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Abstract: We obtain an intrinsic formula of a Ricci soliton vector
field and a differential condition for the non-steady case to be gradient.
Next we provide a condition for a Ricci soliton on a Kaehler manifold
to be a Kaehler-Ricci soliton. Finally we give an example supporting
the first result.
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1. INTRODUCTION

A Ricci Soliton is a generalization of a Einstein manifold, and defined as
a complete Riemannian manifold (M, g) with a vector field V| satisfying
the equation

Lyg+2Ric =2)\g (1)

where Ly denotes Lie derivative along V', Ric denotes the Ricci tensor
of g and A\ a real constant. The Ricci soliton is a special self similar
solution of the Hamilton’s Ricci flow: 2¢(t) = —2Ric(t) with initial
condition ¢g(0) = g; and is said to be shrinking, steady, or expanding
accordingly as A > 0, = 0 or < 0 respectively. In particular, if V is
the gradient of a smooth function f on M, ie., V = grad f, up to the
addition of a Killing vector field, then we say that the Ricci soliton is
gradient and f is the potential function. For a gradient Ricci soliton,
equation (1) becomes

Hessf + 2Ric = 2)\g (2)

where Hess denotes the Hessian operator VV (V denoting the covari-

ant derivative operator with respect to the Riemannian connection of
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g). The following formulas are well known (see Chow et.al [1] and
Petersen and Wylie: [4]) for a gradient Ricci soliton:

1
Q(grad f) = igradS (3)
lgrad f|* + S — 2\f = a constant (4)
Af — |grad f|* + 2\f = a constant (5)

where Af is the g-trace of Hessf, @) is the Ricci operator defined by
9(QX,Y) = Ric(X,Y) for arbitrary vector fields X,Y on M, and S

denotes the scalar curvature of g.

A seminal result of Perelman [3] says that a compact Ricci soliton
is necessarily gradient. In this article, we first provide a geometric
operator-theoretic condition on V' so that it may become gradient for
the non-steady case. The 1-form metrically equivalent to V is denoted
by v and is given by v(X) = g(V, X) for an arbitrary vector field X on
M. For a p-form w, we denote the co-differential operator by 9, i.e., dw
is a (p—1)-form such that (6w);,..;, = —V"w;,..;,. The interior product
operator of w by V' is denoted by iy such that (iyw)i,..., = V“wil...ip.
We now state our result as follows.

Theorem 1.1. The Ricci soliton vector field V and its metric dual
1-form v satisfy the following intrinsic formula:

200 = d(|V > + 6v) + 2(5 + iy )dv (6)

So, a non-steady Ricci soliton is gradient (i.e. v is exact) if and only
if (6 +1iy)dv is exact.

Corollary 1.2. A non-steady Ricci soliton (M, g,V,\) with v closed
15 gradient.

Remark 1. In general, v closed need not imply v exact (i.e., V gradi-
ent) unless M is simply connected.

Next, we consider a Kaehler-Ricci soliton (see [1]) which is defined as a
Kaehler manifold (M, g, J) satisfying the Ricci soliton equation (1) for
a vector field V' which is an infinitesimal automorphism of the complex
structure J, i.e.

LyJ =0. (7)
A vector field V' satisfying (7) is also known as a real holomorphic
vector field or a contravariant analytic vector field (see Yano [5]). It is
known (see Feldman, Ilmanen and Knopf [2]) that a Ricci soliton as a
Kaehler metric is a Kaehler-Ricci soliton if it is gradient. We provide
a generalization of this result as follows.

Theorem 1.3. A Ricci soliton which is also a Kaehler metric is Kaehler-
Ricci soliton if and only if dv is J-invariant.



2. Proors or THE RESULTS

In the following X, Y, Z will denote arbitrary vector fields on M.

Proof of Theorem 1.1 Equation (1) can be written as

g(VxV.Y)+g(VyV, X) +2Ric(X,Y) = 2Xg(X,Y) (8)
The exterior derivative dv of the 1-form v is given by
g(VxV,Y) = g(VyV, X) = 2(dv)(X,Y) (9)
As dv is skew-symmetric, we define a tensor field F' of type (1, 1) by
(d0)(X,Y) = g(X, FY) (10)

Obviously, F' is skew self-adjoint, i.e. ¢g(X,FY) = —g(Y, FX). Thus
equation (9) assumes the form.g(VxV,Y) — g(VyV, X) = 2¢(X, FY).
Adding it to equation (8) side by side, and factoring Y out gives

ViV = —QX + \X — FX (11)

Using this equation we compute R(Y, X))V = VyVxV — VxVyV —
Viv,x]V and obtain

R, X)V = (VxQ)Y = (Vy Q)X + (VxF)Y — (VyF)X  (12)
We note that (dv)(X,Y) = g(X, FY) and dv is closed. Hence
9(X, (VyF)Z2) +g(Y, (V2F)X) + 9(Z,(VxF)Y) =0 (13)
Taking inner product of (12) with Z we have
g(RY,X)V.Z) = g((VxQ)Y,Z) — g((VyQ)X, Z)
+ 9(Z,(VxF)Y) —g(Z, (VyF)X)  (14)

The skew self-adjointness of F' implies skew self-adjointness of Vy F' and
so the last term of (14) including the minus sign equals g(X, (Vy F)Z).
Using (13) in (14) gives

g(R(Y7X)‘/7Z) = (VXRiC)(Y>Z>_(VYRZ.C)(XvZ)

— g(Y,(VzF)X) (15)
Let (e;) be a local orthonormal frame on M. Setting Y = Z = ¢; in
(15) and summing over i = 1,--- ,n provides
1
Ric(X,V) = §X(S) — (divF)X (16)

Next, we compute the covariant derivative of the squared g-norm of V'
using (11) as follows.

