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Abstract 

The recent years have witnessed an increased activity in biocompatibility research aimed at 

limiting biomaterial-induced blood coagulation. From 2008 to 2016, a total of $36,946,764.00 

USD was awarded in grants to 213 research proposals and as large as 50.4% ($18,627,854.00) 

of that award monies were distributed to 101 proposals over the fiscal years of FY14 to FY16 

alone. However, the complexity in blood responses to biomaterials, variability in blood 

function between individuals and animal species, and differences in medical device 

application and test setting all continue to pose difficulties in making a breakthrough in this 

field. This review focuses on the remaining challenges in the context of biomaterial surface 

interaction with blood, biomaterial properties and their influence on coagulation, old and new 

surface anticoagulation methods, main test systems (complement and platelet function) for 

evaluating those methods, limitations of modification techniques, and the current state of 

systemic anticoagulation usage as adjunctive therapy for controlling blood coagulation on 

biomaterials. Finally, we propose ingredients necessary for advancing the field towards 

achieving totally local surface anticoagulation on blood contacting devices including 

standardization of in vitro and in-vivo test methods. Some highlights of recent forward-

looking work and articles on local anticoagulation are also presented. 

1. Introduction

Large quantities of blood-contacting medical devices with procoagulant surfaces are 

used annually world-wide.[1, 2] It is estimated that more than 200 million of these devices are 

utilized in patients in the U.S alone.[3] They range from devices with small surface areas like 

catheters, vascular grafts, heart valves, cannulas, glucose, lactate sensors, and stents to those 

with moderate surface areas like pacemakers, artificial kidneys, and left ventricular assist 

devices. Then there are those with relatively larger surface areas like the artificial lungs, 
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artificial hearts, and extracorporeal membrane oxygenation circuits. The surfaces of these 

devices are made up of artificial materials that are different from endothelial cell surfaces, 

which interface with flowing blood.[4−6] Among other features, these cells express enzymes 

and secrete nitric oxide that maintains blood tone.[7−10] For example, nitric oxide inhibits clot 

formation while thrombolytic enzymes break down formed clots. For artificial materials, these 

properties are absent and rapidly activate blood into clots upon contact.[11,12] For blood-

contacting devices, clot formation can cause cessation of blood flow and lead to device 

failure.[13−15] Moreover, devices that do not fail may release clots into the systemic circulation 

and cause embolic complications.[14,16−18] In life support devices these clots can result in 

morbidity and mortality. For instance, a small bore vascular graft serving as a coronary artery 

may occlude from clot formation and cause myocardial infarction (heart attack). With 

artificial lungs, clotting is especially problematic as they have relatively large surface areas 

(1.3-2 m2) and a period of usage lasting from several weeks to months. Other clot-related 

problems with artificial lungs include increased device resistance to blood flow and reduced 

mass transport across their gas exchange membranes and they will typically fail after 7-14 

days with accompanying hemorrhagic complications.[13−15,18] As a result, their usage is limited 

with no solution in place for permanent lung replacement. Catheters without soluble heparin 

locking, on the other hand, have limited a lifespan and do not reliably allow repeated 

sampling of blood or continuous pressure monitoring in patients as their small lumen 

diameters make them more prone to failure by clots.[19−22]  

This review will look at some of the major anticoagulation approaches in clinical and 

experimental use over the last two decades. It will also focus on some of the remaining 

important and practical aspects of blood/biomaterial compatibility and problems with 

compatibility testing as well as keys to improving the blood-contacting artificial surface so 

that systemic anticoagulant drugs do not play a major role. Totally local anticoagulation on 

blood contacting devices is achievable and may be realized in the near future with robust 
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multifunctional artificial surfaces. These next generation surfaces will be rendered non-

fouling/anti-clotting and remain so either through a single modification method that is stable 

to hemodynamic and hemochemical interactions or, more realistically, through multi-

mechanistic techniques. The latter approach will interrupt clot formation at both the contact 

and propagation phases of the coagulation cascade. 

2. Biomaterial Surface and Blood Interaction

Under normal physiologic conditions, a delicate balance between thrombus formation 

and destruction is sustained by a complex series of mechanisms and interactions among 

platelets, the vascular endothelium, the coagulation cascade, and the fibrinolytic system.[23] 

Blood remains, under healthy hemostasis, in contact only with the normally anti-

thrombogenic endothelium that is lined with cells which prevent adhesion, aggregation, and 

activation of platelets, preclude the activation of the coagulation cascade, and modulate 

hemostasis through the expression and secretion of a spectrum of molecules.[24] Among these 

factors are prostaglandin, nitric oxide, thrombomodulin, heparan sulfate, tissue plasminogen 

activator (t-PA), urokinase plasminogen activator (u-PA) and plasminogen activator 

inhibitors.[11] Thrombomodulin combines with thrombin and the resulting complex activates 

protein C which acts, upon its binding with protein S, as a brake on the coagulation cascade 

by inactivating FVa and FVIIIa. Also, heparan sulfate inhibits blood coagulation by binding 

and activating anti-thrombin, which is the main inhibitor of thrombin and FXa. Moreover, the 

tissue factor pathway inhibitor (TFPI) inhibits the TF–FVIIa complex by forming a 

quaternary complex TFPI–TF–FVIIa–FXa.[25] While the aforementioned factors inhibit blood 

clotting, t-PA, u-PA, and plasminogen activator inhibitors modulate fibrinolysis.[26] 

Endothelial cells also have a low surface energy that keeps blood proteins from changing 

conformation.[25] However, when the continuity of the healthy endothelium is disrupted, for 

instance upon an endothelial injury, this non-thrombogenic surface is transformed into a 
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thrombogenic one[24], and a thrombotic reaction starts on the cells' subendothelium matrix and 

on the connective tissues which get exposed[27]. Circulating platelets then adhere to these 

structures and start the hemostatic process.[27] 

In contrast to the healthy endothelium, artificial surfaces lack such endothelial properties, and 

thus implants, whether intended for short term use (stents, catheters, heart valves) or long 

term applications (extracorporeal circulation), face a challenge, when in contact with blood, to 

oppose the natural coagulation process that becomes activated. Thrombus formation is a 

common cause of failure of blood contacting medical devices since artificial biomaterials 

promote clotting through a complex series of interconnected processes that include protein 

adsorption, adhesion of platelets, leukocytes, and red blood cells, thrombin generation, and 

complement activation.[24]  

Coagulation on biomaterials is initiated by the contact system through the activity of 

three main zymogens produced by the liver. These zymogens, namely Factor XII (hageman 

factor), Factor XI, and high molecular weight kininogen (HK) all exist in plasma, and upon 

contact with artificial surfaces, they go through the adsorption, initiation, and activation 

phases.[11] In the activation phase, zymogen Factor XII first adsorbs to negatively charged 

surfaces and activates to FXIIa by autoactivation. This process cleaves a single disulfide 

bridge of FXII allowing its heavy chain to bind to the surface while revealing its active site. 

At this point, FXIIa becomes a co-factor for prekallikrein (PK) and FXI which exist in plasma 

as non-covalent complexes with HK (PK-HK and XI-HK). The PK-HK complex binds to 

FXIIa to activate prekallikrein into kallikrein. The FXI-HK complex also binds to FXIIa to 

activate factor FXI into FXIa to complete the activation phase of the contact system. 

Zymogens XII, XI, and PK at this point have been activated into XIIa, XIa and K enzymes.[11] 

Once activated, the contact system uses a positive feedback mechanism potentiated by 

kallikrein. Kallikrein acts on FXII and HK substrates to speed up their conversion into FXIIa 

and HKa. For example, HKa binds 10 fold faster than HK to PK and FXI thereby accelerating 
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the association PK and FXI. This feedback mechanism serves as the initial driver of all 

amplification reactions in blood coagulation starting from the contact system down to a 

formed clot. In addition to the positive feedback mechanism, the contact system also has a 

negative feedback arm to modulate itself. During negative feedback control, Kallikrein 

cleaves off a fragment of adsorbed FXIIa, (FXIIf), into plasma leaving behind inactivated 

FXIIi. Although FXIIf is still active, its participation in blood coagulation is decreased as it 

loses its affinity for surfaces. It, therefore, exhibits low activity for prekallikrein to kallikrein 

conversion. FXIa is also a player for the suppression of contact activation. It cleaves off the 

light chain of adsorbed HK, HKlc, which contains the active site of HK leaving behind the 

heavy chain portion (HKhc). This reaction terminates the cofactor activity of HK and thus 

allows FXIa to desorb from the artificial surface.[11] The effect of the negative feedback 

mechanism has, however, not inhibited the contact system adequately to prevent downstream 

activation of pro-coagulant factors in the intrinsic and extrinsic pathways of the coagulation 

system that lead to clot formation in blood-contacting devices. 

