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Highlights 8	
• Average energy demands were 6.1 MJ/kg biochar and 97 MJ/kg activated carbon 9	
• Cost of biochar lower than activated carbon to adsorb chromium and zinc 10	
• Cost of biochar comparable to activated carbon to adsorb lead and copper 11	
• Biochar has lower impacts than activated carbon even after transportation phase 12	

 13	

 14	
 15	
Abstract:  16	
As the commercial production and distribution of biochar continues to grow internationally, and its applications 17	
diversifying from its early uses as soil amendment, it is important to study the environmental impacts and economic 18	
performance of biochar in comparison to activated carbon in order to assess its value. The goal of the study was to 19	
assess, through a meta-analysis, the environmental and economic performance of biochar in comparison to activated 20	
carbon under an equivalent functional unit to adsorb heavy metals. More than 80 data points on adsorption capacity 21	
of biochar and activated carbon were identified through literature, which were statistically analyzed as part of the 22	
study. Biochar was found to have lower energy demand and global warming potential impact than activated carbon, 23	
where average energy demands were calculated as 6.1 MJ/kg and 97 MJ/kg and average greenhouse gas emissions 24	
calculated as -0.9 kg CO2eq/kg and 6.6 kg CO2eq/kg for biochar and activated carbon, respectively. When 25	
adsorption of heavy metals were used as the functional unit during analysis, results indicate that there is typically an 26	
order of magnitude difference between the two materials, where biochar was found to have lower environmental 27	
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impacts. The environmental impact resulting from long distance transportation of biochar would not overturn this 28	
conclusion. The adsorption cost of biochar was lower than activated carbon to remove chromium and zinc with a 29	
95% confidence. Adsorption cost for lead and copper were found to be comparable, and therefore the specific type 30	
of biochar and its price could shift results both ways. There is evidence that biochar, if engineered correctly for the 31	
task, could be at least as effective as activated carbon and at a lower cost.  32	
 33	
Keywords 34	
Biochar; Activated carbon; Heavy metal adsorption; Environmental impact; Economic analysis; Transportation 35	
impact. 36	
 37	
1. Introduction 38	

Biochar is an effective bio-sorbent with a high carbon content varying from 50% to 93%, produced by 39	
pyrolysis of biomass within a closed system with oxygen levels below 0.5%  (Ahmad et al., 2013; Anderson et al., 40	
2013; Antal M.J., Mochidzuki and Paredes, 2003; Clough and Condron, 2010; Inyang et al., 2012; Libra et al., 2011; 41	
Liu et al., 2012; Meyer et al., 2012, 2011; Nhuchhen et al., 2014; Roberts et al., 2010; Sohi et al., 2010; Yan et al., 42	
2009). Biochar is typically produced from materials that are naturally abundant such as agricultural residue, animal 43	
waste, or refuse of woody plants, that have high carbon content. The raw material together with the production 44	
technique and temperature has an important effect on product yield and composition (Ahmad et al., 2013; Amutio et 45	
al., 2012; Boateng et al., 2010; B. Chen et al., 2011; Chen et al., 2008; X. Chen et al., 2011; Garcia-Nunez et al., 46	
2016; Hammond et al., 2011; Harsono et al., 2013; Helleur et al., 2001; Inyang et al., 2012; Kołodyńska et al., 2012; 47	
Libra et al., 2011; Liu and Zhang, 2009; Medic, 2012; Mohan et al., 2011; Oleszczuk et al., 2012; Park et al., 2011; 48	
Pellera et al., 2012; Regmi et al., 2012; Ro et al., 2010; Roberts et al., 2010; Sohi et al., 2009; Woolf et al., 2010a; 49	
Yao et al., 2012, 2011a; P. Zhang et al., 2013). 50	

Traditional processes and technologies that have been utilized for the removal of heavy metals from water 51	
and wastewater include chemical precipitation, ion exchange, chemical oxidation and reduction, filtration, 52	
membrane technology (separation), reverse osmosis, electrochemical treatment, electrodialysis, electroflotation, 53	
electrolytic recovery, and adsorption by activated carbon (El-Ashtoukhy et al. 2008; Inyang et al. 2012; Pellera et al. 54	
2012; Zheng et al. 2008). Most of these technologies require high operating energy and thereby cost, and also bring 55	
together environmental impacts associated with operating energy consumption.  56	

While biochar has been used by humans for centuries as a soil supplement, the material has received 57	
recognition in recent years in part due to its adsorption properties, which are claimed to be comparable to activated 58	
carbon. Studies suggest that biochar is effective for the removal of heavy metals and other contaminants from 59	
municipal wastewater as well as from industrial wastewater (X. Chen et al., 2011; Han et al., 2013; Inyang et al., 60	
2012, 2011; Jiang et al., 2012; Karim et al., 2015; Kılıç et al., 2013; Li et al., 2013; Liu and Zhang, 2009; Park et al., 61	
2011; Pellera et al., 2012; Pérez-Marín et al., 2007; Regmi et al., 2012; Sun et al., 2011; Tong et al., 2011; Xu et al., 62	
2011, 2013; Yao et al., 2011b; P. Zhang et al., 2013; X. Zhang et al., 2013; Zheng et al., 2008). As a result, the 63	
commercial production and distribution of biochar continues to grow internationally, and its applications 64	



	 3 

diversifying and moving up from its early uses as a soil amendment. To that end, it is important to study the 65	
environmental impacts of biochar in comparison to alternative materials such as activated carbon in order to assess 66	
its impacts or potential advantages, both from an environmental impact perspective as well as economically.  67	

The goal of the study was to assess, through a meta-analysis, the environmental and economic performance 68	
of biochar when used as an adsorbent for heavy metals in comparison to activated carbon. The study enables a 69	
comparison between the two materials by using a realistic functional unit for adsorption rather than using mass or 70	
volume for comparison. The results of the meta-analysis are statistically stronger than the results of a single study 71	
due to increased sample size and data analysis, and as less emphasis is being placed on inherently localized 72	
boundaries, materials, and assumptions made in studies. The impact of long distance or international trade on 73	
environmental impacts of biochar were also investigated as part of the study.   74	
 75	
2. Methods 76	
2.1 Evaluating the environmental impact of biochar and activated carbon 77	

