
University of New Haven
Digital Commons @ New Haven

Electrical & Computer Engineering and Computer
Science Faculty Publications

Electrical & Computer Engineering and Computer
Science

8-2-2017

Breaking Into the Vault: Privacy, Security and
Forensic Analysis of Android Vault Applications
Xiaolu Zhang
University of New Haven

Ibrahim Baggili
University of New Haven, ibaggili@newhaven.edu

Frank Breitinger
University of New Haven, fbreitinger@newhaven.edu

Follow this and additional works at: http://digitalcommons.newhaven.edu/
electricalcomputerengineering-facpubs

Part of the Computer Engineering Commons, Computer Sciences Commons, Electrical and
Computer Engineering Commons, and the Forensic Science and Technology Commons

Comments
This is the authors' accepted version of the article published in Computers & Security. The version of record may be found at http://dx.doi.org/10.1016/
j.cose.2017.07.011 .
Dr. Baggili was appointed to the Elder Family Endowed Chair in 2015.

Publisher Citation
Xiaolu Zhang, Ibrahim Baggili, Frank Breitinger, Breaking into the vault: privacy, security and forensic analysis of android vault
applications. Computers & Security, Volume 70, September 2017, pages 516-531.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Haven

https://core.ac.uk/display/214330118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.newhaven.edu?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.cose.2017.07.011
http://dx.doi.org/10.1016/j.cose.2017.07.011


Breaking into the vault: Privacy, security and forensic analysis of
Android vault applications

Xiaolu Zhanga, Ibrahim Baggilia,∗, Frank Breitingera

aCyber Forensics Research & Education Group, Tagliatela College of Engineering, ECECS,
University of New Haven, 300 Boston Post Rd., West Haven, CT, 06516

Abstract

In this work we share the first account for the forensic analysis, security and privacy of Android vault applications.
Vaults are designed to be privacy enhancing as they allow users to hide personal data but may also be misused to
hide incriminating files. Our work has already helped law enforcement in the state of Connecticut to reconstruct 66
incriminating images and 18 videos in a single criminal case. We present case studies and results from analyzing
18 Android vault applications (accounting for nearly 220 million downloads from the Google Play store) by reverse
engineering them and examining the forensic artifacts they produce. Our results showed that 12⁄18 obfuscated their code
and 5⁄18 applications used native libraries hindering the reverse engineering process of these applications. However, we
still recovered data from the applications without root access to the Android device as we were able to ascertain hidden
data on the device without rooting for 10⁄18 of the applications. 6⁄18 of the vault applications were found to not encrypt
photos they stored, and 8⁄18 were found to not encrypt videos. 7⁄18 of the applications were found to store passwords in
cleartext. We were able to also implement a swap attack on 5⁄18 applications where we achieved unauthorized access to
the data by swapping the files that contained the password with a self-created one. In some cases, our findings illustrate
unfavorable security implementations of privacy enhancing applications, but also showcase practical mechanisms for
investigators to gain access to data of evidentiary value. In essence, we broke into the vaults.

Keywords: Forensics, Mobile applications, Privacy, Security, Vault Applications, Android.

1. Introduction

Mobile vault applications facilitate secure storage of per-
sonal data, preventing data leakage when a user’s device
is borrowed or lost. Some applications disguise themselves
by mimicking widely used programs such as a calculator.
Only when a user types in the correct passcode (like a
password), hidden data will be displayed. By searching
‘vault app’ in the Google Play Store, many vault appli-
cations can be found. At the time of writing, the most
downloaded vault application – AppLock had been down-
loaded over a hundred million times.

From a privacy perspective, vault applications can be
used to hide benign personal data (typically media files
such as pictures and videos). They have also been mis-
used with criminal intent for hiding photos / videos of
victims. This means that they are also considered as anti-
digital forensic tools and fall under the data hiding cate-
gory since they hinder the forensic process (Conlan et al.,

∗Corresponding author.
Email addresses: XZhang@newhaven.edu (Xiaolu Zhang),

IBaggili@newhaven.edu (Ibrahim Baggili),
FBreitinger@newhaven.edu (Frank Breitinger)

URL: http://www.unhcfreg.com (Xiaolu Zhang),
http://www.Baggili.com (Ibrahim Baggili),
http://www.FBreitinger.de (Frank Breitinger)

2016). Furthermore, vault applications have been used by
minors to hide photos from their peers and parents. The
increased use of vault applications has brought challenges
for school systems as well as security and digital forensic
practitioners.

For example, in a 2015 case, high school students in Col-
orado exchanged hundreds of nude photos of themselves
(Colorado sexting scandal: High school faces felony inves-
tigation, 2016). Nearly half of the students in the inci-
dent hid their photos from their parents in a calculator-
like vault application. In another criminal case in Decem-
ber 2015, the Connecticut Glastonbury Police Department
(PD) investigated a report that a man had been observed
secretly taking pictures with his phone up the skirt of a
woman in an office building parking lot while he assisted
her with her vehicle. During the investigation, the sus-
pect’s phone was received at the Connecticut Center for
Digital Investigations (CDI) for examination. The phone
was a Samsung Galaxy 6 Edge running Android. A log-
ical and physical extraction were completed using what
most law enforcement regard as the golden standard tool
for mobile forensics: Cellebrite UFED 4PC. The data was
analyzed using Cellebrite’s Physical Analyzer. During the
analysis, it was noted that the suspect had been using sev-
eral programs on the phone that were designed to hide files.
One of the programs in particular was titled GalleryVault.

Preprint submitted to Elsevier August 2, 2017



With traditional forensic tools, the police were only able
to recover a few photos that were located on the device,
none of which were guarded by the vault applications.

It is of note that work presented in this paper was used
on the data hidden by the GalleryVault application. The
researchers collaborated with CDI and reconstructed 66
new files that were previously irrecoverable. These files
included 18 additional videos that would be prosecutable
in the Connecticut jurisdiction, as well as 38 videos that
may be prosecutable in other jurisdictions. All together,
42 new victims were revealed in these recovered videos
allowing the police to demonstrate the full scope of the
suspect’s actions, having a direct impact on the outcome
of the case. This showcased the importance of our research
findings to the law enforcement community.

Our work had two complementary goals. The first was
to test security implementations in vault applications to
examine their impact on privacy. The second was to ex-
plore the digital forensic implications of our findings. We
therefore conducted an investigation based on the logi-
cal acquisition of artifacts from vault applications compli-
mented by (in most instances) reverse engineering the 18
most popular free vault applications which at the time of
writing amounted in total for over 219,500,000 downloads
from Google Play.
This work presents the following contributions:

• Methods for breaking into 18 vault applications is pre-
sented in detail allowing the reconstruction of original
files hidden by most of the applications.

• The location and type of relevant forensic artifacts for
the 18 vault applications such as passwords (cleartext
and hashed), database files and encrypted and unen-
crypted media files.

• In 16⁄18 cases, we present ways to reconstruct or re-
trieve hidden files without the need to log into the
applications.

• Software tools for reconstructing / decrypting data
from some of the vault applications.

The rest of the paper presents related work in Sec. 2
followed by the apparatus used in Sec. 3. We share our
four-phase overarching methodology in Sec. 4. The core
of our work is presented in Sec. 5 with our case study and
findings for the 18 vault applications are portrayed. We
then follow up with Sec. 6 which summarizes our results
and findings. The discussion and limitation sections are
then presented in Sec. 8 and Sec. 9 respectively. We con-
clude and set directions for future work in Sec. 10.

2. Background information & related work

We review related work in four major areas: methods
for Android data acquisition (Sec. 2.1), artifact analy-
sis of popular messaging and social networking applica-
tions (Sec. 2.2), Android application privacy (Sec. 2.3)

and approaches for reverse engineering Android applica-
tions (Sec. 2.4).

2.1. Android acquisition methods

Readers familiar with mobile phone acquisition may
want to skip this section. Data acquisition can be achieved
both logically and physically. Logical acquisition extracts
user data recognized by the filesystem whereby deleted files
are excluded. Physical acquisition achieves a bit stream
copy of flash memory and all the data physically stored.
One approach for achieving logical acquisition is utiliz-
ing adb – an official Android versatile command line tool
(Android Debug Bridge — Android Studio, n.d.). With
this, user data can be transferred from the Android device
to a forensic workstation. However, establishing an adb
connection requires the target device to have Universal
Serial Buss (USB) debugging mode enabled. Additionally,
whether the data can be extracted relies on the established
user privilege.

Early research used adb to support physical acquisition
(Lessard and Kessler, 2010; Hoog, 2011). In these arti-
cles, achieving physical acquisition required root privilege
on the device to leverage an adb connection. Even though
Lessard and Kessler (2010) presented an approach for gain-
ing root access, it is no longer wildly applicable for the new
generation of Android devices. In situations where root
privilege, an unlocked screen or enabled adb is unavail-
able, researchers achieved physical acquisition by flashing
a custom image to a recovery partition of an Android de-
vice (Vidas et al., 2011; Son et al., 2013). This was exe-
cuted by rebooting the device to recovery mode to acquire
user data with minimal loss of integrity.

In recent work, Yang et al. (2015) discovered in the
firmware update protocol for different brands of Android
devices a flash memory read command. By reverse engi-
neering the protocol in the bootloader, the researchers were
able to physically acquire the entire flash memory of the
device without gaining root privilege and unlocking the
screen.

While most acquisition typically happens using soft-
ware, acquisition may also be achieved at the hardware
level and is usually substantially more intrusive to a de-
vice’s hardware. Joint Test Action Group (JTAG) and
chip-off are the most popular approaches (Breeuwsma
et al., 2007). JTAG leverages a testing port on a mobile
device and can be utilized by examiners to physically con-
nect to a Printed Circuit Board (PCB), which is available
for variety Android devices (Kim et al., 2008). In Chip-off,
investigators detach the flash memory chip from the PCB
and acquire the data using specialized equipment (Hoog,
2011).

2.2. Application artifact analysis

Other Android research focused on recovering and ex-
ploring application artifacts. Much of the work has focused
on Instant Messenger (IM) applications that provide evi-
dence of interpersonal communications. IMs such as Wickr

2



and ChatON on Android have been subjected to artifact
analysis (Mehrotra and Mehtre, 2013; Iqbal et al., 2013).
Other work also focused on extracting GPS geodata from
all applications on an experimental Android device (Maus
et al., 2011) or target specific mobile navigation applica-
tions like Google maps or Waze (Jason Moore, 2016). Ear-
lier work on mobile phones by Husain and Sridhar (2009)
also forensically examined the iPhone messaging applica-
tions: AIM, Yahoo! Messenger and Google Talk. They
were able to recover potential evidence such as usernames
and passwords. Similar work was conducted on multiple
Android devices where WhatsApp and Viber were exam-
ined (Mahajan et al., 2013).

Past research also examined the security of nine VoIP
and messaging applications on both iOS and Android
(Schrittwieser et al., 2012). Results indicated that in
most tested applications, vulnerabilities could be exploited
to hijack accounts, enumerate subscribers and more.
Anglano (2014) fully analyzed artifacts acquired from
WhatsApp Messenger, which included several database
files (e.g. contacts database, chat database etc.) and sent
or received media files. Unclear data was decoded and in-
terpreted. Sahu (2013) applied data acquisition and anal-
ysis on both non-volatile and volatile memory for What-
sApp. They were able to retrieve artifacts such as contacts,
location, media files and messages.

