
University of New Haven
Digital Commons @ New Haven

Electrical & Computer Engineering and Computer
Science Faculty Publications

Electrical & Computer Engineering and Computer
Science

2014

An Efficient Similarity Digests Database Lookup --
a Logarithmic Divide and Conquer Approach
Frank Breitinger
University of New Haven, fbreitinger@newhaven.edu

Christian Rathgeb
Hochschule Darmstadt, Germany

Harald Baier
Hochschule Darmstadt, Germany

Follow this and additional works at: http://digitalcommons.newhaven.edu/
electricalcomputerengineering-facpubs

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
Forensic Science and Technology Commons, and the Information Security Commons

Comments
Copyright (c) 2014 Journal of Digital Forensics, Security and Law Creative Commons License This work is licensed under a Creative Commons
Attribution 4.0 International License.

Publisher Citation
Breitinger, F. , Rathgeb, C., and Baier, H. (2014) An efficient similarity digests database lookup -- a logarithmic divide and conquer
approach. Journal of Digital Forensics, Security and Law 9(2): 152-166.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Haven

https://core.ac.uk/display/214329972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.newhaven.edu?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages

An Efficient Similarity Digests Database Lookup ... JDFSL V9N2

AN EFFICIENT SIMILARITY DIGESTS

DATABASE LOOKUP – A LOGARITHMIC DIVIDE

& CONQUER APPROACH
Frank Breitinger, Christian Rathgeb and Harald Baier

da/sec - Biometrics and Internet Security Research Group
Hochschule Darmstadt, Darmstadt, Germany

{Frank.Breitinger, Chrisitian.Rathgeb, Harald.Baier}@cased.de

ABSTRACT

Investigating seized devices within digital forensics represents a challenging task due to the increasing
amount of data. Common procedures utilize automated file identification, which reduces the amount
of data an investigator has to examine manually. In the past years the research field of approximate
matching arises to detect similar data. However, if n denotes the number of similarity digests in a
database, then the lookup for a single similarity digest is of complexity of O(n).
This paper presents a concept to extend existing approximate matching algorithms, which reduces
the lookup complexity from O(n) to O(log(n)). Our proposed approach is based on the well-known
divide and conquer paradigm and builds a Bloom filter-based tree data structure in order to enable
an efficient lookup of similarity digests. Further, it is demonstrated that the presented technique is
highly scalable operating a trade-off between storage requirements and computational efficiency.
We perform a theoretical assessment based on recently published results and reasonable magnitudes
of input data, and show that the complexity reduction achieved by the proposed technique yields a
220-fold acceleration of look-up costs.

Keywords: digital forensics, hashing, approximate matching, Bloom filter, mrsh-v2, sdhash,
indexing

1. INTRODUCTION

Handling hundreds of thousands of files is a ma-
jor challenge in today’s digital forensics. In order
to cope with this information overload, investi-
gators often apply hash functions for automated
input identification. A common forensic task is
known file filtering which is rather trivial: (1)
compute the hashes for all files on a target device
and (2) compare them to a reference database.
Depending on the underlying database, files are
either filtered out (i.e., whitelisting, e.g., files of
the operating system) or filtered in (i.e., black-
listing, e.g., known offensive content). In case
of whitelisting we claim that an investigator is
only interested in exact matches and thus cryp-
tographic hashes are sufficient. A very common

database for ‘filter out’ data is the National
Software Reference Library (NSRL, 2013) main-
tained by the National Institute for Standards
and Technologies (NIST). However, in case of
blacklisting the database contains illegal or suspi-
cious inputs, e.g., child abuse or leaked company
secrets, and an investigator is also interested in
similar files.

However, the lookup complexity of similarity
digests hamper their usage in the field. Let n
denote the number of digests in a database, then
the naive lookup for a single similarity digest is of
complexity of O(n). In contrast, cryptographic
hash values can utilize tree data structures or
hash tables which reduce the lookup complexity
to O(log(n)) or O(1), respectively.

� 2014 ADFSL Page 155

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

JDFSL V9N2 An Efficient Similarity Digests Database Lookup ...

Recently, the community started to work on
that challenge and presented some first ideas.
For instance, ssdeep (Kornblum, 2006) was ex-
tended and now has a possibility of indexing
(Winter, Schneider, & Yannikos, 2013). The
authors showed an improvement of a factor of
almost 2000 which is ‘practical speed’. How-
ever, there are further approaches like sdhash

or mrsh-v2 that outperform ssdeep with respect
to precision & recall (Roussev, 2011; Breitinger,
Stivaktakis, & Baier, 2013; Breitinger, Stivak-
takis, & Roussev, 2013).

As the indexing procedure of ssdeep is not
applicable for the latter approaches1, Breitinger
et. al presented and evaluated a lookup improve-
ment that allows a file-against-set comparison
in case of a Bloom filter similarity digest. The
lookup complexity of decreases to O(1), however,
their work only provides a binary decision (if or
if not a file is in the blacklist). Breitinger et. al
published a prototype and demonstrated that
their concept works (Breitinger, Baier, & White,
2014).

In this paper we focus on an improvement of
the proposed concept in (Breitinger et al., 2014).
The main idea is to apply the well-known divide
& conquer paradigm to their concept to find the
actual similar file in the blacklist. Hence instead
of providing a binary decision, our approach
returns the actual matching file(s). Compared
to an all-against-all comparison, we only have
a lookup complexity of O(log(n)) for a single
digest. Our theoretical assessment shows that
for a reasonable size of blacklist and seized device
the comparison step of our approach is 220 times
faster than in the classical Bloom filter setting.