Post contact-system blood coagulation has been traditionally viewed in two separate 

pathways; the intrinsic and extrinsic pathways. Such views have essentially faded as it is now 

more accepted that the pathways interact in vivo. The contact system is viewed as part of the 

intrinsic pathway because it initiates that branch of blood coagulation. The intrinsic pathway 

is associated with artificial surfaces and consists of reactions involving only vascular elements 

that can occur independently of factor VIIa whereas the extrinsic branch consists of blood in 

addition to vascular elements. The main difference between the branches lies in the way they 

activate FIX. The intrinsic system uses FXIa in the presence of Ca2+ whereas the extrinsic 

system requires tissue factor (TF) usually embedded in the cell membrane lipid bilayer in 

addition to calcium. 

The intrinsic pathway is initiated by the activation of IX to IXa by Factor XIa which is 

activated in the contact system. FIX can also be activated by TF in the presence of a 
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phospholipid (PL) surface and cofactor VIIa. For the next reaction to occur, calcium, FIXa 

together with the tenase complex (phospholipid surface-cofactor VIIIa) must work together to 

activate FX. This marks the end of the intrinsic pathway.[11,26] 

Activation of the extrinsic pathway is achieved again by TF in the presence of PL and VIIa, 

the same coagulant elements association utilized in the intrinsic pathway. As TF is present in 

the endothelial tissue, activation of the intrinsic pathway is usually associated with tissue 

damage. However, biomaterial-induced platelet activation and inflammation can also activate 

the intrinsic branch, as TF is also present in platelets and leukocytes. When TF associates with 

a PL and cofactor VIIa, FX is activated into FXa marking the end of the extrinsic pathway 

and the beginning of the common pathway of blood coagulation.[11,26] 

The common pathway is activated by the prothrombinase complex consisting of FXa, cofactor 

Va on platelets’ membranes and a PL surface in the presence of calcium. With FVa serving as 

the platelet membrane receptor for FXa, the activated platelet produces and secrets 

prothrombin. The complexing of these four elements to form prothrombinase increases 

prothrombin activity by 300,000 fold compared to that achieved by FXa and prothrombin 

alone. Adsorbed and activated platelets on the artificial surface, at this point, are connected by 

fibrinogen-glycoprotein IIb/IIIa platelet membrane receptor bridges following cleavage of 

fibrinopeptide A and B from fibrinogen. Platelet aggregation achieved by interconnecting-

platelet- secreted fibrinogen bridges is still a premature clot until thrombin crosslinks the 

platelet aggregate by converting fibrinogen into longer fibrin strands that bind to activated 

platelets multiple times. Finally, a solid clot is formed when thrombin activates FXIII to 

FXIIIa to cross link the interconnecting fibrin. This creates an insoluble fibrin network which 

is the end point of both coagulation pathways. Thrombin has a dual role in haemostasis, as in 

addition to facilitating the fibrin network formation. It also functions as an activator of two 

distinct platelet receptors, namely the protease activated receptors (PARs) 1 and 4. It also 
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potentiates the clotting process by activating FV, FVIII and FXI. It is therefore viewed as the 

most potent clotting factor in blood coagulation.[28] 

2.1. Platelet Activation 

Circulating platelets are activated either after damage to healthy endothelium or after 

blood exposure to an artificial surface. After damage to the endothelium for whatever reason, 

the endothelium loses its integrity and has to remedy its environment in order to restore its 

vascular tone. To achieve normal haemostasis, ruptured endothelial cells secret a” sticky” 

protein called von Willebrand factor (vWF) to bind to collagen in the exposed sub-endothelial 

layer so that circulating platelets can bind to the opposite ends of vWF to form a seal at the 

damaged area.[11,26] Glycoprotein Ib/IX receptor on platelets membrane allows binding of 

vWF to activate platelets. On artificial surfaces, the contact system activation leads to the 

generation of FXa. This, in turn, binds to FVa on platelet membrane to activate platelets. 

After the initial phase where few platelets are activated, a second and massive platelet 

activation phase ensues. The release of clotting factors from platelets’ granules during the first 

wave of activations acts to systemically activate  substantially large amounts of circulating 

platelets to potentiate coagulation. For instance, Activated platelets will secrete abundant 

Adenosine diphosphate (ADP) and Adenosine triphosphate (ATP) from their dense granule 

that in turn can activate neighboring platelets via ADP and ATP sensitive receptors. ADP is a 

ligand to the receptors P2Y1 and P2Y12, located on the platelet surface.[29-30] Among the 

granule content released, those of greatest physiological importance and their platelet 

membrane receptors, for example, are listed in Table 1. 

Shear rate from vascular blood flow can also influence blood coagulation. At high 

shears platelets undergo conformational changes and release their pro-coagulant factors 

including vWF, which propagate clot formation- a mechanism different from activation by 

chemical induction. Typical shear rates in human body range on the order of 10 s-1 to 1500 s-1 
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corresponding to 1 dyn/cm2 to 55 dyn/cm2. The larger vessels (veins and arteries) tend to have 

lower shear rates than the smaller ones.[31-34] For instance, the vena cava (larger diameter) will 

have smaller shear rate (10 s-1) than venules (375 s-1) and the ascending aorta (larger 

diameter) will have a smaller shear rate (250 s-1) than arterioles (~1500 s-1). Moreover, arterial 

flows are of higher shear rates (125 s-1 to 1500 s-1) than venous flows (10 s-1 to 375 s-1).  

These flow variations present a range of shear rates to which surfaces of blood-contacting 

devices can be exposed depending on where they are implanted. In a high shear rate 

environment, proteins and cells are highly mobile from momentum transfer and their 

deposition can be swept away before they amass into macro-aggregates whereas in low shear 

regimes seen in some blood-contacting deivces, continuous deposition and increased 

surface/biofoulant interaction can lead to larger blood clots and faster coagulation effects. 

Case in point, it has been reported that densely networked fibrin morphology is formed on 

surfaces exposed to low shear rates 10 s-1 compared to low to no discernable fiber deposition 

from 25 s-1 to 100 s-1 shear rates.[35] However, with respect to platelet activation, recent 

experiments have elucidated new platelet aggregation kinetics that led to artirial occlusion 

from large thrombi formation due to local release of vWF from platelets and conformational 

changes of platelets.[36] These clots were formed under high shear stress arterial blood flow, 

and their histological analyses showed high platelet to red blood cell ratio compared to low 

shear venous blood flow experiments. Clearly, continued efforts to elucidate hemostatis as a 

function of stress regimes, composition of blood, cellular and molecular environment of the 

vasculature, and other factors are important. Implications of increasing our understanding here 

will broadly impact medicine, as acute thrombotic events can be better controlled, blood-

contacting device design and testing will be better informed, and their clinical performance 

can be enhanced. 
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2.2 Complement Activation 

Several polymer surfaces were reported to have a strong influence on contact 

activation and in consequence also on the activation of coagulation and complement systems. 

Much research has shown that upon exposure to blood, the artificial surface becomes rapidly 

covered by a protein layer from different cascades and the deposition of this layer triggers the 

activation of the contact, coagulation and complement pathways. For instance, the adsorbed 

fXII and fibrinogen constituents of this layer trigger the activation of the complement, and 

one of its components, C3 is prone to undergo conformational changes upon binding to that 

layer leading eventually to the activation of the complement alternative pathway. It has also 

been shown that activation products of the contact activation system (Factor XIIa [FXIIa] and 

kallikrein), as well as thrombin and plasmin, are able to cleave purified complement 

component or fragments thereof in vitro.[37-41] Recently, these early observations have been 

confirmed and extended, and more factors have been added to the list of proteases that are 

potentially able to bypass convertases and directly generate complement protein 

anaphylatoxins C3a and C5a respectively, leading eventually to the activation of the 

complement alternative pathway. Whereas the incubation of C3 or C5 with FIXa, FXa, FXIa 

thrombin, and plasmin resulted in the release of C3a and C5a, respectively, the coagulation 

factor XIIa is able to activate the complement complex C1 initiating the classical pathway. 

