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A New Transfer Impedance Based System Equivalent Model For 
Voltage Stability Analysis 

Yang Wanga, Caisheng Wanga,*, Feng Lina, Wenyuan Lib,c, Le Yi Wanga, Junhui Zhaoa

a: Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA. 
wangyanghh@hotmail.com, flin@ece.eng.wayne.edu, lywang@wayne.edu, 

Junhui.Zhao@wayne.edu 
b: School of Electrical Engineering, Chongqing University, Chongqing, China. 

c: BC Hydro and Power Authority, Vancouver, Canada. wen.yuan.li@bchydro.com 

Abstract- This paper presents a new transfer impedance based system equivalent model (TISEM) for 

voltage stability analysis. The TISEM can be used not only to identify the weakest nodes (buses) and 

system voltage stability, but also to calculate the amount of real and reactive power transferred from the 

generator nodes to the vulnerable node causing voltage instability. As a result, a full-scale view of 

voltage stability of the whole system can be presented in front of system operators. This useful 

information can help operators take proper actions to avoid voltage collapse. The feasibility and 

effectiveness of the TISEM are further validated in three test systems. 

Keywords- Voltage stability, system equivalent, transfer impedance, transfer power 

1. Introduction

Due to increasing load demands and various pressing constraints such as economic considerations 

and environmental regulations, power systems are forced to operate closer to their operating limits and 

become more prone to voltage instability. In recent years, a considerable number of voltage instability 

related outage events have occurred around the world and resulted in major system failures such as the 

U.S.-Canada blackout on August 14, 2003 [1]. Voltage stability has become a major concern in power 

system planning and operation. 
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mailto:lywang@wayne.edu
mailto:Junhui.Zhao@wayne.edu
mailto:wen.yuan.li@bchydro.com
mailto:cwang@wayne.edu
http://ees.elsevier.com/ijepes/viewRCResults.aspx?pdf=1&docID=7353&rev=1&fileID=200521&msid={C06749CF-97E0-44AE-BAC4-38CB04B9BD4F}


2 

“Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in 

the system after being subjected to a disturbance from a given initial operating condition.”[2] Unlike 

angle instability, voltage instability often starts in a local network and gradually extends to the whole 

system. This feature makes the evolution of system losing voltage stability generally slower (in a few 

seconds or even longer) than that of losing angle stability which could happen quickly in a couple of 

cycles. Though some voltage instability phenomena can happen really fast, the focus of this paper is 

given to the long-term voltage stability issues. 

It has been observed that voltage magnitude is not a good indication for power system voltage 

stability estimation [3]. In recent years, therefore, many new voltage stability indices have been proposed 

in literatures and some of them have been applied in real power systems [4], including the P-V and Q-V 

curves based methods [5], [6], Jacobian matrix singularity indices [7-9], voltage collapse index based on 

the distance of power-flow solution pairs [10], L index [11], line-based indices [12-17] and the 

node-based indices [18-26]. 

No matter what type of indices is used in voltage stability analysis, one of critical pieces is to obtain 

an accurate model for the power system under study. A new system equivalent model using the concept of 

transfer impedance is proposed in this paper, based on which a voltage stability index named equivalent 

node voltage collapse index (ENVCI) is chosen to evaluate system voltage instability. Compared to other 

system equivalent methods [27]-[28], the proposed method has several unique characteristics: 1) 

generator internal impedances are included; 2) loads are substituted by corresponding equivalent 

impedances and included in the system impedance matrix; 3) the impact of generators on the vulnerable 

nodes can be quantified and ranked by calculating the transfer power. Therefore, the TISEM can be used 

not only to identify the weakest nodes (buses) causing system voltage instability, but also to evaluate the 
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The network in Fig. 2 (a) can be converted into an equivalent system using the concept of transfer 

impedance, as shown in Fig. 3 (a). In the figure, Tik'Z  is the transfer impedance between the ith 

generator and bus k without including load impedance Zk. Fig. 3 (a) can be further converted into an 

overall equivalent circuit of Fig. 3 (b), in which the equivalent impedance Zeq and voltage Eeq are 
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, respectively. It can be readily proven that ZTik has a simple 

relationship with Tik'Z as follows: 

