
University of New Haven
Digital Commons @ New Haven

Electrical & Computer Engineering and Computer
Science Faculty Publications

Electrical & Computer Engineering and Computer
Science

2018

If I Had a Million Cryptos: Cryptowallet
Application Analysis and A Trojan Proof-of-
Concept
Trevor Haigh
University of New Haven

Frank Breitinger
University of New Haven, fbreitinger@newhaven.edu

Ibrahim Baggili
University of New Haven, ibaggili@newhaven.edu

Follow this and additional works at: https://digitalcommons.newhaven.edu/
electricalcomputerengineering-facpubs

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
Forensic Science and Technology Commons, and the Information Security Commons

Comments
This is the authors' accepted version of the paper published in Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering (LNICST). The volume encompasses the proceedings of the 10th EAI International Conference on Digital Forensics &
Cyber Crime, September 10-12 in New Orleans. The version of record for the proceedings volume may be purchased from the Springer web site.
The final authenticated version is available online at https://link.springer.com/conference/icdf2c
Dr. Baggili was appointed to the University of New Haven’s Elder Family Endowed Chair in 2015.

Publisher Citation
Haigh, T., Breitinger, F., Baggili, I. (2018) If I Had a Million Cryptos: Cryptowallet Application Analysis and A Trojan Proof-of-
Concept. In Digital Forensics & Cyber Crime: 10th International Conference, ICDF2C, September 10-12, 2018, New Orleans,
Revised Selected Papers. Springer.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Haven

https://core.ac.uk/display/214330566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.newhaven.edu?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://link.springer.com/conference/icdf2c

If I Had a Million Cryptos: Cryptowallet
Application Analysis and A Trojan

Proof-of-Concept
 Trevor Haigh, Frank Breitinger and Ibrahim Baggili
 Tagliatela College of Engineering, ECECS Department

The University of New Haven, West Haven, CT

Abstract. Cryptocurrencies have gained wide adoption by enthusiasts
and investors. In this work, we examine seven different Android cryp-
towallet applications for forensic artifacts, but we also assess their se-
curity against tampering and reverse engineering. Some of the biggest
benefits of cryptocurrency is its security and relative anonymity. For
this reason it is vital that wallet applications share the same properties.
Our work, however, indicates that this is not the case. Five of the seven
applications we tested do not implement basic security measures against
reverse engineering. Three of the applications stored sensitive informa-
tion, like wallet private keys, insecurely and one was able to be decrypted
with some effort. One of the applications did not require root access to re-
trieve the data. We were also able to implement a proof-of-concept trojan
which exemplifies how a malicious actor may exploit the lack of security
in these applications and exfiltrate user data and cryptocurrency.

Key words: Cryptowallet, Cryptocurrency, Bitcoin, Coinbase, Android

1 Introduction

The popularity of cryptocurrencies like Bitcoin and Ethereum exploded in 2017;
more and more people are buying into digital currencies. Managing digital cur-
rencies requires software to buy, sell and transfer digital coins. This software is
commonly known as a cryptowallet and is available for all major mobile plat-
forms or online. Similar to a bank account, it is essential that these wallets are
secure which is not always the case. For instance, in December 2017 “thieves
stole potentially millions of dollars in bitcoin in a hacking attack on a cryp-
tocurrency company [named NiceHash]. The hack affected NiceHash’s payment
system, and the entire contents of the company’s bitcoin wallet was stolen” [14].
While this is certainly one of the more significant incidents that has happened
with approximately $60 million dollars stolen, there are other examples, e.g., “an
unidentified thief has reportedly stolen more than $400,000 in Stellar Lumens
after hacking the digital wallet provider BlackWallet” [10]. An overview of the
top 5 hacks is provided by [7].

Besides online cryptowallets, there are also offline applications that one can
install on personal devices. For instance, ikream.com1 lists the 5 best crypowal-

1 https://www.ikream.com/2018/01/5-best-bitcoin-wallet-mac-os-x-26068

(last accessed 2018-05-08).

https://www.ikream.com/2018/01/5-best-bitcoin-wallet-mac-os-x-26068

2 Haigh, Breitinger & Baggili

lets for Mac OS X: Electrum, Exodus, Jaxx, Coinbase and Trezor. Most of these
applications also have a Windows version and are available for Android as well
as iOS.

In this paper we examine seven cryptowallet applications for Android – Coin-
base, Bitcoin Wallet, Xapo, Mycelium, Bitpay, and Coinpayments. The goal of
this research is to discover forensic artifacts created by applications through
the analysis of persistent data stored on the device as well as through applica-
tion analysis (source code analysis) of each application. Our work provides the
following contributions:

– The robustness assessments showed that several application use outdated se-
curity practices and thus are not protected against reverse engineering and
tampering.

– The artifact analysis showed that several applications store sensitive informa-
tion (e.g., private keys) as well as unencrypted data (e.g., passwords) on the
device.

– We describe a proof-of-concept Trojan attack that exploits weaknesses found
in one of the applications.

The structure of this paper is as follows: The upcoming Section 2 discusses
previous and related work. The methodology is presented in Section 3. The heart
of this paper is Section 4 which presents our findings followed by Section 5 which
presents the proof-of-concept trojan. The last sections highlight future work and
conclude the paper.

2 Related Work

In the related work section we first briefly present the technologies behind Cryp-
tocurrency followed by the state of the art of Android artifact acquisition in
Section 2.2. In Section 2.3 we summarize the literature for reverse engineering
Android applications. The last section briefly discusses cryptowallet analysis.

2.1 Blockchain Technology

The blockchain is a decentralized, public ledger of all transactions that have
been executed [17]. Because of its distributed and public nature, users do not
have to put trust in a third-party (e.g. a bank). Anyone can download the entire
blockchain and sites like https://blockchain.info/ allow people to search the
Bitcoin blockchain for specific transactions.