Data on the environmental impact of biochar and activated carbon were collected mainly through peer-78	
reviewed journal articles on life cycle assessment (LCA) of biochar and activated carbon. A total of 84 different 79	
types of biochar and activated carbon were identified from literature, and corresponding data recorded. However, as 80	
is typical with most LCA studies, the results were based on a particular product, for a specific case. Furthermore, the 81	
majority of LCA studies did not report results other than for energy demand and global warming potential (GWP). 82	
While there were several data points for photochemical oxidation, acidification, and eutrophication impact 83	
categories, they were not sufficient for a statistical analysis and therefore were not included in the scope of the 84	
study. A lack of environmental impact data was a big impediment to study other impact categories such as human 85	
toxicity; abiotic depletion; ozone layer depletion; and aquatic ecotoxicity.  86	

Conversion factors were necessary to convert units of certain environmental impact categories to known 87	
equivalents. GWP of CH4 and N2O were calculated by converting their emissions to CO2 equivalent units. The unit 88	
conversion factors were taken from the Environment Protection Agency (EPA) report on greenhouse gas (GHG) 89	
inventories (EPA 2014). Energy consumption was also converted to MJ/kg when reported in other units.  90	

Data points for biochar and activated carbon made from similar materials obtained from different sources 91	
were condensed to bring down the number of different products to manageable levels. For example, the differences 92	
in environmental impacts of early and late corn stover, the main difference being moisture content, were neglected 93	
and the two were integrated into one product category as corn stover, as the differences between the two were 94	
expected to be negligible when compared to differences among other products, or when compared to activated 95	
carbon, the main intent of the study. Similarly, some other studies had analyzed multiple scenarios for the same 96	
product based on different intended use, production quantity, or production method, thus presenting multiple data 97	
points in each case. In those cases, the range of results was used in the study.   98	

The statistical analysis tool @Risk version 7 was used to analyze environmental impacts of biochar and 99	
activated carbon resulting from adsorption of heavy metals. The chi-squared test was used to fit distributions for 100	
each set of adsorption capacity and environmental impact. Monte Carlo analysis was conducted to analyze 101	
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environmental impacts of biochar and activated carbon resulting from adsorption of heavy metals. Monte Carlo 102	
analysis uses random inputs from a given dataset and outputs possible results in the form of probability distribution 103	
(Palisade, 2013). This analysis was performed using 10,000 iterations. The results of the simulation for each 104	
contaminant were fitted with a distribution to evaluate the environmental impact of biochar and activated carbon per 105	
adsorption capacity. The mean for the distributions and a 95% confidence interval for each heavy metal were also 106	
calculated and reported in the study. 107	

 108	
2.2 The adsorption capacities of biochar and activated carbon 109	

Some adsorption capacity data were reported in millimoles per kilogram or gram, and these values were 110	
converted to milligram per gram (mg/g). Other physical property or test conditions such as particle size, surface 111	
area, concentration of contaminants, pH, and adsorbent dose were also reported in this study.  112	

A large number of different raw materials that may be used for biochar production were surveyed from 113	
literature rather than limit the study on experimental environmental conditions such as temperature and relative 114	
humidity for a specific raw material. There were two reasons behind this decision. The goal of this study was to 115	
identify overall trends in data through a meta-analysis for biochar and activated carbon rather than to conduct a LCA 116	
for a particular product as a case study. Secondly, there is significant lack of reported data on the effects of these 117	
variables on adsorption, especially for biochar. The goal was not to test adsorption for its own sake, but rather to tie 118	
performance to environmental and economic value in general terms.  119	

 120	
2.3 Evaluating the economic performance of biochar compared to activated carbon 121	

To assess the economic performance of biochar in comparison to activated carbon when used for 122	
adsorption purposes, the adsorption capacity of each material together with their market prices were used. The 123	
metric used for comparison was therefore US$(2015)/kg adsorbed material. 124	

Current market value prices for different types of biochar and activated carbon were sought during the 125	
study. Values reported in scholarly publications and online listing of companies from around the world 126	
commercially trading biochar was used to gather market price data (Rasmussen 2014). Most of the companies that 127	
were located on the directory were from developed countries; namely the U.S., Canada, Australia, and several 128	
Western European countries, and a few were from developing countries such as India and Turkey. All companies 129	
listed on the directory were contacted by email to inquire regarding price and raw material used to produce biochar.  130	

Most companies sold biochar by volume rather than mass or weight, which was the preferred unit used in 131	
this study for adsorption calculations. It was found out that the practical reason for this was to enable biochar to be 132	
shipped wet to avoid dust problems that may arise when shipped dry, while the removal of volatile carbon during 133	
shipping could also lead to problems in a business transaction if the material were sold by mass. Biochar density 134	
data were analyzed statistically to convert volume to mass. Data were analyzed statistically and the mean of the 135	
biochar density data was used in this study, thus enabling the conversion of price into US$(2015)/kg biochar.   136	

Similar to adsorption calculations, the statistical analysis tool @Risk version7 was used to compare 137	
adsorption cost for heavy metals. The chi-squared test was used to fit distributions for each set of adsorption 138	
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capacity and price. After the data sets were converted to distributions, Monte Carlo simulation with 10,000 iterations 139	
was used to setup distributions for adsorption cost of biochar and activated carbon for each heavy metal analyzed. 140	
The mean for the distributions of adsorption costs and a 95% confidence interval for each heavy metal were also 141	
reported.  142	

 143	
2.4 Assessing the impact of long distance trade on environmental performance of biochar 144	
2.4.1 Selecting locations for analysis  145	

