
University of New Haven
Digital Commons @ New Haven

Electrical & Computer Engineering and Computer
Science Faculty Publications

Electrical & Computer Engineering and Computer
Science

2012

Modeling and Control of Discrete Event Systems
Using Finite State Machines with Variables and
Their Applications in Power Grids
Junhui Zhao
University of New Haven, JZhao@newhaven.edu

Le Yi Wang
Wayne State University

Zhong Chen
Wayne State University Detroit

Feng Lin
Wayne State University

Hongwei Zhang
Wayne State University

Follow this and additional works at: http://digitalcommons.newhaven.edu/
electricalcomputerengineering-facpubs

Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical
and Computer Engineering Commons

Comments
This is the author's peer-reviewed version of the article published in Systems & Control Letters.
The final version can be found at
http://dx.doi.org/10.1016/j.sysconle.2011.10.010

Publisher Citation
J. Zhao, Y. L. Chen, Z. Chen, F. Lin, C. Wang and H. Zhang, “Modeling and control of discrete event systems using finite state
machines with variables and their applications in power grids,” Systems & Control Letters, vol. 61, no. 1, pp. 212-222, Jan. 2012.

http://digitalcommons.newhaven.edu?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.sysconle.2011.10.010%20

Modeling and Control of Discrete Event Systems Using Finite State Machines
with Variables and Their Applications in Power Grids

Junhui Zhaoa, Yi-Liang Chenb, Zhong Chena,c, Feng Lina,d*, Caisheng Wanga,e, and
Hongwei Zhangf

a Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202,
USA
b Northrop Grumman Aerospace System, Bethpage, NY 11714, USA
c College of Electrical and Information Engineering, Changsha University of Science and
Technology, Changsha, Hunan, China
d School of Electronics and Information Engineering, Tongji University, Shanghai, China
e Division of Engineering Technology, Wayne State University, Detroit, MI 48202, USA
f Department of Computer Science, Wayne State University, Detroit, MI 48202, USA

* Corresponding author: Feng Lin, Address: 5050 Anthony Wayne Dr., Detroit, MI 48201 USA;
Phone: +1(313)577-3428; Fax: +1(313)577-1101; E-mail: flin@ece.eng.wayne.edu.

Modeling and Control of Discrete Event Systems Using Finite State Machines
with Variables and Their Applications in Power Grids

Control theories for discrete event systems modeled as finite state machines have been well developed to
address various fundamental control issues. However, finite state machine model has long suffered from
the problem of state explosion that renders it unsuitable for some practical applications. In an attempt to
mitigate the state explosion problem, we propose an efficient representation that appends finite sets of
variables to finite state machines in modeling discrete event systems. We also present the control
synthesis techniques for such finite state machines with variables (FSMwV). We first present our notion
and means of control under this representation. We next present our algorithms for both offline and
online synthesis of safety control policies. We then apply these results to the control of electric power
grids.

Keywords: control synthesis; discrete event systems; finite state machines; PHEV; supervisory control;
smart grids

1 Introduction

Modeling and control of discrete event systems (DES) have been studied by control engineers and scientists for more
than 25 years. During this period, many modeling approaches have been proposed, including most notably automata or
finite state machines [1,2], Petri nets [3,4] and their variations such as vector DES [5,6] and event graphs [7], queuing
systems [2] and generalized semi-Markov processes [8].

Among these models, finite state machines are the most straightforward for control. In fact, the supervisory
control theory [1,2,9,10] based on finite state machines has been well developed as it addresses the fundamental issues in
control of DES. As a result, we now have a good understanding of problems such as controllability, observability,
coobservability, normality, decentralization, nondeterminism, etc. We believe that an important reason we have gone this
far in a relatively short time period is that we adapted a simple model of finite state machines. Because of this, we can
focus our attention on and see the essence of the control problem.

However, finite state machine model has long suffered from the problem of state explosion that renders it
unsuitable for some practical applications. For example, to model a buffer of n capacity using a finite state machine
would require at least n states. On the other hand, by using an integer variable to describe the content of the buffer, the
number of states required can be drastically reduced. Furthermore, in the case that the capacity of the buffer changes, we
can simply modify the range of the variable without remodeling the system.

Meanwhile, the traditional supervisory control techniques focus on (passively) maintaining system safety and
liveness by the means of disabling some controllable events. It has neglected the possibility of actively enforcing certain
events that is widely practiced in the control of real world DES applications. Event enforcement can be quite useful in
both “driving” the system toward the given objective (e.g., marked states) and actively maintaining system safety.

To mitigate the problem of state explosion, we propose to employ both finite state machines and sets of
variables in modeling discrete event systems. We call our representation Finite State Machines with Variables
(FSMwV)*. We show that our FSMwV can represent a broader class of discrete event systems with far smaller numbers
of discrete states. The definition of our FSMwV is similar to the Extended Finite State Machines (EFSM) described in
[11]. However, the EFSM mechanism was developed for the design verification of circuits but not for the modeling of
general discrete event systems. Hence, variables in EFSM are mainly for describing the contents of the circuit
inputs/outputs rather than for describing system resources and possible time/resource constraints that FSMwV is
designed for. Furthermore, neither concepts of system composition nor control synthesis were developed under the
EFSM scheme.

Recently, a method using EFSM to implement the supervisory map as an embedded control was developed
[12,13]. The method was extended to decentralized control in [14]. EFSM was also used to verify supervisory control
properties in [15]. In [16], the authors proposed to transform a set of extended automata into a set of ordinary automata
with equivalent behaviour, but no control synthesis methods were discussed. [17] developed the supervisory control for
concurrent systems with EFSM modeled subsystems. In [18], a symbolic transition system model was used, which
defines the concept of controllability by applying it to the guards of symbolic transitions, instead of to the events. Neither
[18] nor [17] investigated the synthesis of optimal (least restrictive) controllers. They also did not consider enforceable
events.

* Formerly, it is called Finite State Machines with Parameters (FSMwP) [19].

In this paper, our focus is on control synthesis using FSMwV. We first extend the scope of the traditional DES
control to include both event disablement and event enforcement. We then propose an offline safety control synthesis
procedure that takes the advantage of both event disablement and enforcement in order to prevent the controlled system
from venturing into the prohibited state space. To address the practical concern of real world implementations, we further
present a set of safety control synthesis procedures, based on the limited and/or variable lookahead policies [20,21], that
generate the control policies online under the FSMwV modeling framework.