In other recent work, Karpisek et al. (2015) were able to
decrypt WhatsApp’s network traffic and examined the new
voice call signaling protocol. They were able to identify
and visualize the messages exchanged between the client
and server as well as the audio codec used.

Social networking applications have also been studied
by forensic / security researchers. For instance, the widely
used social networking applications: Facebook, Twitter
and MySpace were forensically analyzed (Al Mutawa et al.,
2012). Walnycky et al. (2015) conducted forensic analysis
on 20 popular Android social messaging applications by
capturing the applications’ network traffic as well as ex-
amining the data they stored. Lastly, Saltaformaggio et al.
(2016) were also able to recover multiple previous screens
of a terminated application on an Android device from a
memory image.

In summary, mobile application analysis has attracted
attention. However, past scientific work was limited to
application artifacts or network traffic of messaging ap-
plications. At the time of writing, there were minimal
exploratory attempts aimed at examining the security of
some vault applications presented in blog entries (David
Auerbach, 2015; E2e, 2016; Gary Hawkins, 2012). Some
of these early results are outdated. More importantly, the
blog entries only scratched the surface in exploring the
strength of data protection in vault applications and the
practitioners did not reverse engineer the applications at
the source code level - thus our findings are more compre-
hensive and rigorous. For example, the authors were un-
able to retrieve encrypted data from Private Photo Vault
(Table 1), whereas our work was unable to recover th data

protected by that application. It is also of note that at
the time of writing, no scientific papers have paid atten-
tion to vault applications. Given their wide adoption, our
work fills that literature gap. Since our study focused on
a specific types of Privacy Enhancing Technologies (PET)
– vault applications – literature pertaining to Android ap-
plication privacy is of relevance to our inquiry.

2.3. Android application privacy

Other than forensic related literature, the privacy leak-
age / security issues of Android applications have inspired
an active body of research. Past work in this area focused
on potential attacks for leaking private user data. Work
by Jana and Shmatikov (2012) illustrated a side-channel
attack by tracking changes in an application’s memory
footprint. They showed that using a concurrent process
belonging to a different user can grab an application’s se-
crets. They used web browsers as an application target
and illustrated how an unprivileged, local attack process
e.g., a malicious Android application can infer the page
the user is browsing as well as finer-grained information
like if the user is a paid customer, interests, etc. This
motivated studies on the automatic detection of privacy
leakage from Android applications. For example, AppAu-
dit merged static and dynamic analysis to provide effec-
tive real-time Android application auditing by simulating
the execution of part of the program and performing cus-
tomized checks at each program state (Xia et al., 2015).

Tools such as AndroidLeaks and AppIntent focused on
detecting a user’s information privacy leakage. Even
though Android applications are sandboxed, vulnerabili-
ties were identified that allowed applications to gain the ca-
pabilities of other applications, and DroidChecker was the
tool created to detect those vulnerable applications (Gibler
et al., 2012; Yang et al., 2013; Chan et al., 2012). Taming
Information-Stealing Smartphone Applications (on An-
droid) or TISSA extended a new privacy mode on An-
droid to prevent information stealing from applications
(Zhou et al., 2011). By tracking the information trans-
ferred in the control flow, Static Analyzer for Detecting
Privacy Leaks in Android Applications SCANDAL was
also designed for privacy leak detection (Kim et al., 2012).
Secure Password Tracking for Android SpanDex, however,
was created to ensure that passwords do not leak from
Android applications by creating a set of extensions to
Android’s Dalvik virtual machine (Cox et al., 2014).

There exists abundant literature on the detection of pri-
vacy leakage from Android applications, and although this
body of knowledge is relevant to our work, it is not fully
applicable. Since our work focused on reversing vault ap-
plications to understand their security implementations,
and since every security implementation is different, we
had to revert to manual analysis and reverse engineering
techniques. This is why tools and techniques for Android
application analysis and reverse engineering is of strong
relevance our work.

3



2.4. Android application analysis
The purpose for statically analyzing the source code of

or reverse engineering an Android application is to provide
a comprehensive understanding of its inner workings. As
Android applications are programmed in JAVA, different
methods can decompile the compiled JAVA code (Dalvik
bytecode) into a human-readable representation. The hu-
man readable code is typically in the form of JAVA source
code or smali code.

Enck et al. (2011) presented a step-by-step tutorial for
converting the Dalvik bytecode to JAVA source code,
where the tool ded (ded Homepage, n.d.) converts the
Dalvik bytecode into JAVA bytecode (.jar, .class) and
the tool Soot (A framework for analyzing and transforming
Java and Android Applications, n.d.) decompiled JAVA
bytecode to JAVA source code. Gibler et al. (2012) uti-
lized other tools with similar functions – dex2jar (dex2jar,
2016) similar to ded and – JD-GUI (JD-GUI A Java De-
compiler, n.d.) – similar to Soot but with a Graphical User
Interface (GUI). Another possibility is to convert Dalvik
bytecode to smali code which is an assembly-like represen-
tation based on Jasmin syntax (Jasmin User Guide, n.d.).
The tools to achieve this are Apktool (Apktool - A tool for
reverse engineering Android apk files, n.d.) and smali/bak-
samli (smali/baksamli, 2016). If the analysis encompasses
a large sample of Android applications, an open source
parser called Rapid Android Parser for Investigating DEX
files (RAPID) can effectively reduce the processing time
(Zhang et al., 2016).

As Android applications can call native libraries1,
the well-known commercial tool Interactive Disassembler
(IDA) Pro (IDA pro, n.d.) may be used for their anal-
ysis. The benefits of using IDA Pro are the disassemble
and debug functions for both APK files and native libraries
followed by the function of converting assembly code to C-
like pseudocode. Note that IDA Pro is not limited to low
level Android application analysis and may be used for dis-
assembling Windows and other types of executables. Acar
et al. (2016) also pointed out, due to the fact that most
Android developers are likely to use existing open source
code / libraries, insecure implementations and vulnerabili-
ties may be inherited. Other work by Bläsing et al. (2010)
proposed a sandbox for conducting dynamic analysis of
Android applications. However, dynamic analysis was not
employed in our work. To go over all the tools and tech-
niques that foster Android application analysis is beyond
this paper’s scope. One may explore work by Faruki et al.
(2015) to survey the various tools.

3. Apparatus

This section outlines the apparatus used in our test-
ing. The Android device used when installing the vault

1A native library for an Android application is also known as a
.so (Shared Object) file which is usually compiled by C / C++ code
and only executed on the structure of Central Processing Unit (CPU)
of mobile devices.

applications was a GalaxyS4 mobile phone, model num-
ber SAMSUNG-SGH-I537, system version 5.0.1 and kernel
version 3.4.0-4554112. An acquisition workstation con-
nected to the phone via USB running Microsoft Windows
8.1 was employed. Even though root access may not al-
ways be a prerequisite for acquisition of potential artifacts
(see Sec. 6), user privilege on the device was maximized in
order to locate necessary files and artifacts; the GalaxyS4
was rooted and USB debugging mode was enabled. Other
tools were configured on the acquisition workstation. adb
was used to connect the forensic workstation to the An-
droid device for acquiring relevant vault application arti-
facts. ApkTool and IDA Pro were used in reverse engineer-
ing the Android applications and a SQLite Browser (DB
Browser for SQLite, n.d.) was used for exploring SQLite
database files (SQLite Home Page, n.d.).

4. Methodology

To verify if an Android vault application was able to
protect a user’s personal files, the testing was divided into
four phases: scenario creation, data acquisition, case anal-
ysis and tool development.

4.1. Scenario creation

The purpose of this phase was to simulate real user data
on the Android device. Therefore, the 18 most popular free
vault applications were downloaded from the Android of-
ficial application market – Google Play store. Appendix 1
shows the official name, name on the device and package
name of the downloaded applications.

As soon as the vault applications were installed, we took
photos (.jpg) and videos (.mp4) with clearly numbered
identifiers (in each image / video) for each application
and stored them in each ‘vault’. We had to also initially
set up passwords / passcodes on the vault applications.
For the application Keeper (No. 4 in Appendix 1), we
set the password ‘951234’ since it required a minimum 6
character password. All other vault applications were con-
figured with the same four digit password – 9512. This
was chosen because it was a forced requirement to have
a maximum of four digits for some of the applications –
so we opted to standardize the password (as much as pos-
sible) across all of our testing. We also configured the
same 9 pointer pattern lock – 0124678 (if that option was
available) which represented the gesture of the letter ‘Z’.
Finally, when applicable, we set up the recovery e-mail
‘vaultapptest@gmail.com’, and the security answer ‘3’
with the security question ‘What is your favorite number?’
to applications that implemented a password recovery fea-
ture.

4.2. Data acquisition

To explore potential artifacts that may be utilized for
breaking into the vault applications, two key items (listed
in the following paragraphs) for each application were

4



pulled from the Android device to the acquisition work-
station (more on how this was accomplished over the adb
is discussed later in this section).

App-generated folders which are folders created by the
application on the Android filesystem. We hypothesized
that some files may contain hidden photos and videos,
user passwords or other forensically relevant application
artifacts that may help us break into the vaults.

APK files which are Android Application Packages.
These files contain installer files for each of the vault
applications and are an important resource for reverse
engineering the executable code.

Precisely, for each vault application, three folders on the
Android system were generally targeted during our data
acquisition:

/data/app/package name which is a root user accessi-
ble folder that stores the APK file of each application.
‘package name’ refers to the package name of each ap-
plication (see Appendix 1 for the package names).

/data/data/package name is another folder accessible
for root users that stores the private data / artifacts for
each application.

/sdcard which is the folder for the mounted Secure Dig-
ital (SD) card physically located in the Android de-
vice. In our tests, we found different paths that pointed
to the same folder such as: /storage/emulated/0,
/storage/emulated/legacy and /mnt/sdcard.

It is important to note that in our work, acquisition
was accomplished logically. We did not focus on deleted
data as we were looking for low hanging fruit artifacts
allowing us to break into each of the vault applications
and reconstruct hidden files2. For each vault applica-
tion, we employed the pull command in the adb tool to
extract the following folders: /data/app/package_name,
/data/data/package_name and /sdcard. To replicate
our work, one may use the commands presented in the
following steps:

Step 1: The command chmod [OPTION] <MODE> <FILE>

was used to modify the assigned folders to a normal user
accessible under a root user’s access.

Step 2: The command adb pull [-p] [-a] <remote>

[<local>] was used to acquire the folders mentioned
above.

The resultant data from the acquisition process for each
vault application is referenced in the case study in Sec. 5.
Note that although data acquisition was achieved via adb,
other methods to pull data from the aforementioned fold-
ers may be employed as well.

2It is of note that more research needs to be conducted to analyze
how the media (images and videos) are stored by the vault applica-
tions in case data is copied and then deleted from the device, thus,
there may be potential evidence residing on the device’s storage when
physical acquisition is employed.