TikTik ZZ ' (8) 
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The derivation process given in (1) – (9) are rigorously based on circuit theories, which guarantees 

the equivalence of the model given in Fig. 3 at the circuit level. The transfer power (discussed more in 

the following subsection) from generators to load nodes can be easily calculated from the TISEM, which 

makes the method unique from other existing ones. It is noted that the transfer impedance (ZTik) defined 

in (7) includes load impedance Zk. Transfer impedance itself is a well established concept and has been 

commonly used to compute short-circuit currents [30]. Nevertheless, separating load impedance Zk from 

the overall transfer impedance to obtain alternative transfer impedance Tik'Z in (8) makes it suitable and 

useful for voltage stability analysis. 

It is worth pointing out that the internal impedance of each generator and the equivalent impedance 

of each load have already been included in the overall system impedance matrix ZN, except for the load 

impedance at node k which is separately dealt with as the load impedance Zk that is not included in the 

system impedance matrix ZN. In other words, impedance matrix ZN in Fig. 1 and afterwards has 
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consisted of all line impedances, all generator internal impedances and all instantaneous load 

impedances except the load impedance at the observed load node k for voltage stability analysis. 

It is noted that the load impedance will change with system operating states, for instance, the 

impedance Zk at node k can be obtained by 

*

2

)( kk

k

k

k
k jQP

V
I
V

Z


 (10) 

where Vk and Ik are the voltage and current measured at node k; Accordingly, Pk and Qk are the measured 

active and reactive power delivered to node k; The superscript “*” denotes the conjugation operation. 

TISEM can be readily verified using a simple two-bus system shown in Fig. 4. In the figure, Z1 

represents the generator internal impedance; Z2 is the impedance of line connecting the nodes 1 and k; Z3 

and Zk are the equivalent load impedances at nodes 1 and k, respectively, calculated by (10). 

Fig. 4.  An example two-bus system. 

The admittance matrix YN of the system in the dash-line rectangle can be readily established by 
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The corresponding impedance matrix ZN without including Zk is 
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The self-impedance at node k is 
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and the mutual impedance between nodes 1and k is 
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According to the equations of 
ik

Gikkk
Tik Z

ZZZZ )( 
 and (9), the equivalent transfer impedance 

regarding node k equals to 

kkkkkeq ZZZZZZ  11 /)( (15) 

By substituting Zkk and Z1k into (15), we have 

kkeq ZZZZZZZZ  33121 /))(( (16) 

Accordingly, the current through Zk is calculated as 
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On the other hand, since the components in the two-bus system are connected in simple series and 

parallel, the load current Ik can be directly observed as 
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Obviously, the current calculated by the classic circuit analysis is equal to the value obtained via 

the TISEM, which verifies the correctness of the method. 

2.2 Equivalent node voltage collapse index (ENVCI) 

For the single-line model in Fig. 3 (b), an equivalent node voltage collapse index (ENVCI), which 

is similar to the one proposed in [25] and [31], can be developed using the TISEM method. 

The ENVCI can be represented as: 

)()(2 2
,

2
,,,,, yeqxeqykyeqxkxeq eeveveENVCI  (19) 
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In Cartesian coordinate, yeqxeqeqeqeq jeeEE ,,   , ykxkkkk jvvVV ,,   and 

eqeqeq jXRZ  . 

The expression of ENVCI can be also re-written in polar coordinates as 

2||cos|| ||2 eqkeq EVEENVCI   (20) 

where keq   .

Whenever the ENVCI of at least one node in the system is zero, it indicates that the system reaches 

its voltage collapse point. Under an operating condition, obviously, the node with the lowest value of 

ENVCI is the weakest node that may cause system instability for that condition. In other words, the 

system stability depends on the solvability of the TISEM for all the nodes in a system. 

2.3 Transfer power calculation using TISEM 

Besides the ability of identifying the weakest nodes and system voltage stability, another unique 

capability of the TISEM is that it can be used to calculate the transfer power from generator nodes to 

load nodes. As system voltage instability is closely related to reactive power compensation in a system, 

the transfer reactive power is used to rank the impacts of generators on the improvement of system 

voltage stability. 