The remainder of the paper is organized as
follows. Sec. 2 introduces the necessary back-
ground and related work. Our efficient digest
comparison concept based on a Bloom filter hi-
erarchy is explained in Sec. 3. All details about
our concept are presented in Sec. 4 and Sec. 5.
An assessment of the proposed concept is given
in Sec. 6. The last section, Sec. 7, concludes the

1Note, different approximate matching algorithms
work on different similarity digest representations. While
ssdeep outputs a Base64 encoded fingerprint, sdhash
and mrsh-v2 make use of Bloom filter based hashes.

paper.

2. BACKGROUND

This section explains the foundations and sum-
marizes related literature. First we define the us-
age of hierarchical tree data structures in Sec. 2.1.
Subsequently, Sec. 2.2 introduces the concept of
Bloom filters. Finally, an overview of approxi-
mate matching is given in Sec. 2.3, introducing
two concepts in more detail.

2.1 Hierarchical Tree Data
Structure

A tree data structure Ψ of degree x is a tree
where each node either has x references to nodes
(its ‘children’) or does not have children (leaves).
Let |Ψ| define the total number of leaves in Ψ,
then the height, i.e., the number of nodes on the
longest path from the root to a leaf is

h(Ψ) = �logx(|Ψ|)�, (1)

where Ψ has exactly h(Ψ) levels. According
to this, the height of a non-empty tree Ψ is
defined as h(Ψ) + 1.

2.2 Bloom Filter

Bloom filters (Bloom, 1970) have a wide field of
applications, e.g., database applications (Mullin,
1990) or network applications (Broder & Mitzen-
macher, 2005) and are commonly used to repre-
sent elements of a finite set S. A Bloom filter b
is an array consisting of m bits, initially all set to
zero. In order to map an element s ∈ S into the
filter, k independent hash functions are needed
where each hash function h outputs a value in
the range [0, . . . ,m − 1]. Next, s is hashed by
all hash functions h. To map s the Bloom filter
b, the bits b[h0(s)],b[h1(s)], . . . ,b[hk−1(s)] of
b are set to one.

To answer the question if s′ is in S, we com-
pute h0(s

′), h1(s′), . . . , hk−1(s′) and analyze if
the bits at corresponding positions in the Bloom
filter are set to one. If this holds, s′ is assumed
to be in S, however, these bits may be set to
one by different elements previously inserted to
S. Hence, Bloom filters suffer from a non-trivial
false positive rate. Otherwise, if at least one

Page 156 � 2014 ADFSL

An Efficient Similarity Digests Database Lookup ... JDFSL V9N2

bit is set to zero, we know with certainty that
s′ /∈ S, i.e., it is obvious that the false negative
rate is equal to zero.

In case of uniformly distributed data the prob-
ability that a certain bit is set to one during
the insertion of an element is 1/m, i.e., the prob-
ability that a bit is still zero is 1 − 1/m. After
inserting z elements into the Bloom filter, the
probability of a given bit position to be one is
1− (1− 1/m)k·z. To have a false positive, all k
array positions need to be set to one. Hence, the
probability p for a false positive is

p =
(
1− (1− 1/m)kz

)k

≈
(
1− e−kz/m

)k
for

1

m
� 1. (2)

If we fix m and z in Eq. (2), we can de-
termine k such that the false positive prob-
ability is minimized. Rewriting Eq. (2) as

p(k) = ek·ln(1−e
−kz/m) yields one distinct can-

didate of a root of dp
dk at

k = m/z · ln(2). (3)

However, due to p(0) = limk→∞ p(k) = 1 and
0 < p(k) < 1 for k > 0 shows that p(k) actually
is minimal at this value of k. In our case we
have to choose an integer close to the value of
Eq. (3).
Note, the lookup complexity for a feature is

independent of the Bloom filter size if the filter
is in the memory. We simply ask if the bit at a
specific memory position is one.

2.3 Bytewise Approximate
Matching

Approximate matching is a rather new area in
digital forensics and probably had its break-
through in 2006 with an algorithm called context
triggered piecewise hashing (CTPH). Since then,
a couple of algorithms were presented. As this
work focuses on Bloom filter-based approaches,
we briefly describe them in the following. A
comprehensive overview of different algorithms
is given by (Breitinger, Liu, et al., 2013).
Basically approximate matching consists of

two separate functions. First, tools run a fea-
ture extraction function that extracts features

or attributes from the input that allow a com-
pressed representation of the original object (the
exact proceeding depends on the implementation
itself). This compressed representation is called
a similarity digest or similarity hash. Second,
to compare two similarity digests, a comparison
function is used that normally outputs a score
between 0 and 100.

2.3.1 Bloom Filter-Based Approaches

In the following, we provide a brief sketch of
the feature extraction functions of sdhash and
mrsh-v2, respectively; a detailed description is
beyond the scope of this paper. Details about
the similarity function and the similarity digests
are given at the end of this section.

sdhash This algorithm was proposed by
(Roussev, 2010) and attempts to pick charac-
teristic features for each object that are unlikely
to appear by chance in other objects, which is
the result from an empirical study. In the base-
line implementation, each feature is hashed with
SHA-1 (Gallagher & Director, 1995) and mapped
to a Bloom filter where a feature is a sequence
of 64 bytes. The similarity digest of the data
object is a sequence of 256-byte Bloom filters
each representing approximately 10 KiB of the
original data, on average. Subsequently, a block-
aligned version was developed (Roussev, 2012),
in which fixed-size blocks (16 KiB by default) are
mapped to each 256-byte filter. Although the
two versions are compatible (the two versions of
the digests can be meaningfully compared) we
do not consider the block-aligned version in our
study as it requires additional parameters.

mrsh-v2 (Breitinger & Baier, 2013) propose
a new algorithm that is based on ssdeep and
multi-resolution similarity hashing (Roussev, III,
& Marziale, 2007). Similarly to ssdeep, the
algorithm divides an input into chunks using
a rolling hash where the estimated blocksize is
160 bytes. Each chunk is then hashed by the
64-bit non-cryptographic hash function FNV-1a
(Noll, 1994--2012) and mapped to a Bloom filter
where a filter can store up to 160 chunks. Once
a Bloom filter reaches its capacity, a new one is
created. Note, in the following we are using the

� 2014 ADFSL Page 157

JDFSL V9N2 An Efficient Similarity Digests Database Lookup ...

term feature as a synonym for chunk.