Thus, there is a crosstalk between the components of the coagulation and complement 

cascades, and the activation of the complement on top of the adsorbed protein layer leads to 

the generation of the c3a and c5a that recruit and activate polymorphonuclear leukocytes and 

monocytes.[38-41] 

3. Biomaterial surface properties and their influence on coagulation

Immediately following the contact of blood with synthetic materials, spontaneous adsorption 

of proteins, a phenomenon termed “fouling” occurs leading to an advanced adverse biological 

response afterwards. [42] In general, antifouling surfaces are based on minimizing the 
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intermolecular forces of interactions between extracellular biomolecules and the synthetic 

surface so that cells do not adhere or an adhered cell is easily released under low shear 

stresses. A truly antifouling surface, also referred to as a ‘stealth surface’, remains undetected 

by cells in a biological milieu, and is therefore not prone to biofouling.[43] The interfacial 

energy between a surface and water is expected to play an important role in conferring 

antifouling characteristics to the surface. To better understand fouling phenomena 

theoretically, Baier related fouling with surface energy.[44] A surface is referred to as a theta 

surface if when glycol-proteinaceous macromolecules encounter such surface, they have the 

least probability of getting denatured.[44] Theoretically, minimal bio-adhesion occurs at a 

critical surface tension in the range[45] of 20-30 mN/m preferably between 22 and 24 mN/m 

which is approximately equal to the dispersive component for water.[46] In a pioneering study 

on the structure-property relationship of surfaces in resisting protein adsorption by 

Whiteside’s,[47] it was reported that to resist adsorption of proteins a surface needs to exhibit 

four molecular-level characteristics: hydrophilicity, hydrogen-bond acceptors, do not include 

hydrogen-bond donors, charge neutral overall. There are very few exceptions such as 

mannitol groups, which resist protein adsorption although they are hydrogen-bond donors.[48] 

Hydrophilic surfaces such as poly(2-hydroxyethyl methacrylate) (PEGMA) have interfacial 

energy below 5 mJ/m2.[49] Although the mechanism of action for PEG’s nonfouling is not 

fully understood[50], it is generally accepted that PEG’s effectiveness is due to the steric 

repulsion effect with loss in entropy exhibited by a PEG-coated surface when proteins attempt 

to adsorb.[51,52] In contrast, non-polar hydrophobic surfaces exhibit high interfacial energy 

with water. When such surfaces are in contact with biological media, amphiphilic 

biomolecules such as proteins show significant adsorption to minimize the interfacial energy 

of such surfaces.[49] For example, when zoospores of Ulva are exposed to alternatively 

patterned hydrophilic and hydrophobic arrangement of self-assembled monolayers (SAM), 

zoospores preferred to settle on hydrophobic patterns.[53] For effective nonfouling, in terms of 
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surface complexity[49] a surface can be homogeneously hydrophilic (nonfouling), hydrophobic 

(foul and release if elastic) or amphiphilic (to ‘confuse’ bioorganisms).[54,55] In addition, 

surface texturing can also provide useful nonfouling properties as in the case of biomimicking 

shark-skin inspired PDMS coating using the Sharklet AFTM microtopography.[56] Surface 

modification is arguably the most convenient and effective method of imparting nonfouling 

properties to the material. As per the criteria established by Whitesides[47,57,58] PEG is the 

prominent candidate for nonfouling applications.[47,58,59] However, PEG polymers are prone to 

oxidation and may have issues with long term applications especially in water.[60] Among 

several possible polymers, zwitterionic polymers recently emerged as prominent 

candidates.[61] Due to their strong binding with water, zwitterionic polymers are very effective 

nonfouling materials and have been well studied by the Lin, Ishihara, and Jiang groups.[61-64] 

These hydrophilic polymers can be attached to a surface to impart nonfouling behavior, and 

they can be attached to surfaces by various methods;[65] “graft from” in which an initiator is 

attached to a surface from which the polymer is grown, “graft to” in which a functional chain-

end polymer can be grafted, and adsorption of block copolymers. A variety of methods need 

to be attempted for a given polymer as the nonfouling behavior of the modified surface 

depends on the graft density and thickness of the given polymer.[43] Atom Transfer Radical 

Polymerization (ATRP) is one the most widely used method for both “graft from”[66,67] and 

“graft to” techniques for zwitterionic polymers[68,69] and PEG modification.[70-72] Zwitterionic 

grafts typically will form brush or mushroom configurations on the polymer substrate 

depending on graft chain separation distance. In a brush configuration, the zwitterionic 

polymer grafts are in close promixity that they extend away from the substrate to repel 

macromolecules including proteins. In a mushroom configuration, the surface polymers 

chains are separated by larger distances such that they expand into non-extended dimensions. 

The larger average separation distance between chains provide room for macromolecules to 

interact directly with the surface of the substrate. Hence brushes tend to be anti-fouling while 
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mushrooms tend to be fouling [43]. Protein resistance of these surface give an indication about 

their nonfouling behavior for real world biofouling applications. It is necessary that long term 

studies of different polymers in blood contacting applications be performed to select materials 

for demanding applications.[73]  

4. Surface Anticoagulation Approaches

Modification approaches developed to combat clot formation on blood-contacting 

artificial surfaces have focused on usage of single-mechanistic anti-clotting processes through 

a variety of hydrophilic coatings to prevent non-specific protein adsorption by biomaterial 

surface hydration, nitric oxide release from polymers to inhibit platelet activation, and most 

recently via dual-mechanistic experimental means. Table 2 presents these methods, their 

mechanisms of action, limitations, and relevant commentary about their usage. 

4.1 Limitations of Approaches 

Several limitations associated with anti-clotting surface modification approaches 

discussed in Table 2 still challenge the field and these problems need to be solved in order to 

design truly hemocompatible surfaces. And such limitations must be addressed using all 

plausible alternatives including methodical incremental approaches. In the following section, 

limitations of commonly used coatings are further reviewed. 

In heparin coatings, the challenge is that each heparin polymer must first attach to an 

antithrombin III (ATIII) serine protease inhibitor to work. The formed heparin-ATIII complex 

must then binds to procoagulant thrombin to deactivate it from propagating coagulation. 

Realistically, this scenario does not always occur due to the surface-immobilized state of 

heparin. Another limitation of the heparin arises from its degradation due to stresses imposed 

by its biological surrounding, and it gradually loses its availability to complex with 

ATIII.[37,74,75] 
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Hydrophilic coatings ranging from Sorin to Trillium increase the hydrophilicity of 

surfaces and also lower surface energy. Although these mechanisms lead to minimal protein 

adsorption, the coatings are prone to leaching due to environmental factors which lead to loss 

of water retention. Similarly, hydrogel and ionic liquid based coatings are shown to be highly 

resistant to protein adsorption and even blood progressively lose their bioactivity. Despite 

notable advantages of these coatings, their acute and chronic inflammatory responses in vivo 

have been inconsistent. Fluoro-containing coatings, on the other hand, minimize surface 

energy and lower surface tension[76], and have been shown to inhibit fouling from whole 

blood in in vitro and acute in vivo studies.[77] In vitro testing result also showed that liquid 

perfluorocarbons can be displaced from the surface under hydrodynamic shear stress.[77]

It should be noted that while the theory of surface energies was found to be important in 

single protein/model surface interaction study, it is a big leap to apply only this theory to the 

explanation of whole blood interaction with polymers in medicine. Poly (ethylene oxide) 

(PEO), otherwise known as polyethylene glycol (PEG) is a hydrophilic polyether used as 

coatings on blood contacting medical devices. It is made up of a structured repeat unit (CH2-

CH2-O) that drive surface hydration lowers protein adsorption on devices. Positive results 

have been shown in in vitro testing with some reports arguing for inconsistent results.[75] 

Nevertheless, polyethyleneglycol has been applied as coating for biocompatibility studies on 

many surfaces including polymers (polyurethanes), metals (stainless steel) and as conjugants 

of drugs to improve their bioavailability. It is known to increase the hydrophilicity of surfaces 

which in turn reduces nonspecific attachment of proteins[78,79]. The hydrophilicity is typically 

screened by contact angle measurements which are often correlated to resistance to biofouling.  