Blockchain relies on encryption in order to function where transactions are
performed using public/private key pairs to verify if they are authorized by the
owner of the wallet [13]. The biggest security challenge of a wallet application is
how the keys are managed. If private keys are stored insecurely, then attackers
can obtain them and thus steal all of the currency associated with that wal-
let. Because of this, wallet applications are almost always the focus of attacks

https://blockchain.info/

If I Had a Million Cryptos: Cryptowallet Application Analysis 3

rather than the blockchain itself. In fact, it is practically impossible to attack
the blockchain directly because in order to steal one Bitcoin, its entire history
would have to be rewritten on the publicly viewable blockchain [18].

The way wallets are managed differs depending on the wallet itself. Some
applications (e.g., Bitcoin Wallet2) store the information only on the physical
device. If the device is lost or damaged, there is no way to recover any cur-
rency associated with these wallets (in this case it is highly recommended to
have backups). Other applications transfer the information to online servers,
like Coinbase3. In this case, users access their wallets via a username and pass-
word created for the application. Another approach is seen in applications like
Electrum4 which stores the wallet on the device but then allows for the recovery
of the wallet via a series of random words that was used to generate the keys.

2.2 Android Artifact Acquisition

Much research has been conducted on Android artifact analysis and therefore we
selected some from different application categories to provide an overview. For
instance, [20] focused on the analysis for social media applications like oovoo and
was able to show that many do not use encryption. They were able to recover
images as well as messages. [9] and [12] focused on GPS geodata from various
applications on an Android device and demonstrated that applications like Waze
provide a lot of helpful information for investigators. Other work focused on
extracting media files from encrypted vault applications [21] where the Authors
found significant vulnerabilities in 16 Vault applications.

While applications are very different, the approach for obtaining data the
researchers took was similar. In referenced work, the researchers created logical
copies of the data using the Android Debug Bridge5 (ADB). ADB is a command
line tool for Android that allows for the transfer of files to and from a connected
Android device to a forensic workstation via a USB connection or Wi-Fi (work-
station and Android device need to be on the same Wi-Fi). The data that can
be pulled with ADB is limited by the permission level. For instance, for an un-
rooted phone, one can only access files viewable by the user, such as Documents,
Downloads, or files in external storage. To access application specific data, ADB
must have root access (the phone needs to be rooted). Thus, having root access is
generally required to access all (most useful) data, such as application folders or
stored preference files. While there are many methods to obtain root access on a
device, such as those described by [8], they vary wildly depending on the device,
Android version, and carrier. Generally, newer devices are becoming more and
more difficult to obtain root access on.

Another method to obtain application data without root permission is to
backup the application data using ADB. The backup can then be decompressed

2 https://wallet.bitcoin.com/ (last accessed 2018-05-08).
3 https://www.coinbase.com/?locale=en-US (last accessed 2018-05-08).
4 https://electrum.org/ (last accessed 2018-05-08).
5 https://developer.android.com/studio/command-line/adb.html (last accessed

2018-05-08).

https://wallet.bitcoin.com/
https://www.coinbase.com/?locale=en-US
https://electrum.org/
https://developer.android.com/studio/command-line/adb.html

4

and analyzed on the forensic workstation [4]. This method still requires physical
access to the device, though, in order to obtain the backup and application
developers can prevent their application data from being backed up via a flag in
the application’s manifest file.

While most methods, like ADB, utilize software to recover artifacts, there are
also hardware solutions. For instance, one solution is to use specialized equipment
to detach the flash memory chip from the device’s PCB [6]. Naturally, this is a
much more invasive process and the device is very unlikely to be restored to its
original condition.

2.3 Reverse Engineering Android Applications

Reverse engineering of Android Applications can be done both statically and
dynamically. Most work is done by statically analyzing application code. This
is an easier process to automate as it does not require an environment in which
the application has to execute in. [1] proposed an automated static analyzer that
inspects seemingly harmless applications for malicious functions.

Static analysis is usually performed using tools such as Apktool6 and Dex2Jar7

to decompile the code into Smali or Java, respectively. Smali is an ‘assembly-
like’ language for Dalvik, Android’s Java VM implementation. In most cases the
translation from dex to Java is not always perfect so an understanding of Smali
is necessary to get full knowledge of the code.

The smali code and other files (such as the manifest or shared preferences)
can be modified to change the operation of the application. Many third party
application markets contain legitimate applications that were modified to to
add malware or advertisements [22]. Static analysis can be used to detect these
modified applications. [16] presented a machine learning algorithm that uses
static analysis to classify Android applications and detect malware.

Dynamic analysis is performed by running the application on the device
and hooking into the process with a debugging tool, such as Android Studio8

with the smalidea plugin9. Dynamic analysis has the advantage of being able
to set breakpoints within the code as well as view/manipulate variable values.
The downside is that not all code paths may execute. Some applications may
also employ methods to hinder dynamic analysis attempts [15] and change their
behavior accordingly. Unlike static analysis, dynamic analysis is more difficult to
automate; some sample tools that support the automation of dynamic analysis
are TaintDroid [5] or Crowdroid [2]. However, in many cases dynamic analysis
still has to largely be conducted manually for each application.

6 https://ibotpeaches.github.io/Apktool/ (last accessed 2018-05-08).
7 https://sourceforge.net/projects/dex2jar/ (last accessed 2018-05-08).
8 https://developer.android.com/studio/index.html (last accessed 2018-05-08).
9 https://github.com/JesusFreke/smali/wiki/smalidea (last accessed 2018-05-

08).

Haigh, Breitinger & Baggili

https://ibotpeaches.github.io/Apktool/
https://sourceforge.net/projects/dex2jar/
https://developer.android.com/studio/index.html
https://github.com/JesusFreke/smali/wiki/smalidea

If I Had a Million Cryptos: Cryptowallet Application Analysis 5

2.4 Cryptowallet Application Analysis

Most research into the analysis of cryptowallet applications has been performed
on the desktop (Windows) environment. [3] analyzed a machine running two
wallet applications as well as a Bitcoin mining application and was able to recover
evidentiary artifacts linking Bitcoind transactions to that machine. Similarly, [19]
analyzed the process memory of two other wallet applications and were able to,
in certain cases, recover private keys and seeds allowing seizure of funds from
the wallets.