Different locations from different continents and regions were used as scenario variables in order to 146	
estimate the impact of long distance trade on the environmental performance of biochar. The analysis included 147	
fifteen locations, where the majority of locations were chosen based on the directory of companies commercially 148	
selling biochar. Three countries which were not in the directory were added to capture remaining regions and 149	
continents. While selecting locations for the analysis were intended to cover the majority of potential trade routes, 150	
what is important to assess impacts of long distance trade is not the location or the country itself, but the distance 151	
between the two locations where transportation occurs.  152	

 153	
2.4.2 Estimating the distance between selected locations  154	

To calculate the added energy consumption and GHG emissions as a result of long distance trade of one 155	
metric ton of biochar, land and sea distances between selected locations had to be estimated. For distances that could 156	
be traversed by land routes, the publicly available online Google Maps tool was used to estimate distance (Google 157	
Maps 2015). For routes that required sea transport, an online resource was used to estimate distances from port to 158	
port (Searates 2015). In such cases, the land routes required to transport goods to and from respective ports were 159	
also included in the analysis.  160	

As the goal of this step of the analysis was to gain insights into the overall impacts of long distance trade on 161	
environmental performance, rather than specifically determine impacts for an individual transaction, the center of 162	
each state was used to estimate impacts when the locations were inside the U.S. When countries were used, their 163	
capital cities were chosen to represent the point of destination and departure for biochar. The distances and impacts 164	
reported in this study could be used as a guide to estimate impacts of long distance or international trade that might 165	
occur between two other locations not captured by the selected 15 sites in the analysis, but with comparable 166	
distances between them, as impacts calculated here were dependent on distance and mode of travel rather than 167	
country or continent. The wide array of locations from across the globe was chosen with that additional intent.  168	
 169	
2.4.3 Calculating energy demand  170	

Calculating energy required to transport biochar required information on energy intensity of land and sea 171	
transportation. Energy intensity of sea transportation was taken as 0.14 MJ/ton-km based on literature (Davis et al., 172	
2014). Trucks rather than rail were assumed for land transportation initially. A fuel consumption factor of 15.3 liter 173	
per thousand ton-km was used for class 8 truck transport, which uses diesel fuel, and includes combination trucks 174	
and tractor-trailers among other more specific uses (Davis et al., 2014). The fuel consumption factor was converted 175	
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to truck transportation energy intensity by multiplying by the low heat value for diesel, which was found to be 176	
128,450 Btu/gallon diesel (Boundy et al. 2011; DOE 2014). The resulting energy intensity of 0.55 MJ/ton-km was 177	
used in the calculations thereafter. Multiplying the land distance by the energy intensity provided the energy 178	
required to transport biochar by trucks. Total transportation energy consumption was found by adding together the 179	
energy consumptions of sea and land transportation. 180	

A further analysis was conducted to test the effect of using the center of states in the U.S. on the impact 181	
resulting from transportation. Farther and nearer points on the border of the states, rather than the center point of the 182	
state, were selected to check their effect on the values of energy demand and GHG emissions. The effect of using 183	
truck rather than rail for transportation over land was also investigated through a sensitivity analysis.  184	
 185	
2.4.4 Calculating greenhouse gas emissions  186	

GHG emissions of transportation were calculated by using emission factors for GHG inventories used by 187	
the EPA (EPA 2014). The cumulative GHG emitted from waterborne craft were estimated by multiplying the 188	
nautical distance between ports with the transportation emission factor, which was 0.026 kg CO2 eq. per ton-km 189	
(EPA 2014). GHG emissions of truck transportation were calculated by multiplying the land distance by 0.185 kg 190	
CO2 eq. per ton-km (EPA 2014). The two values for the two respective modes of transport were added together to 191	
estimate GHG emissions resulting from long distance or international trade of biochar among selected locations. 192	

 193	
3. Results and discussion 194	
3.1 Environmental impact of biochar compared with activated carbon 195	

Environmental impact data related to the production of biochar and activated carbon reviewed from 196	
literature were used for comparison. Energy demand and GWP were two categories considered in this study, and 197	
results were summarized in Table 1. Although environmental impact data based on different raw materials used for 198	
production of activated carbon were limited, a diverse list was found for raw materials that can be used for biochar 199	
production including many types of organic wastes, woods and residual plants that indicate increased adaptability of 200	
biochar production to local conditions.  201	

 202	
Table 1. Energy demand and global warming potential of biochar and activated carbon. Values for energy demand 203	
indicate production energy unless noted otherwise.  (Bartocci et al., 2016; Bayer et al., 2005; Dang et al., 2015; 204	
Gabarrell et al., 2012; Gaunt and Lehmann, 2008; Hammond et al., 2011; Hjaila et al., 2013; Ibarrola et al., 2011; 205	
Johnsen et al., 2016; Meyer et al., 2012; Muñoz et al., 2007; Peters et al., 2015; Roberts et al., 2010; Sparrevik et al., 206	
2013; Woolf et al., 2010b).  207	