Lower contact angles (72.1° from 99.6°) have been observed from PEG-grafted thermoplastic 

polyurethanes[80-84] which reduced platelet and bacterial attachment and from PEG-grafted 

stainless steel which reduced the adhesion of bovine serum albumin and Listeria ivanovii[85]. 

Moreover, PEG has been shown to prolong the in vivo circulation of drugs complexed to PEG 
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[86]. The year 1990 marked the first of eleven FDA approved PEG conjugated drugs with the 

last drug receiving such clearance in 2014. 

An anti-inflammatory material can be applied as non-fouling surface while others are 

delivered as anti-inflammatory agents. The latter technique allows proteins to passively 

displace preadsorbed anti-inflammatory proteins.[87] Both approaches are influenced by 

coating stability and more in vivo research is needed. 

Biologically active surfaces, such as nitric oxide releasing polymers, are a relatively 

new approach for improving blood/biomaterial compatibility. Nitric oxide is an antibacterial 

and antiplatelet agent that is  endogenously released into flowing blood at low flux levels (0.5 

- 4 X10-10 mol/cm2/min)[88] by healthy endothelium and can be incorporated into polymers, 

like polydimethylsiloxane (PDMS) via chemical conjugation reactions. The goal of this anti-

clotting material modification method is to attain flux levels comparable to what is produced 

by the endothelium and at  nontoxic levels. The ability to control the delivery of nitric oxide 

and its duration of release continues to be under investigation, as long term release has also 

not been achieved yet. 

A much different antifouling surface modification approach which involves 

endothelial cell (EC) attachment to artificial surfaces is achieved by first adding endothelial 

cell receptors to the preferred non-biodegradable substrate followed by EC attachment. 

Adequate and appropriate distribution of receptors as well as surface morphology of the 

substrate are aimed at mimicking the extracellular matrix to promote interaction between the 

ECs and EC cell receptors. Many of the difficulties associated with conjugating EC receptors 

to substrates remain unsolved so alternative approaches using stem cells to induce 

endothelialization are under investigation.[24] Biodegradable polymers such as poly(1,8-octane 

diol citrate) (POC) are also being used as substrates to promote endothelialization. The 

application of POC onto grafts (POC-ePTFE) has been shown to maintain EC adhesion and 

proliferation of porcine cells similar to that of the native tissues, and within 10 days the EC 
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was confluent, while only random patches were evident on ePTFE controls.[24] For such 

substrates, it is important to maintain an optimum balance between polymer degradation and 

cells growth and replication rates, as these factors including porosity influence the polymer’s 

performance and endothelialization. The use of self-assembled monolayers (SAM) to study 

antifouling materials are a unique approach as they provide a controlled protocol for 

evaluating and screening for resistance non-specific protein fouling. The typical substrate for 

SAMs is, however, gold, which is not a medical relevant surface such polyurethane, 

polydimethylsiloxane, or 316 stainless steel. 

Surfaces coated with albumin have demonstrated increased resistance to platelet 

adhesion,especially when compared to other proteins found in human blood. The protein can 

be covalently attached to the surfaces or selectively adsorbed onto surfaces modified with 

PEO-tethered warfarin which increases the surface affinity for endogenous albumin.[75] 

Hemocompatibility studies of albumin-coated surfaces have generally not shown success. A 

clinical study examining prosthesis in aortic position[89], observed similar coated prosthesis 

performance to uncoated controls. 

On the other hand, elastin-inspired coatings which are materials containing elastin, a 

protein found in connective tissue has been shown to limit platelet adhesion and aggregation. 

However, due to its insolubility, it is difficult to isolate and purify elastin[75]. Another coating 

inspired by proteins is the Phosphorylcholine (PC) which mimicks phosphatidylcholine found 

in animal cell membranes. While surfaces with PC coating limit protein and cell adhesion in 

vitro supposedly because of their zwitterionic nature and electrically neutral state at 

physiologic pH, the relatively weaker van-der Waals forces that hold their monolayer or 

bilayer coating molecules together create instabilities[75]. PC-coated surfaces have exhibited 

reduced platelet adhesion in vitro but showed no benefit in some animal studies.[37] 

Pyrolytic-carbon coating takes the concept of early carbon-coated surfaces and applies 

it to a modern approach. The process occurs through chemical vapor deposition in which 
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hydrocarbon is heated and a graphite layer is crystallized as a ‘highly ordered layer of carbon 

atoms‘.[75] Although pyrolytic-carbon coated surfaces were found to reduce platelet adhesion 

on vascular graft, they did not affect their overall patency rate. 

Needless the say many limitations exist among these antifouling coatings, and by 

addressing these challenges and evaluating sound alternative approaches, while limiting the 

risk of bleeding associated with systemic anticoagulant usage, further improvements in 

blood/biomaterial compatibility can be achieved.  

5. Current State of Systemic Anticoagulation Usage

Largely due to surface modification limitations discussed earlier, blood coagulation on 

medical devices remains a challenge yet to be solved through surface/material modification 

alone. Systemic anticoagulation drugs, especially heparin, are still required as adjunctive 

therapies with the most commonly used systemic anticoagulant being heparin although other 

agents such as clopidogrel, aspirin, and warfarin are also used. Heparin’s role in inhibiting 

clots formation is multi-faceted acting through inhibiting factor Xa from activating 

prothrombin into thrombin. When it binds the plasma protein antithrombin III, it directly 

inhibits thrombin from binding to platelets, and the heparin-AT complex inactivates several 

coagulation enzymes including thrombin, factors IXa, XIa, and XIIa.[26, 90] Heparin slows the 

process of thromboplastin synthesis, decelerates the conversion of prothrombin to thrombin, 

and inhibits the effects of thrombin on fibrinogen, blocking its conversion to fibrin. It also 

causes an increase in the number of negatively charged ions in the vascular wall, which helps 

prevent the formation of intravascular clots. In addition, heparin can act through other serine 

protease inhibitors such as heparin co-factor II, protein C inhibitor and tissue factor 

plasminogen inhibitor. The antithrombotic action of heparin in vivo is complex, and 

interactions with different plasma proteins and cells play significant roles in the living 

vasculature. 
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Warfarin, a coumarin derivative, is considered among the most common vitamin K 

antagonists (VKA) in which it generates its anticoagulation effects by affecting six vitamin K- 

dependent protein factors involved in the coagulation cascade (factors II, VII, IX and X and 

proteins C and S).[91, 92] Warfarin and heparin work in slightly different ways, but both block 

the production of certain cofactors in the liver that work together to promote blood to clot. 

The points of action of both these anticoagulants are downstream of the onset of blood 

coagulation and have no effect on protein adsorption. Furthermore, these anticoagulants may 

compromise hemostasis and cause hemorrhage as they act systemically.[93, 94]  

While Warfarin inhibits Factors II and VII of the extrinsic coagulation pathway, and 

Factors IX, X, and prothrombin of the intrinsic pathway, heparin exerts its major effect via 

antithrombin, converting antithrombin to a more efficient inhibitor of circulating thrombin 

(factor IIa), factor Xa, factor IXa, factor XIIa, and kallikrein. However, due to the multiple 

anticoagulant mechanisms of heparin, differential molecular weight-based clearance, heparin 

resistance, and patient-specific characteristics (age, weight, gender, and tobacco), attaining 

therapeutic anticoagulation is complicated. Moreover, the resultant under- or over-therapeutic 

anticoagulation is associated with increased risks of ischemic and bleeding complications. 