The theoretical results on modeling and control of DES using FSMwV are applied to the safety control of
electric power distribution network. DES theories have been explored for applications in power systems [22,23,24,25].
Supervisory control using DES was applied and reported in [22] for line restoration. Hybrid automaton and Petri Nets
was used to model power systems for handling inverse problems such as parameter uncertainty and parameter estimation
[24]. DES was used in [25] to describe cascading events such as blackouts in power systems. A number of potential
power system control problems were discussed in [23]. However, most of the results obtained so far in the area are still
preliminary. The relevance and applications of DES to power systems remain not so clear [23]. We model a distribution
network by an FSMwV in this paper. We consider both conventional uncontrollable loads and controllable loads (such as
plug-in hybrid electric vehicles) by using appropriate variables to avoid possible state explosion. A supervisor is then
designed to ensure the network is fully utilized and never overloaded.

The rest of the paper is organized as follows: We present the FSMwV model and its system composition
mechanism in Section 2. Some preliminary work on FSMwV was presented in [19]. In Section 3, we describe our notion
and means of control and present an offline safety control synthesis algorithm. In Section 4, we present an online
synthesis algorithm (and its variations) for safety control policies. In Section 5, we apply the results to the safety control
of power distribution network. We conclude the paper in Section 6.

2 Finite State Machines with Variables

In this section, we present the modeling mechanism of finite state machines with variables. First, let us recall that a finite
state machine (FSM) is described by a 5-tuple [2]

FSM = (Σ, Q, δ, 0q , Qm),

where Σ is the (finite) event set, Q the (finite) state set, δ: Σ×Q→Q the transition function, the 0q initial state, and Qm

the marked (or final) states.

To introduce variables into an FSM, let p ∈ P be a vector of variables, where P is some vector space. P can be

either finite or infinite. More often, P is over the set of natural numbers. We also introduce guards g ∈ G that are

predicates on the variables p. The transition function δ can be defined as a function from Σ×Q×G×P to Q×P as illustrated
in Figure 1. The transition shown is to be interpreted as follows: If at state q, the guard g is true and the event σ occurs,
then the next state is q' and the values of variables will be updated to f (p). We denote such a transition by
(, / : (), ')q g p f p q    .

q 'q

 / :g p f p 
, ' : states
: event
: guard
: parameter

q q

g
p



Figure 1. A transition in FSMwV.

If g is absent in the transition, and then the transition takes place when σ occurs. Such a transition is called event

transition. If σ is absent, then the transition takes place when g becomes true. Such a transition is called dynamic
transition. If p:=f (p) is absent, then no variable is updated during the transition. In summary, a finite state machine with
variables can be viewed as a 7-tuple

FSMwV = (Σ, Q, δ, P, G, (0q , 0p), Qm),

where op is the initial value of variables at the initial state oq .

Without much difficulty, we can regard finite state machines with variables as a special type of Hybrid
Machines (HMs) introduced in [26]. In particular, an FSMwV has no continuous dynamics (i.e. 0p  at any state). The

only way to change values of variables is by updating (or re-initialization).
Similar to FSMs and HMs, we can define parallel composition of several FSMwVs running in parallel to form a

composite finite state machine with variables (CFSMwV)

CFSMwV = FSMwV1 || FSMwV2 ||…|| FSMwVn.

To define a CFSMwV, we assume that any variable can only be updated by at most one FSMwV. Variables that
are not updated by any of the FSMwVs are updated by the unmodeled environment. In general, a variable updated by one
FSMwV can be used in another FSMwV. That is, a guard in one FSMwV may depend on a variable updated by another
FSMwV.

To simplify the following definition of parallel composition, we assume that, without loss of generality, all
transitions in an FSMwV have been decomposed into event transitions and dynamic transitions, as this can always be
done. Hence,

     
 1 1 1 1 1

1

1

1 1 1 1 1 1 1 1

1

CFSMwV FSMwV FSMwV

 = , , , , , , , , , , , , , ,

 = , ... , ... , ... ,

(,...,

,

 , ,.. .,

n n n

n

o o m n n

n n

o

n n n on on

on

mn

o

Q P G q p Q

Q Q P P G G

q q p p

Q P G q p Q





    



 



  









1

), ...)

(, , , , , (,),),=
on m mn

o o m

Q Q

Q P G q p Q
 



where the transition function 1 ... n     is defined as illustrated in Figures 2 and 3 for n=2. In the figures, li can be

either an event (li = σi) or a guard (li = gi). If l1≠l2, then the situation is illustrated in Figure 2. That is, if the transition l1
occurs at state 1 2(,)q q , then the next state is 1 2(,)q q . Variable 1p is updated to 1 1()f p while 2p is not updated. On the

other hand, if 1 2l l l  , then the situation is illustrated in Figure 3. That is, if the transition l occurs at state 1 2(,)q q , then

the next state is 1 2(,)q q  . Variables 1p and 2p are updated to 1 1()f p and 2 2()f p respectively.

1q 1 'q 2q 2 'q

 1 1 1 1/ :l p f p  2 2 2 2/ :l p f p

1 2(,)q q 1 2(', ')q q

1 2(',)q q

1 2(, ')q q

 1 1 1 1/ :l p f p  2 2 2 2/ :l p f p

 2 2 2 2/ :l p f p  1 1 1 1/ :l p f p

Figure 2. Parallel composition: 1 2l l .

We note that this definition is an extension to that of FSM [2]. Using this parallel composition, we can build

large systems from simple components. This procedure can be automated.
To describe the behaviour of an FSMwV, (Σ, Q, δ, P, G, (0q , 0p), Qm), we define a run of an FSMwV as a

sequence

31 2

1 1 2 2 3 3(,) (,) (,) (,) ,ll l
o or q p q p q p q p    

where li is (the label of) the ith transition and (,)i ip q is the state and variable values after the ith transition. We denote

the set of all possible runs of FSMwV as

R(FSMwV) = {r: r is a run of FSMwV}.

1q 1 'q 2q 2 'q

 1 1 1/ :l p f p  2 2 2/ :l p f p

1 2(,)q q 1 2(', ')q q

   1 1 1 2 2 2/ : ; :l p f p p f p 

Figure 3. Parallel composition: 1 2l ll  .

A trace of a run is the sequence of event transitions in the run

1 2 3 .s     .