Limited research has been conducted regarding cryptowallet applications in
the mobile space. [11] checked for forensic artifacts in four different applications
for Android and iPhone, Android being the most relevant as far as this paper
is concerned. The applications were tested on both an emulator and a physi-
cal device. They discovered some forensic artifacts leftover from cryptocurrency
transactions made with those wallet applications. Cryptocurrency has exploded
since this research was completed, so there are many new applications that have
become popular and were not examined in the previous work. Furthermore, the
researcher was also solely focused on finding forensic evidence of the wallets
rather than also evaluating the security of the applications.

3 Methodology

In this section, we discuss how each application was chosen as well as how the
methods used to analyze each application and its data. For testing, we utilized a
Samsung Galaxy S3 Active running Android version 4.4 (KitKat) and a laptop
running Linux to retrieve and analyze the data.

3.1 Application Setup

For this work, we focused on the Android operating system. Next, we chose
applications based on the number of downloads. As a result, we analyzed the
seven applications listed in Table 1.

Table 1: Chosen Android cryptocurrency applications ordered by number of
downloads.

Application Package Name Downloads Version

1 Coinbase com.coinbase.android 5m+ 5.0.5
2 Binance com.binance.dev 1m+ 1.4.5.0
3 Bitcoin Wallet de.schildbach.wallet 1m+ 6.23
4 Xapo com.xapo 1m+ 4.4.1
5 Mycelium com.mycelium.wallet 500k+ 2.9.12.2
6 Bitpay com.bitpay.wallet 100k+ 3.15.2
7 Coinpayments net.coinpayments.coinpaymentsapp 50k+ 1.0.0.6

6

After downloading each application to the device we ran and set up each one.
All of the applications were installed at the same time. While most applications
did not require to create a user account and manage the wallet locally, Coinbase
and Xapo forced us to register an account as information is stored online.

3.2 Data Acquisition

Before acquiring the data from the phone, we started each application and per-
formed basic setup operations such as creating an account for applications that
required it or setting up passcodes to access the wallet. Next, we utilized ADB
to download the data (the APK file and the Application data folder) for each
application.

APK File is the application itself and can be found in /data/app/<package name>

(where <package name> is the package name of the application as listed in
Table 1). The application is important because it contains the compiled
source code and other resources. We needed the APK file in order to per-
form code decompilation and analysis.

Data Folders can be found in /data/data/<package name>. This folder is cre-
ated for each application and is usually only accessible by the application
itself. Inside the folder one can find items such as settings files and databases.
Any existing artifacts would most likely be found in these folders.

Note, to gain access to these folders and to pull the data, the phone has to
be rooted. In order to automate the process we created a Python script that
utilized monkeyrunner10 and ADB to pull the data folders for each application.
Monkeyrunner is an API that allows a program to control an Android device
or emulator. By using monkeyrunner, we were able to automate performing
shell commands on the Android device. The process of pulling the data was
accomplished in two steps.

Step 1: The data is copied from /data/data to /sdcard/data using the com-
mand su -c cp -R /data/data/<package name> /sdcard/data/<package name>.
This is done because ‘sdcard’ can be accessed without root access, unlike
‘data’.

Step 2: The data is pulled from the device using the command adb pull

/sdcard/data/<package name>. This is called in Python using the subpro-
cess package. The command copies the data folders from the device to the
forensic workstation. After this is complete, the script cleans up by deleting
/sdcard/data/<package name>.

The code for this script can be found in Listing 5 in Appendix A.

10 https://developer.android.com/studio/test/monkeyrunner/index.html (last
accessed 2018-05-08).

Haigh, Breitinger & Baggili

https://developer.android.com/studio/test/monkeyrunner/index.html

If I Had a Million Cryptos: Cryptowallet Application Analysis 7

3.3 Creating Transactions

In order to populate the applications with artifacts, transactions were performed
for / from each application. Specifically, we purchased 0.01255964 BTC ($100
worth at the time of purchase) and passed it from one application to another.
This ensured that each application has at least one incoming and one outgoing
transaction logged.

3.4 Analysis

After extracting the data from the device, we analyzed both the artifacts and
the application source code where the primary focus was on the artifacts. Code
analysis was done to assess the general security of the applications.

Artifact Analysis was performed manually on the files extracted from the device.
Notable files were XML preference files and database files where we especially
focused on XML files (viewed using a text editor) and the SQLite database files
(viewed using a SQLite database browser11). When analyzing the extracted data,
we focused on finding the following items:

Wallet Private Keys are probably the most sensitive and critical artifacts man-
aged by these applications as the entire purpose of the application is to
manage and store the private key(s) securely. Finding the private key is es-
sentially the ‘golden ticket’ as it can be used to siphon all funds from the
wallet. Therefore, being able to obtain the private keys is a sure sign of an
insecure application.

Wallet Seed is similar to the private keys in that they both lead to direct control
of the wallet. Many wallet managers use a list of words, or seed, to generate
the key pair. This exists as a recovery mechanism and the idea is that a user
would write down the list of words in a secure place and use them to recover
the wallet by generating the key pair again. Because of this, if we are able
to obtain the wallet seed, we could recover the wallet ourselves and control
the funds.

Transaction History can be important from a forensic investigation point of
view. While the blockchain is public, it may be difficult to find exactly where
the transactions related to the suspect are located. Being able to pull trans-
action history directly from the wallet application, without needing the login
credentials could be a great boon in an investigation. For this reason, we fo-
cused on trying to pull as much transaction information as possible.

Application-specific data including passwords, PINs, etc. should be managed
securely in any application, especially in ones that manage money. An appli-
cation could store and manage the keys securely but if they store the user’s
login credentials in plaintext, for example, then we can simply use that to
log into an account, barring any two-factor authentication.

