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Blood-contacting devices coated with anti-clotting materials would typically fail 

due to clot formation after about 2 weeks of exposure to blood flow. Our overarching 

hypothesis for their short-term success is that the failure modes of these anti-clotting 

coatings are either due to 1) a slowed-pace procoagulant protein fouling, 2) their 

erosion due to shear stress, or 3) a combination of both. This study however partly tests 

the hypothesis by evaluating the effect of shear stress on coating stability. This was 

done by exposing DOPA-PCB-300/dopamine coated polydimethylsiloxane (PDMS) to 

physiological shear stresses using a recirculation system which consisted of dual 

chamber acrylic flow cells, tygon tubing, flow probe and meter, and perfusion pumps. 

The effect of shear stress induced by phosphate buffered saline flow on coating stability 

was characterized with differences in fibrinogen adsorption between control (coated 

PDMS not loaded with shear stress) and coated samples loaded with various shear 

stresses. Fibrinogen adsorption data showed that relative adsorption on coated PDMS 

that weren’t exposed to shear (5.73% ± 1.97%) was significantly lower than uncoated 

PDMS (100%, p < 0.001). Furthermore, this fouling level, although lower, was not 

significantly different from coated PDMS membranes that were exposed to 1 ���
����2 

(9.55% ± 0.09%, p = 0.23), 6 ���
����2 (15.92% ± 10.88%, p = 0.14), and 10 

���
����2 (21.62% ± 13.68%, p = 0.08). Our results show that DOPA-PCB-

300/dopamine coating are stable, with minimal erosion, under shear stresses tested. 
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Large quantities of blood-contacting medical devices are used annually world-wide.1, 2 It 

is estimated that more than 200 million of these devices are utilized in patients in the 

U.S alone. 3 They range from devices with small surface areas like catheters, vascular 

grafts, heart valves, cannulas, glucose, lactate sensors, and stents to those with 

moderate surface areas like pacemakers, artificial kidneys, and left ventricular assist 

devices. Then there are those with relatively larger surface areas like the artificial lungs, 

artificial hearts, and extracorporeal membrane oxygenation circuits. 

The surfaces of these devices are made up of artificial materials that are different 

from endothelial cell surfaces, which interface with flowing blood.4−6 These cells express 

enzymes and secrete nitric oxide that maintain blood tone.7−10 Without these properties, 

blood rapidly activates into clots upon contact with artificial materials.11, 12 For blood-

contacting devices, clot formation can cause cessation of blood flow and lead to device 

failure13−15. Moreover, devices that do not fail may release clots into systemic circulation 

and cause embolic complications.14, 16−18 In life support devices these clots can result in 

morbidity and mortality. For instance, a small bore vascular graft serving as a coronary 

artery may occlude from formation and cause myocardial infarction (heart attack). With 

artificial lungs, clotting is especially problematic as they have relatively large surface 

areas (1.3-2 �2) and a period of usage lasting from several weeks to months however 

they typically fail after 7-14 days with accompanying hemorrhagic complications.13−15,18 

Catheters, on the other hand, have a limited lifespan and do not reliably allow repeated 

sampling of blood or continuous pressure monitoring in patients as their small lumen 

diameters make them more prone to failure by clots19−22.  
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Current approaches for controlling biomaterial-induced clot formation have been 

largely inadequate. Commercial coatings have only shown moderate inhibition of clot 

formation in short-term studies23−32 and are not sufficient to allow large decreases in 

systemic anticoagulation. The most successful approach to date has been to chemically 

immobilize heparin on blood-contacting surfaces to reduce thrombosis and lower 

anticoagulant administration.33,34 Although this approach has been widely adopted, 

major limitations persist because the surface-bound heparin leaches, resulting in a 

progressive loss of anticoagulation activity.35,36 Other hydrophilic coatings including 

PHISIO (Sorin) 39, Trillium (Medtronic) 40, poly-2-methoxyethyl acrylate (PMEA) 

polymer41 and sulfobetaine42 that have undergone extensive human clinical evaluation 

have shown no drastic non-thrombogenic benefit compared to existing heparin-coated 

materials.43,44
Systemic anticoagulants hence remain the adjunctive therapy of choice 

although they pose an increased risk of bleeding complications. 45−47  

Important factors that affect the efficiency these coatings include their stability 

and coverage on devices and mechanism(s) of inhibiting coagulation. Coatings that 

become unstable and erode against fluid shear progressively lose their anticoagulation 

activity and imperfections in coating can weaken the anti-coagulation effectiveness, as 

procoagulant proteins can adsorb at uncoated spots. Our overall hypothesis for their 

short-term success is that the failure modes of these anti-clotting coatings are either 

due to 1) a slowed-pace procoagulant protein fouling, 2) their erosion due to shear 

stress, or 3) a combination of both.  To test our hypothesis, a relatively new coating 

material that has shown ultra-low auto-adsorption of pro-coagulant proteins, 

polycarboxybetaine,48-50 was used to study the effect of shear stress on coating stability. 
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PDMS coated with DOPA-PCB-300/dopamine were exposed to shear stresses similar 

to those found in the vena cava, large veins, and conduit arteries.51 

#������


�����������	
���������
������
�	��
���
�����
�	� The dual chamber flow cell and 

recirculation system design is shown in ��	���
$. It consists of an acrylic (Custom 