4.3. Analysis

Once the artifacts were extracted from the Android
device, we sequentially analyzed each vault application
through artifact analysis and executable code reverse engi-
neering. Executable code analysis was primarily employed
when the security implementation was needed in order to
gain access to encrypted material stored in the vault ap-
plication.
Artifact analysis was carried out manually by explor-

ing the acquired data. During exploration, meaning-
ful artifacts such as labels in Extensible Markup Lan-
guage (XML) files (e.g. <string name="password">),
column names in SQLite files (e.g. aeskey) or obvious
folder / file names (e.g. /sdcard/.EncryptedFolder)
were noted. Some findings became 1) Direct artifacts
e.g. unencrypted photos / videos or passwords found in
cleartext and 2) Indirect artifacts such as hashed pass-
words or files suspected to be the encrypted photos and
videos.

Executable code analysis was employed mainly if all
artifacts retrieved through our analysis were deemed
indirect. We focused on reverse engineering the APK
files. Precisely, we disassembled APK files into smali
code. By employing manual code analysis, we were able
to retrieve 1) Artifacts missed by our primary artifact
analysis, where access to information or hidden media
files were stored and 2) The security implementations for
authentication / authorization or data hiding. This al-
lowed us to understand how to reconstruct hidden data
and explore methods of decrypting encrypted data.

4.4. Tool development

Based on our findings, we constructed software tools if
breaking into the vault application required such imple-
mentations to aid in the reconstruction and decryption of
vault-stored data. We posit that developing these tools
is necessary to assist investigators in the recovery of po-
tential evidence they might have missed. We note that
these tools are not shared publicly and are provided
on need basis, after the identity of the requesting
party is vetted.

5. Case study and findings

In this section, we present a comprehensive case study
and findings that entail each of the 18 vault applications
shown in Table 1. The subsections follow the ordering of
the table starting with the most prominent application.
Each case details the results from our analysis augmented
by an approach for recovering hidden photos / videos. It
is of note that we attempted two major methods to gain
access to data stored by the vault applications. The first
focused on finding ways of recovering media files from data
acquired directly from the phone – which is usually more
relevant to forensic investigations. The second focused
on gaining unauthorized access to the vault applications

5



Table 1: Most downloaded Android vault applications.

Application Name on device package name Version Downloads

1 AppLock AppLock com.domobile.applock 2.16.3 100,000,000+
2 LEO Privacy-Applock,Hide,Safe LEO Privacy com.leo.appmaster 3.7.7 50,000,000+
3 Vault-Hide SMS, Pics & Videos Vault com.netqin.ps 6.4.22.22 10,000,000+
4 Keeper®: Free Password Manager Keeper com.callpod.android_apps.keeper 10.1.2 10,000,000+
5 Hide Pictures Keep Safe Vault Keepsafe com.kii.safe 7.3.1 10,000,000+
6 Hide Pictures &Videos - Vaulty Vaulty com.theronrogers.vaultyfree 4.3.3 5,000,000+
7 Gallery Vault - Hide Pictures GalleryVault com.thinkyeah.galleryvault 2.9.1 5,000,000+
8 Hide Photos, Video-Hide it Pro Audio Manager com.hideitpro 5.4 5,000,000+
9 Hide Photos in Photo Locker Photo Locker com.handyapps.photoLocker 1.2.1 5,000,000+
10 Video Locker - Hide Videos Video Locker com.handyapps.videolocker 1.2.1 5,000,000+
11 LOCX Applock Lock Apps & Photo LOCX com.cyou.privacysecurity 2.3.1.013 5,000,000+
12 Secret AppLock for Android Secret AppLock com.amazing.secreateapplock 6.9 5,000,000+
13 Pic Lock- Hide Photos & Videos Pic Lock com.xcs.piclock 1.9 1,000,000+
14 HidePhoto HidePhoto com.domobile.hidephoto 1.9 1,000,000+
15 Hide Pictures PhotoSafe Vault PhotoSafe com.slickdroid.vaultypro 2.0.1 1,000,000+
16 Private Photo Vault Private Photo Vault com.enchantedcloud.photovault 1.8.3 500,000+
17 Calculator Vault- Gallery Lock Calculator com.calculator.vault 8.5 500,000+
18 Private Text Messaging & Calls Coverme ws.coverme.im 2.6.4 500,000+

through various attack vectors. To ensure the reader’s
comprehension of the 18 vault application examinations,
we wanted to reinforce the following terms used through-
out the case study:

Folder “shared prefs” represents the folder that is lo-
cated in /data/data/package_name for the vault appli-
cations.

Swap attack is a method in which an examiner can swap
an assigned value in a certain file with a self-created one
in order to reset the password, gesture for login or the
status of an application (e.g. switch on / off the pattern
lock).

Password attacks which represents a variety of attacks
against application passwords and gestures. In some
instances, a rainbow table attack was used. In other in-
stances, a brute force attack was used. Generally, these
password attacks helped us in identifying the passwords
used to access the application. In many of the applica-
tions, the password space was low (4-6 characters), and
sometimes limited to digits, making a brute force attack
a practical option.

5.1. AppLock 2.16.3

Our artifact analysis showed that AppLock stored un-
encrypted pictures and videos in separate folders under
/sdcard/.MySecurityData/dont_remove. The folders
were named with different random strings / hash value.
In each folder, the photos / videos were stored in the sub-
folder .video / .image respectively. Also, the applica-
tion stored the Base64 encoded Secure Hash Algorithm 1
(SHA1) hash value of the gesture for the pattern lock in the
XML file com.domobile.applock_preferences.xml in
the application’s shared_prefs folder. Even though this
approach was available only if the pattern lock of the ap-
plication was activated, the pattern lock can be activated
either by a previous user or an examiner can swap the

value of the tag is image lock pattern to true by mod-
ifying file com.domobile.applock preferences.xml. As
long as the pattern lock was activated, examiners can swap
the original value in tag image lock pattern in the same
XML file with a new one that was created by encoding the
SHA1 hash value of a new gesture to Base64 format. For
example, the value agYrmzRS42ZAcYGhv5Lqc+ntTEg= is
the hash value for a 7 byte hex value 0x00, 0x01, 0x02,

0x04, 0x06, 0x07, 0x08 which represents gesture ‘Z’
(every byte maps to 0 - 8 points of the pattern lock). This
will allow an examiner to log into the application using
the newly created gesture. If the gesture was set previ-
ously, another option was to decode the Based64 value
in the tag image lock pattern in the file com.domobile.

applock_preferences.xml. For instance, in our case, the
value was agYrmzRS42ZAcYGhv5Lqc+ntTEg=. When de-
coded with Base64, it became a 20 byte SHA1 hash value
– 6a062b9b3452e366407181a1bf92ea73e9ed4c48. This
hash was easily broken using a rainbow table attack and
revealed the original byte sequence / pattern representing
the gesture ‘Z’.

5.2. LEO Private 3.7.7

The first weakness we found in LEO Private is the
storage of the password which was found in cleartext in
shared_settings.xml in the shared_prefs folder tagged
with password. Thus, if the phone is active, an exam-
iner can log into the application using the mobile phone
directly. If the phone is unavailable, we observed that
the photo and video were stored and treated differently.
The video was still stored in the original folder /sdcard/

DCIM/Camera without any encryption. In order to hide
video files, LEO Private only changed the file extension
to ‘.leotmi’. Photos were actually encrypted and stored
in /sdcard/.DefaultGallery/DCIM/Camera with the ex-
tension ‘.leotmi’ as well. Having a closer look showed
that the encryption / decryption is packed in the native
library /lib/armeabi-v7a/libLeoImage.so. The library

6



runs the eXtended Tiny Encryption Algorithm (XTEA) to
encrypt the first 1024 bytes of the photo where the Key is
hard coded into the library. To decode, one can either call
the function leo decrypt v1(const char *a1) or copy
the encrypted files to /sdcard/.DefaultGallery/DCIM/

Camera on another device that has LEO Private installed
(regardless of the actual user password).

5.3. Vault 6.4.22.22

Vault stored the encrypted content in the directory
/sdcard/SystemAndroid/Data/MTc1MDU4OQ== which
contained two subfolders named .video and .image.
Inside these subfolders, we found our target files with
.bin extensions. Note, the Data folder contained several
Base64 encoded folders. The only one of relevance in our
testing was the MTc1MDU4OQ== folder. While analyzing
the application source code, we found that Vault only
encrypts the first 80 bytes of each media file by using
a repeating single byte which will be referred to as
B. In order to retrieve B, we utilized the file header
information, e.g. in case of JPEG it is 0xFFD8, which
revealed that B = 0x3D. In other words, to decrypt the
videos and images, one simply has to XOR 0x3D against
the first 80 bytes. An interesting side note is that Vault
takes and stores a picture every time someone enters
an incorrect password. These pictures are stored in
/sdcard/SystemAndroid/Data/LTIxMDY4ODk5OTA= and
uses the identical encryption mechanism (XOR) but with
B = 0xFA.

5.4. Keeper 10.1.2

Out of all 18 applications, we deemed Keeper as the
most secure. We were not able to reconstruct the original
content except by employing a brute force attack on the
password hash. Although we could not gain unauthorized
login into the application, we will explain our findings as
well as how to retrieve the hash value of the password.
In contrast to many other applications, Keeper organizes
its metadata in a SQLite database instead of XML which
can be found in /data/data/com.callpod.android_

apps.keeper/databases/vaultapptest@gmail.com.sql

where the e-mail address became the username during
installation. The most important table in the database
was setting (shown in Fig. 1). On the other hand, the
encrypted content can be found in /data/data/com.

callpod.android_apps.keeper/cache/record_files.
The actual encryption scheme is best explained in Fig. 1

where we will focus on the right side first. Keeper uses
Key-1 in order to encrypt all images / videos which is cre-
ated by SecureRandom() when the application is initial-
ized. This Key-1 is encrypted using Key-2 which is gener-
ated from the user password, a Salt-1 and IterationCount.
Salt-1, IterationCount and encrypted Key-1 can be found
in the ‘setting str’ column when the column ‘name’ =
‘encryption params’ and is stored in a BLOB data type.
The BLOB is separated into 1 byte for Mode, 3 bytes for
IterationCount, 16 bytes for Salt-1 and 80 bytes for Key-1.

The left side of Fig. 1 shows the login process which is
handled in a similar manner. Again, the data is stored in
the setting table where column ‘name’ = ‘enc pass’. The
content of the cell (marked in red) consists of a 22 bytes
randomly generated Salt-2, and the 31 bytes Base64 en-
coded password hash. Hash and Salt-2 are both encoded
with bcrypt - an open source library (Provos and Mazieres,
1999). Note, while Fig. 1 shows the actual names of the
encrypting / decrypting functions, Keeper used obfusca-
tion techniques and hence the function names were differ-
ent. Names in the figure are based on the open source
bcrypt.java (BCrypt source code, n.d.). Also note that
bcrypt uses its own encoding and decoding implementa-
tion for Base64.

In order to attack this algorithm, a brute force attack
can be implemented as follows:
Step 1: Decode the Salt that was encoded as the second

part of the highlighted string in Fig. 1 with the function
decode base64(..) of bcrypt.java.

Step 2: Hash the attempted password with the function
crypt raw(..) and compare the result with the third
part of the highlighted string. The correct password can
be acquired if the values match.
Given that there is no limitation on the password length

or complexity, the success rate depends on the chosen pass-
word.