11 http://sqlitebrowser.org (last accessed 2018-05-08).

http://sqlitebrowser.org

8

Code Analysis was performed to assess the general security of the applications by
looking for common reverse engineering countermeasures. Specifically, we looked
for the following three properties:

Code obfuscation is the act of purposely making your code difficult to read and
understand. For Android applications this means replacing class and variable
names with 1-3 letter names (e.g., ‘aaa’, ‘aab’, etc.) which is always done
using software. For instance, Google’s Android Studio has built-in options to
obfuscate code using Proguard12,13. There are also commercial obfuscation
tools that such as Dexguard14 that come with more capabilities.
Code obfuscation is important because it significantly slows down reverse en-
gineering attempts. Heavily obfuscated code is difficult and time-consuming
to navigate so reverse engineers are less likely to find sensitive information
in the code. It should be noted that obfuscation does not inherently prevent
reverse engineering, however, anything that makes it more difficult is a good
security measure to take. Code obfuscation was tested by decompiling each
application using JEB15 and viewing the code.

Signature verification is a method of ensuring an application has not been tam-
pered by a third party. Before Android applications are installed on a device,
they must be cryptographically signed by a developer. Any modifications
made to the application would also change the signature (assuming the at-
tacker does not have access to the developer’s private key). A common se-
curity practice is to verify that the installed application’s signature matches
the signature of the release version and disallow any operations if it does
not.
Without this step, applications are vulnerable to modifications with mali-
cious code. An example of this is provided later in the paper where we created
a modified version of Coinbase that steals users’ credentials (see Sec. 5).
Signature verification was tested by decompiling each application with Apk-
tool, recompiling it, and signing it with our own key. The recompiled appli-
cation was then installed on the device using ADB and executed to ensure
it functions normally. Since we do not have access to the developers’ keys,
our signed APKs will have a different signature than the official versions.

Installer verification ensures that the application was installed from a legitimate
source. When installed, each application records the package name of the ap-
plication that installed it (e.g., com.android.vending is the package name for
the Google Play Store). Because a malicious version of the application could
not be installed from the Google Play Store, it must be installed from an-
other source. Assuming the legitimate version is only distributed on the Play
Store, the application can be made to only function if the Google Play Store
is its installer. This security method is generally uncommon as it prevents the

12 https://www.guardsquare.com/en/proguard (last accessed 2018-05-08).
13 Note, Proguard is mostly used to minimize and optimize code and offers minimal

protection against reverse engineering.
14 https://www.guardsquare.com/en/dexguard (last accessed 2018-05-08).
15 https://www.pnfsoftware.com (last accessed 2018-05-08).

Haigh, Breitinger & Baggili

https://www.guardsquare.com/en/proguard
https://www.guardsquare.com/en/dexguard
https://www.pnfsoftware.com

If I Had a Million Cryptos: Cryptowallet Application Analysis 9

‘sideloading’ of applications which may be a legitimate method of obtaining
the application.
The installer verification was tested the same way as ‘signature verification’,
by redeploying the application to the phone and executing it. Any installer
verification should fail as the applications’ installer was ADB and not the
Play Store.

3.5 Manipulation of an Application

The smali code of an application can be edited to perform a wide array of actions
such as removing a pay wall or enabling additional features. A more nefarious
option is to include malware in the application that sends user information to
a remote server. Without any of the security methods mentioned above, an
altered application would function normally and the user would be unaware of
the malware on their device. To illustrate how an attack like this works, we
constructed a proof-of-concept trojan version of Coinbase.

Note, the biggest challenge of these types of attacks is actually distributing
the malware. Without the developer’s private key, an attacker cannot upload
a malicious version of the application to the Play Store (all applications need
to be signed). If this signature is not valid, then Google will reject the upload.
Thus, the only way to get malware installed is by social engineering users into
‘side-loading’16 the application which was not part of this research paper.

4 Findings

In this section, we discuss findings for each application as well as assessing
whether they implement any of the security features mentioned previously.

4.1 Coinbase

Coinbase the most popular application we analyzed with over 5 million down-
loads which uses the cloud; keeps most of the wallet data, including the private
keys, on their servers. This means that the security of the wallet is primarily
dependent on their server security, rather than the physical device storage.

Focusing on the application revealed that Coinbase is not obfuscated. This
made modifying the code quite trivial as we show later in our trojan proof of
concept (see Section 5). The application also does not implement any signature
or installer verification which allowed us to resign the APK, install it with ADB,
and run it without any issues. Additional findings:

16 Side-loading is installing an application directly rather than through a market. This
usually requires an additional option to be enabled on the device before the OS will
allow the installation.

10

Plaintext Password was found in the shared prefs XML file which contains
various options and preferences for the application. The account password
only seems to exist in the preferences if the account is created on the device.
If the application is uninstalled and reinstalled, or one signs in to an existing
account rather than creating a new one, then the password is no longer
shown.

PIN Enabled is a boolean variable that also exists in the shared preferences.
This is critical as changing the value from ’true’ to ’false’ disables the PIN.
However it requires a text editor with root access installed on the device, so
it may not be a practical attack vector.

Transaction and Account Databases were found containing data items such as
transaction amounts, account ids, and account balances. After performing
some transactions, the database was populated with plaintext data so even
if you cannot get into the account, you can still view the full transaction
history. Note, this information is also stored in the blockchain but would re-
quire an investigator to know the public key of the wallet (or the transaction
ID).

4.2 Binance

Like Coinbase, Binance does not store sensitive wallet information on the device
but on their servers, e.g., Binance users can access their wallets from any device
through their website or mobile application. Unlike Coinbase, though, Binance
does not store any transaction information on the physical device. This was
confirmed by testing the application without Internet access. It fails to retrieve
any transaction history or wallet information indicating that the information is
pulled from the server on the fly rather than stored on the local device.

Code wise, Binance is obfuscated using Proguard. The application verifies its
signature and crashes when trying to open an incorrectly signed version. There
is no installer verification.

