is normally regarded as a fairly stable and as it has very close relationship between the 

number of cranes and the number of port workers at a container terminal (Notteboom et al, 2000).  Input 

data are collected from Navigation data center in US Army Corps of Engineers which include the complete 

dock list and port facility attributes that include cargo-handling equipment, water depth alongside the 

facility, berthing space, and deck height. The proposed solution fulfils the data requirement for input, 

physical quantification of annual container throughput in TEU, number of calls which serves as an 

intermediate stop for a ship at container terminal for unloading and loading of cargo. Finally, deadweight 

tonnage (DWT) which is a measure of how much weight a ship at container terminal is carrying, was 

adopted as a basis for measuring the output of container terminal as the desirable outputs (Tongzon, 2001; 

ITOH, 2002).  2013 vessel calls in US ports and terminal data are downloaded from United States Maritime 

Administration (USMA) and output variables for containers are collected for each port. This study also 

incorporates CO2 emission as the undesirable output. Since the data on CO2 were not available, CO2 

emission for each port was estimated using the guideline proposed by Geerlings and van Duin (2011).  The 

total CO2 emissions of each container port were calculated as the sum of power consumption from the 

quay crane equipment per total throughput. The fixed energy consumption per container throughput is 6.0 

kwh and its emission factor of 0.52 in kilograms of CO2 emission is multiplied by the total number of 

quay cranes (Geerlings and van Duin, 2011), and finally unit of emissions are converted to US tons (1 

kilogram =0.00110231 US tons).  Table 2 shows the descriptive statistics of the input and output variables. 

The average quay crane usage was 19.7 ranging between 1 and 79. The average value of acres, berth, and 

depth were 580.26 m2, 4463.75 m, and 145.24 ft, respectively. The average amount of CO2 emission was 

368,103.4 tons with a maximum of 2,030,098 tons and a minimum of 118.5 tons.  As for the desirable 

output, the US port had 671.8 calls, 2,772,538 throughputs, and 35,765,109 DWT, on average.  
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Table 2. Inputs and outputs data for 20 ports of US 

CATEGORY VARIABLE MEAN STD.DEV MIN MAX SUM 

INPUT Quay Crane 19.7 22.76678 1 79 394 
 

Acres 580.26 564.8509 11 1803 11605.2 
 

Berth  4463.754 7660.834 198 35545 89275.08 
 

Depth  145.25 120.5098 35 446 2905 

UNDESIRABLE OUTPUT CO2 368103.4 622698 118.4876 2030098 7362068 

DESIRABLE OUTPUT Calls 671.8 643.5098 18 2156 13436 
 

Throughput 2772538 2978170 17226 9313313 55450751 
 

Dwt 35765109 38398751 209763 1.22E+08 7.15E+08 

 

3.2 Recursive Data Envelopment Analysis and KSOM 

The conventional application of DEA to a multi-factor productivity measurement problem with multiple 

input(s) and/or output(s), which provides a single efficiency frontier (layer) where the efficient DMUs are 

spread. One of the typical concern with this method is that the benchmark outcomes are biased and lacks 

explicit improvement guidance for inefficient DMUs (Sharma and Yu, 2009). On the other hand, it is 

worthy to note that multi-layer efficiency frontiers can provide accurate and realistic improvement 

guidance when a recursive DEA approach is utilized (Sharma and Yu, 2009). Additionally, cluster 

analysis’ results are incorporated with the multi-tier efficiency groups, inefficient DMUs can provide with 

stepwise self-improvement paths toward efficient frontier. Therefore, this has motivated us to develop a 

dual methodology to increase discriminatory power of DEA efficiency score and the sample heterogeneity.  

The research framework of combination of RDEA and KSOM analysis are shown in Figure 1.   
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Figure 1. Research framework 

 

The RDEA model was employed (Zhu, 2001) and each container ports were stratified into 

different deficiency levels. A DEA Frontier Excel Add-In, developed by Zhu (2001), was used to run the 

linear programming model of RDEA. The algorithm is as follow.  