5.5. Keepsafe 7.3.1

This application stored the cleartext password in the
value of tag master-password of XML file com.kii.safe_
preferences.xml in the application’s shared prefs

folder. Thus, investigators can simply read the file and
then log in. Having a closer look revealed that the pho-
tos and videos were renamed with a hash value (we did
not investigate this further as it is not relevant for de-
crypting the files) and stored encrypted data in subfold-
ers of /sdcard/.keepsafe/manifests/primary. Each
subfolder was named using the first 2 letters of the
file, e.g., subfolder 2e stored the encrypted media file
2e3c1f4aa10da568c5a26251457 79ad01163acc8. The en
/ decryption functions were found in a native library in
/lib/armeabi-v7a/libcrypt_user.so of the APK file of
the application. An overview of the encryption mechanism
is provided in Fig. 2 employing the following three major
steps:

Step 1: The media file is divided into blocks of 16,384
bytes of data (the last block was equal to or smaller
than 16384).

Step 2: Every block was then encrypted using the same
encryption method, Initialization Vector (IV) and pass-
word. The size remained identical.

Step 3: Once all the blocks were encrypted, an Initializa-
tion Block (block zero) is added to the beginning of the
media file which has a constant size of 3728 bytes. This
block starts with Keepsafe’s logo (3711 bytes), 16 byte
IV and a one byte terminator. If a user clicks on any of

7



Figure 1: The decryption procedure for media files in Keeper.

the encrypted files, Keepsafe’s logo would appear faking
an average user to think that it is a PNG logo file.

The decryption is performed with the
processBlock(..) function in the native li-
brary which needs the Key and the IV. While the
Key is stored in the Initialization Block (block
zero), the 32 byte Key can be found in tag
aec5a0aa33e25e4c9108939f6d6292c4507b045eAe of the
com.kii.safe.secmanager.xml file in shared_prefs.
Once all encrypted blocks were decrypted using the
processBlock(..) function, the Initialization Block was
finally removed from the encrypted media file to recover
the file to its original state.

5.6. Vaulty 4.3.3

Vaulty’s media files were found in /sdcard/Documents/

Vaulty/data but with a new file extension ‘.vdata’. The
videos were unencrypted. Vaulty additionally prepends
the word ‘obscured’ (0x6F, 0x62, 0x73, 0x63, 0x75,

0x72, 0x65, 0x64) to the photos’ header. Thus, re-
moving the ‘obscured’ string and changing the file ex-
tension allows swift recovery of the pictures. The pass-
word of the application was stored as a Message Digest
5 (MD5) hash value in tag password hash of the XML
file com.theronrogers.vaultyfree_preferences.xml in
share_prefs. Similar to case 1 in Sec. 5.1, examiners can
either adopt a swap attack or a rainbow attack on the hash
value.

5.7. GalleryVault 2.9.1

In order to hide photos and videos, GalleryVault
deconstructed them under /sdcard/.galleryvault_

DoNotDelete_1466617307/file/ where the first 10 bytes
were overwritten with 0x00 and placed the original 10
bytes in a database. To reconstruct the files, one may
simply query the database, identify the correct file and
replace the header with the following steps:
Step 1: Query the database file /sdcard/galleryvault_
DoNotDelete_146610307/backup/galleryvault.db

using ‘Select name, path, org file header blob

FROM file’ to retrieve the original header string. This

returns the original name of the media file, the path of
the deconstructed media files and the 10 bytes of wiped
data for each file.

Step 2: After identifying the correct file by using the
name and path, the first 10 bytes of the file was replaced
with its original header.
If the phone is active, one may also perform a swap

attack on the MD5 or SHA1 values which can be found in
Kidd.xml in shared_prefs tagged LockPin. It remained
unclear why the developers decided to store a 72 hex string
value in this field which consists of the MD5 hash (32 hex
characters) followed by the SHA1 hash (40 hex characters).

5.8. Audio Manager 5.4

This vault application disguised itself as an audio
manager on the device. Once a user holds a tap
on the logo at the top of the screen, the real ap-
plication is activated. Audio manager stored unen-
crypted photos and videos separately in the subfolder New
Album of folder Pictures and Videos under /sdcard/

ProgramData/Android/Language/.fr/. Also, the cleart-
ext password was found in tag password of XML file com.
hideitpro_preferences.xml in shared_prefs. Note
that New Album is the default name of the album storing
the hidden files, which may be customized by users.

5.9. Photo Locker 1.2.1 & Video Locker 1.2.1

Photo Locker and Video Locker were released by the
same developer. These two applications adopted the Ad-
vanced Encryption Standard (AES) algorithm to store the
password. For the media files, they utilized AES to en-
crypt the first 16384 bytes. As shown in Fig. 3, a hard-
coded string "HANDY APPShandyapps@gmail.com" was
found which was utilized to generate the secret Key ob-
ject – Key-1 (object javax.crypto.spec.SecretKeySpec
in JAVA SDK) for an AES algorithm. Key-1 can
then be used for decrypting the AES-encrypted system
e-mail address which was stored in label SECRET KEY

of XML file com.handyapps.photoLocker_preferences.
xml for Photo Locker or com.handyapps.videolocker_

preferences.xml for Video Locker in the shared prefs

8



Figure 2: The decryption procedure for media files in Keepsafe.

folder. The e-mail is the input for generating the sec-
ond Key object Key-2 which is utilized for protecting the
password and media files. The encrypted password was
found as the first line in file /sdcard/.PL/.config for
Photo Locker and file /sdcard/.VL/.config for Video
Locker. The media files were stored for these two
applications in folder /sdcard/.PL/Private Photo and
/sdcard/.VL/Private Video respectively. Reusing Key
2 while adopting AES allowed us to decrypt and recover
the media files.

5.10. LOCX 2.3.1.013

LOCX stored the media files in the hidden
folder /sdcard/.EncryptedFolder. The image file
.enc 14668978236175365.jpg and the video file
.2683375985d8b519e43a1fcf5e86c95c.mp4 were
stored in that folder. Our code analysis revealed
that 2683375985d8b519e43a1fcf5e86c95c is the MD5
hash value for the path of the original video. For example,
in this case, the path was /storage/emulated/0/DCIM/

Camera/20160627_102536.mp4. To protect the images,
LOCX prepends the original path as hex to the image
header followed by 4 0x0s. The actual image is then
XORed with the constant 0x7B for every single byte.
To recover a photo, one simply removes the prepended
information and XORs again.

On the other hand, the video file was handled differ-
ently. Specifically, the first 524,288 bytes (0x80000) of
the video were moved to the end of another created file
by the vault application. Once the 524,288 bytes were
moved, they were simply replaced with 0x0s. We note
that each of the 524,288 bytes inside the created file was
XORed with the constant value 0x6E. The content of the
created video file included the file path of the decon-
structed video file with a thumbnail of the video. From our
testing, we located .enc 14670617949374302.mp4. Since
inside .enc 14670617949374302.mp4 we can observe the
path of the deconstructed video file, we were able to
hash the path of the deconstructed file, and locate the
file name with same hash value (similar to the example
shared above). This process allowed us to match the
deconstructed video file with the vault application cre-
ated file necessary for the reconstruction of the video.

Therefore, the video can be reconstructed by adding the
last 524,288 bytes of .enc 14670617949374302.mp4 to the
beginning of the deconstructed video and then XORing
each of the 524,288 bytes with 0x6E. Lastly, we found
the MD5 hash value of the password in the tag pinp

of file com.cyou.privacysecurity_preferences.xml un-
der the application’s shared prefs folder.

5.11. Secret AppLock 6.9

Secret AppLock stored unencrypted photos and videos
in folder /sdcard/.PixnArt12/.Photos and /sdcard/

.PixnArt12/.Videos. It also stored the cleartext of the
password in tag pin of XML file ApplockPreferences.

xml in the shared_prefs folder. Note that once the user
typed in an incorrect password, photos would be taken
from the front and back cameras and stored in folder
/sdcard/.hackImages. This is forensically important be-
cause investigators may note who was trying to break into
the vault application, but may also be useful for reasons
to validate the integrity of the collected digital evidence.

5.12. Pic Lock 1.9

Identical to the previous application, all informa-
tion is simply hidden but not encrypted. The pho-
tos and videos were found in the subfolder of Photos

and Videos in the folder /sdcard/.AndroidLibs/

33e75ff09dd601bbe69f351039152189/.SafeBox1. Note,
the random string / hash value might change for different
devices / new installations. Additionally, we found the
password in tag pass of XML file Password.xml in the
shared_prefs folder.

5.13. HidePhoto 1.9

HidePhoto stored the unencrypted photos and
videos in folder /sdcard/.MySecurityData2/dont_

remove/68d30a9594728bc39aa24be94b319d21/.image

and /sdcard/.MySecurityData2/dont_remove/

d82c8d1619ad8176d665453cfb2e55f0/.video, re-
spectively. The subfolders in folder dont_remove

were generated for different media files, which were
labeled with random strings / hash values. More-
over, this application stored the MD5 hash value

9



Figure 3: Media file and password decryption in Photo Locker and Video Locker.

of the password in tag password of XML file
com.domobile.hidephoto preferences.xml in the
shared prefs folder. Thus, examiners can achieve
unauthorized access by swapping the hash value in tag
password or utilizing a password attack (see Sec. 5.1).

5.14. PhotoSafe 2.0.1

PhotoSafe stored the cleartext of the password in tag
password of file vaultypro.xml in the shared prefs

folder. On the other hand, the application protected
photos and videos using a similar approach discussed
in Sec. 5.3. In subfolders images and videos under
/sdcard/.photosafe_DoNotDelete/camera, the first 10
bytes of the photos and videos were XORed with the con-
stant value 0xE7.

5.15. Private Photo Vault 1.8.3

Private Photo Vault stored the SHA1 hash of
the password in com.enchantedcloud.photovault_

preferences.xml in the application’s shared prefs

folder with the tag pin. Since the password is limited to
four digits, it can be easily brute forced. On the other
hand, a swap attack is not possible as the application
employs the password for encryption.

As shown in Fig. 4, the application utilized the Face-
book open source library Conceal to perform the en-
cryption and decryption of the files. Employing the de-
cryption function Crypto.getCipherInputStream(..) in
the library required a secret Key object – Key-1 (object
javax.crypto.SecretKey in JAVA SDK) that is high-
lighted in red in Fig. 4. Based on our code analysis,
Key-1 can be acquired by decrypting the Base64 decoded
value of tag enc keys pin in file com.enchantedcloud.

photovault_preferences.xml. The password used to
log into the application is used to create the Key object
javax.crypto.spec.DESKeySpec. This Key can be used
for decrypting the value of tag enc keys pin.
Therefore, in order to bypass the login and recover

encrypted photos and videos stored in folder /data/data/
com.enchantedcloud.photovault/files/media/orig,
some data was needed which included (a) The cor-
rect password (acquired using a password attack) and

(b) The value of tag enc keys pin. After obtaining
these two pieces, examiners can reuse the function
Crypto.getCipherInputStream(..) to acquire the data
stream of the decrypted media file.

5.16. Calculator 8.5

This application disguised itself as a calculator on the
system. Only when as user typed in the correct pass-
word the vault function is activated. The application
stored the unencrypted photos and videos in Pictures and
Videos in folder /data/data/com.calculator.vault/

files/locker1762. Therefore, the only protection for the
photos and videos was storing them in the folder that only
root user can open. Additionally, the cleartext password
was stored in tag mpass of XML file com.calculator.

vault_preferences.xml in the shared prefs folder.