Similarity digest The similarity digest is
very similar in both cases. To insert a feature-
hash into a m = 2048 bit Bloom filter (default
size for both algorithms), the algorithms take 55
bits of the feature-hash, split them into k = 5
sub-hashes of 11 bits and set the corresponding
bit.

Both implementations have a maximum
amount of feature-hashes per Bloom filter. If this
limit is reached, a new Bloom filter is created.
Hence, the final similarity digest is a sequence
of Bloom filters which is supposed to be approx-
imately 1.0% (mrsh-v2) or 1.6%--2.6% (sdhash)
of the input length (compression ratio). To iden-
tify the similarity between two digests, all Bloom
filters of fingerprint A are compared against all
Bloom filters of similarity digest B with respect
to the Hamming distance as metric2.

3. EFFICIENT
COMPARISON USING A

BLOOM FILTER
HIERARCHY

The main drawback of Bloom filter-based simi-
larity digests is that it is not possible to order /
index them. More precisely, looking for a single
digest in a database containing n digests, comes
with an ‘against-all’ comparison (brute-force)
and, thus, a complexity of O(n).

For instance, we run sdhash on our private
laptop and work on the t5-corpus3 which com-
prises 4457 files. In a first step we precompute
the similarity digests of all files and store them
in a database of roughly 62MiB. Then for each
file we compare its similarity hash against the
database. The overall run time for the 4457
comparisons is 1281 s. In other words, compar-
ing 1.78 · 230 × 1.78 · 230 = 3.17 · 260 of data
(in units of bytes) takes about 20 minutes. Ac-
cording to this, we can estimate the runtime
for a practical relevant scenario: we assume a
database file set of 256 GiB and a seized hard

2The original comparison is only sketched in this pa-
per, as we replace it in our new concept.

3http://roussev.net/t5/

drive with 200 GiB of data. Then we have to
compare 200 ·230×256 ·230 = 51, 200 ·260 of data
units, resulting in an unpractical response time
of 51, 200/3.17 · 1281 s ≈ 20, 689, 968 s ≈ 240 days.
In contrast, for cryptographic hashes the com-
plexity is O(log2(n)) or even O(1) depending on
the storage technique: binary tree data struc-
tures or hash tables, respectively.
In the following we present our approach to

speed up the comparison step using a tree of
Bloom filters. We start in Sec. 3.1 by introducing
the terminology used in this paper. Our idea
extends previous work of (Breitinger et al., 2014),
which we describe in Sec. 3.2. Then Sec. 3.3 gives
an overview of the basic operation mode of the
proposed concept.

3.1 Terminology & Definitions

This section explains the notation and terminol-
ogy used in this paper.

n. . . number of files which is equal to the num-
ber of similarity digests.

z. . . number of features inserted into a Bloom
filter (The correlation between n and z is
discussed in Sec. 4.1).

feature. . . byte sequence which is hashed and
inserted into the Bloom filter.

m. . . Bloom filter size in bits.

k. . . number of sub-hashes where each one sets
a bit in the Bloom filter.

p. . . false positive probability for an element /
feature to be in the Bloom filter.

x. . . degree of the tree.

In case of mrsh-v2 feature equals a chunk of
approximately 160 bytes and regarding sdhash

feature is a sequence of exactly 64 bytes.

3.2 Starting Point

In (Breitinger et al., 2014) the authors presented
a first step towards a solution of the described
problem. Instead of using multiple Bloom filters,
the authors inserted all features of the database
into a single Bloom filter. Thus, they overcome

Page 158 � 2014 ADFSL

An Efficient Similarity Digests Database Lookup ... JDFSL V9N2

the drawback of existing approaches and avoid
the all-against-all comparison of similarity di-
gests.
In other words, if S denotes a database of n

digests, the paper shows that it is feasible to
perform a membership query f in O(1) yielding
a binary answer to the question ‘‘does the set S
contain a similar file to file A?’’, that is

f(A,S) �→ {0, 1}, (4)

where 0 means ’no’ and 1 ’yes’. In case of
a positive result, S contains a file or fragment
similar to A, but we do not know which one. In
case of blacklisting this provides the hint that
one will find evidence on the target device.

In their paper, the authors discussed different
parameters and validated their results. There-
fore, they published a tool called mrsh-net and
showed a comprehensive evaluation that this
approach works well. Since we change the pa-
rameter values and argumentation for different
settings, we discuss our settings in Sec. 4.

3.3 Proceeding Overview

Our idea is based on the divide-and-conquer
paradigm. The basic idea is, that if f is ap-
plicable to a set of n files it can be applied to
any subset of S which contains � n files, too.
This implication enables the tracing of potential
similar files, where we recursively divide a given
set of similarity digests into x subsets, that is we
build a hierarchical tree data structure yielding
a logarithmic lookup complexity.

A tree data structure of Bloom filters is built
over all similarity digests where each leaf is a ‘file
identifier’ (FI). An FI is a link to a database
which contains at least the similarity digest,
but may contain additional information, too.
Additionally, an FI points at an ‘file identifier
counter’ (FIC). An FIC is initialized with zero
and incremented if a tree traversal ends in the
corresponding FI .
In the following we describe the tree genera-

tion process and the lookup strategy.