That is, s is obtained from r by deleting the state information and dynamic transitions.

If an FSMwV is deterministic (which we assume throughout this paper), then a run is uniquely determined by its
trace. That is, we can reconstruct a run by looking at its trace and the FSMwV. The set of all traces of an FSMwV is a
language denoted by

L(FSMwV) ={s: s is a trace of FSMwV}.

This language is called the language generated by FSMwV. The language marked by FSMwV is defined as

Lm(FSMwV) ={s∈L(FSMwV): the run of s ends in a marked state q∈Qm}.

Since CFSMwV and FSMwV have the same structure, runs, traces, and languages for CFSMwV are defined

similarly.
We often use a legal specification E  R(CFSMwV) to specify the legal behaviour of the system modeled by a

CFSMwV: a run r is legal if and only if it belongs to E. We call this type of specifications dynamic specifications. On the
other hand, if the legal behaviour is specified in terms of legal and illegal states, that is, a run r is legal if and only if it
does not visit any illegal state, then the specification is called a static specification. It is well known in supervisory
control [27] that a dynamic specification can always be translated into a static specification (perhaps at the cost of having
more states). Therefore, we will use static specifications in safety controller synthesis.

3 Safety Controller

In this section, we study how to design a safety controller, that is, a controller that guarantees the system will never enter
some illegal states. We assume that the system to be controlled is modeled by a CFSMwV:

CFSMwV = (Σ, Q, δ, P, G, (0q , 0p), Qm),

and the safety requirement is given by a set of illegal states Qb  Q. Note that the specifications in terms of illegal states
are very general and cover a large class of practical situations. For example, we can translate the specification “the
variable p shall always be less than a constant c” into an illegal state specification as shown in Figure 4.

[]p c

illegal

Figure 4. An illegal state specification for p ≥ c.

The control objective is to make sure that the system never visits any illegal state in Qb. We assume that there

are two control mechanisms that can be used to achieve the control objective.

(1) Disablement: Events in Σc  Σ can be disabled by a controller. Events σ ∈ Σc are called controllable events.

(2) Enforcement: Events in Σf  Σ can be enforced by a controller. Events σ ∈ Σf are called enforceable events.

We assume that an uncontrollable event cannot be enforced, that is, (Σ − Σc)∩Σf = , where  denotes the

empty set. We also assume that the system is deterministic. That is, any transition in CFSMwV can only lead to one state.
The behavior of the uncontrolled system is described by the set of runs generated by CFSMwV, R(CFSMwV).

The legal behaviour of the system is described by a subset of runs in R(CFSMwV) that does not visit illegal states:

E = {r ∈ R(CFSMwV): r does not visit any illegal states in Qb}.

In order to simplify the analysis and synthesis of controllers, we will treat all transitions, including event
transitions and dynamic transitions, in a unified manner. To this end, we introduce an artificial uncontrollable event

u

and extend the event set Σ to include
u . To simplify the notation, we will still use Σ to denote the expended event set in

the rest of the paper. With
u , a dynamic transition (, / : (), ')q g p f p q is equivalent to (, / : (), ')uq g p f p q  for

the purpose of controller analysis and synthesis and an event transition (, / : (), ')q p f p q  can be viewed as

(, / : (), ')q g p f p q  if we let g = T.

To investigate the control in a generalized framework, we use generalized control patterns [28] as follows:

{ : }c f            .

This set of control pattern allows two types of control: (1) Disabling some controllable events (that is, those in Σ−, if the

first disjunction is satisfied); and (2) Enforcing some enforceable events (that is, those in , if the second disjunction is
satisfied). This is a generalization from pure disablement of standard supervisory control.

Proposition 1: The set of control patterns Γ is closed under union, that is, for all control patterns 1 2, 

1 2 1 2       .

Proof: Assume that 1 2,   , that is 1 1c f        and 2 2c f        . Consider four possible

cases.

(1)
1 2 1 2 1 2c c c                        .

(2) 1 2 1 2 1 2c f c                    .

(3) 1 2 1 2 1 2f c c                   .

(4) 1 2 1 2 1 2f f f                 .

Therefore,  is closed under union.

Q.E.D

The controller is defined as a mapping from the set of runs R(CFSMwV) to the set of control pattern Γ:

ψ: R(CFSMwV)→Γ.

The behavior of the controlled system, denoted by R(CFSMwV, ψ), is given as follows:

(1) ε ∈ R(CFSMwV, ψ), where ε denotes the empty trace (empty run);

(2) Then inductively,
1

1

1

1 1 1

1 1

1 1

 ((,) (,)... (,) (CFSMwV,))()

 (,) (CFSMwV,)

(,) (CFSMwV) ().

n

n

n

ll
o o n n n

l
n n

l
n n

r q p q p q p R l g

r q p R

r q p R r

 



 







 

 

       

 

    

In other words, a transition 1

1 1(,) (,)nl
n n n nq p q p

  is possible in the closed-loop systems if and only if it is

possible in the open-loop system (hence the guard is true) and the event is enabled or enforced. Our goal is to synthesize
a controller such that R(CFSMwV, ψ) = E if possible. To find a necessary and sufficient condition for the existence of a
controller, controllability is generalized as follows.

Definition 1: A set of possible runs K  R(CFSMwV) is controllable with respect to R(CFSMwV) and Γ if

(CFSMwV) (CFSMwV)()()(() ()) ()R K Rr K r r r          ,

where K denotes the prefix-closure of K, (CFSMwV) () { : (,) (CFSMwV)}g

R r r q p R      , and

() { : (,) }g
K r r q p K       .

The following theorem says that controllability is a necessary and sufficient condition for the existence of a

controller.

Theorem 1: Given a system CFSMwV and a specification K  R(CFSMwV), a controller ψ exists such that
R(CFSMwV, ψ) = K if and only if K is closed and controllable.

Proof: (ONLY IF) Let ψ be a controller such that R(CFSMwV, ψ) = K. Clearly K is closed. We show that K is
controllable as follows:

(CFSMwV,)

(CFSMwV)

(CFSMwV) (CFSMwV) (CFSMwV)

(CFSMwV) (CFSMw V)

 (CFSMwV,)

() () ()

() () () ()

() () () () () ()

() () () () ()

()(())

K R

K R

R K R R

R K R

K R

r K r r

r K r r r

r K r r r r r

r K r r r r

r K r











 


     

      

        

       

       (CFSMwV) (CFSMwV)() () () .R K Rr r r     

Therefore, K is controllable.
(IF) Since K is closed and controllable,

(CFSMwV) (CFSMwV)()() () () ()R K Rr K r r r           .