Therefore, it is important to maintain heparin anticoagulation within a relatively narrow 

therapeutic range.[95] Also Heparin-induced thrombocytopenia (HIT), a condition 

whichdecreases platelet count during or shortly following exposure to heparin[96], is 

considered the most frequent drug‐induced type of thrombocytopenia and can lead to 

significant morbidity and mortality if unrecognized. Heparin’s interaction with circulating 

platelets lead to their activation followed by the release of their pro-thrombotic 

platelet‐derived micro-particles, which causes platelet sequestration and consumption, and 

eventually thrombocytopenia.[96,97] 

In surgical procedures requiring cardiopulmonary bypass (CPB) or other blood 

contacting devices, heparin is used to elevate the activated clotting time(ACT) increasing the 
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activity of the anti-thrombin. Since some patients are AT deficient and thus have a diminished 

heparin response, and accordingly fail to reach therapeutic ACT, the majority of them may 

require AT replacement often with antithrombin III (ATryn, recombinant antithrombin III 

[rhAT], rEVO Biologics).[98,99] In the same way, although Warfarin inhibits the activation of 

the vitamin K–dependent clotting factors (Factors II, VII, IX, and X) and regulatory proteins 

(proteins C, S, and Z), it is one of the leading drugs implicated in emergency room visits for 

adverse drug reactions.The potential bleeding risk associated with its therapy have led to its 

limited use especially in the elderly population. Currently, there exists no optimal dose[100] as 

it is difficult to administer warfarin at the correct dose because of its narrow therapeutic index, 

its tendency to cause bleeding, and the individual variability in patient response. Therefore, 

achieving safe and effective doses of warfarin therapy is both an urgent and important 

concern. 

Recent research has focused on pharmacogenomics accounting for individual variation 

in anticoagulant activity of vitamin K antagonists.[101] Attention has focused on single-

nucleotide polymorphisms (SNPs) of genes that encode two proteins: the cytochrome P450 

2C9 enzyme and vitamin K epoxide reductase complex (VKORC1).[102] Studies suggest that 

CYP 2C9 influences warfarin metabolism and affects warfarin half-life, whereas VKORC1 

plays a role in the pharmacodynamic response in expression of the enzymatic target of 

warfarin. For instance, patients who carry CYP 2C9*2 and CYP 2C9*3 alleles tend to require 

lower warfarin maintenance doses because of their slowed metabolism compared with 

patients who carry the “wild-type” allele.[103,104]  

Aspirin and clopidogrel are also among the commonly used systemic drugs to inhibit 

platelet activation. Asprin irreversibly inhibits the synthesis of platelet- dependent 

thromboxane A2 formation and prostaglandins inside platelets and clopidogrel binds to 

platelets ADP receptor and P2Y12, to block ADP from activating platelets. They inhibit the 

clotting cascade at the biomaterial’s surface and inside platelets in an irreversible manner and 
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increase the risk of bleeding.[15,93] Many other studies report significantly higher postoperative 

bleeding complications among patients with continued antiplatelet therapy with 

clopidogrel.[105] 

Aspirin is the "gold standard" antiplatelet agent for the prevention of arterial 

thromboses. The optimum dose of aspirin as an antithrombotic drug can differ in different 

organ circulations. While 100 mg/day is sufficient for prevention of thrombus formation in 

the coronary circulation, higher doses may be required for the prevention of vascular events in 

the cerebral and peripheral circulation. However, any effective antiplatelet dose of aspirin is 

associated with an increased risk of bleeding and therefore, the individual benefit/risk ratio 

determines the administration of the compound.[106]  

The response to these systemic drugs differs from patient to patient. In fact, many 

patients are resistant to the effects of a single oral anticoagulation drug, so a therapy that 

embodies multiple drugs having different mechanisms of action is often used. One example of 

this is the use of a multi-targeted antithrombotic approach, involving anticoagulation 

(bivalirudin and warfarin) and antiplatelet therapy (dipyridamole and aspirin), in order to 

mitigate the pro-coagulative effects of mechanical circulatory assist devices, particularly those 

that are associated with the CardioWest[107] temporary total artificial heart.[108, 109] Still, the 

problem with this approach is that although the mechanisms of action for current antiplatelet 

agents are known, their combined effect may induce anticoagulation at magnitudes too large 

to allow restoration to normal hemostasis. The administration of these agents concomitantly 

can increase to risk of bleeding and lead to other unforeseen complications.[108] Careful 

monitoring of this variant multisystem approach using tools such as efficacy tests, safety tests, 

and warfarin genomics is therefore important for maximizing the therapeutic actions and 

minimizing the bleeding risks that are associated with the technique. Ultimately, systemic 

drugs increase the risk of bleeding complications because of their prolonged half-lives. 

Bleeding complications become even more devastating in patients with renal insufficiency 
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who cannot efficiently clear these long lasting drugs. The effects of systemic anticoagulation 

swing from bleeding in cases where it overwhelms hemostasis to device clotting when 

inadequate concentrations are used. In devices with large surface area, both effects (bleeding 

and depletion of systemic clotting factors and platelets) can occur. 

Bleeding complications from systemic heparinization are the most common and life-

threatening. For example, the Michigan ECMO experience with neonatal mortality is one that 

can still be improved if bleeding complications due to systemic anticoagulation are reduced. 

According to the most recent report on the impact of ECMO on neonatal mortality[109], 

bleeding is the most frequent cause of death in newborns managed with extracorporeal life 

support. In this population, intracranial hemorrhage occurred in approximately 13% of 

neonates, 5% of pediatric patients, and 4% of cardiac patients. Clotting complications are also 

common, occurring in 26% of patients.[110] 

Conventional anticoagulants have somehow proven efficacy. However, due to the 

narrow therapeutic window, the necessary need for regular monitoring, and other 

complications, over the last decade or several decades, new oral anticoagulants (NOACs) 

have been launched and developed.[111] These new oral anti-coagulants range from Factor Xa 

inhibitors, such as apixaban and rivaroxaban, which selectively and directly bind to the active 

site of factor Xa and thereby inhibiting both free and clot associated factor Xa, to direct 

thrombin inhibitors (DTIs). DTIs inhibit the intrinsic activity of the thrombin. Unlike heparin, 

which also inhibits thrombin, the DTIs do not require a factor and can inhibit thrombin 

directly. These drugs, such as bivalirudin, are used for prophylaxis and treatment of venous 

thromboembolism and acute coronary syndrome, and for prophylaxis of thrombus formation 

in non-valvular atrial fibrillation.[112,113] They are also used as anticoagulation alternatives in 

the setting of HIT. 

These new oral anticoagulants show advantages compared with conventional 

anticoagulants in the prevention and treatment of patients with thromboembolic events, 
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especially because of lower rates of hemorrhagic outcomes [111-114], the rapid onset and offset, 

short half-life, predictable therapeutic effect and wider therapeutic window in addition to the 

need for no lab monitoring. Nonetheless, there are some conditions for which parental 

anticoagulants remain the drug of choice. Despite the aforementioned advantages of NOACs, 

these drugs are not ideal because their use is limited or contraindicated under some 

circumstances. For example, none of the direct NOACs are approved-to-use drugs during 

pregnancy or in babies and children.[111, 114] Additionally, NOACs have not yet been applied 

in patients with mechanical mitral valve issues (with increased rates of thromboembolic and 

bleeding complications),[111, 114] patients with malignant disease, and those with 

antiphospholipid syndrome, which is associated with a greater risk of thrombophilic 

states.[111,114] More studies are still required to evaluate and further assess the efficacy of 

NOACs. 

6. Keys to Achieving Totally Local Surface Anticoagulation

To advance the current status of surface anticoagulation it is critical that: novel surface 

modification approaches are actively pursued, in-clinical-use and promising experimental 

techniques are critically reviewed, limitations of the primary mechanisms of action of those 

modification methods are clearly established, the potential for improving on those limitations 

through reasonable optimization processes is assessed, and synergy benefits from co-

localization of two or more anticoagulation properties on surfaces, an approach arguably of 

most promise and which logically transitions from proven single mechanistic methods, are 

evaluated. These are essential factors that need to be addressed in order to advance surface 

anticoagulation research. 