3.3.1 Tree Generation

For a given set S containing n elements (i.e.,
files), each element s ∈ S is mapped to the root

node of the tree; a huge Bloom filter. Mapping
means that the approximate matching algorithm
selects the features, builds the feature hashes
and sets the corresponding bits in the Bloom
filter. In all, we map z features into the root
Bloom filter.

Subsequently, depending on the degree x of
the tree data structure, S is divided in x subsets
each containing n/x consecutive elements of S.
For each of the x subsets we generate a child
node of the root Bloom filter by mapping the
corresponding files of the subset to its Bloom fil-
ter. This procedure is applied recursively, i.e., in
level L, n/xL−1 consecutive elements are mapped
to xL−1 different Bloom filters, while n/xL−1 > 1.
Finally, FI s and FIC s are stored at the corre-
sponding leaves. The procedure is summarized
in Fig. 1, an example for a binary tree (x = 2)
is illustrated in Fig. 2.

Input:

• Set of elements, S

Output:

• Hierarchical tree data structure, Ψ

Procedure:

1. Insert each element s ∈ S into the root Bloom filter b

2. In level L insert xL−1 consecutive sequences of z/xL−1

elements into Bloom filters of according xL−1 nodes

3. Repeat 2. while z/xL−1 > 1

4. Insert FI s at leaves of Ψ

Figure 1 Generalized Construction of Bloom
Ffilter-Based Tree Data Structure

3.3.2 Lookup Strategy

Once the Bloom filter tree is generated, it is not
necessary to compare a digest of a seized device
against all digests in the reference dataset; it only
has to be compared against a subset of nodes.
Moreover, we claim that most comparisons yield
a non-match (i.e., |good files| 	 |bad files| as
we focus on blacklisting) and hence are dropped
in the first step. Once a match is found in the
root node, we trace a path down the tree data
structure ending at a leaf and the according
FIC is incremented. If an exact match score is

� 2014 ADFSL Page 159

JDFSL V9N2 An Efficient Similarity Digests Database Lookup ...

needed, the FI can be used to fetch the similarity
digest from the database. We point to the fact
that we expect to perform x/2 member queries
at each level as we only process child nodes of
the matching Bloom filter of the previous level.
Each query is of lookup complexity O(1). This
improves the lookup complexity for one digest
to O(x · logx(n)), that is O(log(n)) for a binary
tree.

The final lookup procedure is different since
we do not compare files to the nodes but multiple
fragments of files. The impact and final workflow
is discussed in Sec. 5.

4. DESIGN DECISIONS

This section explains our design decisions for the
various parameters to implement our concept.
Sec. 4.1 shows the correlation between the in-
put file size and the number of features which
are inserted into the Bloom filter. The size and
height of the binary tree is discussed in Sec. 4.2.
Sec. 4.3 introduces our match decision approach
and the false positive rate. Based on all these
findings, Sec. 4.4 explains the procedure of how
to calculate the best Bloom filter size. The rele-
vance of the feature hash function is discussed
in Sec. 4.5.

4.1 Correlation Between Features
(z) and Files (n)

In Eq. (2), z denotes the number of elements that
are inserted into a Bloom filter which is equal
to the amount of features. Thus, the number
of elements differs to the amount of files n in
the set. Hence, this section analyzes the relation
between z and file set size. Let μ denote the file
set size in MiB.

� sdhash maps 192 features into a Bloom
filter for every approximately 10 KiB of
the input file. Thus, z is calculated by
z = μ · 220 · 192/(10 · 210) ≈ μ · 214, where
220 and 210 is needed to change from MiB
and KiB to bytes, respectively.

� In case of mrsh-v2, the implementation
splits the input on average in 160-byte
features. Thus, z is calculated by z =

μ · 220/160 ≈ μ · 213 where 220 converts
MiB into bytes.

For the remainder of this paper we use z = μ·214.
4.2 Memory Usage and Height of

the Tree

Eq. (1) in Sec. 2.1 showed how to calculate the
height of the tree if every leaf only contains one
FI and one FIC . If we assume a dataset size of
Ω GiB and an average file size of ω KiB, then
our dataset consists of |Ψ| := Ω · 230/(ω · 210) =
Ω/ω · 220 files which results in a maximum height
of h(Ψ) = �logx(Ω/ω · 220)� -- if each bucket
contains exactly one entry.
As this is very memory consuming, there is

also the possibility that a leaf is a bucket and
contains multiple FI s and corresponding FIC s
instead of a single one. In that case the queried
similarity digest must be compared to all files in
the bucket. However, by storing a total number
of l FI s and l FIC s at each leaf, we reduce the
height to,

h(Ψ) = �logx(|Ψ|/l)�,

The actual size of the each Bloom filter (each
node) is variable. However, if we require that
k, p, z are fix, then the relation of the sizes of
Bloom filters between two consecutive levels is
1/x. More precisely, let L ∈ N denote the level in
the binary tree (L = 1 is the root level) and let
mL be the Bloom filter size at the corresponding
level. Then, mL+1 = mL/x. On a subsequent
level we have an x-fold number of Bloom filters
yielding a constant size of the sum of filters per
level. Accordingly, the overall memory usage of
the tree is h(Ψ) ·m1.

Remark : we reallocated the elements but the
overall number is constant at each level. If the
number of elements mapped to the tree reduces
and k, p are fix, then the size of the filter reduces,
too.

4.3 Match Decision and False
Positives

Traditionally approximate matching compares
two similarity digests against each other and
returns the match score. Our procedure works

Page 160 � 2014 ADFSL

An Efficient Similarity Digests Database Lookup ... JDFSL V9N2

. . .

.

s1 s2 sn. . .

. . .

Ψ S

FI 1 FI 2 FIn. . .