Material Type Energy demand, MJ/kg Global Warming Potential, 
kg CO2eq/kg 

Activated carbon (Virgin), hard coal 44 a 3, 3 a, 8, 11 
Activated carbon, olive-waste 170 11 
Activated carbon, Recycled  1.2  
Activated carbon, Granular 79.8 9.3 
Agroforestry biochar  -0.2  
Anaerobic digestion biochar 1.1 a, b -0.7  
Barley straw biochar 1.1 – 2.2 b -0.7 – -0.9  
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Biomass crops biochar (herbaceous)  -0.2  
Biomass crops biochar (woody)  -0.2  
Canadian forestry residue chips biochar 1.4 – 2.9 b  -0.9 – 1.1  
Cardboard biochar 1.8 a, b -0.1 
Cattle manure biochar  -0.2  
Cereals excluding rice biochar  -0.2 – -0.1  
Corn Stover biochar 0.84, 1.5-3 a, 8 -0.7 – -0.8, -4 – -2 
Dense refuse derived fuel 1.8 a, b -0.3  
Food waste biochar 1.3 a, b -1.1 
Forestry residue chips biochar 1.4 – 2.9 b -1.3 – -1.1, -0.2 – -0.1  
Green waste biochar 1.8 a, b -1.1, -0.3  
Maize cobs biochar   -0.1 – 0.1  
Miscanthus biochar 1.4 – 2.9 b, 10  -3.5 – -3.1, -1 – -1.2, -0.6  
Paper sludge biochar 1.1 a, b -0.7 
Pig manure biochar  -0.4 
Poplar biochar 16 -1.2 
Poultry litter biochar 1.1 a, b -0.5, -0.2  
Rice biochar  -0.4  
Sewage sludge biochar 1.8 a, b -0.8  
Sugarcane biochar  -0.2  
Switch grass biochar 1.5 a, 11  -2.8 – -2.5,  -0.4 – 0 
Wheat straw biochar 1.1 –2.2 b,  8.3  -2.1– -1.9,  -0.9 – -0.7, -0.7  
Whisky draff biochar 1.1 a, b -0.8 
Wood waste biochar 2.1 a, b -1.3, -0.2  
Yard waste biochar 3 a -0.9 

a Estimated from figure, b Produced energy. 208	
 209	

It is important to note that almost all of the studies reported negative values for GWP associated with 210	
biochar production due to carbon abatement ability of biochar, with average emissions calculated as -0.9 kg 211	
CO2eq/kg, as compared to 6.6 kg CO2eq/kg for activated carbon. The average energy demands of biochar and 212	
activated carbon production were found to be 6.1 MJ/kg and 97 MJ/kg, respectively, indicating an order of 213	
magnitude difference between the two materials.  214	

 215	
3.1.1 Adsorption capacity of biochar and activated carbon 216	

In order to analyze the effects of numerous variables, adsorption capacities of biochar and activated carbon 217	
for various adsorbed materials were presented in Table A1 together with particle size, surface area, pH, contaminant 218	
concentration, adsorbed material and dose, and contact time reported in each study.  219	

When compared on a per mass basis as in Table A1, adsorption capacity of biochar to remove cadmium 220	
and copper from water were in general found to be higher than those of activated carbon, whereas a significant 221	
difference could not be observed for chromium. Other heavy metals presented mixed results. However, data 222	
frequently included large reported ranges for adsorption capacity, thereby eliminating the possibility of making 223	
statistically significant conclusions. Adsorption capacity of biochar ultimately depends on multiple factors including 224	
the type of raw material used. While careful selection of one type of biochar may provide superior adsorption 225	
performance over activated carbon, another type of biochar may have just the opposite effect. Similarly, particle 226	
size, surface area, pH, contaminant concentration, adsorbed material and dose, and contact time are other factors that 227	
need to be considered.  228	
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A sensitivity analysis was conducted based on physical properties and experimental data reported in Table 

A1. The effects of the following factors were investigated: particle size; surface area; pH; contaminant 

concentration; adsorbent dose; and contact time. Among these, surface area provided a reasonable degree of 

correlation with adsorption capacity, and its influence was further investigated and results presented in Figure 1. 

While a positive correlation was observed between surface area and adsorption capacity for chromium, zinc, and 

lead, a clear positive correlation could not be observed for cadmium and copper based on data surveyed through 

literature. In fact, data through existing literature suggests that adsorption capacity of cadmium and copper tend to 

decline as surface area increases. However, high adsorption capacities reported at relatively small surface areas may 

indicate underlying mechanisms that may be equally effective in determining adsorption. Some studies indicate that 

adsorption capacity of biochar depend on ion exchange as the dominating mode by which biochar adsorb metal ions 

rather than physical properties of the adsorbent (Mohan et al. 2007; Tong et al. 2011; Xu et al. 2013). 

Figure 1. The effect of surface area on adsorption capacity of biochar to adsorb select heavy metals. A logarithmic 

scale was used for the x-axis corresponding to surface area. Where a positive correlation was observed for 

Chromium, Lead, and Zinc, no clear correlation was observed for Cadmium and Copper.  

When adsorption of heavy metals by biochar and activated carbon are compared on a per mass of adsorbent 

basis, results indicate that adsorption capacity of biochar can compete with or exceed activated carbon for 

contaminants analyzed. However, a raw material that outperformed the other in all categories could not be found. 

Therefore, if faced with a choice between activated carbon and biochar, the answer would lie in understanding the 

intended use; the intended contaminant or the mix of materials to be adsorbed. Engineered systems to adsorb 

contaminants could then be optimized by selecting raw materials that perform best in each category. 
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3.1.2 Evaluating environmental impact of biochar as adsorbent compared to activated carbon 253	
 As the main goal of adsorbent materials are to remove contaminants, heavy metals in this case, an 254	
appropriate functional unit for the comparison of environmental impact of biochar and activated carbon would be 255	
impacts per mass of contaminant removed, rather than impacts per mass of adsorbent material. Therefore, the two 256	
metrics of MJ/kg contaminant, and kg CO2eq/kg contaminant were used to compare the two materials. Statistical 257	
distributions combined with a Monte Carlo analysis yielded the results presented in Figures 2 and 3 together with 258	
the indicated 95% confidence interval.  259	

Figure 2 indicate that the energy demand for biochar is significantly lower than activated carbon for most 260	
heavy metals. Only in the case of lead adsorption, the figure illustrates that the difference in confidence intervals is 261	
not large enough to warrant a clear answer.  262	

 263	

 264	
Figure 2. Energy demand for adsorption of heavy metals by biochar and activated carbon. Bars indicate the mean, 265	
and the error bars indicate the 95% confidence interval of results. 266	