Objective function 

  ϴ*(𝑙𝑙,𝑘𝑘)  = min ϴ (𝑙𝑙,𝑘𝑘)                         (1) 

Subject to: 

∑ 𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗  ≤𝑛𝑛
𝑗𝑗∈𝐹𝐹(𝐽𝐽𝑙𝑙)  𝛳𝛳(𝑙𝑙,𝑘𝑘)𝑥𝑥𝑖𝑖𝑖𝑖              (2)  

∑ 𝜆𝜆𝑗𝑗𝑦𝑦𝑟𝑟𝑖𝑖  ≥𝑛𝑛
𝑗𝑗∈𝐹𝐹(𝐽𝐽𝑙𝑙)  𝑦𝑦𝑟𝑟𝑖𝑖                            (3) 

𝜆𝜆𝑗𝑗 ≥ 0                                                (4) 

𝑗𝑗 ∈ 𝐹𝐹 ( 𝐽𝐽𝑙𝑙)                                           (5) 

 

 λs are the dual variables, 𝑥𝑥𝑖𝑖𝑗𝑗 is the amount of input i consumed by DMUj , 𝑦𝑦𝑟𝑟𝑖𝑖 is the amount of output r 

yielded by DMUi,  ϴ is the efficiency score, and  xik and yrk are i th input variables and r th output 

variables of DMUk.   𝐽𝐽𝑙𝑙 P

  = { DMUj,  j =1,…n } define the set of n DMUs and iteratively define  Jl+1 = Jl-
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El where 𝐸𝐸𝑙𝑙= {DMUk ∈  𝐽𝐽𝑙𝑙 | ϴ* (𝑙𝑙,𝑘𝑘) =1}, and ϴ*(𝑙𝑙,𝑘𝑘)  and ϴ*(𝑙𝑙,𝑘𝑘) represents the optimal objective value 

of the RDEA linear programming model that DMUk is under evaluation. 𝑗𝑗 ∈ 𝐹𝐹 ( 𝐽𝐽𝑙𝑙)  represents DMUj ∈ 

 𝐽𝐽𝑙𝑙, which is to say, 𝐹𝐹 (·) indicates the corresponding subscript index set and 𝐸𝐸𝑙𝑙encompasses of all the 

efficient DMUs on the 𝑙𝑙th level (Zhu, 2001; Hun et al., 2010).                

The steps of the RDEA algorithm for identifying the stratified efficient frontier are as follows 

(Park and Sung, 2016):    

Step 1: set  𝑙𝑙 = 1. Use DEA analysis for the entire set of DMUs,  𝐽𝐽1, P

  to obtain first efficient tier group, E1. 

Step 2: eliminate the frontier DMUs for the next DEA run and set  𝐽𝐽𝑙𝑙+1 =  𝐽𝐽𝑙𝑙 – 𝐸𝐸𝑙𝑙. 

Step 3: if  𝐽𝐽𝑙𝑙+1 = 𝜙𝜙, then stop, otherwise keep the current run DEA for the remaining subset of DMUs for 

the next tier group 𝐸𝐸𝑙𝑙+1. 

Step 4: then, let 𝑙𝑙 = 𝑙𝑙 + 1. Follow step 2 until the model find entire tier groups.  

Analyzing RDEA, Kohonen’s self-organizing map (KSOM) is applied for clustering units based 

on similar characteristics of input variables. Self-organizing maps (SOM) is a form of artificial neural 

network which uses unsupervised learning scheme to train, that was developed by Kohonen (1982). SOM 

is popularly known as Kohonen’s self-organizing maps or simply Kohonen’s network. SOM is mainly 

used for cluster analysis, feature extraction and data visualization. It mimics the way the mammalian brain 

physically maps sensory inputs. The structure of a SOM comprises of an input layer and an output layer. 

The output layer consists of neurons arranged in a two-dimensional grid pattern and connected laterally. 

The output layer is connected to the input layer. Figure 2 portrays the structure of a SOM (Burn and Home 

2008). The neurons on the output layer “similar” to the input vector are clustered together.  

 

Figure 2. Structure of a SOM adapted from Burn and Home (2008) 
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SOM algorithm is summarized as follows (Cooper and Burns, 2007): 

1. Initialize weight of input vector. 

2. Calculate the Euclidean distance of each neuron on the grid from the input vector.  

3. The output neuron with the shortest Euclidean distance becomes the winning neuron. 

4. The weight of the winning neuron is then updated to be more like the input vector.  

5. The weight vectors of neurons within the neighborhood of the winning neuron are also updated to 

be more like the input vector.  