BF . . . Bloom filter

level 1

level 2

level 3

h(Ψ) =
�log2 n�

n elements

n/2 elem.
n/2 elem.

n/4 elem.

FIn−1

BF

BF BF

BF BF

FIC 1 FIC 2 FICnFICn−1. . .

Figure 2 Construction of Bloom Filter-Based Tree Data Structure Using a Binary Tree

a bit different. Instead of searching for the com-
plete files, we focus on fragments to identify
potential buckets. A fragment of a file matches
a Bloom filter, if r consecutive features are found
in the node. Once a leaf is identified, we might
perform the conventional comparison.

More precisely, Eq. (2) relates the false pos-
itive probability p for a single feature to the
different parameters k, z,m. In fact, we are less
interested in the false positive rate for a sin-
gle feature but more for a fragment of a whole
file. Let pf denote the desired false positive
probability for a fragment. If we require r ∈ N

consecutive false positive features to be a false
positive fragment, the false positive probability
for a fragment is pf = pr.

For instance, if we choose a targeted false
positive probability of 10−8 for each fragment
(which is equal to a file) and set r = 8, then
p = 108/−8 = 0.1 4. The predefined thresh-
old r is scalable and defines the number of re-
quired tree traversals. Since r represents an
absolute value, i.e., the lookup complexity re-
mains O(r · log(n)) = O(log(n)). The entire
matching procedureis depicted in Fig. 3.

Note, we only focus on binary similarity. In
other words, researchers have found that com-
mon artifacts such as color profiles are very com-
mon throughout multiple files. This might lead

4Note, r = 8 corresponds an approximate overlapping
of 8 ·160 = 1280 bytes in case of mrsh-v2. We argue that
this is a sufficient lower bound to talk about similarity.
Of course, one may change these settings to the personal
requirements.

Input:

• Bloom filter b, file A, threshold r

Output:

• Binary match decision 1...match, 0...no match

Procedure:

1. Identify and hash feature of A

2. Add it to the similarity digest

3. Compare the feature to b

4. If it matches, then increase counter FIC and save feature
hash, otherwise FIC = 0

5. If FIC = r, return ’1’, otherwise apply 1. to the next feature

6. Return ’0’

Figure 3 Generalized Overview of the Proposed
Matching Function

to a false positive from a semantic point of view,
however, this might also be interesting for an in-
vestigator (e.g., these pictures where taken with
the same camera). Depending on the require-
ments, it might be necessary to ignore (filter
out) those artifacts which is ongoing research.

4.4 Root Bloom Filter Size

Let z and p be given and k be the optimal value
from Eq. (3). Then Eq. (2) becomes

p =
(
1− e− ln(2)

)m/z·ln(2)
= 2−m/z·ln(2) = e−m/z·(ln(2))2 .

Thus the root Bloom filter size is estimated as

m1 = −z · ln p/(ln 2)2 , (5)

� 2014 ADFSL Page 161

JDFSL V9N2 An Efficient Similarity Digests Database Lookup ...

where z denotes the amount of all features in
a set. According to the findings from Sec. 4.3,
p = r

√
pf . If we use r = 8 and the false pos-

itive probability for a fragment pf = 10−8 5.
Then, we have p = 108/−8 = 0.1 and m1 =
−z · ln 0.1/(ln 2)2 = −μ · 214 · (−4.7925) = μ · 216.26
bits. Depending on μ, each level of the binary
tree could easily have Bloom filters of 1-2 GiB
(the size of the Bloom filter has to be of type 2a

where a ∈ N).

4.5 Feature hash function

As known from Eq. (3) if z and m are given, the
value k minimizing the false positive probability
is

k = m/z · ln 2. (6)

Note, k is independent from the considered level
as m and z are both multiplied by 1/x.

According to this, the best value is k =
μ · 216.26/μ · 214 · ln 2 = 21.73 = 3.34. Since k ∈ N

and it may vary depending on the further pa-
rameters, we suppose 3 ≤ k ≤ 7.

Generally speaking, to set k bits in a Bloom
filter of m bits length, it requires a feature hash
function of at least k · log2(m) bits. More for-
mally, having a feature hash function of b bits,
b ≥ k · log2(m). In order to allow also larger ref-
erence sets like 256 GiB or 512 GiB which needs
Bloom filters of 4 or 8 GiB, we recommend to im-
plement 256-bit versions of the feature hash func-
tions (the default implementations of sdhash

and mrsh-v2 run 160-bit SHA-1 and the 64-bit
FNV hash). For instance, set k = 5 and using a
256-bit hash function allows us to handle Bloom
filter sizes of 2256/5 = 251.2 bits ≈ 218 GiB.

4.6 Analysis of Subsequent Level
(for Binary Trees)

If we consider a binary tree and a fragment of
file A is found in the root node, we expect to
have a match in one of the child nodes, too. We
therefore jump to the Bloom filters on level 2
and start with the left node. If the fragment
matches there, too, we continue on the next level.
In case of a negative, there are two possibilities:

5Note, the actual false positive rate will be higher due
common artifacts.

1. Hard decision: we trust that this fragment
is not a false positive and jump to the next
level of the right node.

2. Soft decision: we verify the result by com-
paring the fragment against the right node.

In the former case we obtain a logarithmic
lookup efficiency where in the latter case we
approximately have an additional 50% compar-
ison overhead. However, we reduce the false
positive rate. The entire procedure is depicted
in Fig. 4.

. . .

.

Ψ
file A

fi
le

A
n
o
t
in

S

0

00

00

1

1

S

Decisions:

hard
soft

Figure 4 Generalized Overview of the Proposed
Workflow

5. FINAL WORKFLOW

Traditionally the reference data is hashed and
stored in a database. Next, for the comparison,
all files on a seized device are processed and the
similarity digests are compared against all en-
tries in the database. As a result an investigator
receives all files that are similar to the processed
ones. File A, for example, could have several
similar files in the database and the result for A
is a list of similar files.