 267	
Results of analysis presented in Figure 3 illustrates that GHG emissions resulting from adsorption of heavy 268	

metals by activated carbon are higher than GHG emissions of biochar. The differences were found to be statistically 269	
significant. It is interesting to note that biochar has a negative emissions value for all the heavy metals studied due to 270	
its ability to sequester carbon.   271	
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 273	
Figure 3. Greenhouse gas emissions resulting from adsorption of heavy metals by biochar and activated carbon. 274	
Bars indicate the mean, and the error bars indicate the 95% confidence interval of results. 275	

 276	
While energy required to produce activated carbon is many times more than the energy demand to produce 277	

the same amount of biochar, typically, spent activated carbon is not disposed of but regenerated for reuse. It was 278	
deemed necessary to factor this life cycle stage into the analysis. Regeneration process was reported to require about 279	
50% of the energy demand of activated carbon during its production. It is important to note that activated carbon 280	
loses about 10% of its weight during each regeneration process (Muñoz et al. 2007). 281	
 Energy required to regenerate activated carbon was compared with the energy demand for biochar 282	
production based on the adsorption capacity to remove heavy metals. In the case of copper for example, activated 283	
carbon needs to be regenerated twice before biochar would be replaced and discarded due to the higher adsorption 284	
capacity of biochar to remove copper.  285	

Energy demand distributions for activated carbon and biochar that were setup based on data points 286	
presented in Table 1 were used to test the impact of regeneration on results. The average energy demand in MJ/kg 287	
adsorbent, and a 95% confidence interval were used to compare results. Figure 4 illustrates that energy demand of 288	
biochar is not expected to meet or exceed energy demand of activated carbon for copper adsorption even when the 289	
regeneration capabilities of activated carbon is taken into account. Similar results were obtained for the other heavy 290	
metals analyzed, where energy demand of biochar was not expected to match the energy demand of activated 291	
carbon. 292	

 293	
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Figure 4. Energy demand to produce and regenerate biochar and activated carbon for copper adsorption. Error bars 

indicate the 95% confidence interval for results. 

3.2 Economic performance of biochar as an adsorbent compared to activated carbon 

The economic performance of biochar and activated carbon when used as a sorbent were compared as part 

of the study. Their performances were evaluated based on adsorption capacity and current commercial price of each 

material to calculate effective adsorption cost. Biochar produced from different raw materials were analyzed 

separately.  

3.2.1 Biochar density 

Market prices of biochar were either reported by mass or by volume by commercial companies. The unit 

discrepancy required an additional density calculation to convert volume to mass, to compare prices and feasibility 

of different alternative materials to be used as an adsorbent in units of $/kg. Bulk density of biochar ranged between 

0.1-1.1 Mg/m3 based on 20 datapoints as shown in Table 2 (Anderson et al. 2013; Beesley and Marmiroli 2011; 

Berger 2012; Downie 2011; Mahimairaja 2012; Mohan et al. 2011; Nhuchhen et al. 2014; Shackley et al. 2010). 

Data were analyzed statistically and a triangular distribution with a mean of 0.47 was fitted to the dataset. The mean 

value of 0.47 Mg/m3 was also used to represent the density of biochar in this study to convert unit volume to unit 

mass.  
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Table 2. Density of biochar produced from different raw materials 318	

Biochar Type Density, Mg/m3 Source 
Switch grass 0.11 (Nhuchhen et al., 2014) 
Forest residues 0.16 (Anderson et al., 2013) 
Mill residues 0.16 (Anderson et al., 2013) 
Raw pine 0.16 (Nhuchhen et al., 2014) 
Balsa 0.16* (Downie, 2011) 
Sweet gum 0.18 (Nhuchhen et al., 2014) 
Chopped salix biochar 0.27 (Berger, 2012) 
Redwood 0.3* (Downie, 2011) 
Biochar 0.3 (Beesley and Marmiroli, 2011) 
White pine 0.35* (Downie, 2011) 
Different woods 0.36 (Downie, 2011) 
Biochar 0.4 (Shackley et al., 2010) 
Basswood 0.4* (Downie, 2011) 
Biochar 0.45 (Mahimairaja, 2012) 
Oak bark 0.57 (Mohan et al., 2011) 
Red oak 0.6* (Downie, 2011) 
Hard maple 0.6* (Downie, 2011) 
Biomass 0.77 (Nhuchhen et al., 2014) 
Oak wood 0.91 (Mohan et al., 2011) 
Lignum vitae 1.1* (Downie, 2011) 
*Estimated from figure 319	

 320	

3.2.2 Unit price of biochar and activated carbon 321	
A realistic evaluation of the cost of biochar and activated carbon used as a sorbent required commercial 322	

price of products to be used together with their adsorption capacity to estimate the cost of adsorbing a given amount 323	
of contaminant or material. Current biochar prices were collected through companies in different countries and 324	
converted to US$/kg, together with a few data points from published literature. The commercial price of biochar 325	
ranged between $0.8 – 18/kg based on 14 data points, as presented in Table 3. It is interesting to note that biochar 326	
prices obtained from literature were significantly lower than commercial prices, where literature reported values as 327	
low as $0.05/kg, and hence were excluded from the study. Activated carbon prices obtained from literature and 328	
commercial sources ranged between $0.34-22/kg based on 13 data points. The average cost of activated carbon and 329	
biochar were calculated to be $5.6 and $5, respectively. The standard deviation was calculated as 7.5 for price of 330	
activated carbon, and 5.26 for price of biochar. International Biochar Initiative, a non-profit organization dedicated 331	
to promoting biochar research and commercialization, report biochar price to be $3.08/kg in 2014 based on the 332	
average cost of 56 products (IBI, 2014). While further detailed information on the types of biochar or the 333	
distribution of values were not available, comparing the confidence interval calculated in this study to their reported 334	
value provides further credence to the range of results presented in this study.   335	

A hypothesis test carried out to test whether there was a significant difference in the average price of 336	
biochar and activated carbon concluded that there was not sufficient evidence to prove that the average prices were 337	
significantly different at the 95% confidence interval. 338	