As discussed in preceding sections, there are several ways of organizing surfaces 

which interact with blood and many are actively being researched. These surfaces have been 

designed to remain passive and hydrophilic, active and hydrophilic, or active and anti-

thrombogenic. On such designer substrates, we either rely on surface hydration to keep 
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procoagulant blood factors away from settling on the surface or on coupling of soluble 

proteins (e.g. non-dominant form of antithrombin III, beta-antithrombin III)[109] and enzymes 

to surface-bound active agents such as heparin to inhibit activation of key procoagulant 

elements like thrombin and factor X. There are also catalyzing surfaces such as copper (II) 

doped polymers which catalyze the dissociation of nitric oxide from endogenous organic 

compounds such as S-nitrosothiols[115- 117] (NO donors). In addition to these designer surfaces, 

tailored polymeric matrix composites that secrete anti-clotting agents such as nitric oxide to 

limit the activation of key procoagulant platelets have been extensively studied.[118- 123]  

Due to the limited and generally short-lived benefits of surface modification approaches, as 

deducible from the literature, an easier argument to make is that in-clinical-use approaches are 

either not multi-inhibitory/adequate enough to keep blood-contacting surfaces free of clot 

formation driven by redundantly complex set of reactions, or not robust to prevent loss of 

effectiveness during weeks-long (> 2 weeks) exposure to blood flow. Nonetheless, it is 

difficult to confidently conclude whether it is the case of adequacy or loss of function because 

of the lack of proper scientific data. Some experimental methods, on the other hand,continue 

to show outstanding resistance to nonspecific protein adsorption from the whole plasma [124- 

127] and in some cases to whole blood coagulation[77] although only in in vitro and in vivo 

preclinical settings. For these surface modification techniques, their limitations have been 

limited to acute in vivo studies at best. [77, 128-143]   

Generally speaking, the optimization approaches to ensure the long-term function of 

in-clinical-use and experimental approaches can be grouped into fortification processes that 

impart stability to designer surfaces and controlled release of anti-clotting agents from matrix 

composites. Optimized density grafting, covalent attachment strength between graft and 

substrate materials, and reliable and appropriate measurement techniques to ensure ultra-low 

fouling graft coverage, and stability against typical hemodynamic shear stresses presented to 

implantable medical devices are needed in the fortification process of designer surfaces. 
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Microenvironment control of matrix composites for tunable release of anti-clotting agents will 

also play a major role in the optimization processes needed overcome current limitations of 

blood-contacting surfaces. 

Until then, it is reasonable to question whether single-mechanistic modification 

methods can be fully optimized. And after fortification and micro-control of release agents, 

can each method alone lead to totally local surface anticoagulation? As research leads us to 

making such determination in the future, the potential of drawing synergy from multiple anti-

clotting agents must not be overlooked. The argument can be made for pushing the boundary 

of surface anticoagulation research beyond the norm of single-mechanistic anti-clotting 

surface modifications because of millions of years of evolution which have led to equipping 

the luminal surface of healthy blood vasculature with several anticoagulation functions all 

working in concert to maintain blood tone. 

The significance of  this approach is that there is already a wealth of knowledge about 

many single-mechanistic surface modification approaches and their synergy can lead to 

increased hemocompatibility of blood-contacting surfaces. Even a minor improvement in the 

hemocompatibility could result in large upgrades in the patient-care environment. 

In the following section, the mechanisms of action of a subset of the modification approaches 

discussed earlier are assessed in pairs and triplets to draw otherwise not obvious conclusions 

about their potential synergies toward developing a super anti-clotting material. For brevity, 

only a few highly promising and in-clinical-use methods were included in our analyses in 

Table 3. The anticoagulant functions of nitric oxide, zwitterionic coatings, polyethylene 

glycol, and heparin coatings are paired and tripled and the resulting multi-mechanistic action 

against clot formation are presented. NO’s presence on any of the combinations adds the 

property of inhibiting platelet adsorption and activation. For example, NO release function 

added to either zwitterionic[116] or PMEA[117] grafted surfaces reduce the adsorption of key 

clotting elements (fibrinogen and platelets) at a significantly higher level than surfaces 
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modified with either NO release or coating alone. Zwitterionic polycarboxybetaine coated 

surfaces not only resist nonspecific protein adsorption much like polyethylene glycol, but also 

provide immobilization sites for biomolecules.[127] Heparin’s action, on the other hand, is 

unique as it indirectly inhibits the procoagulant function of soluble thrombin. In theory, the 

ideal surface should effectively inhibit thrombin generation, platelet activation, and fibrinogen 

adsorption. This is achievable, also in theory, by blocking all contact system proteins and thus 

preventing the activation of the blood coagulation cascade. This method of non-specific 

protein resistance is an active and well-funded approach which has resulted in reduced blood 

activation although surface induced clot formation is still a clinical challenge. Effective 

inhibition of thrombin generation, platelet activation, and fibrinogen adsorption could also be 

achieved by designer surfaces that target each of those procoagulant elements. Such a surface 

could present heparin and some hydrophilic coating and NO release to blood flow. 

It is important to point out that as almost all in vitro and in vivo hemocompatibility 

assessments of surface modification methods are done in the presence of anticoagulants, most 

of the blood-compatibility results are not separated from the effects of anticoagulation. 

Moreover, both quantitative and qualitative metrics of the effects of these anticoagulants, 

which are administered at known boluses and infusion rates, must be obtained from test 

systems that span relevant operating parameters of blood-contacting devices such as flow, 

surface area, duration of blood/biomaterial interaction, and geometry of the interacting surface 

and material. However, due to the wide variation in surface area and geometry, materials, 

flow regime and duration of interaction, metrics observed from the application of many of 

these anticoagulants may not be truly comparable from study to study. A presentation of 

analyses of their influence on hemocompatibility could accurately be performed largely on a 

case by case basis and such exercise would yield a narrative no different from that of the 

general state of study to study organization of anticoagulation science, which could be argued 

to have contributed to the challenge of gaining deeper insights into their functions and 
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comparison. Thus, such analyses have not been included in this review. However, its 

importance is acknowledged here by discussing the influence of Citrate commonly used in in 

vitro studies, on coagulation properties. The effects of citrate, including those of other 

anticoagulants, are increasingly be analyzed by thromboelastography (TEG) to monitor blood 

behavior and patient’s hemostasis more and more during surgery. Throbomboelastograhy 

mainly measures coagulation time parameters such as R-time (kaolin activated) or TEG-ACT 

(tissue factor-TF and kaolin activated), K-time,  angle, maximum amplitude (MA) of tracing, 

G-value etc. These parameters in the order listed track accumulation time of clotting factors 

(R-time and TEG-ACT), kinetic time for fibrin cross linkage to reach 20 mm clot strength (K-

time) or fibrinogen and platelet numbers, platelet number and function,  calculated clot 

strength (dyne/cm2) of the entire coagulation cascade. Fibrinolysis could also be analyzed 

with TEG by measuring clot lysis at 30 minutes following MA (LY-30). 

TEG analysis of citrated blood compared to fresh samples from healthy human subjects 

(Table 4) indicated that duration of storage of citrated blood had no effect on TEG analyses 

of non-activated or citrated blood activated with kaolin or TF. TEG analyses of fresh non 

citrated blood were different from citrated samples. Citrated samples yielded results that were 

consistent with a hypercoagulable state. Morever, using kaolin to activate citrated samples 

generated results similar results to those obtained from fresh samples. TF gave different 

results[133].  

Another caution to the reader is the fact that many, but not all, experimental surface 

anticoagulation approaches has been traditionally evaluated using single protein and static 

condition techniques that do not represent the complexity of blood plasma which contains 

many clotting factors that interact with surfaces in a time dependent matnner. Therefore their 

effect on blood may or may not be immediately evident. Moreover, many of these studies are 

not conducted under flow conditions typical around deployed blood-contacting devices. 



27 

7. Standardization of in vitro and in vivo Test Protocols

Hemocompatibility of artificial surfaces has been traditionally evaluated by analyzing 

the surface (protein fouling, platelet adsorption, and clotting factor deposition), accessing the 

material property and function based on its intended application (e.g. gas exchange efficiency, 

detection specificity and accuracy), and the state of the interacting biological media 

(complement activation, platelet function, and white cell counts) perhaps where more work is 

needed. As the hemocompatibility of an artificial surface is a function of blood and the 

interacting surface, variations in these independent variables can influence hemocompatibility 

outcomes and thus must be included in experiment planning in order to obtain a complete 

picture of how a surface will perform in clinical trials. The flow chart in Figure 1 is our 

attempt to guide the decision making for hemocompatibility testing and perhaps add to the 

pre-clinical standardization platform greatly desired by the field. Bulk and molecular 

variables of blood such as shear stress, flow regime and stagnation, blood deficiencies, 

fouling, platelet function, and inflammation play important roles in surfaces that interact only 

with blood (for example gas exchange membranes), as well in surfaces that contact both blood 

and tissue (vascular graft, stents, and heart valves). In the latter surface group, however, cell 

viability, proliferation, cytotoxicity, and fibrous capsule formation are additional cellular 

factors to be considered. Variables as a result of bulk and molecular level properties of the 

material or device should also be scrutinized, and they include surface geometry, surface area 

to volume ratio, porosity, wettability, material-tissue compliance matching, biodegradation 

rate if degradable, toxicity, irritability, sensitivity, and carcinogenicity. 