Due to the usage of a tree and fragments (i.e.,
r consecutive features) this overall procedure
changes. We argue that the main scenario for
approximate matching is blacklisting, i.e., filter
in data. With respect to filter out data, we are
more interested in exact duplicates and hence
cryptographic hash functions should be used.
Moreover, in case of filter in data, we claim
that it is sufficient to identify one match -- an

Page 162 � 2014 ADFSL

An Efficient Similarity Digests Database Lookup ... JDFSL V9N2

investigator only wants to know if the file is
blacklisted or not.
Thus, when comparing file A against our

Bloom filter hierarchy, we process all fragments
of a given file. If the fragment is not found in
a Level, we neglect it. If we identify a leaf that
contains this fragment, we increase FIC . At
the end, we return the FI with the highest FIC .
Depending on the personal preference, one may
fetch the real similarity digest from the database
based on the FI (s) and perform the conventional
comparison.

Note, the lookup complexity for a fragment is
O(r · k) and thus comes to O(1).
In order to speed up the process, one may

only compare some features and thus, one can
stop when one fragment of A is found (that is
r consecutive features). The difference is that
this latter procedure the probability of a false
positive is higher as we only use one instead of
all fragments.

5.1 Insertion & Deletion of File
Identifiers

Within any tree data structure the insertion of
an FI can be handled in O(log(n)) steps by in-
serting according features to log(n) Bloom filters
and one FI at the resulting leaf. To construct
Ψ we recommend to start from the top and go
to the bottom as we can reuse the feature hashes
from higher levels.
In contrast, the deletion of an FI can not

be performed on an existing tree data structure.
Since features are hashed into Bloom filters in an
irreversible manner, i.e., we do not know which
1s result from which features and the number of
times these occur, deletion has to be performed
off-line. In order to delete a single FI from the
proposed Bloom filter-based tree data structure
Ψ, the according FI has to be deleted from the
original set S and Ψ has to be constructed from
scratch. However, we claim that blacklisted
files will always remain blacklisted and therefore
deleting an FI never happens.

6. ASSESSMENT

As we are interested in a functional evalua-
tion, the actual type of the data (blacklisted vs.

whitelisted) does not matter. To get an overview
of the average file size of large datasets, we an-
alyzed the sizes of almost 1,000,000 files in the
govdoc-corpus6.
The average file size is 494 KiB with a dis-

tribution as shown in Table 1--nearly 91% of
all files are smaller than 1 MiB. Additionally,
we checked the average file size on our working
stations which is 510 KiB and 611 KiB, respec-
tively.

Table 1 File Sizes Distribution in the Govdoc-
Corpus (Min Size is 1 KiB)

File size (KiB) ≤ 4 ≤ 16 ≤ 64 ≤ 256 ≤ 1024

Amount (%) 5.40 20.71 52.54 75.82 90.60

As shown later, this technique is very mem-
ory consuming and requires powerful hardware.
However, we argue that nowadays hardware is
not expensive any more and companies working
in prosecution can afford servers with hundreds
of gigabytes of RAM, e.g., according to ama-
zon.com, 16GiB RAM cost less than 150 dollar
which results in 2400 dollar for 256GiB of RAM.

6.1 Any Tree vs. Binary Tree

The size and the height of a tree depend on
their degree x. For instance, if we assume a
database S with 10,000 entries, then for choosing
a binary tree, x = 2, we get a total number of
h(Ψ) = �log2(10, 000)� = 14 levels (level 15 are
the leaves). In the worst case, the complexity of
looking up a single digest reduces from 10,000
comparisons to 15. On the other hand, if the
digest is not found in the root node, it is dropped
immediately.
In case there is not enough memory to han-

dle a binary tree of 14 Bloom filter levels, one
may set an upper limit. Thus, the leaves do
not contain a single FI and FIC but a bucket

6‘‘These documents were obtained by performing
searches for words randomly chosen from the Unix dictio-
nary, numbers randomly chosen between 1 and 1 million,
and randomized combinations of the two, for documents
of specified file types that resided on web servers in the
.gov domain using the Yahoo and Google search engines’’-
-http://digitalcorpora.org/corpora/files (last ac-
cessed May 2nd, 2014).

� 2014 ADFSL Page 163

http://digitalcorpora.org/corpora/files

JDFSL V9N2 An Efficient Similarity Digests Database Lookup ...

with multiple FI s and corresponding FIC s, e.g.,
setting an upper limit of L = 10 levels results
in �10, 000/xL� = �10, 000/210� ≈ 10 FI s per
bucket. In addition, it is possible to increase x,
e.g., setting x = 4 reduces the number of levels
to �log4(10, 000)� − 1 = 6.

6.2 Sample Setup

We decided for underlying dataset of 256GiB,
an average file size of 512KiB as a sample setup.
Recall, we apply approximate matching in the
context of blacklisting. According to law enforce-
ment investigators7 a typical size of a blacklist
used by them is far smaller than 256GiB. We re-
strict to focus our analysis on binary trees where
leaves correspond to single FI s and FIC s.

According to our discussion in Sec. 4, the num-
ber of files is 256 · 230/(512 · 210) = 219 = 524, 288.
Thus, the binary tree has log2(524, 288) = 19
levels and the size of the Bloom filter at the root
m1 is 2 GiB. Overall, the tree requires 19 ·2 = 38
GiB of memory.