6. Repeat steps 2 to 6 until the required number of clusters are formed.  

As it can be seen, the SOM performs clustering while preserving topology, however, for large output 

dimensions, the number of neurons in the adaptive grid increases exponentially with the number of 

function parameters. The pre-specified standard grid topology may not be able to match the structure of 

the distribution, leading to poor topological mappings (Du 2009).  For KSOM analysis, NNclust software 

is used to cluster DMUs into several groups. The input variable used for the KSOM analysis consists of 

number of quay cranes, acres, berth, depth, desirable output and undesirable output. The learning 

parameter is chosen as 0.9 for a starting point, the training cycle is 100, and the ending learning parameter 

is 0.1 (Park et al., 2012; Egilmez et al., 2015).  From the above addressed issue, we run a few different 

times to form an optimal clustering groups which have less testing error.  

3.3 Benchmarking Method based on the Input-Similarity 

Traditional benchmarking method without considering similar input characteristic does not provide 

stepwise benchmarking target and it is difficult if multiple benchmarking targets exist in reference target. 

In addition, it has to be understood that, low efficient DMU cannot directly improve to 100% efficiency, 

it reasonably need equivalent characteristics trades for benchmarking and improvement (Sharma and Yu, 

2009).  Appropriate benchmarking method is demonstrated for the selection of stepwise benchmark target 

considering input similarity (Hun et al., 2010; Park et al., 2012).  Figure 3 illustrates the flow chart of 

finding an improvement path for each inefficient DMUs using RDEA and KSOM.   First, inefficient DMUs 
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from the lowest tier group (n) from DEA analysis are selected, then determine the benchmarking DMUs 

from reference sets. DMUs were analyzed using SOM to categorize into same group. If same cluster group 

exist among DMUs, DMUs can benchmark DMUs in the same group at upper tier. Otherwise, input 

similarity function must be computed to find the benchmarking path as in equation 6 (Hun et al., 2010).  

Using equation 6, input similarity was computed. 

CE(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗,𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) = 1
𝑑𝑑(𝑔𝑔𝑟𝑟�𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

∗�,𝑔𝑔𝑟𝑟(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖))
+ 𝑤𝑤 ∗ �𝑙𝑙𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗)− 𝑙𝑙𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖)� + 𝜆𝜆𝑖𝑖               (6) 

Where, 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗  is a benchmark unit, 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖  is a benchmark target, CE(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗,𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) is  input similarity 

function of 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗and 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ,  𝑑𝑑(𝑔𝑔𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗),𝑔𝑔𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖)) distance between group which is calculated by 

Euclidean distance (distance of same cluster group is 0.5),  𝑙𝑙𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗)− 𝑙𝑙𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) shows the difference 

between tier group distance, 𝜆𝜆𝑖𝑖 is a weight when 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗ has set of reference target of 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖. 𝑤𝑤(0.01) was 

multiplied to 𝑙𝑙𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗)− 𝑙𝑙𝑙𝑙(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) to give higher weight for distance between clustered group and 

relatively lower weight for difference between two tier groups. Following the computation of CE, 

inefficient 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖∗ must benchmark the efficient 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖   among the identified target from the upper tier that 

has maximum value of input similarity function.  This procedure can be repeated until rest of DMUs find 

the benchmarking target from the next higher tier.  
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Figure 3. Flowchart of the benchmarking method based on the input similarity 

 

4. Results 

4.1 Environmental efficiency performance 

The correlation was estimated between input and output variables in order to check whether there were 

significant relationships between them before analysis of DEA. As presented in Table 3, there were very 

high correlations between input and output variables, mostly over 0.8 between quay cranes and acres, acres 

and depth, depth and CO2, throughput and CO2, and throughput and Dwt. There were moderate 

correlations between berth and calls, berth and throughput, and berth and Dwt.  
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Table 3. Correlation matrix for inputs and outputs 

  Quay 
crane 

Acres Berth  Depth  CO2 Calls Throughp
ut 

Dwt 

Quay 
crane 

1 
       

Acres 0.839 1 
      

Berth  0.782 0.676 1 
     

Depth  0.926 0.820 0.748 1 
    

CO2 0.947 0.806 0.779 0.858 1 
   

Calls 0.715 0.759 0.419 0.638 0.783 1 
  

Throughp
ut 

0.813 0.820 0.526 0.738 0.865 0.967 1 
 

Dwt 0.803 0.814 0.514 0.727 0.860 0.970 0.999 1 

 

Environmental efficiency (EE) scores for each port were calculated as it is portrayed in Figure 4. 