Let us define the controller ψ: R(CFSMwV)→Γ as follows: For r ∈ K, let ψ(r) be the largest  satisfies the above

equation. By Proposition 1, the largest  exists. For r ∈ R(CFSMwV)−K, let ψ(r)=Σ−Σc. We can prove r ∈ R(CFSMwV,

ψ) r ∈ K by induction on the length |r| of r as follows:

Base: Since K is closed, ε ∈ K. By the definition of R(CFSMwV, ψ), ε ∈ R(CFSMwV, ψ). Therefore,

ε ∈ R(CFSMwV, ψ)  ε ∈ K.

Induction Hypothesis (IH): Assume that for all r such that the length |r| ≤ d, and d is a positive integer.

r ∈ R(CFSMwV, ψ) r ∈ K.

Induction Step: We need to prove that for all (,)gr q p such that | (,) | 1gr q p d   ,

(,) (CFSMwV,) (,)g gr q p R r q p K       .

Indeed,

(CFSMwV)

(CFSMwV) (CFSMwV

 (,) (CFSMwV,)

(,) (CFSMwV) () (CFSMwV,)

(,) (CFSMwV) () By IH

() ()

()

g

g

g

R

R R

r q p R

r q p R r r R

r q p R r r K

r r r K

r









  

 
  

 







 

      

      
     

   )

(CFSMwV) (CFSMwV)

(CFSMwV)

() ()

() () ()

() ()

(,) (CFSMwV) (,)

(,) .

R R K

R K

g g

g

r r r K

r r r r K

r r r K

r q p R r q p K r K

r q p K

 





 

 
 



  

      

     

       

  

This proves the theorem.

Q.E.D
If the specification E is not controllable, we will find the largest subset of E that is controllable. In fact, we can

show that the supremal controllable subset of E always exists. To this end, let us define the set of all controllable subset
of E as

C(E)={K  E: K is closed and controllable with respect to R(CFSMwV) and Γ}.

Then we have the following theorem.

Theorem 2: If K1, K2 ∈C(E), then K1 K2 ∈ C(E). Therefore, the supremal controllable subset of E, denoted by supC(E),

exists.

Proof: Let K1, K2 ∈ C(E) and K = K1 K2. Obviously K is closed. Since both K1 and K2 are controllable, we have

11 1 (CFSMwV) (CFSMwV) 1()() () () ()R K Rr K r r r            ,

22 2 (CFSMwV) (CFSMwV) 2()() () () ()R K Rr K r r r            .

To prove K is controllable, we need to show

(CFSMwV) (CFSMwV)()() () () ()R K Rr K r r r           .

Since K = K1 K2, there are three possible cases.

(1) r ∈ K1 and r ∈ K2: In this case, let 1 2    . By Proposition 1, 1 2 1 2        . Also

1 2 1 2
() () () ()K K K K Kr r r r    . Therefore,

1 2

1 2

1 2

(CFSMwV)

(CFSMwV)

(CFSMwV)

(CFSMwV) (CFSMwV)

(CFSMwV) 1 (CFSMwV) 2

(CFSMwV) 1 2

(CFSMwV)

 () ()

() ()

() (() ())

(() ()) (() ())

(()) (())

() ()

() .

R K

R K K

R K K

R K R K

R R

R

R

r r

r r

r r r

r r r r

r r

r

r

 

 





  

  

    

     

     

   

  

(2) r ∈ K1 and r ∉ K2: In this case, let 1   . Then,

1 2

1 2

1

(CFSMwV)

(CFSMwV)

(CFSMwV)

(CFSMwV)

(CFSMwV) 1

(CFSMwV)

 () ()

() ()

() (() ())

() ()

()

() .

R K

R K K

R K K

R K

R

R

r r

r r

r r r

r r

r

r







 

  

    

  

  

  

(3) r ∉ K1 and r ∈ K2: In this case, let 2   . Then,

1 2

1 2

2

(CFSMwV)

(CFSMwV)

(CFSMwV)

(CFSMwV)

(CFSMwV) 2

(CFSMwV)

 () ()

() ()

() (() ())

() ()

()

() .

R K

R K K

R K K

R K

R

R

r r

r r

r r r

r r

r

r







 

  

    

  

  

  

So, in any case,

(CFSMwV) (CFSMwV)()() () () ()R K Rr K r r r           .

Q.E.D

By this result, we can find the least restrictive safety controller that ensures the closed-loop system will never
visit illegal states. Our strategy to synthesize the least restrictive safety controller is as follows: Initially, the system can
be in any legal state of the system. However, the system may move to an illegal state via some transitions. So it is
important to study transitions on the boundary (from a legal state to an illegal state). If a transition is associated with a
controllable event (i.e., transition (, / : (), ')q g p f p q  with

c  ) , then the transition can be disabled and we do

not need to worry about it. On the other hand, if a transition is associated with an uncontrollable event, then we must
prevent it from occurring by either making sure that its guard is not true or pre-empting the transition with an enforceable
event if possible. This implies that we must strengthen (or tighten) the conditions under which the system can stay in
legal states. We call these conditions safety conditions. We use Iq to denote the safety condition for state q. The key to
synthesizing the least restrictive safety controller is to update Iq iteratively so that after the procedure converges, the
transitions on the boundary are either disabled or pre-empted. To do this formally, let us denote the number of iterations
by k. Initially, we let safety condition Iq(0)=T for all legal states

bq Q and (0)qI F for all illegal states
bq Q . For a

legal state
bq Q , its safety condition Iq(k) is updated as:

' : ()(, / : (), ')

' : ()(, / : (), ')

(1) () (((()))

 ((()))).

c

f

q q q p f pq g p f p q

q p f pq g p f p q

I k I k g I k

g I k

  

  

    

    

     

  

This formula implies that the new safety condition will be true only if the old safety condition Iq(k) is true and either
there are no uncontrollable transitions leading to illegal states, ' : ()(, / : (), ')

((()))
c

q p f pq g p f p q
g I k

       
   , or there are

some enforceable transitions leading to legal states, ' : ()(, / : (), ')
((()))

f
q p f pq g p f p q

g I k
       

  .