Creative Plastics, FL) flow cell that was designed using Autodesk inventor (San Rafael, 

CA), a 3/16” I.D. and 5/16” O.D. tygon tubing circuit (Fisher Scientific, MA), a pump 

(Stöckert Shirley multiflow roller blood perfusion pump, SOMA Tech. Bloomfield, CT), 

Transonic flow probe and meter (Transonic Inc. Cambridge MA) and Leuer lock priming 

ports. The flow cell assembly of top and bottom mates
measures Length = 11.43 ��, 

width = 5.87 ��, height = 1.60 ��. and are attached to a recirculation circuit using 

polycarbonate connectors (Qosina, NY)%
The flow cell chamber measures a 1 cm x 6.35 

�� x 0.5 �� with a hydraulic diameter = 0.67 ��, entrance area = 0.37 ��2. Test 

samples (surface modified or unmodified), represented by the rectangular piece inside 

the flow cell, are first affixed onto the bottom mate’s  flow chamber already lined with an 
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adhesive nitrile sponge rubber gasket (Grainger.com, Lake Forest, IL) followed by the 

application of a gasket-lined top mate and compression of top and bottom mates with 

screws.

���������
	�����������
����
�	���	
�����������������������
���
�	� To ensure no 

leakages during application of flows over samples, a leak test was performed under 

experimental test conditions. A PDMS sample measuring 8.89 �� x 2.54 �� was 

inserted into the recirculation circuit and primed with 35mL of phosphate buffered saline 

(PBS) ensuring that no air bubbles were present in the circuit before flow initiation. 

Recirculation was maintained for 8 hours at low flow (30 ������) and high flow (1500 

������). Since the blood perfusion pumps used in this experiment are roller pumps that 

display only digital revolutions per minute (rpm) readouts, it was necessary to determine 

their flow rates as a function of rpms. First, their tubing occlusion were set at the 

recommended clinical pump occlusion setting where a 100cm fluid column drops 

25cm/min52-53. At this occlusion setting, a calibration curve of rpm versus flow rates was 

generated by pumping of PBS from a reservoir to an empty container. Rpms were set at 

50, 100, and 150 and the pumped volume and pumping time recorded. An rpm to flow 

rate calibration curve was generated for each pump so that a relation of wall shear 

stress as a function average flow velocity (flow rate/cross sectional area), fluid dynamic 

viscosity, and hydraulic diameter of flow chamber could be developed. 

Wall shear stress was calculated as 

�� = �(� × �	
�
�)& where

�� Wall shear stress (���
�
), 
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� Darcy-Wiesbach friction factor for the acrylic chamber surface is � = 	 ��
�� since flow is laminar,

�� Reynolds number, 

�  Density of fluid (	����
�
), 

�	
� =	 ����	����
 !"#	$%�&'��	()*�$�+",	����
(���).

The entrance length, -�& was expressed in terms of Reynolds number and hydraulic

diameter as -� = .. .�	 × ��	 × 01 where 01 is the hydraulic diameter of the flow

chamber given as 
�×23

�(451)& where 23 is cross sectional area and � and � are width and

height of the chamber entrance. The entrance length was calculated to be 0.04 �� 

using 01
= 0.67 �� and	��	~	1.

����
	���� ���
����!�"#��$#%&&'
����
	���	
�����
	������
�
�(�

���������
���
�	��PDMS membrane (NuSil Tech. CA) measuring 8.89 �� x 2.54 �� 

were casted via two-part polymerization process. Cured PDMS membranes were 

coated with DOPApCB-300 using a dip-coating process previously described.50 Briefly, 

PDMS was immersed in TRIS buffer (pH 8.5) containing dissolved 2.8 ����� DOPA-

PCB-300/dopamine mixture at a ratio of 1:40. Buffer with PDMS was gently agitated for 

2hrs. A schematic of the coating process is presented in ��	���
'. 
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Uncoated (N=5 samples at stagnant, no flow) and coated membranes (N=5 

samples/test condition) were inserted into flow cells (��	���
()) and the circuits were 

primed with phosphate buffered saline, pH= 7, (Sigma Aldrich, MO). Flows were 

initiated at 60 ������, 150 ������ and 230 ������ and recirculated through the flow 

cells for 8 hours. For each run, a set of four test conditions (coated PDMS with 0, 1, 6, 

and 10 ���
����2) were evaluated followed by test runs for uncoated no flow samples.  