5.17. Coverme 2.6.4

For Coverme artifact analysis did not yield any results
and therefore all our findings are based on analysis of
the source code. Fig. 5 illustrates the encryption method
adopted by the application from a high level perspective.
Coverme applied triple-encryption for achieving the secu-
rity of the media files and the password, where three dif-
ferent Keys were created.

Key-1 was created using the password when the user first
signed up. The application stored the hash value of Key-
1 in column password of table kexinuser in the SQLite
database kexin.db which is stored in /data/data/ws.

coverme.im/databases/.

Key-2 was created based on both the password and ran-
dom bytes which were influenced by the current sys-
tem time. Key 2 was encrypted using Key-1 and resul-
tant ciphertext was stored in column aeskey of table
kexinuser in the same database.

Key-3 was the Key utilized for the encryption of the me-
dia files. It was created using the password and random
bytes. The application stored the ciphertext of Key
3 which was encrypted using Key 2. The ciphertext
was stored in column keyByte of table localAesKey in
database file kexin.db.

10



Figure 4: Media file decryption in Private Photo Vault.

Coverme’s encryption implementation(Fig. 5), is rela-
tively secure when compared to most of other applications.
Without foreknowing the password, we were not able to
create or recover the three Keys. However, we can still ap-
ply a brute force attack for retrieving the password. The
password space for the application was 1-16 digits, but we
anticipate that it is highly unlikely that users would choose
a 16 digit password.

Since column password stored the hash value of the
password (hashed twice using MD5 and SHA1 respec-
tively), we reused the same function in the application
for creating a Key-1 to the exhaustive passwords and
then matched the hash value of Key-1 with the record
found in column password. As soon as the hash val-
ues matched, Key-1 was used for decrypting Key-2; thus
Key-2 can decrypt Key-3; and finally Key-3 can decrypt
the media files that were stored with extension ‘.dat’ in
folder /sdcard/coverme/images/hidden and /sdcard/

coverme/video/hidden respectively.
Even though a brute force attack was a possible solution,

to crack a large password may be time consuming. We also
note that because this application implemented encryption
and decryption in a native library – libNative-aes.so,
it can only be used on an ARM-based Central Processing
Unit (CPU). In order to reuse the library, we implemented
our decryption code in a separate Android project that we
created.

6. Summary of findings

From the case studies, we see that most application de-
velopers protected their code using obfuscation and by im-
plementing native libraries as shown in Table 2 in columns
O and N under Code protection. This hindered the process
of reverse engineering the applications. Notwithstanding,
we observed that applications generally adopted similar
security implementations with that could be exploited by
examiners. For example, corresponding to column U, D
and E, Table 2 shows that the photos and videos may
be unencrypted, deconstructed or encrypted. As Table 2
shows, 6⁄18 and 8⁄18 applications only relocated / renamed
the photos and videos respectively. Since the content of
the media files was not changed, an examiner can easily
recover such files.

On the other hand, 5⁄18 and 4⁄18 applications stored de-
constructed photos and videos respectively by wiping data
from the header, conducting a simple computation or stor-
ing partial data in other files. Comparatively, 7⁄18 appli-
cations actually encrypted the Photo, which we consid-
ered a more secure implementation. However, in the four
cases tagged with �H in Table 2, the encryption was im-
plemented insecurely because the information for creating
the Key that was used for encrypting the photos was hard
coded in source code. The same issue was found in 3⁄6 ap-
plications that stored encrypted videos. We expected to
recover the photos and videos for most of the 18 applica-
tions from the logical data we acquired. However, in some
cases, if the recovery was more time consuming, or diffi-
cult to accomplish, we took the second best alternative of
retrieving or swapping the password to recover the media
files through unauthorized logins. As Table 2 shows, 7⁄18
vault applications (marked in column C) stored the pass-
word in cleartext on the Android device. The other 8⁄18 ap-
plications stored the hash value of the password where we
were able to adopt a swap attack (marked as �S), rainbow
table attack (marked as �R) or brute force attack (marked
as �B).

There were two applications we were only able to apply a
brute force attack for retrieving the password. Keeper uti-
lized a salted password hashing function. Coverme did not
store the hash value of the password but the hash value of
the Key that was created by the password. We considered
these two applications relatively more secure because they
allowed a more complex password scheme or employed a
more secure hashing function. Comparing these two appli-
cations, Coverme offered a better chance for the brute force
attack because its password was limited to a maximum of
16 digits. Only 2⁄18 vault applications, encrypted the pass-
word. However, in both cases the applications generated
their secret Keys through hard coded strings found in the
source code. Lastly, in the column ‘without root’ we also
marked if root privilege was necessary for the recovery as
well as applications that needed a brute force attack were
marked in column ’complex recovery’. In other words, ex-
cept for these two applications, we can retrieve the hidden
photos and videos from the vault applications all the time
without difficulty, under the identified settings.

11



Figure 5: Secret files and password encryption in Coverme.

Table 2: Case study summary of results.

Application Code protection Photo Video Password Without
root

Complex
recov-
ery

O N U D E U D E C # E

1 AppLock � � � �SR �

2 LEO Privacy � � �H � � �
3 Vault � � � � �

4 Keeper � � � �B �

5 Keepsafe � � �H �H �

6 Vaulty � � �SR �

7 GalleryVault � � � �SR

8 Audio Manager � � � �

9 Photo Locker � �H �H �H

10 Video Locker � �H �H �H

11 LOCX � � � �SR �
12 Secret AppLock � � � � �
13 Pic Lock � � � � �

14 HidePhoto � � � �SR �
15 PhotoSafe � � � �

16 Photo Vault � � � �R

17 Calculator � � �

18 Coverme � � � �B �∗

Count 12/18 5/18 6/18 5/18 7/18 8/18 4/18 6/18 7/18 8/18 2/18 10/18 2/18

O: JAVA source code of the given application was obfuscated. N: Application implements the critical functions in a native library.
U: Photos or videos were found unencrypted. D: The photos or videos were found being deconstructed.
E: Password, photos or videos were encrypted using a crypto algorithm. C: Password was found in cleartext in a file.

#: Password hash was found in a file. S : Swap attack to reset password / gesture is possible.
R: Rainbow table attack to crack the password / gesture is possible. H : Info for creating the encryption key found hard-coded in source code.
B : Brute force was the only approach to crack the password. ∗:Password consisted of a maximum of 16 digits.

7. Other Vulnerabilities

Beyond retrieving / decrypting the passwords we also
found two other vulnerabilities that can be used for achiev-
ing unauthorized access in some applications.

Security e-mail: If the password is forgotten, a user can
submit a request for sending the password or a tempo-
rary password to a preset security e-mail. In the ap-
plications we tested, Applock (Sec. 5.1) and Pic Lock
(Sec. 5.12) were found storing the cleartext of the secu-
rity e-mail in in application related files. Examiners can
modify the e-mail in these files using a self-owned e-mail
address. Therefore, the user’s passwords may be sent to
that e-mail address instead.

Security answer & question: By correctly answering
the preset security question a user can re-own access to
a vault application. In our test applications, both the
security answer and question were found in cleartext in
Vaulty (Sec. 5.6) and Calculator (Sec. 5.16). Submitting
the answer at the login page allows for unauthorized ac-
cess to the applications.

Full artifact analysis findings, the results for each vault
application, including the mentioned vulnerabilities is pre-
sented in a single Table in Appendix A.

8. Discussion

In this work we had to break the security of the vault
applications to recover digital evidence. In fact, this work
has already been used in a real world investigation as men-
tioned in the introduction. Whilst examining the forensic
feasibility of retrieving data from vault applications, we
also found that although applications were designed as pri-
vacy enhancing technologies, researchers and practitioners
with thorough knowledge in reverse engineering and se-
curity may still be able to recover evidentiary data from
them.

We learned that even though developers protected appli-
cations using techniques like obfuscation, encryption and
the use of native libraries, there may be still security holes
that can be exploited by digital forensic examiners. For

12



example, code obfuscation can only hinder examiners with-
out reverse engineering knowledge; native libraries can be
hijacked and reused in decryption; encryption may be by-
passed using a swap attack, rainbow table attack or brute
force attack etc. Generally speaking, our findings show
that most security issues in the tested vault applications
were due to (1) storing data locally (on the Android de-
vice) without encryption or with simple encryption (2) de-
velopers hard-coding constants as encryption Keys, Salts
or other data related to the encryption implementation
and (3) the minimal password space for some applications.

Regarding applications with relatively secure implemen-
tations, our testing offers ideas for resolving the aforemen-
tioned issues. For example, Keeper stored most of the im-
portant information on a server as opposed to local storage
and the password could be made up of all possible charac-
ters (see Sec. 5.4). Additionally, to provide better source
code protection, Keeper implemented code obfuscation3

on the source code before compilation. Coverme for exam-
ple packed the encryption method in a native library (see
Sec. 5.17). These approaches used in combination can ef-
fectively increase the time and cost for reverse engineering.
More importantly, a common feature for these relatively
secure applications is that they use user credentials as part
of the encryption process. Lastly it is of note that both
secure applications generated Initialization Vectors / Salts
through randomization.

9. Limitations

Our work has limitations. Primarily, artifact analysis
can be conducted only if the targeted mobile device is
qualified for data acquisition that usually requires root
privilege, switched-on USB debugging mode or one of the
requirements in Sec. 2.1. Although this is a limitation for
a potential adversary, we argue that in real investigations,
forensic examiners usually have physical access to the de-
vices and the data on them. Second, our work focused
on the logical acquisition of data from the mobile device.
Should experimenters focus on physical acquisition, which
may also include deleted data, we hypothesize that some
applications may leave traces of unencrypted media files
on the phone’s memory. Third, compared to how many
applications with ‘vault’ functions exist, the 18 applica-
tions we tested may be considered a rather small set of
samples. We did focus our research however on the most
widely downloaded applications. Fourth, we only focused
on examining if the user’s secret media files could be recon-
structed. Some applications also have features for hiding
applications or sending secure massages. These features
were not part of our analysis. Fifth, our research was lim-
ited to stored data and did not focus on Random Access
Memory, nor did it target network traffic. Lastly, our work

3Obfuscation changes the function name and variable name to
irregular letters.

was limited to only Android vault applications and did not
take into account other mobile operating systems.

10. Conclusion & future work

As shown from our results, vault application developers
indeed code protect their applications, yet through exten-
sive reverse engineering efforts, we are still able to acquire
hidden evidence. While this may not be privacy preserv-
ing, the discovered security implementations aid digital
forensic examiners in reconstructing media files that may
be relevant to a case. Future work should examine vault
applications on iOS and also explore network traffic anal-
ysis. Work should also test the viability of reconstructing
media files from media that is physically acquired. Future
research should replicate our methods and focus on other
privacy enhancing technologies such as mobile password
vault applications. Lastly, work should explore the fea-
sibility of designing a tool to automate the discovery of
the security implementations of privacy preserving mobile
applications.

References

Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M. L. and Stran-
sky, C. (2016), You Get Where Youre Looking For, in ‘IEEE Sym-
posium on Security and Privacy’, pp. 289–305.