 Since Q is finite by definition, whether the above iteration will converge (terminate) or not depends on the set P.
If P is finite, then the iteration is guaranteed to converge. If P is infinite, then the iteration may or may not converge. In
the example below, we show that in some cases even if P is infinite, the iteration still converges.

When the iteration converges, we have Iq(k+1) = Iq(k). Denote I*
q= Iq(k+1) = Iq(k). We can obtain the controller

ψ:R(CFSMwV)→Γ as follows: Let r ∈ R(CFSMwV) be a run ending at (q, p). Then

*

' : ()

*
' : ()(, / : (), ')

*
' : ()

{ : (, / : (), ') ()} ()

 if (())
()

{ : (, / : (), ') ()}

c

q cp f p

q p f pq g p f p q

f q p f p

q g p f p q g I

g I
r

q g p f p q g I

  

  


  



    



       

  


     

 otherwise.










Clearly ψ(r) ∈ Γ and under this control, the closed-loop system will satisfies safety condition I*

q for all legal state q∉Qb.

We show that ψ: R(CFSMwV)→Γ is indeed the controller we want.

Theorem 3: After the iteration converges, the controller ψ: R(CFSMwV)→Γ designed above generates the supremal
controllable subset supC(E). In other words,

R(CFSMwV, ψ) = supC(E).

Proof: We need to prove (1) R(CFSMwV, ψ) is controllable; (2) R(CFSMwV, ψ)  E; and (3) for all other subset K 
R(CFSMwV) such that K is controllable and K  E, K  L(CFSMwV, ).

(1) R(CFSMwV, ψ) is controllable:
R(CFSMwV, ψ) is generated by a controller. By Theorem 1, it is controllable.

(2) R(CFSMwV, ψ)  E:
During the iteration, all safety conditions are strengthened, that is, *

q qI I for all legal state
bq Q . Therefore,

R(CFSMwV, ψ)  E.
(3) For all other subset K  R(CFSMwV) such that K is controllable and K  E, KL(CFSMwV,):

During the iteration, a safety condition is strengthened only if not doing so will result in violation of specification
E. Hence, no other controller can generate a larger subset than L(CFSMwV,) without violating E. Since K is
controllable, by Theorem 1, it can be generated by a controller. Therefore, K is controllable and K  E imply K 
L(CFSMwV,).

Q.E.D

 Note that we assume that in the controlled system, the transitions enforced by the controller will occur before
the occurrence of any uncontrollable transition. This assumption is reasonable because we do not consider time in the
FSMwV model. If time is of importance, then we shall use hybrid machine model of [29] rather than FSMwV model. Let
us now illustrate the above results by an example.

Example 1: Consider the system described by the CFSMwV in Figure 5. The CFSMwV has three events α, β, η and one
variable pP, where P is the set of natural numbers. The illegal state is Qb = {6} (shaded in the figure). The controllable
events are Σc = {β, η}. The enforceable event is Σf = {η}. Our goal is to synthesize a safety controller to ensure that the
system will never enter the illegal state.

1 32

4 65

p=0

/ : 1p p  

/ : 1p p  

 / : 1p p  

/ : 1p p  

[10]p 

/ : 1p p  

[5]p / : 1p p  

/ : 1p p  

Figure 5. CFSMwV for Example 1.

The results of the iteration process to calculate Iq at different states is given in Table 1 and shown in Figure 6.

1 32

4 6

p=0

/ : 1p p  

/ : 1p p  

 / : 1p p  

/ : 1p p  

[10]p 

/ : 1p p  

[5]p / : 1p p  

/ : 1p p  
5

5p  5p T

T F F

Figure 6. Resulting CFSMwV after the iteration converges.

The control is given as: at state 1 and 2, the controller will disable β if p ≥ 4; at state 3, the controller will

enforce η if p ≥ 4; and at state 4, the controller always disables β.
Note that the controlled system can loop between states 1 and 4 infinitely many times. Hence, the value of p can

increase unboundedly. This example shows that even if P is infinite (the set of natural numbers), the iteration still
converges.

Table 1. Calculation of Iq at six states

State

 k
1 2 3 4 5 6

0 T T T T T F

1 T T T T
T  {(TF)}

= F
F

2 T
T{[(TT)(p≥5F)]}

= p<5

T{[(TT)(p≥10F)](TT]}

= T
T F F

3 T

p<5{[(TT)(p≥5F)]}

= p<5

I2*= I2(2) = I2(3), stop!

T{[(TT)(p≥10F)](Tp<5)}

= p<10
T F F

… … … … … … …

8 T p < 5 p<5 T F F

9 T p < 5
p<5

I3*= I3(9)= I3 (8), stop!
T F F

4 Online Safety Controller

As it has been demonstrated in standard supervisory control theory, online synthesis of safety controllers has advantages
in various applications. If the system to be controlled is large and complex, then offline control synthesis may not be
feasible, because it tries to compute the control actions for all possible states and values of variables. Therefore, for large
and complex systems, online synthesis is a good alternative because online synthesis only tries to compute the control
action for the current state and the current values of variables. Furthermore, online synthesis can be used even if the
system to be controlled is time-varying, while offline synthesis cannot be used for time-varying systems. In this section,
we will discuss online synthesis of safety controllers using FSMwV model.

To design a safety controller online, we can use either limited lookahead policies or variable lookahead policies
[20,21]. In both cases, a forward looking tree representing all possible future behaviour from the current state is
constructed. Since the variable values at the current state are known (under our assumption of full observation), all
guards can be evaluated. If a guard is true, the transition will be included in the tree; otherwise, the transition (and its
continuation) will be discarded in the tree.

After the tree is constructed, the online control synthesis is similar to that of offline. It is actually simpler
because of the following two reasons: (1) there are no loops in the tree structure; and (2) guards of all transitions have
been evaluated as either true or false. Transitions with false guards are discarded. As before, dynamic transitions with
true guards can be treated as same as uncontrollable event transitions by introducing a fictitious new uncontrollable event

u .

Since the offline synthesis algorithm has been discussed in the previous section, the key to controller synthesis
is to construct the forward looking tree. This is the focus of this section.