These flows yield physiologically relevant shear stress of 1 ���
���2, 6 ���
����2 and 

10 ���
����2. The membranes were carefully removed after recirculation and stored in 

PBS. Three 1 �� x 1 �� pieces from each sample were sectioned and prepared for 

standard fibrinogen adsorption ELISA as previously described.50 The circuits were 

soaked in 10% bleach overnight, rinsed with DI water and dried with pressurized 

nitrogen between test runs. 

��������
������������������� Briefly, the 1 �� x 1�� squares were placed into a 24-

well plate and incubated in 1 �� of 1 ������fibrinogen for 90 minutes at room 

temperature. The disks are then washed five times with PBS and incubated with 1mL of 

1 mg/mL BSA (Sigma Aldrich) for 90 minutes at room temperature. The samples were 

again washed five times with PBS. Next, the samples were transferred into new wells 

and incubated in 1:1000 dilution of HRP (Sigma Aldrich) anti fibrinogen in PBS for 30 

minutes, followed by another wash in PBS. The samples were then transferred to a new 

set of wells. The solution is then incubated in 500 uL of 1 ����� OPD (Sigma Aldrich) 

in 0.1 M citrate-phosphate buffer containing 0.03% hydrogen peroxide. This reaction 

was then quenched after 30 minutes by the addition of 500 �� of 1N HCL (Sigma 

Aldrich). The supernatant was then removed from each sample and transferred into 
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�

cuvettes. The absorbance of each supernatant was then measured at 492 �� using 

UV-vis spectrophotometer (Beckman Coulter, CT).  It was expected that uncoated 

PDMS samples would have higher absorption of fibrinogen and thus higher UV-vis 

absorbance levels. The effect of coating erosion on biocompatibility was determined as 

the percent increase in fibrinogen adsorption compared to appropriate DOPAPCB-

300/dopamine coated PDMS controls. Less than 10% increment was considered highly 

stable, between 10 – 30% increase was considered stable and 30% or greater was 

considered unstable.  

����
��
����"	��(���� A single factor ANOVA (SPSS, Chicago IL) was run to determine 

statistical differences between controls (uncoated PDMS, and DOPApCB-300/dopamine 

coated PDMS with no flow) and coated PDMS exposed to 1 ���
����2, 6 ���
����2 

and 10 ���
����2 shear stresses. A ��< 0.05 was regarded as significant. 




*������
���
)���������


The exploded view of the flow cell design showing top and bottom mates, cell chamber, 

gasket channel circuit connectors are shown in ��	���
(! and ��	����
(+
���
(� are 

the flow cell and recirculation circuit prototypes. There were also no observable leaks or 

air bubbles in the circuit during all runs. The 5 �� syringe in Figure 3C was used to 
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���

prime and extract trapped bubbles during priming. 

As presented in ��	���
,, the rpm to flow rate calibration of pumps showed linear 

relationships between the two variables although there were some pump-pump variation 

indicated by the rpm-to-pump data fitting equations. The coefficient of determination, R2, 

for pumps 1, 2, 3 and 4 were 0.99, 1, 0.99, and 0.99 respectively. 

Each pump’s rpm-to-flow rate output provided guidance to obtain desired flow rates. 

Knowing the flow rates and obtaining the average flow velocity by dividing flow rates by 

the cross-sectional area of the cell chamber, sample or wall shear stress could be 

calculated using the �� equation from the methods section. ��	���
- shows the wall

shear stress on the primary axis as a function of flow rate and Reynolds number on the 

secondary axis as a function of flow rate. After fitting calculated shear stress to flow rate 
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date, it was determined that the calculated wall shear,��, increased with flow rate

according to �� = .. .�	 89:;�<	×	=>;
3=�	×	=- ?	× 	� 8 =-

=>;? @ 	�A @ BC	(9:;�<
3=� ). In the shear stress

calculation, the Darcy-Wiesbach friction factor depended on only the Reynolds number 

since the pre-calculated Reynolds number was < 2300. Shown also in ��	���
-, we see 

that the Reynolds numbers calculated from the experimental flow rates and fluid 

properties were low and ranged from 0.25 – 1.25. 