 339	
	340	
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Table 3. Unit price of biochar and activated carbon. Commercial prices reflect 2015 prices in US Dollars.  341	
(Alibaba.com, 2015; Amazon.com, 2015; Babel and Kurniawan, 2004; Gaunt and Lehmann, 2008; Grassi et al., 342	
2012; Johnsen et al., 2016; Mohan et al., 2011; Rasmussen, 2011; Slaughter, 2011) 343	
Material Type Location US$/kg 
Activated Carbon (granular) N/A  6.4 
Activated carbon (Coconut shell charcoal oxidized with nitric acid)  N/A  0.3 
Activated carbon (Commercial) N/A  21 
Activated carbon (Coconut shell) N/A  2.2 
Activated carbon (Coconut shell charcoal) N/A  0.3 
Activated carbon (Coconut shell) China 1.5-3 
Activated carbon (Commercial oxidized with nitric acid) N/A  1.4 
Activated carbon (Commercial type Filtrasorb-400) N/A  20-22 
Activated carbon (Commercial)  N/A  1.4 
Activated carbon (Granular) N/A  2.2 
Activated carbon (Granular) Oklahoma 3.2 
Activated carbon (Powdered)  Oklahoma 1.2-2 
Activated Carbon (Granular, Coconut) Illinois, USA 9.2 
Bamboo biochar Alabama, USA 7* 
Coconut shell biochar USA 0.8 
Coppiced hardwoods biochar UK 1.6 
Corn debris, manure, and forestry debris (activated biochar) Idaho, USA 2* 
Corn debris, manure, and forestry debris (raw biochar) Idaho, USA 1.5* 
Hardwood biochar Australia 2.3* 
Mixed hardwood and softwood biochar Central Canada 1* 
Pinewood biochar Missouri, USA 0.9 
Pinewood biochar   0.9-1.9 
Pinewood biochar (Organic conifer biomass) Oregon, USA 8.3* 
Softwood chips Biochar California USA 3.5 

Softwoods mix with Pine, Spruce, Fir and Cedar biochar Vermont, USA 7.2* 
Tree branches biochar Kansas, USA 11 
Virgin wood feedstock biochar Massachusetts, USA 17.8 
 344	
* Product sold by volume rather than mass - conversion to $/kg according to calculated mean density of 0.47 Mg/m3 345	
 346	
 347	
3.2.3 Economic performance of biochar and activated carbon when utilized as an adsorbent 348	

One of the main goals of the study was to compare the economic performance of biochar and activated 349	
carbon when used as an adsorbent, rather than costs per mass or volume. Therefore, economic performance of 350	
materials as an adsorbent were evaluated by analyzing adsorption capacity of the alternatives and their commercial 351	
prices.  352	

Economic analysis included defining and evaluating distributions to seek overall trends in performance, 353	
rather than investigate a specific adsorbent or raw material used. Monte Carlo simulation was used to estimate and 354	
compare the cost of heavy metal adsorption by biochar and activated carbon. A representative outcome was 355	
presented in Figure 5, where adsorption cost to remove copper is being displayed. Results indicate that a significant 356	
difference between biochar and activated carbon does not exist to adsorb a unit mass of copper. The result was 357	
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further supported by Figure 6, which presents the mean values of the distributions together with a 95% confidence 358	
interval. In the case of copper, both mean values fall at around $600/kg copper and the range of results seem to 359	
overlap, indicating a significant difference was not expected.  360	

 361	

 362	
Figure 5. Adsorption cost distribution for copper removal using biochar and activated carbon. Results indicate that a 363	
significant difference between biochar and activated carbon does not exist to adsorb a unit mass of copper. 364	

 365	
Similarly for adsorbing lead, Figure 6 indicates that biochar, on average, is likely to be more expensive 366	

than activated carbon as the means of the distributions were $300/kg lead for biochar and $180/kg lead for activated 367	
carbon. The confidence intervals also indicate a near overlap, thereby supporting the conclusion that the two 368	
materials perform comparably.  369	

A significant difference is noted for the adsorption cost to remove zinc, where biochar cost lower than 370	
activated carbon. The difference was apparent in the calculated mean values of $200/kg and $1240/kg for biochar 371	
and activated carbon, respectively, and as there was no overlap of the confidence intervals indicating statistical 372	
significance. In this case, it can be concluded that adsorption cost to remove zinc was lower for biochar than 373	
activated carbon.  374	

Figure 6 also indicates a similar, but larger difference between the adsorption cost to remove chromium. 375	
Beyond a difference in their mean values of $40/kg and $500/kg for biochar and activated carbon, respectively, the 376	
range of results do not overlap at the 95% confidence interval. Similar to the case for zinc, it can be concluded that 377	
adsorbing chromium by biochar could be economically advantageous than using activated carbon.   378	
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  380	
Figure 6. The cost of adsorbing heavy metals by biochar and activated carbon. Bars indicate the mean, and the error 381	
bars indicate the 95% confidence interval of results. 382	

 383	
Biochar is an effective biosorbent due to its efficiency in removing a variety of materials from aqueous 384	

solutions, both in terms of technical and economic performance. In adsorption performance comparison, biochar was 385	
generally found to be less costly than activated carbon to remove different adsorbed materials. However, the 386	
ultimate decision on alternative materials must be evaluated on a case by case basis, based on the availability of 387	
types of biochar from different raw materials, as well as the contaminant or material mix to be adsorbed.  388	

Results presented in this section were intended to identify general trends in the comparative economic 389	
performance of biochar and activated carbon for adsorption. Uncertainty introduced by variations in biochar 390	
properties and the varying nature of market prices for commercial products should be kept in perspective while 391	
extrapolating results presented here.  392	

 393	
3.3 Impact of long distance trade on environmental performance of biochar 394	