During the tree construction, after evaluating guards, transitions of various types are replaced as follows:
(1) Tq q  replace by q q 

(2) Fq q  discarded

(3) Tq q replace by 'uq q

(4) Fq q discarded

For limited lookahead policies, the tree construction ends after N steps. The legality of the states at the boundary
is determined by the attitude used. If the conservative attitude is used, then all the states at the boundary are considered
illegal. This guarantees that the resulting control policy is safe. However, conservative attitude may result in a smaller
(that is, more restrictive) control policy or even an empty control policy, which means that the controller will have an
error. On the other hand, if the optimistic attitude is used, then all the states at the boundary, except those belonging to
Qb, are considered legal. This attitude will result in a more flexible control policy. However, it may also lead to an
unrecoverable error, as it may be too late for an optimistic controller to prevent some illegal behaviour when it sees
illegal states.

For variable lookahead policies, the tree construction will continue until some termination conditions are
satisfied. We use the following three termination conditions:

(1) A branch terminates at state q if q is an illegal state;
(2) A branch terminates at state q if there is no forcible transition leaving q to a legal state but there is an

uncontrollable transition leaving q to an illegal state. In this case, state q is illegal;
(3) A branch terminates at state q if all the transitions leaving q are controllable. In this case, state q is legal

regardless of the legality of the following states.
If the tree construction for variable lookahead policies terminates, that is, if every branch ends with one of the

three termination conditions satisfied, then the variable lookahead policy obtained is guaranteed to be safe and least
restrictive. In other words, it will achieve the same performance as the controller synthesized offline.

Unlike limited lookahead policies, the tree construction for variable lookahead policies may not terminate. In such
cases, we can combine limited lookahead policies with variable lookahead policies. In other words, we construct the tree
as in variable lookahead policies until it reaches the N-step boundary. We then use either conservative or optimistic
attitude for the boundary state as in limited lookahead policies.

Example 2: Let us now demonstrate the online synthesis of the safety controller for the same system as in Example 1. We
consider the initial state with p=0. The tree with N=3 is constructed as shown in Figure 7. The shaded state is illegal.

If the conservative attitude is used, then all states at the bottom layer are considered illegal. By applying the
synthesis algorithm, the illegal states are “propagated” upward as shown in Figure 8. The control action at the root (i.e. at
the initial state) is to enable β, η and enforce nothing.

If the optimistic attitude is used, then all states at the bottom layer, except the left most one, are considered
legal. The synthesis algorithm finds bad states as shown in Figure 9. The resulting control action at the initial state is the
same as for the conservative attitude.

If variable lookahead policy is used, then some branches will terminate early as shown in Figure 10. This
control synthesis results in the same control action at the initial state.

0p 

/ 1p 

/ 2p 



/ 3p 

/ 2p / 1p 





 

Figure 7. Online expansion of the CFSMwV in Figure 5, where N = 3.

0p 

/ 1p 

/ 2p 


/ 3p 

/ 2p / 1p 





 

Figure 8. Online control synthesis in Example 2: with conservative attitude.

0p 

/ 1p 

/ 2p 


/ 3p 

/ 2p / 1p 





 

Figure 9. Online control synthesis in Example 2: with optimistic attitude.

0p 

/ 1p 

/ 2p 

/ 3p 





 

Figure 10. Online control synthesis in Example 2: with variable lookahead.

5 Applications to Power Grids

In this section, we apply the results obtained in the previous section to power grids that needs to accommodate more and
more use of PHEVs. This is because transportation electrification is viewed as one of the most viable ways to reduce CO2
emissions and the gasoline dependency. It is projected that the cumulative sales of electrical vehicles (EVs) and PHEVs
will reach 16 million by 2030 [30]. The increasing number of PHEVs will post new challenges to the existing power grid,
as they will become a large load to the grid [31]. Clearly uncontrolled charging of a large number of PHEVs will be a big
burden to the grid. Adding this load to the conventional residential and industry loads may cause the power grid to be
overloaded and hence negatively impacts the grid. Solving this problem by building new generation stations is neither
economic nor environmental friendly. On the other hand, when to charge a PHEV is not often time critical. So the
charging of PHEVs can be controlled optimally under the constraints of generation and transmission capacity of the
existing power grid [32]. In the rest of the paper, we will use FSMwV to model a small distribution network and use
supervisory control to control the charging of PHEVs.

5.1 Distribution Networks

A distribution network connects the output terminals of a distribution substation to the input terminals of customer loads.
Let us consider a typical distribution network shown in Figure 11. We assume that there are N nodes (or buses) in the
distribution network. We consider radial distribution networks in this paper. Interconnected distributed networks can also
be considered, but not discussed in this paper. For each node i, all the conventional local loads are lumped together and
denoted as pi,i. For instance, all the local load at Node 2 is denoted as p2,2. All the power lines including transformers
connected to Node i should not be overloaded. For example, for the local loads connected to Node 2, p1,2, p2,3 and p2,2 all
should be within their corresponding limits p1,2,m, p2,3,m and p2,2,m. We call p1,2 the incoming power to Node 2, at the same
time, p2,3 and p2,4 are called the outgoing powers. At each node, there is a power meter to measure the power of each line
connected to the node.

The power loss of the distribution network is neglected. We assume that if the power of a power line is 10%
over its limit, the circuit breaker (CB) will trip to protect the line and other devices. This constraint can be readily
changed to any actual protection setting in a distribution network. For the purpose of simplification, only PHEVs are
considered as controllable loads. The control target is to avoid the over loading type of tripping while satisfying all the
load demands as much as possible. Therefore the only safety criterion considered now is the power limit of each node in
the distribution network. Since the incoming powers and the outgoing powers are the summation of the local loads, the
illegal condition can also be considered as the overload of every local load power line.

A PHEV load is assume to be ni ×m, where ni is the number of PHEVs being charged at the node i and m is the
power consumed by each PHEV at the unit of kilowatts (kW). Three scenarios were proposed in [33] to charge the
PHEVs and one of them, m=6kW, is used in this paper. All local loads are calculated as conventional loads plus the
PHEV load, that is, pi,i+6ni. For instance, the local loads at Node 2 is p2,2+6n2. The control must ensure that all local
loads connected to all nodes do not exceed their limits. For example, for the local loads connected to Node 2, p2,2+6n2
must be within its corresponding limit p2,2,m.

CB 0,1p

CB 1,2p

CB

1,1 16p n

CB

CB

CB

2,3p

2,4p

CB

CB

CB

2,2 26p n , 6N N Np n

3,3 36p n

Figure 11. A distribution network with N nodes.