6.3 Memory Requirement

The required amount of memory depends on
the amount of data to be mapped to the tree
data structure Ψ and the number of files, n
(see Sec. 3.3). Based on the overall size of the
data and the configuration of Ψ, we can define
the size and number of required Bloom filters.
The number of files defines the height of the
tree, h(Ψ). For the considered setting, i.e., the
application of a binary tree data structure where
each leaf points at a single FI , diverse sample
configurations are summarized in Table 2.

As already mentioned, any restriction to mem-
ory can be handled by utilizing buckets of FI s
and FIC s at leaves or extending the degree x of
the tree data structure. Both of these actions
will reduce the amount of required Bloom filters
and, hence, the overall memory requirement.

6.4 Comparison Efficiency

This subsection compares the efficiency of the
traditional approach and the new one. We de-
cided to focus on the bit comparisons of each
proceeding. We make use of the sample setup

7Communicated unofficially via personal contact.

to simulate the (blacklist) database and assume
a seized HDD with 200 GiB and an average file
size is 512 KiB. In what follows, we show that
our approach speeds up the comparison at least
by a factor of 220.

6.4.1 Traditional Lookup

In Sec. 2.3.1 we briefly explained that a similar-
ity digest may consist of several ‘small’ Bloom
filters (each 256 bytes). In order to compare
two digests, all filters of digest A have to be
compared against all filters of digest B. Conse-
quently, doing an all-against-all comparison of
similarity digests equals an all-against-all com-
parison of all Bloom filters and thus of all bits.
Hence, we need to know how many Bloom filters
of 256 bytes exist.

sdhash roughly compresses 10 KiB of the input
into a 256 bytes Bloom filter. Therefore,
the 256 GiB reference dataset results in
256 ·220/10 = 224.68 filters and the analyzed
data corresponds to 200 · 220/10 = 224.32

filters. To sum it up, we have to compare
around 249.00 Bloom filters each consisting
of 211 bits (256 bytes). Hence in all we have
to compare 260 bits in total.

mrsh-v2 approximately compresses 25 KiB
(blocksize of 160) of the input into a 256
bytes Bloom filter. Thus, we have 256 ·
220/25 = 223.36 filters for the reference
dataset and 200 · 220/25 = 223.00 for the
HDD. Overall, it requires to compare 246.36

Bloom filters or 257.36 bits.

6.4.2 Proposed Approach

Sec. 4.1 correlated the input size and the amount
of elements or features by z = μ·214. This means
that 200 GiB of data equal z = 200 · 210 · 214 =
231.64 features. If we use k = 5, then each feature
requires to compare 5 bits: 231.64 · 5 = 233.96

bits. If we perform an ‘all fragments comparison’
where all of these exist in the database (worst
case), these features have to be compared to all
19 = 24.25 levels which comes to a total of 238.21

bits that have to be compared.
In the best case (no fragment is found), we

only require 2(31.64+33.96)/2 = 232.80 bit compar-

Page 164 � 2014 ADFSL

An Efficient Similarity Digests Database Lookup ... JDFSL V9N2

Table 2 Correlation Between Dataset Size and Average File Size. First value is h(Ψ), Second Value
is Total Size of the Binary Tree in GiB. m1 Denotes the Size of the Root Node in GiB

Avg. file
size

Data size

128 GiB 256 GiB 512 GiB 1024 GiB 2048 GiB
m1 = 1 m1 = 2 m1 = 4 m1 = 8 m1 = 16

32 KiB 22 / 22 23 / 46 24 / 96 25 / 200 26 / 416
64 KiB 21 / 21 22 / 44 23 / 92 24 / 192 25 / 400
128 KiB 20 / 20 21 / 42 22 / 88 23 / 184 24 / 384
256 KiB 19 / 19 20 / 40 21 / 84 22 / 176 23 / 368
512 KiB 18 / 18 19 / 38 20 / 80 21 / 168 22 / 352
1024 KiB 17 / 17 18 / 36 19 / 76 20 / 160 21 / 336

isons (i.e., in average we compare 2.5 bits out of
the 5 to the Bloom filter). Additionally, the sim-
ilarity digest comparison is more expensive as af-
ter comparing two similarity digests, the amount
of 1s needs to be counted. If we assume a uniform
distribution of matches (which is rather unlikely
as blacklisted files will occur less frequent), we
have to compare 238.21 − 233.96/2 = 237.13 in the
average case.

7. CONCLUSION

In this paper we discussed the challenge of
looking up Bloom filter-based similarity digests
which is currently the main drawback of these
approaches. Our concept decreases the lookup
complexity from O(n) to O(logx(n)) where n is
the number of files in the reference database and
x is the degree of the tree. This enhancement is
obtained to the cost of hardware--the physical
memory has to be large. For instance, a dataset
having 256 GiB with an averaged file size of 512
KiB required 38 GiB of memory. In the design
section we discussed multiple parameters which
allow to adjust this concept to hardware require-
ments and to the cost of computation. Our the-
oretical assessment showed that the proposed
approach is superior compared to the existing
‘against-all’ comparison.

In a next step we like to implement a proto-
type to validate our assumptions and to com-
pare it against the straight forward approach of
storing fragment hashes. That is, we store the

cryptographic hash of the chunks in the database
directly including an index of the original file.

ACKNOWLEDGEMENTS

This work was partly funded by the EU (in-
tegrated project FIDELITY, grant number
284862) and supported by CASED (Center for
Advanced Security Research Darmstadt).

REFERENCES

Bloom, B. H. (1970). Space/time trade-offs in
hash coding with allowable errors.
Communications of the ACM , 13 ,
422--426.