A framework for analyzing and transforming Java and Android
Applications (n.d.). http://engineering.purdue.edu/~mark/

puthesis.
Al Mutawa, N., Baggili, I. and Marrington, A. (2012), Forensic anal-

ysis of social networking applications on mobile devices, in ‘Digital
Investigation’, Vol. 9.

Android Debug Bridge — Android Studio (n.d.). https://

developer.android.com/studio/command-line/adb.html.
Anglano, C. (2014), ‘Forensic analysis of WhatsApp Messenger on

Android smartphones’, Digital Investigation 11(3), 1–13.
Apktool - A tool for reverse engineering Android apk files (n.d.).

https://ibotpeaches.github.io/Apktool/.
BCrypt source code (n.d.). https://gist.github.com/cavneb/

651613.
Bläsing, T., Batyuk, L., Schmidt, A. D., Camtepe, S. A. and Al-

bayrak, S. (2010), An android application sandbox system for
suspicious software detection, in ‘Proceedings of the 5th IEEE
International Conference on Malicious and Unwanted Software,
Malware 2010’, pp. 55–62.

Breeuwsma, M., De Jongh, M., Klaver, C., Van Der Knijff, R. and
Roeloffs, M. (2007), ‘Forensic data recovery from flash memory’,
Small Scale Digital Device Forensics Journal 1(1), 1–17.

Chan, P. P. F., Hui, L. C. K. and Yiu, S. M. (2012), DroidChecker:
Analyzing Android Applications for Capability Leak, in ‘Proceed-
ings of the Fifth ACM Conference on Security and Privacy in
Wireless and Mobile Networks’, pp. 125–136.
URL: http://doi.acm.org/10.1145/2185448.2185466

Colorado sexting scandal: High school faces felony investigation
(2016). http://www.cnn.com/2015/11/07/us/colorado-sexting-
scandal-canon-city/.

Conlan, K., Baggili, I. and Breitinger, F. (2016), ‘Anti-forensics: Fur-
thering digital forensic science through a new extended, granular
taxonomy’, Digital Investigation 18, S66–S75.

Cox, L. P., Gilbert, P., Lawler, G., Pistol, V., Razeen, A., Wu, B.
and Cheemalapati, S. (2014), ‘SpanDex: Secure Password Track-
ing for Android’, USENIX Security 2014 (23rd USENIX Security
Symposium) (Vm), 481–494.

13

http://engineering.purdue.edu/~mark/puthesis
http://engineering.purdue.edu/~mark/puthesis
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://ibotpeaches.github.io/Apktool/
https://gist.github.com/cavneb/651613
https://gist.github.com/cavneb/651613
http://www.cnn.com/2015/11/07/us/colorado-sexting-scandal-canon-city/
http://www.cnn.com/2015/11/07/us/colorado-sexting-scandal-canon-city/


David Auerbach (2015), ‘Fghcvq Is as Fghcvq Does’.
http://www.slate.com/articles/technology/bitwise/2015/

04/nq_mobile_vault_the_popular_encryption_app_has_

laughably_crackable_encryption.html.
DB Browser for SQLite (n.d.). http://sqlitebrowser.org/.
ded Homepage (n.d.). http://siis.cse.psu.edu/ded/.
dex2jar (2016). https://sourceforge.net/projects/dex2jar/.
E2e (2016), ‘How safe are your photos - Android Photo

Vault app analysis’. https://www.e2e-assure.com/blog/

AndroidPhotoVault_app_analysis_1/.
Enck, W., Octeau, D., McDaniel, P. and Chaudhuri, S. (2011),

‘A Study of Android Application Security.’, USENIX Security
39(August), 21–21.

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S.,
Conti, M. and Rajarajan, M. (2015), ‘Android Security: A Survey
of Issues, Malware Penetration, and Defenses’, IEEE Communi-
cations Surveys & Tutorials 17(2), 998–1022.

Gary Hawkins (2012), ‘Just how well do Android privacy apps hide
your sexy photos and secret texts?’. https://nakedsecurity.

sophos.com/2012/11/12/android-privacy-apps/.
Gibler, C., Crussell, J., Erickson, J. and Chen, H. (2012), Androi-

dLeaks: Automatically detecting potential privacy leaks in An-
droid applications on a large scale, in ‘Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics)’, Vol. 7344 LNCS, pp. 291–
307.

Hoog, A. (2011), Android forensics: investigation, analysis and mo-
bile security for Google Android, Elsevier.

Husain, M. I. and Sridhar, R. (2009), iForensics: forensic analysis of
instant messaging on smart phones, in ‘International Conference
on Digital Forensics and Cyber Crime’, Springer, pp. 9–18.

IDA pro (n.d.). https://www.hex-rays.com/products/ida/.
Iqbal, A., Marrington, A. and Baggili, I. (2013), Forensic artifacts

of the ChatON Instant Messaging application, in ‘Systematic Ap-
proaches to Digital Forensic Engineering (SADFE), 2013 Eighth
International Workshop on’, IEEE, pp. 1–6.

Jana, S. and Shmatikov, V. (2012), Memento: Learning secrets from
process footprints, in ‘Proceedings - IEEE Symposium on Security
and Privacy’, pp. 143–157.

Jasmin User Guide (n.d.). http://jasmin.sourceforge.net/guide.
html.

Jason Moore, Ibrahim Baggili, F. B. (2016), ‘Find Me If You Can:
Mobile GPS Mapping Applications Forensics Analysis & SNAVP
The Open Source, Modular, Extensible Parser’, The Journal of
Digital Forensics, Security and Law: JDFSL .

JD-GUI A Java Decompiler (n.d.). http://jd.benow.ca/.
Karpisek, F., Baggili, I. and Breitinger, F. (2015), ‘WhatsApp net-

work forensics: Decrypting and understanding the WhatsApp call
signaling messages’.

Kim, J., Yoon, Y., Yi, K. and Shin, J. (2012), Scandal: Static An-
alyzer for Detecting Privacy Leaks in Android Applications, in
‘IEEE Workshop on Mobile Security Technologies (MoST)’, pp. 1–
10.

Kim, K., Hong, D. and Ryou, J.-C. (2008), Forensic Data Acqui-
sition from Cell Phones using JTAG Interface., in ‘Security and
Management’, pp. 410–414.

Lessard, J. and Kessler, G. C. (2010), ‘Android Forensics : Simplify-
ing Cell Phone Examinations’, Small Scale Digital Device Foren-
sics Journal 4(1), 1–12.

Mahajan, A., Dahiya, M. and Sanghvi, H. (2013), ‘Forensic Analysis
of Instant Messenger Applications on Android Devices’, Interna-
tional Journal of Computer Applications 68(8), 38–44.

Maus, S., Höfken, H. and Schuba, M. (2011), Forensic Analysis of
Geodata in Android Smartphones, in ‘International Conference on
Cybercrime, Security and Digital Forensics, http://www. schuba.
fh-aachen. de/papers/11-cyberforensics. pdf’.

Mehrotra, T. and Mehtre, B. M. (2013), Forensic analysis of Wickr
application on android devices, in ‘2013 IEEE International Con-
ference on Computational Intelligence and Computing Research,
IEEE ICCIC 2013’.

Provos, N. and Mazieres, D. (1999), ‘A future-adaptable password

scheme’, USENIX Annual Technical Conference, . . . pp. 1–12.
Sahu, S. (2013), ‘Forensic Analysis of WhatsApp on Android Smart-

phones’, International Journal of Engineering Research 3(5), 349–
350.

Saltaformaggio, B., Bhatia, R., Zhang, X., Xu, D. and Richard Iii,
G. G. (2016), Screen After Previous Screens: Spatial-Temporal
Recreation of Android App Displays from Memory Images, in
‘USEC’.

Schrittwieser, S., Frühwirt, P., Kieseberg, P., Leithner, M., Mulaz-
zani, M., Huber, M. and Weippl, E. R. (2012), Guess Who’s Tex-
ting You? Evaluating the Security of Smartphone Messaging Ap-
plications., in ‘NDSS’, Citeseer.

smali/baksamli (2016). https://github.com/JesusFreke/smali.
Son, N., Lee, Y., Kim, D., James, J. I., Lee, S. and Lee, K. (2013), ‘A

study of user data integrity during acquisition of Android devices’,
Digital Investigation 10, S3–S11.

SQLite Home Page (n.d.). https://www.sqlite.org/.
Vidas, T., Zhang, C. and Christin, N. (2011), ‘Toward a general

collection methodology for Android devices’, digital investigation
8, S14–S24.

Walnycky, D., Baggili, I., Marrington, A., Moore, J. and Breitinger,
F. (2015), ‘Network and device forensic analysis of Android social-
messaging applications’, Digital Investigation 14, S77–S84.

Xia, M., Gong, L., Lyu, Y., Qi, Z. and Liu, X. (2015), Effective
real-time android application auditing, in ‘Proceedings - IEEE
Symposium on Security and Privacy’, Vol. 2015-July, pp. 899–
914.

Yang, S. J., Choi, J. H., Kim, K. B. and Chang, T. (2015), ‘New ac-
quisition method based on firmware update protocols for Android
smartphones’, Digital Investigation 14, S68–S76.

Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P. and Wang, X. S.
(2013), ‘AppIntent: analyzing sensitive data transmission in an-
droid for privacy leakage detection’, Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security -
CCS ’13 pp. 1043–1054.

Zhang, X., Breitinger, F. and Baggili, I. (2016), ‘Rapid Android
Parser for Investigating DEX files (RAPID)’, Digital Investigation
17, 28–39.

Zhou, Y., Zhang, X., Jiang, X. and Freeh, V. W. (2011), Tam-
ing information-stealing smartphone applications (on android), in
‘Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics)’, Vol. 6740 LNCS, pp. 93–107.

Appendix A. Acquisition summary

To provide a fast look up for readers, we summarized
our findings from our artifact analysis which includes im-
portant files with critical data such as a user’s password,
the directory of the hidden photos / videos etc. that may
be potentially required by forensic examiners. Ordered
similar to Table 1, Table A.3 contains data about the first
9 applications and Table A.4 contains data about the rest
of the 9 applications.

14

http://www.slate.com/articles/technology/bitwise/2015/04/nq_mobile_vault_the_popular_encryption_app_has_laughably_crackable_encryption.html
http://www.slate.com/articles/technology/bitwise/2015/04/nq_mobile_vault_the_popular_encryption_app_has_laughably_crackable_encryption.html
http://www.slate.com/articles/technology/bitwise/2015/04/nq_mobile_vault_the_popular_encryption_app_has_laughably_crackable_encryption.html
http://sqlitebrowser.org/
http://siis.cse.psu.edu/ded/
https://sourceforge.net/projects/dex2jar/
https://www.e2e-assure.com/blog/AndroidPhotoVault_app_analysis_1/
https://www.e2e-assure.com/blog/AndroidPhotoVault_app_analysis_1/
https://nakedsecurity.sophos.com/2012/11/12/android-privacy-apps/
https://nakedsecurity.sophos.com/2012/11/12/android-privacy-apps/
https://www.hex-rays.com/products/ida/
http://jasmin.sourceforge.net/guide.html
http://jasmin.sourceforge.net/guide.html
http://jd.benow.ca/
https://github.com/JesusFreke/smali
https://www.sqlite.org/


T
a
b

le
A

.3
:

S
u

m
m

a
ry

o
f

fi
n

d
in

g
s

fr
o
m

a
rt

if
a
ct

a
n

a
ly

si
s

fo
r

v
a
u

lt
a
p

p
li
ca

ti
o
n

s
n
u

m
b

er
1

–
9
.