Vx|VI]? =29(VxV,V) = —2Ric(X,V)+2\g(X, V) —2g(FX,V) (17)
Eliminating Ric(X, V') between (16) and (17) shows
Vx|VIP+ X () =2)g(X, V) + 2((divF) X + g(FV, X)) (18)
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In view of (10) we note that the last term in (18) is equivalent to
—2(0 + iy )(dv)(X). Hence (18) can be expressed as

d(|V|> +8) =2 v — 2(§ + iy)dv (19)

Now, taking the g-trace of equation (1) gives v = S — n\ and hence
we get dév = dS. Using this consequence in (19) we obtain the formula
(6). The second part of the theorem follows from this formula, because
A # 0 by hypothesis. This completes the proof.

Remark 2. Contracting the Ricci soliton equation (1) in local coor-
dinates and then differentiating gives

V,V,V' = -V;,8S. (20)

Differentiating the Ricci soliton equation (1) gives V,V,; V' = =V, V'V, —
V,;S. Using this and (20) we obtain

RV +V'V,V; =0. (21)

A vector field V' on a Riemannian manifold (M, g) satisfying equation
(21) was studied by K. Yano and T. Nagano in [7] and was termed a
geodesic vector field (not to be confused with vector field whose inte-
gral curves are geodesics). Actually, (21) is equivalent to the condition
(LyV)(es, e;) =0 (i summed over 1,...,n), where e; is a local orthonor-
mal frame on M. Obvious examples of a geodesic vector field are Killing
vector fields (Lyg = 0) and affine Killing vector fields (£yV = 0). For
a compact Riemannian manifold we know that a divergence-free ge-
odesic vector field is Killing (see Yano [6]). We noted earlier that a
Ricci soliton vector field V' on a Riemannian manifold (not necessarily
compact) satisfies (21), and hence we conclude that a Ricci soliton vec-
tor field V' is a new example of a geodesic vector field in the sense of [7].

Remark 3. Equations (16), (19) and (6) are generalizations of the
corresponding formulas (3), (4) and (5) for a gradient Ricci soliton re-
spectively, because in the gradient case v = df which implies dv = 0
and hence F' = 0.

Proof Of Theorem 1.3. Operating J on (11) we have
JVxV =—-JRQX + X — JFX.

Next, substituting JX for X in (11) we get
VixV==-QJX +AJX - FJX.

Taking the difference between the above two equations and noting that
J commutes with the Ricci operator () for a Kaehler manifold, we find

JVxV = VxV = (FJ - JF)X. (22)



At this point, we note that
(Ly )X = LyJX —JLyX
= VyJX -V, xV—-JVy X+ JVxV
JVxV =V, ;xV

where we have used the fact that J is parallel for a Kaehler structure.
The use of the foregoing equation in (22) gives

(Ly )X = (FJ — JF)X. (23)

Now using the equation (11), the Kaehlerian properties: JQ = QJ,
g(JX,JY) = g(X,Y), g(JX,Y) = —g(X, JY), skew-symmetry of F,
and a straightforward computation we obtain

2[(dv)(JX,JY) — (dv)(X,Y)] =g(J(FJ — JF)X,Y).

The use of (23) in the above equation provides
1
(@) (JX.Y) ~ (d0)(X.¥) = 3g(J(LyT)X. ).

This shows that Ly J = 0 if and only if (dv)(JX,JY) = (dv)(X,Y),
i.e. dv is J-invariant, completing the proof.

Remark 4. For a gradient Ricci soliton, v = df and hence dv = 0,
and Theorem 2 implies LyJ = 0 and so recovers the known result
(mentioned earlier) that the gradient Ricci soliton on a Kaehler mani-
fold is indeed Kaehler-Ricci soliton. Non-gradient examples satisfying
the Kaehler-Ricci soliton condition (dv)(JX, JY) = (dv)(X,Y) are the
cases when (i) dv = Q and (ii) dv = p where Q is the Kaehler 2-form
defined by Q(X,Y) = g(X, JY), and p is the Ricci 2-form defined by
p(X,Y) = g(QX,JY). We note that, both Q and p are closed and

J-invariant.

3. AN EXAMPLE SUPPORTING THEOREM 1.1

Let us consider R? with Euclidean metric d;; for which the Ricci soliton
equation is
0;vj + 0jv; = 2X6;;.
It can be verified easily that a solution of this equation is
v o= (A1 + 29 — x3)dry + (A\wg + 3 — x1)dxs
+ (Az3+ 21 — 29)d3. (24)

Computing its exterior derivative we get

dv = =2(dxy A dxg + dxs A dxs + dxg A dzy). (25)
We also compute

ddv = xd * (dv) = =2 * d(dx3 + dxy + dxs) = 0.



ivdv = (dv)(V) = =2[(AM(z3 — x2) + 221 — g — x3)dx;
+ (Mzy — x3) + 229 — 3 — 71)do
+ (Mxe — x1) + 225 — 11 — x9)d3)].
Re-arranging the terms we obtain
ddv +iydv = 2X[(z2 — x3)dzy + (x5 — z1)dwy + (21 — 22)dxs]
— d[(rg — x3)* + (23 — 11)* + (71 — 72)?].
Let us denote the 1-form ddv + iy dv by 6. It turns out that
df = —4X(dxy A dxg + dxg A dxs + dxg A dxy).

Use of equation (25) in the above shows df = 2Adv. Thus, for A # 0, we
see that § = (0 +1iy)dv is not exact because v is not exact [evident from
equation (25)]. This is in agreement with the conclusion of Theorem
1.1. We also note that the Ricci soliton of this example is not gradient.
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