4.3 Bitcoin Wallet

Bitcoin Wallet is built on Bitcoinj17, an open source, Java Bitcoin implemen-
tation that aids the creation and management of Bitcoin wallets. Bitcoinj uses
Google’s protocol buffer to serialize the wallet data. Thus, it is trivial to read the
wallet data using custom or pre-existing software, e.g., wallet-tool. Furthermore,
Bitcoinj includes tools to dump wallet data which we utilized to view the data.

By using Bitcoinj’s wallet-tool, we were able to find the private keys and
seed associated with Bitcoin wallet as well as the complete transaction history.
Note, Bitcoinj does have the option of encrypting the wallet with a password,
but Bitcoin Wallet does not implement this feature.

17 https://bitcoinj.github.io/ (last accessed 2018-05-08).

Haigh, Breitinger & Baggili

https://bitcoinj.github.io/

If I Had a Million Cryptos: Cryptowallet Application Analysis 11

Encryption Key
(ekey)

Key Encryption Key
(kkey)

 AESWallet Master Seed,
Private Key, etc.

AES

SQLite
Database

Ciphertext

Key

Input

Key

Ciphertext

Input

1

2

3

Cleartext

Plaintext Data
(tkeys, transaction IDs, etc.)

Fig. 1: Current work flow for storing information in mycelium.

4.4 Mycelium

Mycelium stores its transaction data in a SQLite database. Unfortunately tra-
ditional SQLBrowsers were fruitless as most of the data is stored in binary.
However, the structure of the table looks like it is storing key-value pairs, i.e.,
a table with two columns where one is the key (tkey in the following) and two
is the value. To pull out the data from the database, we implemented a Python
script and converted the data into different encodings (e.g., string, hex) until
we realized that most of the data in the value column is encrypted. To identify
what was stored in the database, we analyzed the code that stores/reads from
the database and following it backwards until the tkey for the desired value was
found. Our analysis revealed that besides encrypted data, it also contains unen-
crypted data. For instance, the transaction ID was found in cleartext which can
be used to look up the transaction on a Bitcoin blockchain explorer. Additionally,
we found that AES encryption was used.

For the data that is encrypted, an overview is depicted in Figure 1. Mycelium
uses a randomly generated encryption key named ekey to encrypted sensitive
strings (e.g., wallet master seed, private keys). The encrypted information is
stored in the database. The ekey is then encrypted using kkey and stored in the
database. While normally kkey should be generated from a user password, the
developers use a hardcoded string to generate this key.

Using this method, we determined that the tkey for the ekey was a single byte
(‘00’). It was also the first entry in the table. We continued using this method
to find that the table contained other sensitive information, e.g., private keys or
wallet master seed.

In order to decipher the data, we modified the open-source code to decrypt
the data. In detail: we created a Java project using Mycelium’s encryption classes
as well as the class for handling master seed creation. Our own class was then

12

created which reads from the SQLite database and called the necessary Mycelium
functions to generate the default encryption key and decrypt the data. The
MasterSeed class has a function to generate a seed from the bytes decrypted
from the database. The resulting object contained the seed words which could
be used to recreate the wallet on another device.

It is noteworthy that the application has a method of preventing this at-
tack, by generating the key encryption key with a user-provided password rather
than one generated from a hardcoded string. This password feature exists in the
code, but is not used in the current official version of the application. Once this
changes, it will be impossible to decrypt the content (if the user has a strong
password that hinder bruteforce attacks).

4.5 Xapo

Like Coinbase and Binance, Xapo also stores the wallet private keys in the cloud
and not on the physical device. It does, however, store a plaintext database
containing transaction information, much like Coinbase.

As far as the code goes, Xapo was obfuscated to the point where Apktool
could not decompile it without errors. JEB was able to view the code, but was
not able to write the files without error. Because of this, we could not recompile
and resign the application to check for signature verification.

4.6 Bitpay

Bitpay differs from the other applications mentioned so far in that it was devel-
oped using Cordova. Cordova is a platform that allows for the development of
mobile applications using JavaScript and HTML. The weakness of this platform
is that the source code is included in the APK file so it can be viewed by simply
unzipping the APK file; no particular software needed. The source code is not
obfuscated and also does not implement any signature or installer verifications.
Furthermore, we found the following artifacts in Bitpay’s data folders:

Wallet Keys were found in a file com.bitpay.wallet/files/profile. This file
also contained many key pairs including API keys, request keys, and AES
encryption keys. In reality, only the wallet private key is needed to steal
funds, but all of the other keys exemplify the lack of security implemented
by this application.

Transaction History was found in the file com.bitpay.wallet/files/txsHistory
-<wallet-id>. This file contained transaction information including the
transaction id, amount, address of the sender, and time of the transaction.

4.7 Coinpayments

Besides Bitpay, Coinpayments was also developed using Cordova and suffers
from the same weakness. Furthermore, Coinpayments allows the user to backup

Haigh, Breitinger & Baggili

If I Had a Million Cryptos: Cryptowallet Application Analysis 13

the application data which can be used by someone with physical access to the
device to access the application data by backing it up and decompressing it on
a forensic workstation18. Note, this procedure does not require root access. The
following artifacts were found in Coinpayments’ data folders:

API Public/Private key pair found in a database in net.coinpayments.coinpaymentsapp

/app webview/databases/file 0. With access to these keys, it may be
possible to send requests as the user and transfer funds from their wallet.

Passcode in plaintext is found in the same database as the public/private key
pair. This passcode is used to access the application and with it, an at-
tacker/investigator could enter the application and control the funds in the
wallet.

4.8 Summary

To summarize, Bitcoin Wallet, Coinpayments, and Bitpay show a complete lack
of basic security practices such as encrypting sensitive wallet or application data.
It is also noteworthy that 6 of the 7 applications store transaction history on
the device, even if they store other wallet data on their servers. Based on your
findings, we rank the applications from most to least secure19:

1. Binance does not store any information on the physical device. Application
code is obfuscated and signature verification is performed.

2. Xapo does not store wallet private keys, but does store transaction history.
The code is heavily obfuscated and even crashes Apktool when trying to
disassemble it.