Although the Reynolds numbers were low, a comparison of flow entrance length 

to cell chamber length was made to determine whether turbulent flow effects typical at 

flow entrances were dominant over entire length.  The calculated entrance length, -�,

was 0.04 �� and compared to the cell chamber length = 6.35 ����which is a two orders 

of magnitude bigger indicating that almost the entire sample surface and therefore the 

cell chambers saw fully developed laminar flows. Because the wall shear stress,��,

remains constant along the flow direction in the fully developed regions of both turbulent 
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���

or laminar flows, it was also deduced that almost all of the sample surface area saw 

constant non-zero shear stresses during flow. �However, in the entrance region�����isn’t

constant but�rather starts out larger before decreasing to a constant stress in the fully 

developed region for any given flow rate. Therefore flow-induced erosion of DOPA-

PCB-300/dopamine may be possible and perhaps higher in the entrance length region 

than what may occur in the fully developed flow region. It should be noted that the 

scenario described above only reflects shear stress dynamics in a single fluid flow pass 

while the continued interaction between the velocity profile and the samples from 

multiple passes may further influence coating stability. Subsequent passes may cause 

repeated interferences of the fully developed flow profile at the tubing/flow cell 

connection and lead to repeated and transient increases in shear stress in the entrance 

length region which may further influence the stability of the coating especially in high 

shear stress test conditions. This theory is supported by the fibrinogen adsorption data 

from coated samples that were exposed to shear stresses.  Fibrinogen fouling before 

flows on DOPA-PCB-300/dopamine coated PDMS (5.73 ± 1.97%) was significantly 

lower than uncoated PDMS (100%, p < 0.001) as shown in ��	���
.. The data shows 

that fibrinogen fouling on coated samples increase with increasing shear stress 

although to levels not significantly different from control (coated samples not loaded with 

shear stress). In addition, fouling on coated PDMS with zero shear stress, although 

lower, was not significantly different from coated samples that were exposed to 1 
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dynes/cm2 (9.55% ± 0.09%, p = 0.23), 6 dynes/cm2 (15.92% ± 10.88%, p = 0.14), and 

10 ���
����2 (21.62% ± 13.68%, p = 0.08). Our findings show that DOPApCB-

300/dopamine coating were stable under the test conditions and only minimal coating 

erosion was observed. Compared to the coated PDMS no shear stress case, coated 

surfaces that were exposed to 1, 6, and 10 ���
����2 of shear stress, adsorbed 3.83%, 

10.20%, and 15.90% more fibrinogen respectively. It should be noted that the 

experiment was conducted at room temperature and with pH 7 PBS which are different 

from in-vivo conditions where the surface will interact with blood flow at a higher 

temperature. The study design used here however allows for a direct measurement of 

nonspecific protein adsorption on coated model surfaces after they have been exposed 

to flow, allowing for quantification of the stability of any non-fouling coating or surface 

immobilized enzymes against shear stress. Contamination of sample surfaces with 

biological material from stability testing with whole blood and perhaps plasma, on the 
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other hand, could lead to unreliable coating stability data using this approach. Non-

specific protein fouling on coatings exposed to blood or plasma flow shear stress would 

be simply difficult to evaluate. 

����������


In this study, the stability of a low-fouling DOPA-PCB-300/dopamine coating against 

various flow-induced shear stresses was measured. It was found that instability, as 

measured by percent increase in fibrinogen fouling between shear treated and no shear 

samples, increases with shear stress. To conduct the experiment, flow cells were 

fabricated and characterized for flows that yield different shear stresses (1 ���
����2, 6 

���
����2, and 10 ���
����2). The surfaces of PDMS membranes were then coated 

with low fouling DOPA-PCB-300/dopamine followed by testing of the coating’s stability 

against those shear stresses by placing the coated PDMS samples inside the flow cells 

and recirculating PBS over the samples at given flow rates for 8 hrs. Fibrinogen fouling 

between shear stress and no shear stress coated samples were compared to determine 

differences. Less than 10% increment was considered highly stable, between 10 – 30% 

increase was considered stable and 30% or greater was considered unstable. 

Compared to the coated PDMS with no shear stress case, coated surfaces that were 

exposed to 1, 6, and 10 ���
����2 of shear stress, respectively adsorbed 3.83%, 

10.20%, and 15.90% more fibrinogen. Our results therefore show that DOPApCB-

300/dopamine coating were stable and only minimal coating erosion was observed. As 

newer and more robust anticlotting coatings get developed, this simple and easy-to-use 

in-vitro flow cell system provides an appropriate pre-in vivo screening tool for 

determining coating stability under flow before conducting animal testing. The flow 
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system can be used to evaluate many coatings and surface modifications in 

biomaterials and blood-contacting devices. Other biomarkers for blood coagulation can 

be studied with this flow cell as well as evaluating the effects of pH and temperature. . 

The gas transfer properties of polymeric materials and interrogation of human cells and 

microorganisms such as bacteria and viruses with polymer permeable agents like nitric 

oxide could also be studied taking advantage of the dual chamber design of the flow 

cell. The results here suggest that coating erosion play a role in reducing the 

effectiveness of anti-fouling coatings used on blood-contacting medical devices. 
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