As shown in Fig.3 (a), if node k is the weakest node in the system, which is identified by the ENVCI, 

the reactive power transferred from the ith generator to node k can be calculated by 
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where imag is the symbol of taking the imaginary part; Z’
Tik represents the transfer impedance

without Zk included and can be calculated by (8). 

If several nodes fall into the voltage instability issue simultaneously, the reactive power transferred 

from the ith generator to the vulnerable area is defined as 
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where A represents the load buses in the weakest area. 

Obviously, the generator that provides more reactive power to the weakest node(s) is more 

important if certain operational actions can be taken at the generator side to improve system voltage 

stability. In addition to the ability of identifying the weakest nodes using ENVCI, a full view of voltage 

stability of the whole system can be presented in front of system operators. This information is very 

useful for designing an appropriate reactive power reservation strategy and taking an appropriate control 

to avoid system voltage collapse. 

3. Simulation Results

Simulation studies have been carried out on the IEEE 14-bus system, IEEE 118-bus system and 

Polish 2746-bus system. The ENVCI is calculated for every load nodes in all the three systems. 

However, due to space limitation, only the ENVCI curves regarding the fairly weak nodes are shown in 

this paper. Moreover, for comparison, the maximum eigenvalues (negative values) and the 

corresponding bus participation factors (BPF) at the voltage collapse point are calculated using the 

modal analysis technique [9], as shown in Table 1 below. 

Table 1 Maximum Eigenvalue (ME) and Bus Participation Factors (BPF) 
Case Case I Case II Case III Case IV 
ME -0.0437 -0.0688 -0.2999 -0.1790 

BPF 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0.0034 
0.0103 
0.0194 
0.0164 
0.0727 
0.0587 
0.0492 
0.0922 

0.0932(4) 
0.0850 

0.0955(3) 
0.1158(2) 
0.2883(1) 

0.0060 
0.0247 
0.0303 
0.0247 
0.0859 
0.0715 
0.0578 
0.1045 

0.1142(3) 
0.1062 

0.1096(4) 
0.1168(2) 
0.1478(1) 

Bus 74: 0.0464(4) 

Bus 75: 0.0582(3) 

Bus 76: 0.6272(1) 

Bus 118: 0.2594(2) 

Bus 250: 0.0400(3) 

Bus 260: 0.0444(2) 

Bus 450: 0.0377(4) 

Bus 505: 0.0490(1) 

Bus 2470: 0.0055 

Note: The weakest nodes (buses) are marked by superscripts (1)-(4) according to their BPF values. 
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3.1 IEEE14-bus System 

The proposed TISEM is first verified using the IEEE14-bus test system as shown in Fig. 5. Two 

case studies are carried out for the system: Case I for the scenario that the load is increased at one node 

at a time; and Case II when the loads are increased uniformly at the same time at all the load buses, as 

suggested by the WECC [32]. In each case, the load power factor is fixed and the amount of load is 

gradually increased until the IEEE 14-bus system reaches its voltage collapse point. Bus 1 is taken as the 

slack bus. 

G

G

G

C C

GENERATORS
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G2

G3

G4

G5
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2

3

45
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13

14

G

C SYNCHRONOUS
CONDENSERS 7

4

8

9

G
G5

THREE WINDING 
TRANSFORMER

Fig. 5. IEEE14-bus system [33]. 

3.1.1 Load increase at node 14 (Case I) 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 60

0.2
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1

Load increase ratio ()

EN
VC
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Node14
Node13
Node10
Node12

(a) ENVCI 
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(b) Transfer reactive power to the weakest node 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.7

0.8

0.9

1

1.1

Vo
lta

ge
 m

ag
ni

tu
de

 a
t n

od
e 

14

10MVar at node 2 (G2)
10MVar at node 3 (G3)
10MVar at node 6 (G4)
10MVar at node 8 (G5)
No action

Load increase ratio ()

10 MVar added

(c) Impact of reactive power compensation at various generator nodes 
Fig. 6. Voltage stability profiles as the load increases at node 14 in the IEEE 14 system. 

In this case, the load at node 14 is gradually increased while the load power factor is kept as a 

constant 0.948. The generator at bus 1 takes care of the load increase. As shown in Fig. 6(a), the ENVCI 

points out that the load-increased node (node 14) is the weakest node, followed by nodes 13, 10 and 12. 