3. Mycelium stores all the data on the device, but it is encrypted. It is currently
possible to decrypt the data, however a potential solution for this exists in
the code; it is just not implemented.

4. Coinbase does not store wallet private keys on the device but it does store
the transaction history. There is also a specific scenario where a plaintext
password can be obtained.

5. Bitcoin Wallet also to obtain all wallet information, including private keys,
by using an open source tool to dump the wallet data. It is possible to make
this more secure by requiring a password to dump private keys but that is
not implemented.

6. Bitpay provides next to no security as wallet keys are stored in plaintext.
Transaction history for the wallet can also be found.

7. Coinpayments stores wallet keys in plaintext. Additionally, even if the user
locks the application with a passcode, that passcode is stored in a plaintext
database and easily retrieved.

18 https://nelenkov.blogspot.ca/2012/06/unpacking-android-backups.html

(last accessed 2018-05-08).
19 When ranking these applications, server-side security is not considered. This research

was only concerned with what data, if any, is present on the physical device.

https://nelenkov.blogspot.ca/2012/06/unpacking-android-backups.html

14

p r i v a t e void l o g i n () {
i f (! U t i l s . isConnectedOrConnecting (((Context) t h i s))) {

U t i l s . showMessage (((Context) t h i s) , 0x7F0801B0 , 1) ;
}
e l s e {

t h i s . showProgress (t rue) ;
t h i s . mReferrerId = PreferenceManager .

g e tDe fau l tSharedPre f e r ence s (((Context) t h i s)) . g e t S t r i n g (”
r e f e r r a l ” , n u l l) ;

t h i s . getAuthTypeForLogin (t h i s . mEmailView . getText () .
t oS t r i ng () , t h i s . mPasswordView . getText () . t oS t r i ng () , t h i s .
m2faToken , t h i s . mReferrerId , new AuthCallback () {

. . .

Listing 1: Application code that handles the user’s email and password.

5 Trojan Proof-of-Concept

To illustrate how an insecure reverse engineered wallet may be exploited, we
constructed a proof-of-concept trojan for Coinbase that steals user login creden-
tials. This type of attack does not only apply to Coinbase and in many cases the
same code used in this attack may be used for other applications. This section
details how the trojan was created.

Locating the Data to Steal. The purpose of this trojan is to steal the users’ data
and upload it to a remote server. In the case of Coinbase, the ideal data to
steal would be the user’s e-mail and password associated with the application.
Coinbase does not store the wallet private keys on the local device but rather
on the Coinbase servers. Because of this, the most useful data to an attacker is
the user’s login information. With this, an attacker gains full access to the user’s
account and thus can steal the cryptocurrency in the wallet. It should be noted
that Coinbase offers two-factor authentication which may prevent an attacker
from logging into the account. This additional security is opted-into, so not all
users will have it enabled. Even if two-factor authentication is enabled, other
user data may be exfiltrated such as the user’s credit card details.

To locate where the e-mail and password is used in the code, we decompiled
the application to the base smali code. We used JEB for this, however, it can
be conducted with free tools mentioned earlier in this paper such as Apktool
and Dex2Jar. With no code obfuscation, locating the relevant code was straight
forward. The class titled ‘LoginActivity’ handles the login process. In this class
we found a login() method which pulls the e-mail and password from the GUI
and submits it to the authentication method. We chose this location to insert
our code to steal the user’s credentials. The advantage of this location is that
the application already does the job of acquiring data from the GUI so all we
have to do is copy the values and send them to our remote server.

Haigh, Breitinger & Baggili

If I Had a Million Cryptos: Cryptowallet Application Analysis 15

Listing 1 shows the code in the application that steals the user’s e-mail and
password from the GUI. This snippet shows how tools like JEB and Dex2Jar
can automatically translate the smali code into Java. While not perfect, the Java
code is much easier and faster to read and understand.

Editing the Smali Code. After locating the critical section of the code, we im-
plemented the malicious part. The attack consists of uploading the users’ e-mail
and password via a GET request to a remote server. To do this, we first created
a thread class in smali that handles the opening of the URL. This is done be-
cause HTTP requests cannot be performed on the main thread of an Android
application. The code for this thread is contained in the ‘uploader.smali’ file and
is shown in Listing 2. Note, this snippet could theoretically be reused for any
application to open a URL. The only required change is the path to the class
(/coinbase/android/signin).

After the thread class is created and added to the application, we then needed
to call it while the user attempts to login. The snippet in Listing 3 was inserted
into the smali file. It is important to ensure that any of the registers used in
the new code will not impact the following code as we want the application to
function normally with our changes. Our proof of concept constructs a string with
the URL and invokes the thread class we created previously to open the URL.
The server then reads the e-mail and password from the GET request and logs
it to a file. Without analyzing network traffic, the user would have no idea that
anything was stolen. Since the request is done asynchronously in another thread,
there is no perceptible change in performance and the application continues to
function normally.

6 Conclusions and future work

In general, the most secure of the applications we tested, Xapo, Binance, and
Coinbase, did not store the wallet private keys locally on the device. This does
not mean that the keys are managed securely on their servers, though, and having
many keys in one location makes these companies larger targets for attacks as
the potential reward for a successful hack is higher. This practice is necessary in
order to deliver the platform-agnostic service they offer (i.e., being able to log
in from anywhere and access your wallet).

Storing keys securely on the client side (within the application) is trickier and
requires secure design. Mycelium almost accomplishes this, and for all practical
purposes they do. The only shortcoming is not implementing a user password
which would solve the problem of technically being able to decrypt the keys as
well preventing someone with access to the device from simply opening up and
using the application. Applications like Bitpay, however, fall on the other end of
the spectrum and store the private keys in plaintext.