A
p
p
li
c
a
t
io

n
F
il
e

F
o
u
n
d

1
A

p
p
L

o
ck

/
s
d
c
a
r
d
/
.
M
y
S
e
c
u
r
i
t
y
D
a
t
a
/
d
o
n
t
_
r
e
m
o
v
e
/
<
H
A
S
H
>
/
.
i
m
a
g
e

U
n
e
n
c
ry

p
te

d
p
h
o
to

s
/
s
d
c
a
r
d
/
.
M
y
S
e
c
u
r
i
t
y
D
a
t
a
/
d
o
n
t
_
r
e
m
o
v
e
/
<
H
A
S
H
>
/
.
v
i
d
e
o

U
n
e
n
c
ry

p
te

d
v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
d
o
m
o
b
i
l
e
.
a
p
p
l
o
c
k
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.
d
o
m
o
b
i
l
e
.

a
p
p
l
o
c
k
_
p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

S
H

A
1
-h

a
sh

e
d

p
a
tt

e
rn

lo
ck

:<
s
t
r
i
n
g

n
a
m
e
=
i
m
a
g
e
l
o
c
k
p
a
t
t
e
r
n
>
a
g
Y
r
m
z
R
S
4
2
Z
A
c
Y
G
h
v
5
L
q
c
+
n
t
T
E
g
=
<
/
s
t
r
i
n
g
>

S
e
c
u
ri

ty
e
-m

a
il
:<
s
t
r
i
n
g

n
a
m
e
=
"
m
a
i
l
"
>
v
a
u
l
t
a
p
p
t
e
s
t
@
g
m
a
i
l
.
c
o
m
<
/
s
t
r
i
n
g
>

2
L

E
O

P
ri

v
a
c
y

/
s
d
c
a
r
d
/
.
d
e
f
a
u
l
t
G
a
l
l
e
r
y
/
D
C
I
M
/
C
a
m
e
r
a

E
n
c
ry

p
te

d
p
h
o
to

s
/
s
d
c
a
r
d
/
D
C
I
M
/
C
a
m
e
r
a

U
n
e
n
c
ry

p
te

d
v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
l
e
o
.
a
p
p
m
a
s
t
e
r
/
s
h
a
r
e
d
_
p
r
e
f
s
/
s
h
a
r
e
d
_
s
e
t
t
i
n
g
s
.
x
m
l

P
a
ss

w
o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
p
a
s
s
w
o
r
d
"
>
9
5
1
2
<
/
s
t
r
i
n
g
>

3
V

a
u
lt

/
s
d
c
a
r
d
/
S
y
s
t
e
m
A
n
d
r
o
i
d
/
D
a
t
a
/
M
T
c
1
M
D
U
4
O
Q
=
=
/
.
i
m
a
g
e

C
o
n
v
e
rt

e
d

p
h
o
to

s
/
s
d
c
a
r
d
/
S
y
s
t
e
m
A
n
d
r
o
i
d
/
D
a
t
a
/
M
T
c
1
M
D
U
4
O
Q
=
=
/
.
v
i
d
e
o

C
o
n
v
e
rt

e
d

v
id

e
o
s

4
K

e
e
p

e
r

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
c
a
l
l
p
o
d
.
a
n
d
r
o
i
d
_
a
p
p
s
.
k
e
e
p
e
r
/
d
a
t
a
b
a
s
e
s
/
<
E
-

M
A
I
L
>
.
s
q
l

E
n
c
ry

p
ti

o
n

p
a
ra

m
e
te

r,
b

c
ry

p
t-

h
a
sh

e
d

p
a
ss

w
o
rd

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
c
a
l
l
p
o
d
.
a
n
d
r
o
i
d
_
a
p
p
s
.
k
e
e
p
e
r
/
c
a
c
h
e
/
r
e
c
o
r
d
_
f
i
l
e
s

E
n
c
ry

p
te

d
m

e
d
ia

fi
le

s
5

K
e
e
p
sa

fe
/
s
d
c
a
r
d
/
.
k
e
e
p
s
a
f
e
/
m
a
n
i
f
e
s
t
s
/
p
r
i
m
a
r
y

E
n
c
ry

p
te

d
m

e
d
ia

fi
le

s
/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
k
i
i
.
s
a
f
e
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.
k
i
i
.
s
a
f
e
_

p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

P
a
ss

w
o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
m
a
s
t
e
r
-
p
a
s
s
w
o
r
d
"
>
9
5
1
2
<
/
s
t
r
i
n
g
>

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
k
i
i
.
s
a
f
e
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.
k
i
i
.
s
a
f
e
.
s
e
c
m
a
n
a
g
e
r
.

x
m
l

3
2

b
y
te

K
e
y
:<
s
t
r
i
n
g

n
a
m
e
=
"
a
e
c
5
a
0
a
a
3
3
e
2
5
e
4
c
9
1
0
8
9
3
9
f
6
d
6
2
9
2
c
4
5
0
7
b
0
4
5
e
A
e
"
>
4
a
1
d
d
3
8
1
b
6
3
e
3
2
4
a
1
5
d
d
c
7

7
e
3
8
5
5
3
e
d
9
0
1
3
6
f
6
1
0
2
a
c
a
6
2
3
0
4
b
3
2
d
b
3
5
6
f
5
c
f
2
0
6
<
/
s
t
r
i
n
g
>

6
V

a
u
lt

y
/
s
d
c
a
r
d
/
D
o
c
u
m
e
n
t
s
/
V
a
u
l
t
y
/
d
a
t
a
/

C
o
n
v
e
rt

e
d

p
h
o
to

s
a
n
d

u
n
e
n
c
ry

p
te

d
v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
t
h
e
r
o
n
r
o
g
e
r
s
.
v
a
u
l
t
y
f
r
e
e
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.

t
h
e
r
o
n
r
o
g
e
r
s
.
v
a
u
l
t
y
f
r
e
e
_
p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

M
D

5
-h

a
sh

e
d

p
a
ss

w
o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
p
a
s
s
w
o
r
d
h
a
s
h
"
>
C
5
t
t
b
R
V
O
m
M
4
0
s
/
L
k
7
3
b
q
6
Q
=
=
<
/
s
t
r
i
n
g
>

S
e
c
u
ri

ty
q
u
e
st

io
n

&
a
n
sw

e
r:
<
s
t
r
i
n
g

n
a
m
e
=
"
s
e
c
u
r
i
t
y
q
u
e
s
t
i
o
n
"
>
F
a
v
o
r
i
t
e

n
u
m
b
e
r
<
/
s
t
r
i
n
g
>

<
s
t
r
i
n
g

n
a
m
e
=
"
s
e
c
u
r
i
t
y
a
n
s
w
e
r
"
>
3

<
/
s
t
r
i
n
g
>

7
G

a
ll
e
ry

V
a
u
lt

/
s
d
c
a
r
d
/
.
g
a
l
l
e
r
y
v
a
u
l
t
_
D
o
N
o
t
D
e
l
e
t
e
_
1
4
6
6
6
1
7
3
0
7
/
f
i
l
e
/

D
e
c
o
n
st

ru
c
te

d
p
h
o
to

s
a
n
d

v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
t
h
i
n
k
y
e
a
h
.
g
a
l
l
e
r
y
v
a
u
l
t
/
s
h
a
r
e
d
_
p
r
e
f
s
/
K
i
d
d
.
x
m
l

(S
H

A
1
+

M
D

5
)

H
a
sh

e
d

p
a
ss

w
o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
L
o
c
k
P
i
n
"
>
6
4
0
1
7
1
D
7
E
2
1
4
0
1
8
F
E
B
3
A
4
6
1
8
2
D
B
C
B
4
6
5
B
5
4
1
6
B
8
5

0
B
9
B
6
D
6
D
1
5
4
E
9
8
C
E
3
4
B
3
F
2
E
4
E
F
7
6
E
A
E
9
<
/
s
t
r
i
n
g
>

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
t
h
i
n
k
y
e
a
h
.
g
a
l
l
e
r
y
v
a
u
l
t
/
d
a
t
a
b
a
s
e
s
/
g
a
l
l
e
r
y
v
a
u
l
t
.

d
b

O
ri

g
in

a
l

n
a
m

e
o
f

th
e

m
e
d
ia

fi
le

s;
p
a
th

o
f

th
e

d
e
c
o
n
st

ru
c
te

d
m

e
d
ia

fi
le

s;
th

e
w

ip
e
d

1
0

b
y
te

s
fo

r
e
a
ch

m
e
d
ia

fi
le

8
A

u
d
io

M
a
n
a
g
e
r

/
s
d
c
a
r
d
/
P
r
o
g
r
a
m
D
a
t
a
/
A
n
d
r
o
i
d
/
L
a
n
g
u
a
g
e
/
.
f
r
/
P
i
c
t
u
r
e
s
/
N
e
w
A
l
b
u
m

U
n
e
n
c
ry

p
te

d
p
h
o
to

s
/
s
d
c
a
r
d
/
P
r
o
g
r
a
m
D
a
t
a
/
A
n
d
r
o
i
d
/
L
a
n
g
u
a
g
e
/
.
f
r
/
V
i
d
e
o
s
/
N
e
w
A
l
b
u
m

U
n
e
n
c
ry

p
te

d
v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
h
i
d
e
i
t
p
r
o
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.
h
i
d
e
i
t
p
r
o
_

p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

P
a
ss

w
o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
p
a
s
s
w
o
r
d
"
>
9
5
1
2
<
/
s
t
r
i
n
g
>

9
P

h
o
to

L
o
ck

e
r

/
s
d
c
a
r
d
/
.
P
L
/
P
r
i
v
a
t
e
P
h
o
t
o

E
n
c
ry

p
te

d
p
h
o
to

s
/
s
d
c
a
r
d
/
.
P
L
/
.
c
o
n
f
i
g

E
n
c
ry

p
te

d
p
a
ss

w
o
rd

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
h
a
n
d
y
a
p
p
s
.
p
h
o
t
o
L
o
c
k
e
r
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.

h
a
n
d
y
a
p
p
s
.
p
h
o
t
o
L
o
c
k
e
r
_
p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

E
n
c
ry

p
te

d
e
-m

a
il

a
d
d
re

ss

<
H
A
S
H
>
:

th
e

fo
ld

e
r

w
a
s

n
a
m

e
d

w
it

h
a

ra
n
d
o
m

st
ri

n
g

/
h
a
sh

v
a
lu

e
th

a
t

m
a
y

ch
a
n
g
e

in
d
iff

e
re

n
t

c
a
se

s

<
E
-
M
A
I
L
>
:

T
h
e

e
-m

a
il

a
d
d
re

ss
p
re

v
io

u
sl

y
se

t
u
p

b
y

u
se

rs
.

15



T
a
b

le
A

.4
:

S
u

m
m

a
ry

o
f

fi
n

d
in

g
s

fro
m

a
rtifa

ct
a
n

a
ly

sis
fo

r
v
a
u

lt
a
p

p
lica

tio
n

s
n
u

m
b

er
1
0

–
1
8
.