As such, when the system has arrived at its voltage stability limit where the maximum eigenvalue is 

-0.0437, ENVCI at node 14 equals 0.0166, very close to zero, which indicates that the ENVCI can 

effectively identify system voltage stability. Meanwhile, the BPF values in Table 1 judge that the 

vulnerable nodes follow the order of nodes 14, 13, 12 and 10. There is a small discrepancy in the 

ordering based on the BPF values and the ordering based on the ENVCI values. However, since the BPF 

values of nodes 10 and 12 (in Table 1) as well as their ENVCI values (shown in Fig. 6) are very close, it 

is still demonstrated that the EVNCI can be used to detect the weakest nodes. 
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In Fig.6 (a), the values of ENVCI at nodes 10, 12 and 13 are relatively away from zero, indicating 

that the voltage stability problems at those nodes have not been serious yet at this load level. Node 14 is 

the single node causing system voltage collapse under this condition. Therefore, some local 

enhancement measures such as adding reactive power compensation to node 14 can be used to improve 

system voltage stability. In the meanwhile, by calculating the transfer power from the generator nodes to 

the weakest node 14 (shown in Fig.6 (b)), it is observed that the machine at node 6 can affect the 

weakest node most effectively, followed by node 8, 3, 2 and 1 (slack bus). To further verify the rank, it 

is assumed that the excitation currents are increased in turn for the generators at nodes 2, 3, 6 and 8 

(excluding node 1) to get 10MVar reactive power increase each at a time for those generator nodes. The 

voltage magnitude changes regarding the various reactive power compensations are plotted in Fig. 6 (c), 

which shows that the reactive power compensation at node 6 is most effective, followed by nodes 8, 3, 2. 

This conclusion is completely coincident with the judgment obtained via the transfer power calculations 

shown in Fig.6 (b). 

3.1.2 Load increase at all the load nodes (Case II). 
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(b) Transfer reactive power to the weakest node 
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10 MVar added

c) Impact of reactive power compensation at various generator nodes
Fig. 7. Voltage stability profiles as the overall load increases in the IEEE 14 system. 

As shown in Fig.7 (a), the top four weakest nodes identified by ENVCI follow the sequence of 

nodes 14, 13, 10 and 12, which is consistent with the results of the BPF values in Table 1. Thus, ENVCI 

is also capable of identifying the weakest nodes prone to system voltage instability when the load 

increases at system wide. Moreover, from Fig. 7(b), based on the amount of reactive power delivered to 

the weakest node, the generator nodes are ranked as 6, 8, 3, 2, and 1. Such a rank has also been verified 

by increasing 10MVar reactive power outputs at various generator nodes, as shown in Fig. 7(c). 

Fig. 7(a) also shows that node 14 is still the weakest node although the load is increased at all the 

load nodes. Interestingly, the ENVCI values of the majority of load nodes are approaching and close to 

zero together at the same time. It means that for this case the voltage instability has extended to a 

relatively wide region. Thus, some full-scale measures, such as increasing the reactive power of 
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generators, should be taken into priority consideration to improve the voltage stability of the whole 

system. It is noted that in this case and the cases afterward (i.e., Cases III, and IV) the increased loads 

are distributed among all the generators in proportion to their power outputs. 

3.2 IEEE 118-bus system (Case III) 
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(a) ENVCI 

(b) Transfer reactive power to the weakest node. 
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50MVar at node 70(G31)
50MVar at node 74(G34)
50MVar at node 77(G35)
no action 10MVar added

c) Impact of reactive power compensation at various generator nodes
Fig. 8. Voltage stability profiles as the overall load increases in the IEEE 118 system. 
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In the more complex IEEE 118-bus system [33], the loads at all nodes are increased with the same 

increase ratio until the system reaches its voltage stability limit. It is assumed that the generator at node 

76 is in maintenance and out of service. In the process of load increase, line 76/77 is disconnected from 

the system due to a grounding fault happened. The ENVCI, transfer power to the weakest node, and 

voltage changes under different reactive power compensations are explored. The simulation results are 

shown in Figs. 8 (a) – (c), respectively. 