Accordingly, medical devices and biomaterials must undergo rigorous testing, and testing 

models, whether in vitro or in vivo, that is as similar as possible to the clinical application 

environment. Although animal models are considered expensive and time consuming, they are 

needed to bridge the gap between the lab and the clinic. Animal selection for in-vivo studies 
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should be based on the advantages and disadvantages for human clinical application. 

Importantly, it has been shown that the composition of blood differs considerably between 

various species, which leads to over- or under estimation of human blood reactions to 

biomaterials.[136,137] 

Overall, due to the complexity of blood- biomaterial surfaces interactions and to the 

variability in results interpretation among different individuals and species, the clinical 

relevance of many studies is still a matter of debate and pose difficulties in standardization. 

As the number of publications in the biomedical field increase, the concern for quality 

assurance of their results also increase. Since the standardization of materials and devices 

testing is crucial and urgent, the International Organization for Standardization (ISO) provides 

standards for “Biological evaluation of medical devices” (ISO 10993) although test settings 

still vary. It is a 20-part series for evaluating the biocompatibility of medical devices prior to 

clinical testing. Evaluation of the biocompatibility and bio-functionality of materials is 

conducted by methods based on the assessment of cytotoxicity, mutagenesis/carcinogenesis, 

and cell bio-function. Blood-contacting medical devices and biomaterials have to be tested 

according to part 4 of the ISO 10993 standard.[138] 

The ISO 10993-Part 4 standard is applicable to external communicating devices, either 

with an indirect blood path (e.g. blood collection devices, storage systems) or in direct contact 

with circulating blood (e.g. catheters, extracorporeal circulation systems), and implant devices 

(stents, heart valves, grafts). Testing, according to this standard, should be performed for five 

categories, based on primary processes: thrombosis, coagulation, platelets/platelet function, 

haematology and complement. For each contact category, primary (Level 1) and optional 

(Level 2) tests are recommended. Since testing should simulate clinical conditions as much as 

possible, most devices should be tested with heparinized blood under circulating 

conditions.[137]  
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Regarding hemolysis testing, for devices having direct contact with circulating blood, 

it is recommended that both direct and indirect (extract) methods for material/ surface- 

mediated hemolysis be conducted per ASTM F756 “Standard Practice for Assessment of 

Hemolytic Properties of Materials,” or an equivalent method. For hemolysis testing of devices 

having indirect contact with circulating blood, it is recommended that only an indirect 

(extract) method be conducted per ASTM F756 or an equivalent method. However, for 

devices or device components that do not have direct or indirect contact with circulating 

blood, this testing is generally not needed. For some devices where high shear stress due to 

blood flow may be an issue, dynamic hemolysis assessment under clinical use conditions may 

also be important. While ISO 10993-4 is the Hemolysis standard, it can be assessed by any of 

several validated methods to assay hemoglobin in plasma to obtain a hemolytic index assessed 

by measuring hemoglobin at 1, 2, and 4 hours by spectrophotometric. The hemolysis over this 

period is expressed as a percentage of positive control.[137] 

Complement activation is the most relevant immunology test for devices exposed to 

circulating blood. An increase in a downstream complement component over baseline levels 

indicates activation of the complement cascade. Acceptable complement activation limits 

have not been established, but comparative data are valuable. For in vitro complement 

activation testing, the assessment of C3a, C5a, TCC, Bb, iC3b, C4d, SC5b-9 fragments 

activation using an established ELISA test method is recommended. Complement activation 

testing whether, in vivo animal models, in vitro “static” methods such as ASTM F1984 

“Standard Practice for Testing for Whole Complement Activation in Serum by Solid 

Materials,” or in vitro dynamic testing using simulated clinical flow conditions can be used if 

accompanied by appropriate validation information. 

A device's effects on blood coagulation may be measured in vitro by determining the 

rate of clot formation or the partial thromboplastin time of plasma exposed to the biomaterial 
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or device during an incubation period. Flow conditions, controls that are being used, and time 

of exposure, and the type and concentration of anticoagulation used for in vitro testing, may 

depend on the test system and the clinical indication of the device.[137] 

Thrombosis may be addressed by performing either an in vivo or ex vivo test. The Lee 

White clotting-time test is also sometimes used to satisfy the requirement for a test in this 

category. If only a portion of the device is being utilized for thrombogenicity testing, it must 

be representative of all materials and important geometrical/surface features that would have 

direct contact with the blood. Thrombin-Antithrombin Complex (TAT), Partial 

Thromboplastin Time (PTT) are also used as a pseudo substitute for in vivo thrombogenicity 

testing. Some of in vitro assessment of thrombogenicity (e.g.the effect of extractables and 

leachables on platelets and the coagulation system) may also be needed for devices with 

indirect contact with blood. 

However, a major problem regarding the use of the ISO 10993/4 standard is the lack 

of acceptance criteria and reference materials. There is no totally satisfactory biological test 

that can evaluate standard polymers. There are enormous variations between in vivo and in 

vitro effects, and these vary too, in different animal species. Although the ISO and the World 

Health Organization has published some trials and standards, it is not universally applied 

although significant improvements to this standard are  underway and being overseen by the 

ISO committee. 

Overall, because of the complex nature of blood compatibility, a standardized in vitro 

hemocompatibility test panel is needed and should enable the detection and elimination of 

undesired and excessive material-induced thrombosis and inflammatory events at an early 

stage of biomaterial development. Also, since the approval by the currently recommended 

panel of tests does not guarantee clinical device/biomaterial hemocompatibility, there is a 
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major need for improved in vivo and predictive in vitro test setups. Unsolved concerns also 

include the lacking standards for anticoagulation or reference materials. 

8. Highlights of Promising Anticoagulation Works

A few surface modification approaches that impart multi-mechanistic anti-coagulation 

property have shown highly promising findings. Platelet and fibrinogen adsorption on NO 

transferring polymethylethylacrylate coated PU[115], as well as NO transferring PDMS grafted 

with polycarboxybetaine[69] have been quantified and shown to highly limit fouling. Similar 

anti-clotting activity has been demonstrated with NO-heparin conjugates.[139,140] The NO-

PMEA and NO-pCB work were conducted on PU and PDMS respectively using flowing NO 

gas. In both cases, the PU and PDMS polymers simply transferred NO from a gas supply 

while either PU, PVC, or silicone rubber-PU copolymer was  used to study the effect NO-

heparin conjugate on clotting studies. None of the heparin-NO conjugate studies have used 

medical grade PDMS as a substrate while PMEA-NO and pCB-NO work have only 

transferred NO gas through PDMS. With the pervasive use of PDMS in many blood-

contacting devices due to its biocompatibility and manufacturability[77,141], there are still no 

studies that have examined the antifouling properties of NO release with hydrophilic coatings 

on this material. Such materials are easily applied via dip coating to surfaces of many blood-

contacting devices including artificial lungs, stents, dialysis membrane, and heart halves.   

Antifouling studies using perfluorocarbon (PFC) coatings[77] have been shown to exhibit 

nonfouling properties when exposed to blood. PFC is an FDA-approved Teflon-like material 

widely used in medical applications including liquid ventilation for infants and blood 

substitution. A recent in vivo anti-thrombogenic study of PFC-coated surfaces reported that 

the presence of PFC prevented clot formation in pigs for eight hours under high blood flow 

rates[77] and without soluble heparin. Another approach geared towards fast screening for 

highly protein resistant coatings uses standard poly (ether sulfone) substrates onto which test 
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polymers are conjugated through photo-induced graft polymerization using a library of 

monomers.[131] Such a screening tools are needed to slingshot the discovery of 

thromboresistant surfaces. Devising a practical method for easy attachment of fouling 

resistant coatings on medically relevant materials including metals is one of the holy grails in 

antifouling surface research. Therefore, the use of a catecholic initiator, for example, 

dopamine which was inspired by mussel adhesive proteins, for surface-initiated 

polymerization from metallic surfaces to create antifouling polymer coatings was received 

with enthusiasm. This approach continues to impact surface modification research as the 

catecholic anchor has been used in many surface grafting methods. [142] 

9. Conclusion

Interest in surface modification for improved blood-biomaterial interaction is higher 

now than a decade ago with more federal funding being poured into this effort. This has in 

part led to the highly promising antifouling or antithrombogenic surface developments 

although these newer interfaces alone have not yet eliminated the need for systemic 

anticoagulation. Thus the risk of life-threatening bleeding complications is still a challenge. 