Out of 20 ports in the US, twelve ports are found to be environmentally efficient when considering the 

inputs, desirable output, and undesirable outputs. The environmentally efficient ports include Tampa, 

Savannah, San Diego, Port Everglades, New Orleans, Miami, Gulfport, Fernandina, Everett, Charleston, 

Boston and Anchorage. The average EE score of a port is 0.77. The inefficient ports are found to be New 

York/New Jersey, Baltimore, Seattle, Philadelphia/Delaware River Ports, Tacoma, Long Beach, Los 

Angeles, and Jacksonville, with EE scores ranging between 0.29 and 0.55. Therefore, there is great 

potential to improve the EE score in each port.  

On average, a US port could accomplish about 23% improvement in EE. From the slack analysis 

of input and output variables in Table 4, it can be seen that only five ports indicate excess CO2 emissions 

that include ports of Long Beach, Los Angeles, New York/New Jersey, Seattle, and Tacoma. However, 

among the five ports, New York/New Jersey port appears to indicate the greatest potential reduction in 

CO2 emissions by accounting 1,454,687.3 tons followed by Los Angeles with 1,160,341.4 tons and Long 

Beach with 753,417.7 tons. There is no potential CO2 reduction in the other fifteen ports.  Interestingly, it 

was found that low-ranking EE tend to have high slack value in CO2 emissions. When we further look into 

other input and output variables, the port of Long Beach shows high slack in quay cranes with 19, followed 

by New York/New Jersey with 8.5, and Seattle with 4.4. Most environmentally inefficient ports also show 

high shortage of output such as calls, throughput, and DWT. For example, the port of Jacksonville which 
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has the lowest EE score shows the greatest amount of shortage in calls with 1,030, throughput with 

2,079,976.7, and DWT with 28,261,161.3.  

Observing the environmentally inefficient ports, they seem to project to highly efficient ports with 

EE score of 1 for improvement. For instance, the port with a lower EE score (Jacksonville and Tacoma) 

benchmarks to port Everglades, and the other ports such as Long Beach and Los Angeles benchmarks to 

the port Savannah. However, in reality, ports have different functionalities such as operations, sizes and 

technologies. Therefore, it is very important to consider a stepwise benchmarking process that projects the 

inefficient ports to such a level that they can improve their environmental performance according to their 

maximum capacity (Sharma and Yu, 2009). Applying KSOM, we can solve the heterogeneity issues by 

clustering the DMUs into several homogenous groups based on their input similarity, therefore the more 

effective benchmarking processes can be performed by providing a set of benchmarking targets based on 

similar characteristics.  The next section presents the application of the RDEA and KSOM analysis for 

benchmarking process of environmentally inefficient DMUs by accounting for their homogeneity.  

 

Figure 4. Environmental efficiency score of each port 
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Table 4. Results of slack analysis 

No. DMUs Input excess                   Output shortfall 

Quay 
Crane 

ACRES BERTH  DEPTH  CO2 CALLS THROUGHPUT DWT Benchmarking 
Unit 

1 Anchorage 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 

2 Baltimore 0.0 9.1 558.8 1.3 0.0 724.8 381575.8 5088329.3 15 

3 Boston 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 

4 Charleston 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 

5 Everett 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 

6 Fernandina 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 

7 Gulfport 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 

8 Jacksonville 0.0 918.2 3430.4 0.0 0.0 1030.0 2079976.7 28261161.3 15 

9 Long Beach 19.0 0.0 0.0 0.0 753417.7 3321.2 5661199.1 76309471.6 17 

10 Los Angeles 0.0 0.0 16793.3 173.1 1160341.4 4416.8 9513665.9 125578323.1 17 

11 Miami 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 

12 New Orleans 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 

13 New York/New Jersey 8.5 0.0 0.0 0.0 1454687.3 2398.7 2186093.0 28647367.9 15,17 

14 Philadelphia/Delaware 
River Ports 

2.4 20.2 1661.0 0.0 0.0 215.6 455330.0 5991022.3 15 

15 Port Everglades 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 

16 San Diego 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 

17 Savannah 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17 

18 Seattle 4.4 0.0 0.0 0.0 166282.9 963.2 1021138.3 15705871.2 15 

19 Tacoma 2.8 0.0 0.0 0.0 44786.2 1376.8 2566216.7 36059360.9 15 

20 Tampa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 

 