In this case, the ENVCI has a sharp decrease when line outage happens. The weakest nodes 

identified by the ENVCI are node 76, 118, 75 and 74. In the meanwhile, nodes 76 and 118 are the 

absolutely key nodes prone to voltage instability. These conclusions can be verified by the ENVCI and 

BPF values, together. Therefore, based on this useful information, planning measures (such as generator 

installations [29, 34]) or operating measures (such as switching on capacitors [35]) related to these nodes 

can be applied to improve the voltage stability of the system. According to Fig. 8 (b), if reactive power 

compensations at the generator side are taken, the top four effective generators are the ones located at 

nodes 74, 70, 69 and 77, respectively. The voltage changes by increasing the generator reactive power 

are plotted in Fig. 8 (c). Note that node 69 is operated as a slack bus, so we did not change its reactive 

power output. 

By comparing the TISEM with the eigenvalue method in the simulation studies on the IEEE 

14-bus and IEEE 118-bus systems, the following observations can be made: 

 Based on the proposed TISEM, the ENVCI can identify the weakest node(s) causing voltage

instability. Since the range of ENVCI is from zero at the voltage collapse point to around 1.0 when 

the system is pretty secure, it can actually provide a relative margin to estimate how far the current 

state is apart from the system voltage collapse point. 
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 By calculating transfer power from generator nodes to load nodes, the most effective generator(s)

related to the weakest node(s) in the system can be identified. Therefore, a full-scale view of node 

voltage stability can be presented in front of system operators. This characteristic of the TISEM 

can help choose an appropriate control strategy to increase system voltage stability and avoid 

voltage collapse. 

3.3 POLISH 2746-bus system (Case IV) 

This case is aimed to further investigate the effectiveness and computational time of the proposed 

ENVCI method in a real POLISH 2746-bus system [36]. The loads at all nodes are also assumed to be 

increased with the same ratio until the system reaches its voltage stability limit.  The weakest node 

prone to voltage instability is node 2470, followed by nodes 505, 260, 250 and 450, shown in Fig. 9. 

The result again shows that the ENVCI based on TISEM can effectively identify the weakest load node 

and predict system voltage stability for a real, large power system. 
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Fig. 9. Voltage stability profiles as the overall load increases in POLISH 2746-bus system. 

Table 2 Computational Time 
Case 

Method IEEE 14-bus IEEE 118-bus POLISH 2746-bus 

TISEM based ENVCI 0.0060s 0.0997s 80.8981s 
Eigenvalue 0.1690s 2.4367s 2193.7462s 

The one-state computational time of the TESEM based ENVCI and the eigenvalue method for each 

of the three test systems is listed in Table 2. All results are obtained using a 5-year old desktop personal 
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computer with 2.11GHz of CPU and 2.00GB of RAM. Table 3 shows that it takes 80.8981s to calculate 

the TISEM based ENVCIs for the 2746-bus system. It is reasonable to believe that the computational 

time can be reduced to less than 10s when a more powerful computer is used for the case. This actually 

can satisfy the requirement in long-term voltage stability analysis in real time as a long-term voltage 

collapse usually takes longer than 10s to happen [5]. In contrast, the eigenvalue method is about 25 

times slower than the TISEM based method. For instance, for the 2746-bus system it needs more than 

30mins to get the minimal eigenvalue and relevant bus participation factors. Therefore, the eigenvalue 

method is not available (N/A) for large systems. Furthermore, it is worth pointing out that for a very 

large system with tens of thousands of nodes, network reduction techniques [37] can be used to decrease 

system scale and to increase TISEM calculation speed, but this is out of the scope of this paper. 

4. Conclusions

A transfer impedance system equivalent model (TISEM) for system voltage stability evaluation is 

presented in the paper. Based on the TISEM, the weakest node(s) causing system voltage instability and 

the most effective generator(s) for improving system voltage stability can be identified, respectively, 

using the equivalent node voltage collapse index (ENVCI) and the amount of transfer power calculated. 

The proposed model and index have been validated through the theoretical proof and simulation results. 

The simulation results of the three test systems have demonstrated the feasibility and effectiveness 

of the proposed model and index in evaluating the whole system voltage stability, identifying the 

weakest node(s) in the systems, as well as determining the most effective generator(s). These features 

can provide useful information not only in monitoring and predicting system voltage instability but also 
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in taking proper actions to prevent system from voltage collapse for both planning and operation 

purposes. 
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