5.2 Model

We use FSMwV to model the distribution network. The model of the local load FSMwVi,i is shown in Figure
12. The states set Qi,i contains six states representing load level: the marked state N is for 0≤(pi,i+6ni)<pi,i,m;

O is for

pi,i,m≤(pi,i+6ni)<1.1pi,i,m; sometimes the backup power source is used to handle emergent situation, and NB is used to
denote the state that the backup power source is used and pi,i,m≤(pi,i+6ni)<(pi,i,m+pb), where pb denotes the capacity of
the backup power source; OB is for (pi,i,m+pb)≤(pi,i+6ni)<1.1(pi,i,m+pb); D denotes for the dangerous state and at D the
circuit breaker will be tripped to protect the power line thereby moving the system to the illegal state T. Six dynamic
transitions are defined correspondingly as: NO when (pi,i+6ni) ≥pi,i,m; ON when (pi,i+6ni)<pi,i,m; NBOB when (pi,i+6ni) ≥

(pi,i,m+pb); OBNB when (pi,i+6ni)<(pi,i,m+pb); OD when (pi,i+6ni) ≥ 1.1pi,i,m; and OBD when (pi,i+6ni) > 1.1(pi,i,m+pb).

Eight events in Σi,i are defined as follows: i 

is for “increase the conventional load”; i 

is for “decrease the

conventional load”;
 i



is for “add one PHEV”; i



is for “remove one PHEV”; i

 is for “add the backup power

source”; i
 is for “remove the backup power source”; i

 is for “trip the circuit switch” and i
 is for “restore the power

line”. Two variables, the conventional loads pi,i and number of PHEVs being charged ni, will be updated with the

occurrence of corresponding events as: i  with , ,: 1i i i ip p kW  ; i  with , ,: 1i i i ip p kW  ; i
 with ni:=ni+1; i



with ni:=ni-1; i
 with ni:=0 and , : 0i ip  . We assume that charging PHEV can be controlled (disabled). Therefore, the

controllable event set is  c i
  . We assume that the events in  , ,f i i i      are enforceable. As for the event

i
 , we will consider two scenarios, one is uncontrollable and unenforceable (cannot unplug a PHEV) and the other is

enforceable (can unplug a PHEV). We will discuss these two scenarios separately and compare their effects in the
control.

  , , ,6i i i i m ip n p    i


 , , , 6 1.1 i i i i i mp n p 

,/ : 0, : 0i i i in p  i


 , , ,

, ,
i i i i m i

i i i

p p 
  



  
   , , ,

, ,
i i i i m i

i i i

p p 
  



  
 

 , , ,

, ,
i i i i m i

i i i

p p 
  



  
 

 , , ,

, ,
i i i i m i

i i i

p p 
  



  
 

 , , , 6i i i i i mp n p 

 , , , 6i i i i i mp n p 

   , , , 6i i i i i m bp n p p  

   , , , 6i i i i i m bp n p p  
   , , , 6 1.1i i i i i m bp n p p  

Figure 12. FSMwV model for local load at node i.

Three assumptions for the FSMwV model of local loads are made as follows: (1) The occurrence of i 

has a

guard pi,i<pi,i,m since the conventional local loads normally cannot exceed the limit; (2) The occurrence of i
 has a guard

(pi,i+6ni)<pi,i,m, because we cannot remove the backup power source if the system will be overloaded; and (3) Initial
limitation of the state OB is set as: (pi,i+6ni)<1.1(pi,i,m+pb).

With the help of variables pi,i and ni, the dynamic of local load at node i is clearly represented by the FSMwV model
without having a large number of states. This FSMwV model clearly shows the relationship among the system status, the
penetration of PHEVs and the amount of conventional loads in a more efficient way.

5.3 Offline Safety Control

To synthesize a safety controller, two scenarios for event i

 , uncontrollable and enforceable, are considered. We use

the method described in Section 3 to calculate safety conditions Iq

iteratively. We assign the variables as: pi,i,m = 100 kW, pb

= 30 kW . Since the iterations are rather involved and time consuming, we write a computer program to do the calculations.
When the event i



is considered as uncontrollable and unenforceable, the safety regions representing safety

conditions Iq

of states N, NB, O and OB are shown in Figure 13 after 101 iterations. We do not show safety conditions IT

and ID, because they are simple: IT is always “False” and ID is “False” after the first iteration since the transition from
state D to state T is uncontrollable.

From Figure 13, we can see that the safety regions of states N, NB, O and OB are all very small. Intuitively, this
is because if the controller cannot unplug PHEVs, then it must be very conservative when it allows PHEVs to charge.
The maximal number PHEVs can be charged is only 7. This is the case even if the conventional loads are very low. This
means the capacity of the distribution network (and the generation capacity) is not fully utilized. This control is not
suitable for the increasing use of PHEVs.

Figure 13. Safety regions when i


 is uncontrollable

(a) State N, (b) State NB, (c) State O and (d) State OB.

When the event i



is considered as enforceable, the safety regions representing safety conditions Iq

of states N,

NB, O and OB are shown in Figure 14 after 33 iterations. The ID is also “False” after the first iteration.
It is clear from Figure 14 that the safety regions of states N, NB, O and OB are much bigger than the

uncontrollable scenario. This is because if PHEVs can be unplugged by the controller, then the control of charging of
PHEVs becomes more flexible. The control strategy is based on two premises: to guarantee the safety of the system (to
avoid entering the illegal states) and to give preference to uncontrollable conventional loads. This control not only
ensures the safety of the distribution network, but also takes full advantage of its capacity. It allows as many PHEV to be
charged as possible.

6 Conclusion

In this paper, we have presented our work on control synthesis under the modeling framework of Finite State Machine
with Variables. We have described our extension of the scope of the traditional DES (i.e., supervisory) control to include
both event disablement and enforcement for the control of discrete event systems modeled as FSMwV. We have
proposed an offline safety control synthesis procedure that takes the advantage of both event disablement and
enforcement in order to prevent the controlled system from venturing into illegal states. We have further presented online
safety control synthesis procedures based on the limited/variable lookahead policies to address the practical concern of
real world implementation. We have also applied the theoretical results to control PHEVs in power distribution networks.