Another goal of the study was to assess the environmental impacts resulting from long distance or 395	
international trade of biochar. The impact of international trade on biochar was evaluated based on GHG emissions 396	
and energy demand to transport biochar via land or waterways. The aim of this step of the analysis was to identify 397	
the magnitude of impact caused by long distance transportation, rather than precisely calculate impacts, which could 398	
only be possible when the origin, destination, and mode of transportation were known. The environmental impact of 399	
international trade was quantified to compare with impacts deriving from the production phase. In other words, 400	
would the environmental performance of biochar still be better than activated carbon even when the former was 401	
obtained internationally over long distances and the latter obtained locally.  402	

Estimate distances between 15 locations, representative of every continent, region, or major biochar 403	
company locate during this study were used, as exact numbers can only be determined when there are specified 404	
buyers and sellers. Such distances represent the distance from the center of a city or state to the center of the other 405	
location. Among modes of transportation, truck was chosen over rail as its energy demand and environmental 406	
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impacts are higher, thereby resulting in a worst case scenario. Waterborne transportation was assumed for 407	
intercontinental shipments. Distance between two locations, energy consumption, and GHG emissions resulting 408	
from the modeled transportation are presented in Tables B1-3.  409	

International trade of biochar was found to slightly affect its environmental performance, but the gap is still 410	
large when compared to the impact resulting from the production of activated carbon. Thus, the potential increase in 411	
energy consumed resulting from long distance or international trade is about 35% of the energy demand to produce 412	
1 kg of biochar. In terms of GHG emissions, long distance trade eliminates the role of biochar to sequester carbon, 413	
hence the average emissions value of -0.9 kg CO2eq/kg would become zero. Still, biochar was found to have lower 414	
GHG emissions than activated carbon when transported between selected locations.  415	

Results indicate that biochar may be shipped several times around the globe before balancing the impact 416	
resulting from production and activation of activated carbon. Activated carbon would become favorable in terms of 417	
GHG emissions if it were obtained locally and biochar were transported more than 40,200 km over land by trucks or 418	
more than 274,000 km over waterways. Considering that the Earth’s circumference is about 40,000 km, transporting 419	
goods over such distances may not be necessary or practical.  420	

 421	
3.4 Barriers that may prevent biochar to replace activated carbon in adsorption applications  422	

Today, activated carbon is the most common adsorbent used. Results of this study, however, indicate that 423	
activated carbon may not always be the most effective, nor the least costly option for adsorption purposes. For 424	
certain materials and contaminants, biochar on average proved to have comparable or better adsorption capacity and 425	
improved economic performance. There is some literature discussing the potential application of biochar for water 426	
treatment purposes, but no major commercial applications exist yet. There are real or perceived barriers that needs to 427	
be resolved before biochar may be expected to replace activated carbon such as: 428	

• Although biochar removes some contaminants more effectively than activated carbon, the adsorption 429	
efficiency of biochar is not stable but fluctuates, whereas activated carbon has a more stable and predictable 430	
efficiency (Berger 2012).  431	

• Biochar may take longer than activated carbon to adsorb contaminants when same amounts of the two 432	
materials are used (Oleszczuk et al. 2012). This may lead to either a need for larger amounts of biochar to 433	
have equivalent process time or longer time to adsorb the same amount of contaminant. The former would 434	
increase costs, and the latter may pose challenges in time-constrained applications.  435	

• There is a lack of consistent and comprehensive data on the performance of biochar. The differences in 436	
performance of biochar made from different raw materials complicate the issue.  437	
 438	
Using biochar as an adsorbent is a relatively new approach. Findings of this study indicate that biochar can 439	

be used as an alternative to activated carbon for certain applications. There is evidence that biochar, if engineered 440	
correctly for the task, could be at least as effective as activated carbon, at a lower cost. However, there are still 441	
technical barriers preventing its widespread implementation. Further research along identified areas could return 442	
significant environmental, economic, and societal benefits. 443	
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 444	
4. Conclusion 445	

The main goal of the study was to conduct a meta-analysis to evaluate the environmental and economic 446	
performance of biochar in comparison to activated carbon. The impact long distance trade would have on 447	
environmental impacts of biochar were also investigated as part of the study. A discussion on some of the barriers 448	
that prevent the use of biochar adsorption applications was also presented.  449	

Due to a lack of data regarding full environmental impacts of biochar from LCA studies, the environmental 450	
focus of the study was mainly on the most commonly reported environmental impacts of energy demand and GWP. 451	
Data in these categories indicate that biochar has lower environmental impact than activated carbon. For GHG 452	
emissions, biochar on average was found to have negative emissions of -0.9 kg CO2eq./kg due to its ability to 453	
sequester carbon, while activated carbon demonstrated higher on average GHG emissions of 6.6 kg CO2eq./kg. The 454	
average energy consumption to produce 1 kg of activated carbon and biochar was calculated to be 97 MJ/kg and 6.1 455	
MJ/kg, respectively.  456	

An evaluation of the economic performance of biochar and activated carbon demonstrated that the average 457	
cost of activated carbon and biochar were $5.6/kg and $5/kg, respectively. These unit prices however, need to be 458	
combined with adsorption capacities to yield information on the cost of contaminant removal. The adsorption cost of 459	
biochar was lower than activated carbon to remove chromium and zinc with a 95% confidence. Adsorption cost for 460	
lead and copper were found to be comparable, and results cannot be generalized as the type of biochar and its price 461	
could take results both ways and therefore more specific testing is recommended.  462	

The environmental impact resulting from long distance transportation of biochar was assessed. While 463	
results demonstrate that long distance trade of biochar could affect its environmental impacts somewhat, the gap is 464	
still large when compared to activated carbon production. Transportation distances required to overturn this 465	
conclusion were not practical. These results indicate that biochar would still have less environmental impact than 466	
activated carbon even if it were transported over long distances.  467	

Obstacles that may prevent application of biochar as a replacement to activated carbon were also discussed 468	
within the study. Among these reasons, variations in material property, especially variations due to use of different 469	
raw materials are major hindrances. Still, engineered products that contain a mix of different types of biochar may 470	
be optimized for adsorption applications.  471	
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Appendix A 
 
Table A1. Adsorption capacity of biochar and activated carbon produced from different raw materials. Products have been grouped based on adsorbed materials 
to ease comparison of adsorption capacity. 