These newer surfaces have focused on single-mechanistic and non-integratie anti-clotting 

processes using hydrophilic coatings to resist non-specific protein adsorption, nitric oxide 

release from polymers to inhibit platelet activation, and most recently via dual-mechanistic 

experimental means. Dual and multi-prong are integrative approaches that draw not only on 

the anti-clotting property of each mechanism but also on potential synergies among the 

approaches for developing a super anti-clotting material. More work is needed in this area to 

understand how the interactions between two or more anti-clotting mechanism would affect 

blood coagulation. 

Clear and comprehensive standards are also needed for a consistent evaluation of these 

surface modification approaches or after their application to devices for easier assessments 
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from study to study at both pre-clinical and clinical phases of testing. Factors that will drive 

the nature and rigor of pre-clinical testing should focus on the types of interaction between 

host’s biological media and surface, duration of contact in the clinical setting so an 

appropriate animal model is selected for testing. 

So the question of whether totally local anticoagulation on blood-contacting surfaces is 

achievable is one that we can definitely address by evaluating all potential solutions. 
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Table 1. Agonists secreted from platelets' dense** and alpha* granules including other potent 
agonists and their platelet membrane receptors 

Agonist Receptor 

**Adenosine diphosphate (ADP) P2Y12 receptor 

**Serotonin 5-HT2A receptor (Serotonin receptor) 

*Platelet activating factor (PAF) PAF receptor 

*vonWillebrand factor (vWF) glycoprotein Ib/IX 

*Platelet factor 4 (PF4) PF4 receptor 

*Thromboxane A2 (TxA2) TxA2 receptor 

*Thrombin Protease-activated receptor -1(human) 

Collagen glycoprotein IV 

Fibrinogen glycoprotein IIb/IIIa 

Table 2. Surface modification methods for anticoagulation on blood-contacting biomaterials. 
Coating Mechanism Limitations Comments 
Heparin37,74-77 Heparin binds to ATIII 

and to form complex.  
Thrombin then attaches 
to complex and loses its 
function 

Limited functionality 
due to reduced mobility 
and interaction with 
ATIII  

Insignificant in infants or 
patients with ATIII 
deficiency   

Hydrophilic 
coatings (E.g. Sorin, 
phosphorylcholine, 
trillium, poly(2-
methoxyethlacryalt)
37,75 

Increase hydrophilicity 
and lower the surface 
energy of biomaterials; 
limits protein 
adsorption 

Prone to leach and 
loses water retention 
during flow 

(Self-assembled 
monolayers) SAM 
coatings77 

Serves as model 
surfaces where alkyl 
groups are attached to 
metals (usually gold) to 
allow attachment of 
polymer of interest.  

Difficulty in forming 
ordered monolayer.  
largely limited to 
model to gold model 
surface   

Important screening tool 
for new polymers 

Biologically active 
coatings (E.g. nitric 
oxide)37,75 

Antibacterial and 
antiplatelet agent 

Toxicity; instability 
(storage and delivery 
complications)  

Long term biomaterial  
self-release has not been 
achieved; no  known 
effect on protein 
adsorption  
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Poly(ethylene 
oxide)37,75,78 

Structure repeat unit 
(CH2- CH2-O) is able to 
form a “liquid like” 
surface with active 
molecular chains that 
have no systematic 
molecular order 

In vitro testing has 
been successful; 
however, in vivo 
testing has been 
inconsistent 

PEO and PEG are 
basically the same 
polymer, they are just 
derived from different 
monomer/polymerization 
methods 

Polyethylene glycol 
(PEG) 37,75,78 

Very simple structure 
(structure repeat unit, 
CH2- CH2-O) that 
forms a hydrophilic 
surface 

Coating is easily 
influenced by 
environmental factors 

Hydrophilic and 
nontoxic.   

Albumin-coated 
surfaces 
37,75

Coverage of 
procoagulant surface. 
Plasma protein either 
covalently grafted to 
the surface or adsorbed 
onto pre-tethered long 
aliphatic chains (C8-
C18) or PEO -tether 
warfarin  

Similar anti-fouling 
activity in coated and 
uncoated grafts 

Compared with plasma 
proteins such as 
fibrinogen and c-
globulin, albumin induces 
less platelet adhesion 
This finding prompted its 
use as an inert 
thromboresistant coating.  

Pyrolytic carbon-
coated surfaces37,75 

Chemical vapor 
deposition in which 
hydrocarbon is heated 
and graphite layer is 
crystallized renders 
surfaces hydrophilic 

Surface irregularities. 
Reduced platelet 
adhesion, yet did not 
affect overall patency 
rate of grafts 

No information found on 
leaching/other 
disadvantages/toxicity.  
Preclinical studies 
showed no clear benefit 

Phosphorylcholine 
surfaces37,75 

Zwitterionic behavior 
allows it to be 
electrically neutral at 
physiologic pH. Is 
known to limit protein 
and cell adhesion   

Unstable coating; No 
clear benefit of   
coating confirmed 

Elastin-inspired 
coating37,75 

Limits platelet adhesion 
and aggregation 

Difficult to isolate and 
purify 

Anti-Inflammatory 
coatings37,79 

-Passive strategy to 
present a nonfouling 
surface  
-Active strategy by the 
active delivery of 
antiinflammatory 
agents.  

- Passive strategies 
coatings lack stability 
as some proteins can 
displace pre-adsorbed 
proteins. 
- The active strategies 
and other novel 
approaches (micro and 
nanoparticles of 
biodegradable 
polymers)  still require 
rigorous testing in in 
vivo models  

Active strategies offer 
many advantages over the 
passive one. E.g: control 
over reaction kinetics, 
highly controlled 
presentation of 
immunomodulatory 
agents, versatility through 
hybrid systems. 
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Coatings with 
Endothelial Cells 
Attachment24,76,80 

Endothelial cell 
receptor modified 
surface for attachment 
of cell to create an inert 
interface.  

Larger than ideal 
scaffold surface  
microscale topography 
cell attachment   

Increased interest in 
stem-cell directed 
endothelialization  

Biodegradable 
polymers (e.g. 
poly(1,8-octanediol 
citrate) (POC))24,81 

Increased 
hydrophilicity 

Biodegradable 
polymers can influence 
mechanical properties 
of devices such as 
vascular grafts and 
patches. Porosity may 
increase with increased 
degradation rate, 
increased permeability, 
and can decreased 
mechanical stiffness in 
a nonlinear manner 

No effect on graft 
compliance.  Delayed 
thrombosis in vitro.   

Hydrogel and ionic 
liquid based 
coatings75,79 

Highly resistant to 
protein adsorption 

Inconsistent results of 
their effect on reducing  
in vivo acute and 
chronic 
inflammatory responses 

Offer many advantages 
over traditional strategies, 
including a 
viscoelasticity, tunable 
material characteristics, 
incorporation of multiple 
chemical functionalities, 
nanoscale dimensions 
with complex 
architectures, and the 
ability to deposit onto a 
variety of material 
substrates. 

Fluoro-Containing 
coatings78 

Minimization of 
surface energy and 
surface tension, to 
resist fouling. 
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Figure 1: Decision making guideline for pre-clinical hemocompatibility testing of 

biomaterials 



48 

The table of contents  
Biomaterials have and continue to play an important role in how we support and treat patients 
with various diseases through their use in tissue and blood interacting medical devices and 
drug delivery systems. This review focuses on outstanding challenges and new directions of 
anti-clotting biomaterials research. 
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Title: Achieving Totally Local Anticoagulation on Blood Contacting Devices 

ToC figure 

ToC figure: Graphical Abstract: An integrative approach to biomaterial surface-focused 
anticoagulation for implantable and extracorporeal blood-contacting medical devices. 
Examples of synergy benefits from the combination of bioinspired anti-clotting mechanisms 
are depicted on surfaces with a) nitric oxide release combined with zwitterionic coating, b) 
nitric oxide release with heparin and zwitterionic coatings, and c) nitric oxide release with 
heparin coating.  
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