4.2 Classification of DMUs based on RDEA and KSOM analysis 
In first step of measuring EE score was analyzing DEA for entire set of DMUs. The results presented in 

Fig 5 show the most efficient groups of DMUs with a score of 1 (marked as Tier 1). Tier 1 groups were 

Anchorage, Boston, Everett, Fernandina, San Diego, Tempa, Gulport, Miami, New Orleans, Port 

Everglades, Charleston, and Savannah. These groups were eliminated from the second DEA analysis in 

order to generate Tier 2 and Tier 3. Again, the efficient DMUs with a score of 1 are labeled as Tier 2. Tier 

2 ports were New York/New Jersey, Philadelphia/Delaware River Ports, Baltimore, and Seattle. Then, 

these DMUs were excluded for further analysis to generate Tier 3. Tier 3 ports were Jacksonville, Long 

Beach, Los Angeles, and Tacoma. The DMUs in Tier 1 are superior in environmental efficiency to those 

in Tier 2 and Tier 3. DMUs in Tier 1 and Tier 2 are used as a reference set to find the benchmarking target 

after KSOM clustering of the ports based on their input similarity.  

DEA provides a set of benchmarking targets for every inefficient DMU. Usually the benchmarking 

target can be determined by a pro-rated increase in the output of the inefficient DMUs.  These can be 
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regarded as a composite unit which consists of a weighted average of peer units and the benchmarking 

target for inefficient units then set by the composite unit (Sharma and Yu, 2009). However, this method is 

not always desirable because of different characteristics between inefficient DMUs and benchmarking 

targets.  Therefore, KSOM is used for the analysis, including all input and output variables to cluster 

DMUs into several groups based on similar properties. The result of KSOM is depicted in graphical format 

(see Fig 5), where the four different types of clusters are displayed.  

 

Figure 5.  Port classification based on RDEA and KSOM 

 

4. 3 Benchmarking projection 

The RDEA analysis segments the ports based on their environmental efficiency score and KSOM analysis 

clusters them based on their similar input and output characteristics. In Figure 6, the benchmarking 

projections from the lowest EE ports to the most EE ports are illustrated. The application of RDEA and 

KSOM provides some interesting insight about benchmarking environmental performance improvement 

of each port.  The benchmarking candidate sets are determined to be Baltimore or Seattle for DMUs in 

Tier 3, which are classified as same cluster of 4. For Baltimore, its benchmarking candidates are 
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determined to be Charleston or Savannah in Tier 1. When we consider the port New York/New Jersey in 

Tier 2 and cluster 3, its benchmarking targets include the port of New Orleans and Port Everglades. The 

same procedure can be applied to other ports for improvement projections. 

 

 

 

 
 

 
Figure 6. Result of stepwise benchmarking process 

 

4.4 Discussion 

We are witnessing that U.S ports have been attempting to increase their competitiveness by increasing 

economic prosperity as well as improving environmental performance.  Their strenuous effort helps 

existing ports to operate their ports in an environmentally friendly manner due to the increasing awareness 

and concerns of their stakeholders and public health emanating from global warming. Therefore, more 

ports must evaluate their environmental facilities to be agile to meet the needs of existing concerns of their 

stakeholders, mainly nearby communities that maybe impacted (Chang et al., 2013). This study provides 

implications in the practice of sustainable port operations and management. Management of port 
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sustainability requires a holistic and integrated approach (Le et al., 2014; Yap and Lam, 2013), and the 

requisite to mitigate the impact of port emission and port authority best practices for environmental 

performance are seem as s critical research topic in the body of literature review. To that effect, this study 

contributes to setting the foundation for this research agenda by developing environmental efficiency 

benchmark of port in US. The use of the KSOM and RDEA model to examine the environmental 

performance of US ports and to provide stepwise benchmarking for best practice was first attempt. The 

theoretical and practical idea behind of this research can lead to further application in the area of 

management of sustainability of port even for other discipline. Some of the many managerial implications 

of this research are the followings.  First the results confirm that most environmentally efficient ports are 

those with ports which implement proactive and early measures to tackle the effects of carbon emissions 

in ports. Port of San Diego has developed a green port program for managing natural resource, waste 

reduction that support regional economy and environment. Other environmentally efficient groups have 

followed best practices of oil spill prevention programs, water conservation strategy and sustainable port 