Breitinger, F., & Baier, H. (2013). Similarity
preserving hashing: Eligible properties
and a new algorithm mrsh-v2. In
M. Rogers & K. Seigfried-Spellar (Eds.),
Digital forensics and cyber crime
(Vol. 114, pp. 167--182). Springer Berlin
Heidelberg. Retrieved from
http://dx.doi.org/10.1007/

978-3-642-39891-9 11 doi:
10.1007/978-3-642-39891-9 11

Breitinger, F., Baier, H., & White, D. (2014).
On the database lookup problem of
approximate matching. 1st Digital
Forensics Research Conference EU
(DFRWS-EU’14).

Breitinger, F., Liu, H., Winter, C., Baier, H.,
Rybalchenko, A., & Steinebach, M. (2013,
Sept). Towards a process model for hash

� 2014 ADFSL Page 165

http://dx.doi.org/10.1007/978-3-642-39891-9_11
http://dx.doi.org/10.1007/978-3-642-39891-9_11

JDFSL V9N2 An Efficient Similarity Digests Database Lookup ...

functions in digital forensics. 5th
International Conference on Digital
Forensics & Cyber Crime.

Breitinger, F., Stivaktakis, G., & Baier, H.
(2013, August). FRASH: A framework to
test algorithms of similarity hashing. In
13th Digital Forensics Research
Conference (DFRWS’13). Monterey.

Breitinger, F., Stivaktakis, G., & Roussev, V.
(2013, Sept). Evaluating detection error
trade-offs for bytewise approximate
matching algorithms. 5th ICST
Conference on Digital Forensics & Cyber
Crime (ICDF2C).

Broder, A., & Mitzenmacher, M. (2005).
Network Applications of Bloom Filters: A
Survey. Internet Mathematics, 1 (4),
485--509.

Gallagher, P., & Director, A. (1995). Secure
Hash Standard (SHS) (Tech. Rep.).
National Institute of Standards and
Technologies, Federal Information
Processing Standards Publication 180-1.

Kornblum, J. (2006, September). Identifying
almost identical files using context
triggered piecewise hashing. Digital
Investigation, 3 , 91--97. Retrieved from
http://dx.doi.org/10.1016/

j.diin.2006.06.015 doi:
10.1016/j.diin.2006.06.015

Mullin, J. (1990, may). Optimal semijoins for
distributed database systems. IEEE
Transactions on Software Engineering ,
16 (5), 558 -560. doi: 10.1109/32.52778

NIST Information Technology Laboratory.
(2013). National Software Reference
Library. (http://www.nsrl.nist.gov)

Noll, L. C. (1994--2012). Fnv hash.
http://www.isthe.com/chongo/tech/

comp/fnv/index.html.
Roussev, V. (2010). Data fingerprinting with

similarity digests. In K.-P. Chow &
S. Shenoi (Eds.), Advances in digital
forensics vi (Vol. 337, pp. 207--226).
Springer Berlin Heidelberg. Retrieved
from http://dx.doi.org/10.1007/

978-3-642-15506-2 15 doi:
10.1007/978-3-642-15506-2\ 15

Roussev, V. (2011, August). An evaluation of
forensic similarity hashes. Digital
Investigation, 8 , 34--41. Retrieved from
http://dx.doi.org/10.1016/

j.diin.2011.05.005 doi:
10.1016/j.diin.2011.05.005

Roussev, V. (2012). Managing terabyte-scale
investigations with similarity digests. In
G. Peterson & S. Shenoi (Eds.), Advances
in digital forensics viii (Vol. 383, pp.
19--34). Springer Berlin Heidelberg.
Retrieved from http://dx.doi.org/

10.1007/978-3-642-33962-2 2 doi:
10.1007/978-3-642-33962-2 2

Roussev, V., III, G. G. R., & Marziale, L. (2007,
September). Multi-resolution similarity
hashing. Digital Investigation, 4 ,
105--113. doi: 10.1016/j.diin.2007.06.011

Winter, C., Schneider, M., & Yannikos, Y.
(2013). F2s2: Fast forensic similarity
search through indexing piecewise
hashsignatures. Digital Investigation, 0 , -.
(Article in Press - no journal issue
assigned by now) doi: http://dx.doi.org/
10.1016/j.diin.2013.08.003

Page 166 � 2014 ADFSL

http://dx.doi.org/10.1016/j.diin.2006.06.015
http://dx.doi.org/10.1016/j.diin.2006.06.015
http://www.nsrl.nist.gov
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://dx.doi.org/10.1007/978-3-642-15506-2_15
http://dx.doi.org/10.1007/978-3-642-15506-2_15
http://dx.doi.org/10.1016/j.diin.2011.05.005
http://dx.doi.org/10.1016/j.diin.2011.05.005
http://dx.doi.org/10.1007/978-3-642-33962-2_2
http://dx.doi.org/10.1007/978-3-642-33962-2_2

	University of New Haven
	Digital Commons @ New Haven
	2014

	An Efficient Similarity Digests Database Lookup -- a Logarithmic Divide and Conquer Approach
	Frank Breitinger
	Christian Rathgeb
	Harald Baier
	Publisher Citation
	Comments

	Introduction
	Background
	Hierarchical Tree Data Structure
	Bloom Filter
	Bytewise Approximate Matching
	Bloom Filter-Based Approaches

	Efficient comparison using a Bloom filter hierarchy
	Terminology & Definitions
	Starting Point
	Proceeding Overview
	Tree Generation
	Lookup Strategy

	Design decisions
	Correlation Between Features (z) and Files (n)
	Memory Usage and Height of the Tree
	Match Decision and False Positives
	Root Bloom Filter Size
	Feature hash function
	Analysis of Subsequent Level (for Binary Trees)

	Final workflow
	Insertion & Deletion of File Identifiers

	Assessment
	Any Tree vs. Binary Tree
	Sample Setup
	Memory Requirement
	Comparison Efficiency
	Traditional Lookup
	Proposed Approach

	Conclusion
	References