Acknowledgement

This research is supported in part by the National Science Foundation of USA under Grant ECS-0823865, the National
Natural Science Foundation of China under Grants 60904019 and 60804042.

Figure 14. Safety area when i


 is enforceable event of

(a) State N, (b) State NB, (c) State O and (d) State OB.

References

[1] P. J. Ramadge, W. M. Wonham, Supervisory control of a class of discrete event processes, SIAM J. Control Optim.,

25 (1987) 206-230.

[2] C. G. Cassandras, S. Lafortune, Introduction to Discrete Event Systems, Kluwer, 1999.

[3] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Upper Saddle River, NJ, 1987.

[4] L. E. Holloway, B. H. Krogh, A. Giua, A survey of Petri Net methods for controlled discrete event ystems, Discret.

Event Dyn. S., 7 (1997) 151-190.

[5] Y. Li, W. M. Wonham, Control of vector discrete event systems I – the base model, IEEE Trans. Automat. Control,

38 (1993) 1214-1227.

[6] Y. Li, W. M. Wonham, Control of vector discrete event systems II– controller synthesis, IEEE Trans. Automat.

Control, 39 (1994) 512-531.

[7] G. Cohen, S. Gaubert, J. P. Quadrat, Timed-event graphs with multipliers and homogeneous min-plus systems,

IEEE Trans. Automat. Control, 43 (1998) 1296-1302.

[8] P. W. Glynn, A GSMP formalism for discrete event systems, Proc. of IEEE, 77 (1989) 14-23.

[9] F. Lin, W. M. Wonham, On observability of discrete event systems, Inform. Sci., 44 (1988) 173-198.

[10] P. J. Ramadge, W. M. Wonham, The control of discrete event systems, Proc. of the IEEE, 77 (1989) 81-98.

[11] K. T. Cheng, A. S. Krishnakumar, Automatic generation of functional vectors using the extended finite state

machine model, ACM T. Des. Automat. El., 1 (1996) 57-79.

[12] Y. Yang, P. Gohari, Embedded supervisory control of discrete-event system, Proc. IEEE Int. Conf. Autom. Sci.

Eng., (2005) 410-415.

[13] Y. Yang, A. Mannani, P. Gohari, Implementation of supervisory control using extended finite state machines, Int. J.

Syst. Sci., 39 (2008) 1115-1125.

[14] A. Mannani, Y. Yang, P. Gohari, Distributed extended finite state machines: communication and control, Proc. Int.

Workshop Discret. Event Syst., (2006) 161-167.

[15] A. Voronoc, K. Akesson, Verification of supervisory control properties of finite automata extended with variables,

Technical Report, Chalmers University of Technology (2009).

[16] M. Skoldstam, K. Akesson, M. Fabian, Modelling of discrete event systems using finite automata with variables,

Proc. IEEE Conf. Control and Decis., (2007) 3387-3392.

[17] B. Gaudin, P. Deussen, Supervisory control on concurrent discrete event systems with variables, Proc. Am. Control

Conf., (2007) 4274-4279.

[18] T. L. Gall, B. Jeannet, H. Marchand, Supervisory control of infinite symbolic systems using abstract interpretation,

Proc. IEEE Conf. Decis. Control and Eur. Control Conf., (2005) 30-35.

[19] Y.-L. Chen and F. Lin, “Modeling of discrete event systems using finite state machines with parameters”,

Proceedings of the 2000 IEEE International Conference on Control Applications, (2000), 941-946.

[20] S. L. Chung, S. Lafortune, F. Lin, Limited lookahead policies in supervisory control of discrete event systems, IEEE

Trans. Automat. Control, 37 (1992) 1921-1935.

[21] N. B. Hadj-Alouane, S. Lafortune, F. Lin, Variable lookahead supervisory control with state information, IEEE

Trans. Automat. Control, 39 (1994) 2398-2410.

[22] J. H. Prosserl, J. Selinskyl, H. G. Kwatny, M. Kaml, Supervisory control of electric power transmission networks,

IEEE Trans. Power Syst., 10 (1995) 1104-1110.

[23] L. H. Fink, Discrete events in power systems, Discret. Event Dyn. S., 9 (1999) 319-330.

[24] I. A. Hiskens, Power system modeling for inverse problems, IEEE Trans. Circuits Systems I, 51 (2004) 539-551.

[25] H. Zhao, Z. Mi, H. Ren, Modeling and analysis of power system events, Proc. IEEE Power Eng. Soc. Gen. Meet.,

Montreal, Canada (2006).

[26] H. Heymann, F. Lin, G. Meyer, Synthesis of minimally restrictive legal controllers for a class of hybrid systems,

Hybrid Syst. IV, Lecture Notes in Comput. Sci., 1273 (1997) 134-159.

[27] M. Heymann, F. Lin, Discrete event control of nondeterministic systems, IEEE Trans. Automat. Control, 43 (1998)

3-17.

[28] Y. Li, F. Lin, Z. H. Lin, A generalized framework for supervisory control of discrete event systems, Int. J. Intell.

Control Syst., 2 (1998) 139-159.

[29] M. Heymann, F. Lin, G. Meyer, Synthesis and viability of minimally interventive legal controllers for hybrid

systems, Discret. Event Dyn. S., 8 (1998) 105-135.

[30] M. Duvall, Grid integration of plug-in hybrid electric vehicles, Technical Report, Electric Power Research Institute

(2009).

[31] C. Roe, F. Evangelos, J. Meisel, A. P. Meliopoulos, T. Overby, Power system level impacts of PHEVs’, Proc. Int.

Conf. Syst. Sci., Hawaii, USA, (2009) 1-10.

[32] K. Clement-Nyns, E. Haesen, J. Driesen, The impact of charging plug-in hybrid electric vehicles on a residential

distribution grid, IEEE Trans. Power Syst., 25 (2010) 371-380.

[33] R. Green, L. Wang, M. Alam, The impact of plug-in hybrid electric vehicles on distribution networks: a review and

outlook, Renew. Sust. Energ. Rev., 15 (2011) 544-553.

	University of New Haven
	Digital Commons @ New Haven
	2012

	Modeling and Control of Discrete Event Systems Using Finite State Machines with Variables and Their Applications in Power Grids
	Junhui Zhao
	Le Yi Wang
	Zhong Chen
	Feng Lin
	Hongwei Zhang
	Publisher Citation
	Comments

	tmp.1450967466.pdf.hGj_N