From a forensics investigation point of view, it is certainly helpful to know
that transaction information was available for six of the seven applications. Even
if one cannot gain direct control of the wallet, having the transaction history and

16

. c l a s s pub l i c Lcom/ co inbase / android / s i g n i n / uploader ;

. super Ljava / lang / Object ;

. implements Ljava / lang /Runnable ;

. f i e l d pub l i c u r l s t r i n g : Ljava / lang / St r ing ;

. method pub l i c con s t ruc to r < i n i t >(Ljava / lang / St r ing ;)V
. l o c a l s 3
invoke−d i r e c t {p0 } , Ljava / lang / Object;−>< i n i t >()V

iput−ob j e c t p1 , p0 , Lcom/ co inbase / android / s i g n i n / uploader
;−>u r l s t r i n g : Ljava / lang / St r ing ;

return−void
. end method

. method pub l i c run ()V
. l o c a l s 10

i ge t−ob j e c t v2 , p0 , Lcom/ co inbase / android / s i g n i n / uploader
;−>u r l s t r i n g : Ljava / lang / St r ing ;
new−i n s t ance v8 , Ljava / net /URL;
invoke−d i r e c t {v8 , v2 } , Ljava / net /URL;−>< i n i t >(Ljava / lang /
St r ing ;)V
invoke−v i r t u a l {v8 } , Ljava / net /URL;−>openConnection () Ljava

/ net /URLConnection ;
move−r e s u l t−ob j e c t v9

invoke−v i r t u a l {v9 } , Ljava / net /URLConnection;−>
getInputStream () Ljava / i o / InputStream ;

return−void

. end method

Listing 2: uploader.smali – A thread class that opens the given URL.

public address may help in tracing how funds are being moved around. This is
especially important considering how popular cryptocurrencies are becoming in
the criminal world.

While the scope of this research focused on static analysis, in the future we
examine dynamic analysis of the applications and see what may be found in
memory. While some of the applications securely handle the private keys by not
storing them on the device, it is possible that they could be found in memory at
some point during the application’s execution time.

Acknowledgements. Blinded for review.

Haigh, Breitinger & Baggili

If I Had a Million Cryptos: Cryptowallet Application Analysis 17

#Create URL s t r i n g (v1 = email , v2 = password)
const−s t r i n g v0 , ” http :// x . x . x . x :8000/ upload ?u=”
invoke−v i r t u a l {v0 , v1 } , Ljava / lang / St r ing ;−>concat (Ljava / lang

/ St r ing ;) Ljava / lang / St r ing ;
move−r e s u l t−ob j e c t v0
const−s t r i n g v7 , ”&p=”
invoke−v i r t u a l {v0 , v7 } , Ljava / lang / St r ing ;−>concat (Ljava / lang

/ St r ing ;) Ljava / lang / St r ing ;
move−r e s u l t−ob j e c t v0
invoke−v i r t u a l {v0 , v2 } , Ljava / lang / St r ing ;−>concat (Ljava / lang

/ St r ing ;) Ljava / lang / St r ing ;
move−r e s u l t−ob j e c t v0

#Open URL
new−i n s t ance v8 , Lcom/ co inbase / android / s i g n i n / uploader ;
invoke−d i r e c t {v8 , v0 } , Lcom/ co inbase / android / s i g n i n / uploader

;−>< i n i t >(Ljava / lang / St r ing ;)V
new−i n s t ance v9 , Ljava / lang /Thread ;
invoke−d i r e c t {v9 , v8 } , Ljava / lang /Thread;−>< i n i t >(Ljava / lang /

Runnable ;)V
invoke−v i r t u a l {v9 } , Ljava / lang /Thread;−> s t a r t ()V

Listing 3: Injected code into LoginActivity.smali to construct the URL and call
uploader.smali.

References

1. Leonid Batyuk, Markus Herpich, Seyit Ahmet Camtepe, Karsten Raddatz, Aubrey-
Derrick Schmidt, and Sahin Albayrak. Using static analysis for automatic assess-
ment and mitigation of unwanted and malicious activities within android applica-
tions. In Malicious and Unwanted Software (MALWARE), 2011 6th International
Conference on, pages 66–72. IEEE, 2011.

2. Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-
based malware detection system for android. In Proceedings of the 1st ACM work-
shop on Security and privacy in smartphones and mobile devices, pages 15–26.
ACM, 2011.

3. Michael Doran. A forensic look at bitcoin cryptocurrency. SANS Reading Room,
2015.

4. Nikolay Elennkov. Unpacking android backups. https://nelenkov.blogspot.jp/
2012/06/unpacking-android-backups.html, June 2012.

5. William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid:
an information-flow tracking system for realtime privacy monitoring on smart-
phones. ACM Transactions on Computer Systems (TOCS), 32(2):5, 2014.

6. Andrew Hoog. Android forensics: investigation, analysis and mobile security for
Google Android. Elsevier, 2011.

7. Sudhir Khatwani. Top 5 biggest bitcoin hacks ever. https://coinsutra.com/

biggest-bitcoin-hacks/, Nov 2017.

https://nelenkov.blogspot.jp/2012/06/unpacking-android-backups.html
https://nelenkov.blogspot.jp/2012/06/unpacking-android-backups.html
https://coinsutra.com/biggest-bitcoin-hacks/
https://coinsutra.com/biggest-bitcoin-hacks/

18

8. Jeff Lessard and Gary Kessler. Android forensics: Simplifying cell phone examina-
tions. 2010.

9. Stefan Maus, Hans Höfken, and Marko Schuba. Forensic analysis of geodata in an-
droid smartphones. In International Conference on Cybercrime, Security and Dig-
ital Forensics, http://www. schuba. fh-aachen. de/papers/11-cyberforensics. pdf,
2011.

10. Avi Mizrahi. Hackers Steal $400k from Users of a Stellar Lumen (XLM) Web Wal-
let. https://news.bitcoin.com/hackers-steal-400k-users-stellar-lumen-

xlm-web-wallet/, Jan 2018.
11. Angelica Montanez. Investigation of cryptocurrency wallets on ios and android

mobile devices for potential forensic artifacts. 2014.
12. Jason Moore, Ibrahim Baggili, and Frank Breitinger. Find me if you can: Mobile

gps mapping applications forensic analysis & snavp the open source, modular,
extensible parser. Journal of Digital Forensics, Security and Law, 12(1):7, 2017.

13. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven
Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduc-
tion. Princeton University Press, 2016.

14. Becky Peterson. Thieves stole potentially millions of dollars in bitcoin in a hack-
ing attack on a cryptocurrency company. http://www.businessinsider.com/

nicehash-bitcoin-wallet-hacked-contents-stolen-in-security-breach-

2017-12, Dec 2017.
15. Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis,

and Sotiris Ioannidis. Rage against the virtual machine: hindering dynamic analysis
of android malware. In Proceedings of the Seventh European Workshop on System
Security, page 5. ACM, 2014.

16. Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Automated static code analysis
for classifying android applications using machine learning. In Computational In-
telligence and Security (CIS), 2010 International Conference on, pages 329–333.
IEEE, 2010.

17. Melanie Swan. Blockchain: Blueprint for a new economy. ” O’Reilly Media, Inc.”,
2015.

18. Don Tapscott and Alex Tapscott. Blockchain Revolution: How the technology be-
hind Bitcoin is changing money, business, and the world. Penguin, 2016.

19. Luuc Van Der Horst, Kim-Kwang Raymond Choo, and Nhien-An Le-Khac. Process
memory investigation of the bitcoin clients electrum and bitcoin core. IEEE Access,
5:22385–22398, 2017.

20. Daniel Walnycky, Ibrahim Baggili, Andrew Marrington, Jason Moore, and Frank
Breitinger. Network and device forensic analysis of android social-messaging ap-
plications. Digital Investigation, 14:S77–S84, 2015.

21. Xiaolu Zhang, Ibrahim Baggili, and Frank Breitinger. Breaking into the vault:
Privacy, security and forensic analysis of android vault applications. Computers &
Security, 70:516–531, 2017.

22. Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my
market: detecting malicious apps in official and alternative android markets. In
NDSS, volume 25, pages 50–52, 2012.

Haigh, Breitinger & Baggili

https://news.bitcoin.com/hackers-steal-400k-users-stellar-lumen-xlm-web-wallet/
https://news.bitcoin.com/hackers-steal-400k-users-stellar-lumen-xlm-web-wallet/
http://www.businessinsider.com/nicehash-bitcoin-wallet-hacked-contents-stolen-in-security-breach-2017-12
http://www.businessinsider.com/nicehash-bitcoin-wallet-hacked-contents-stolen-in-security-breach-2017-12
http://www.businessinsider.com/nicehash-bitcoin-wallet-hacked-contents-stolen-in-security-breach-2017-12

If I Had a Million Cryptos: Cryptowallet Application Analysis 19

#! / u s r / bin / python

Pu l l s a l l data from the dev i ce f o r a g iven APK
Run by c a l l i n g ’ monkeyrunner getappdata . py ’

import subproces s
import sys
import getopt
from com . android . monkeyrunner import MonkeyRunner ,

MonkeyDevice

de f main (pkg name=None , apk path=None) :
dev i c e = MonkeyRunner . waitForConnection ()
i f pkg name i s not None :

r e s = p u l l d a t a (pkg name . decode (’ ut f−8 ’) . s t r i p () ,
dev i c e)

p r i n t (r e s)
sys . e x i t (2)

i f apk path i s not None :
pkg name = get package name (apk path)
r e s = p u l l d a t a (pkg name . decode (’ ut f−8 ’) . s t r i p () ,

dev i c e)
p r i n t (r e s)
sys . e x i t (2)

de f get package name (apk) :
command = ” aapt dump badging ” + apk + ” | grep −oP \”(?<=
package :\ name\= ’) [ˆ ’] ∗ \ ” ”
proce s s = subproces s . Popen (command , s h e l l=True , s tdout=
subproces s . PIPE)
output , e r r o r = ! p roce s s . communicate ()
i f output == ’ ’ :

sys . e x i t (2)

re turn output

Listing 4: Python script to retrieve application data from device

A Python script

20

de f p u l l d a t a (pkg name , dev i c e) :
r e s u l t = dev i ce . s h e l l (” t e s t −d / data / data /”+pkg name+” &&

echo ’ t rue ’ | | echo ’ f a l s e ’ ”)
r e s u l t = r e s u l t . s t r i p ()
i f r e s u l t == ’ f a l s e ’ :

r e turn ”The s p e c i f i e d package name does not e x i s t . ”

r e s u l t = dev i ce . s h e l l (’ su −c cp −R / data / data / ’+pkg name+’
/ sdcard / data / ’)
i f r e s u l t i s None :

re turn ” e r r o r ”
command = ”adb p u l l / sdcard / data /”+pkg name
proce s s = subproces s . Popen (command , s h e l l=True , stdout=
subproces s . PIPE)
f o r l i n e in p roce s s . s tdout :

p r i n t (l i n e . decode () . s t r i p ())
p roc e s s . s tdout . c l o s e ()
output = proce s s . wait ()
dev i c e . s h e l l (’rm −r / sdcard / data / ’+pkg name)
re turn output

i f name == ” main ” :
h e l p s t r i n g = ’ monkeyrunner getappdata . py <package name> or
<path to apk> ’

i f l en (sys . argv) < 2 :
p r i n t (”ERROR: Please in c lude the apk path or package

name”)
sys . e x i t (2)

arg = sys . argv [1]

i f arg [−4 :] == ’ . apk ’ :
main (apk path=arg)

e l s e :
main (pkg name=arg)

Listing 5: Python script to retrieve application data from device (cont.)

Haigh, Breitinger & Baggili

	University of New Haven
	Digital Commons @ New Haven
	2018

	If I Had a Million Cryptos: Cryptowallet Application Analysis and A Trojan Proof-of-Concept
	Trevor Haigh
	Frank Breitinger
	Ibrahim Baggili
	Publisher Citation
	Comments

	If I Had a Million Cryptos: Cryptowallet Application Analysis and A Trojan Proof-of-Concept
	blinded for review