A
p
p
lic

a
t
io

n
F
ile

F
o
u
n
d

1
0

V
id

e
o

L
o
ck

e
r

/
s
d
c
a
r
d
/
.
V
L
/
P
r
i
v
a
t
e
V
i
d
e
o

E
n
c
ry

p
te

d
v
id

e
o
s

/
s
d
c
a
r
d
/
.
V
L
/
.
c
o
n
f
i
g

E
n
c
ry

p
te

d
p
a
ssw

o
rd

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
h
a
n
d
y
a
p
p
s
.
v
i
d
e
o
l
o
c
k
e
r
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.

h
a
n
d
y
a
p
p
s
.
v
i
d
e
o
l
o
c
k
e
r
_
p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

E
n
c
ry

p
te

d
e
-m

a
il

a
d
d
re

ss

1
1

L
O

C
X

/
s
d
c
a
r
d
/
.
E
n
c
r
y
p
t
e
d
F
o
l
d
e
r

D
e
c
o
n
stru

c
te

d
p
h
o
to

s
a
n
d

v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
c
y
o
u
.
p
r
i
v
a
c
y
s
e
c
u
r
i
t
y
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.
c
y
o
u
.

p
r
i
v
a
c
y
s
e
c
u
r
i
t
y
_
p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

M
D

5
-h

a
sh

e
d

p
a
ssw

o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
p
i
n
p
"
>
0
b
9
b
6
d
6
d
1
5
4
e
9
8
c
e
3
4
b
3
f
2
e
4
e
f
7
6
e
a
e
9
<
/
s
t
r
i
n
g
>

1
2

S
e
c
re

t
A

p
p
L

o
ck

/
s
d
c
a
r
d
/
.
P
i
x
n
A
r
t
1
2
/
.
P
h
o
t
o
s

U
n
e
n
c
ry

p
te

d
p
h
o
to

s
/
s
d
c
a
r
d
/
.
P
i
x
n
A
r
t
1
2
/
.
V
i
d
e
o
s

U
n
e
n
c
ry

p
te

d
v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
a
m
a
z
i
n
g
.
s
e
c
r
e
a
t
e
a
p
p
l
o
c
k
/
s
h
a
r
e
d
_
p
r
e
f
s
/

A
p
p
l
o
c
k
P
r
e
f
e
r
e
n
c
e
s
.
x
m
l

P
a
ssw

o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
p
i
n
"
>
9
5
1
2
<
/
s
t
r
i
n
g
>

1
3

P
ic

L
o
ck

/
s
d
c
a
r
d
/
.
A
n
d
r
o
i
d
L
i
b
s
/
3
3
e
7
5
f
f
0
9
d
d
6
0
1
b
b
e
6
9
f
3
5
1
0
3
9
1
5
2
1
8
9
/

.
S
a
f
e
B
o
x
1
/
D
e
f
a
u
l
t
F
o
l
d
e
r
/
P
h
o
t
o
s

U
n
e
n
c
ry

p
te

d
p
h
o
to

s

/
s
d
c
a
r
d
/
.
A
n
d
r
o
i
d
L
i
b
s
/
3
3
e
7
5
f
f
0
9
d
d
6
0
1
b
b
e
6
9
f
3
5
1
0
3
9
1
5
2
1
8
9
/

.
S
a
f
e
B
o
x
1
/
P
r
i
v
a
t
e
v
i
d
e
o
s
/
V
i
d
e
o
s

U
n
e
n
c
ry

p
te

d
v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
x
c
s
.
p
i
c
l
o
c
k
/
s
h
a
r
e
d
_
p
r
e
f
s
/
P
a
s
s
w
o
r
d
.
x
m
l

P
a
ssw

o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
p
a
s
s
"
>
9
5
1
2
<
/
s
t
r
i
n
g
>

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
x
c
s
.
p
i
c
l
o
c
k
/
s
h
a
r
e
d
_
p
r
e
f
s
/
E
m
a
i
l
.
x
m
l

S
e
c
u
rity

e
-m

a
il:<

s
t
r
i
n
g

n
a
m
e
=
"
m
a
i
l
"
>
v
a
u
l
t
a
p
p
t
e
s
t
@
g
m
a
i
l
.
c
o
m
<
/
s
t
r
i
n
g
>

1
4

H
id

e
P

h
o
to

/
s
d
c
a
r
d
/
.
M
y
S
e
c
u
r
i
t
y
D
a
t
a
2
/
d
o
n
t
_
r
e
m
o
v
e
/
<
H
A
S
H
>
/
.
i
m
a
g
e

U
n
e
n
c
ry

p
te

d
p
h
o
to

s
/
s
d
c
a
r
d
/
.
M
y
S
e
c
u
r
i
t
y
D
a
t
a
2
/
d
o
n
t
_
r
e
m
o
v
e
/
<
H
A
S
H
>
/
.
v
i
d
e
o

U
n
e
n
c
ry

p
te

d
v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
d
o
m
o
b
i
l
e
.
h
i
d
e
p
h
o
t
o
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.
d
o
m
o
b
i
l
e
.

h
i
d
e
p
h
o
t
o
_
p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

M
D

5
-h

a
sh

e
d

p
a
ssw

o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
p
a
s
s
w
o
r
d
"
>
0
b
9
b
6
d
6
d
1
5
4
e
9
8
c
e
3
4
b
3
f
2
e
4
e
f
7
6
e
a
e
9
<
/
s
t
r
i
n
g
>

1
5

P
h
o
to

S
a
fe

/
s
d
c
a
r
d
/
.
p
h
o
t
o
s
a
f
e
_
D
o
N
o
t
D
e
l
e
t
e
/
c
a
m
e
r
a
/
i
m
a
g
e
s

C
o
n
v
e
rte

d
p
h
o
to

s
/
s
d
c
a
r
d
/
.
p
h
o
t
o
s
a
f
e
_
D
o
N
o
t
D
e
l
e
t
e
/
c
a
m
e
r
a
/
v
i
d
e
o
s

C
o
n
v
e
rte

d
v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
s
l
i
c
k
d
r
o
i
d
.
v
a
u
l
t
y
p
r
o
/
s
h
a
r
e
d
_
p
r
e
f
s
/
v
a
u
l
t
y
p
r
o
.

x
m
l

P
a
ssw

o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
p
a
s
s
w
o
r
d
"
>
9
5
1
2
<
/
s
t
r
i
n
g
>

1
6

P
riv

a
te

P
h
o
to

V
a
u
lt

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
e
n
c
h
a
n
t
e
d
c
l
o
u
d
.
p
h
o
t
o
v
a
u
l
t
/
f
i
l
e
s
/
m
e
d
i
a
/
o
r
i
g

E
n
c
ry

p
te

d
m

e
d
ia

fi
le

s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
e
n
c
h
a
n
t
e
d
c
l
o
u
d
.
p
h
o
t
o
v
a
u
l
t
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.

e
n
c
h
a
n
t
e
d
c
l
o
u
d
.
p
h
o
t
o
v
a
u
l
t
_
p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

S
H

A
1
-H

a
sh

e
d

p
a
ssw

o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
p
i
n
"
>
6
4
0
1
7
1
d
7
e
2
1
4
0
1
8
f
e
b
3
a
4
6
1
8
2
d
b
c
b
4
6
5
b
5
4
1
6
b
8
5
<
/
s
t
r
i
n
g
>

E
n
c
ry

p
te

d
k
e
y
:<
s
t
r
i
n
g

n
a
m
e
=
"
e
n
c
k
e
y
s
p
i
n
"
>
u
v
n
U
n
+
G
O
Y
9
0
b
k
Z
F
4
q
2
g
v
Z
m
9
8
p
M
V
r
t
D
b
v
J
X
d
H
g
9
N
B
V
f
c
K
Y
I
8
9
v

I
u
o
2
y
r
c
u
Q
O
I
p
4
V
2
m
k
P
3
8
3
W
S
k
i
x
H
Z
L
R
K
3
0
D
3
F
Q
=
=
<
/
s
t
r
i
n
g
>

1
7

C
a
lc

u
la

to
r

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
c
a
l
c
u
l
a
t
o
r
.
v
a
u
l
t
/
f
i
l
e
s
/
l
o
c
k
e
r
1
7
6
2
/
P
i
c
t
u
r
e
s

U
n
e
n
c
ry

p
te

d
p
h
o
to

s
/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
c
a
l
c
u
l
a
t
o
r
.
v
a
u
l
t
/
f
i
l
e
s
/
l
o
c
k
e
r
1
7
6
2
/
V
i
d
e
o
s

U
n
e
n
c
ry

p
te

d
v
id

e
o
s

/
d
a
t
a
/
d
a
t
a
/
c
o
m
.
c
a
l
c
u
l
a
t
o
r
.
v
a
u
l
t
/
s
h
a
r
e
d
_
p
r
e
f
s
/
c
o
m
.
c
a
l
c
u
l
a
t
o
r
.

v
a
u
l
t
_
p
r
e
f
e
r
e
n
c
e
s
.
x
m
l

P
a
ssw

o
rd

:<
s
t
r
i
n
g

n
a
m
e
=
"
m
p
a
s
s
"
>
9
5
1
2
<
/
s
t
r
i
n
g
>

S
e
c
u
rity

q
u
e
stio

n
&

a
n
sw

e
r:<

s
t
r
i
n
g

n
a
m
e
=
"
s
e
q
q
u
e
s
t
i
o
n
"
>
F
a
v
o
r
i
t
e

n
u
m
b
e
r
<
/
s
t
r
i
n
g
>

<
s
t
r
i
n
g

n
a
m
e
=
"
s
e
q
a
n
s
w
e
r
"
>
3
<
/
s
t
r
i
n
g
>

1
8

C
o
v
e
rm

e
/
s
d
c
a
r
d
/
c
o
v
e
r
m
e
/
i
m
a
g
e
s
/
h
i
d
d
e
n

E
n
c
ry

p
te

d
p
h
o
to

/
s
d
c
a
r
d
/
c
o
v
e
r
m
e
/
v
i
d
e
o
/
h
i
d
d
e
n

E
n
c
ry

p
te

d
v
id

e
o

/
d
a
t
a
/
d
a
t
a
/
w
s
.
c
o
v
e
r
m
e
.
i
m
/
d
a
t
a
b
a
s
e
s
/
k
e
x
i
n
.
d
b

V
a
lu

e
o
f

th
e
p
a
s
s
w
o
r
d

c
o
lu

m
n

in
ta

b
le

k
e
x
i
n
u
s
e
r
;

v
a
lu

e
o
f

th
e
k
e
y
B
y
t
e

c
o
lu

m
n

in
ta

b
le

l
o
c
a
l
A
e
s
K
e
y

<
H
A
S
H
>
:

th
e

fo
ld

e
r

w
a
s

n
a
m

e
d

w
ith

a
ra

n
d
o
m

strin
g

/
h
a
sh

v
a
lu

e
th

a
t

m
a
y

ch
a
n
g
e

in
d
iff

e
re

n
t

c
a
se

s.

16


	University of New Haven
	Digital Commons @ New Haven
	8-2-2017

	Breaking Into the Vault: Privacy, Security and Forensic Analysis of Android Vault Applications
	Xiaolu Zhang
	Ibrahim Baggili
	Frank Breitinger
	Publisher Citation
	Comments


	tmp.1502566367.pdf.PZYZI