facility management. By implementing of better practices of cargo handling devise such as using less water 

and being more energy efficient in its own operations compared with the inefficient ports. After assessing 

the stepwise benchmarking target, Jacksonville could then establish an environmental efficiency 

improvement strategy for the effective benchmarking. Length of berth, acres, and CO2 were concerned 

uncontrollable resources which had the strongest influence on environmental efficiency for Jacksonville 

to achieve each stepwise benchmarking target. Intensifying the existing number of cranes can also increase 

the environmental efficiency more than other resources, which has a strongest influence in benchmarking 

operation. Implementing the proposed method to the real case study, we can learn that the suggested 

method could provide more practical environmental benchmarking information than a general DEA due 

to following advantages; first, the proposed method can choose more rational benchmarking targets by 

considering the minimization of resource improvement and maximization of desirable output; second, the 

proposed method can provide an effective environmental efficiency improvement method by prioritizing 

and clustering ports that are inherently similar with respect to their inputs. Thus, inefficient ports can 
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strategically improve environmental efficiency performance by benchmarking the port with the highest 

score in a same cluster. The proposed method can be utilized by upper level managers and policy makers 

for improving environmental efficiency of container terminals through benchmarking. 

5. Conclusion  

This study measures the environmental efficiency and provides benchmarking target for environmentally 

inefficient ports to improve environmental performance of ports in the US. Conventional application of 

DEA may provide biased results in benchmarking, due to the fact that, it does not take into consideration 

of both physical and operational traits of homogenous ports. Therefore, this study use joint application of 

data mining technique referred as Kohonen’s Self-Organizing Map (KSOM) and Recursive Data 

Envelopment Analysis (RDEA) to address the limitation of conventional DEA. This stepwise 

benchmarking method is more applicable since inefficient DMUs are projected to the efficient frontier line 

which does not ignore the difference in the efficiency score.  Such integrated benchmarking tool would 

achieve a synergy effect in individual applications of each model that would not have been possible. The 

obtained results were found to be environmental efficiency scores of US ports ranged from 0.29 to 1 and 

12 container ports were found to be environmentally efficient. The average EE score of US ports was 

found to be 0.77. Eight container ports were found to be environmentally inefficient that there appears to 

be a high potential to become environmentally efficient port. Out of the eight inefficient ports had to refer 

only to the twelve limited ports for improvement and environmentally inefficient DMUs are projected to 

the efficient frontier disregarding the differences in the environmental efficiency score. Finally, 

benchmarking projection diagram was developed to shed light to some of the inefficient ports (Jacksonville, 

Long Beach, Los Angeles, and Tacoma). The benchmarking projection portrayed that inefficient DMUs 

can benchmark more effectively and efficiently in appropriating benchmarking target selection. For 

example, Jacksonville with EE of 0.29 could make stepwise improvement projection to the port with EE 

score of 1 by targeting the port with similar characteristics.  Also, slack analysis provided that high excess 

of input resource such as crane equipment utilization, unnecessary use of facility area of terminal and berth, 
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and CO2 emissions are the key inputs that could improve the environmental efficiency of ports. Therefore, 

considering resource improvement strategies and adopting the best practices by selecting appropriate 

benchmarking targets will assist practitioners to formulate sustainable port development.  

Irrespective of the advantages of the method, the following limitations of method are; if there 

appears to be many DMUs and many intermediate ports between each group, the applied method can 

create some cumbersome where too many benchmark steps may cause significant hurdles in benchmarking 

practices (Park and Sung 2016). Future research should address this problem to minimize the 

benchmarking target pathway. Another limitation of this study is that only 1-year cross-sectional data were 

used rather than panel data. In the foreseeable future, panel data should be collected to analyze dynamic 

change of environmental efficiency and benchmarking over time of the US port industry and to identify 

possible environmentally inefficiency perturbing factors, such as competition level, congestion rate as well 

as the impact of relevant port sustainability regulations and policies. (Liu and Lim, 2015). In addition, it 

will be interesting to see how port environmental efficiency can be attributed to stevedoring employment 

data once complete data is accessible. Several studies made by Chang et al. (2013) and Liu and Lim (2015) 

which measured port environmental efficiency in Asia and US, and port efficiency in European Union 

(Cullinane and Song, 2006; Cullinane and Wang, 2012) can be further supplemented using KSOM and 

RDEA model to consider their environmental efficiency benchmarking.  
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