Adsorbent Particle 
size of 

adsorbent
, mm 

Surface 
area,  
m2/g 

pH Contaminants 
concentration

, mg/l 

Adsorbent 
dose, 

g/l 

Contact 
time, 
hour 

Adsorbed 
material 

Adsorption 
capacity, 

mg/g 

References 

Switchgrass via hydrothermal 
carbonization biochar 

> 0.045 2.11 5 40 2 24 Cd 1.5 (Regmi et al., 2012) 
 

Activated biochar > 0.045 5.01 5 40 2 24 Cd 34 
Powdered activated carbon  0.044-

0.149 
726 5 40 2 24 Cd 1.5 

Dairy manure-derived biochar 0.5 5.61  562  10 Cd 51.4 (Mohan et al., 2007; X. Xu 
et al., 2013) Oak bark biochar 0.25-0.6 25.4 8.2 0.125   24 Cd 5.4 

Pine bark biochar 0.25-0.6 1.88 8.2 0.125   24 Cd 0.34 
Granular activated carbon 0.25-0.6 984 8.2 0.125   24 Cd 8 
Cord grass biochar < 0.25 15.1 5    Cd 5.7 - 42.5  (Harvey et al., 2011; Kuo et 

al., 2008) Loblolly pine biochar < 0.25 281 5    Cd 2.92- 6.97  
Honey mesquite biochar < 0.25 107 5    Cd 5.5- 18  
Pig manure chemically treated biochar 0.42-0.6 15 5 11-281 5  Cd 11.2 (Kołodyńska et al., 2012) 
Peanut straw biochar 0.048  5 157- 790 2  Cu  89 (Tong et al., 2011) 

 Soybean straw biochar 0.048  5 157- 790 2  Cu  52.7 
Canola straw biochar 0.048  5 157- 790 2  Cu  37.5 
Activated carbon 0.048  5 157- 790 2  Cu  11.4 
Rice husks hydrothermal biochar < 0.5  5-6  5-12.5 2-4 Cu 1.09 (Pellera et al., 2012) 

 Rice husks biochar (pyrolysis) < 0.5  5-6 20-50 5-12.5 2-4 Cu 0.02 - 2.9  
Olive pomace biochar (hydrothermal) < 0.5  5-6 20-50 5-12.5 2-4 Cu 0.6 
Olive pomace biochar (pyrolysis) < 0.5  5-6 20-50 5-12.5 2-4 Cu 0.17 - 1.3 
Orange waste biochar (hydrothermal) < 0.5  5-6 20-50 5-12.5 2-4 Cu 2.03 
Orange waste biochar (pyrolysis) < 0.5  5-6 20-50 5-12.5 2-4 Cu 0.08 - 1.4 
Compost biochar (hydrothermal) < 0.5  5-6 20-50 5-12.5 2-4 Cu 3.8 
Compost biochar (pyrolysis) < 0.5  5-6 20-50 5-12.5 2-4 Cu 2.4 - 3.6 
Spartina alterniflor biochar < 0.3 2.3 6 290 3.3  Cu 48.5 (Li et al., 2013) 
Switchgrass biochar > 0.0002 3.6 4.8  10 24 Cu  1.5- 12.5  (Han et al., 2013) 

 Hardwood biochar > 0.0002 372 4.8  10 24 Cu  0.38 - 7.4  
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Adsorbent Particle 
size of 

adsorbent
, mm 

Surface 
area,  
m2/g 

pH Contaminants 
concentration

, mg/l 

Adsorbent 
dose, 

g/l 

Contact 
time, 
hour 

Adsorbed 
material 

Adsorption 
capacity, 

mg/g 

References 

Softwood biochar > 0.0002 362 4.8  10 24 Cu  1.6- 11  
Activated carbon > 0.0002 383 4.8  10 24 Cu  6.3-30.2  
Hardwood biochar < 0.5 0.43 7 63 5 24 Cu  6.8 (X. Chen et al., 2011) 
Corn straw biochar < 0.5 13.98 5 63 5 24 Cu  12.5 
Switchgrass via hydrothermal 
carbonization biochar 

> 0.045 2.11 5 40 2 24 Cu 4 (Regmi et al., 2012) 
 

Activated biochar > 0.045 5.01 5 40 2 24 Cu 31 
Powdered activated carbon  0.044-

0.149 
726 5 40 2 24 Cu 1.8 

Pig manure chemically treated biochar 0.42-0.6 15 5 6.3-157 5  Cu 6.8 (Kołodyńska et al., 2012) 
Dairy manure-derived biochar 0.5 5.61  317  10 Cu 54.4 (Xu et al., 2013) 
Oak wood biochar 0.25-0.6 2.73 2 1-100   Cr VI 3.03 - 4.9  (Mohan et al., 2011) 

 
Oak bark biochar 0.25-0.6 1.88 2 1-100   Cr VI 4.6 - 7.5 
Activated carbon derived from 
coconut fibers 

 343 2 1-100   Cr VI 16 - 24 

Activated carbon derived from 
coconut shells 

 378 2 1-100   Cr VI 1.4-32.6 

Activated carbon derived from acid-
treated coconut fibers 

 512 2 1-100   Cr VI 1.1 - 15.6 

Activated carbon derived from acid-
treated coconut shells 

 380 2 1-100   Cr VI 1.6-16.4  

Activated carbon fabric cloth  1565 2 1-100   Cr VI 42.1 - 117 
Commercial activated carbon 0.5-2.36 1000 6 5-25   Cr VI 4.7 (Babel and Kurniawan, 

2004; Mohan et al., 2011) 
 

Commercial activated carbon oxidized 
with sulfuric acid 

0.5-2.36 1000 6 5-25   Cr VI 8.9 

Commercial activated carbon oxidized 
with nitric acid 

0.5-2.36 1000 6 5-25   Cr VI 10.4 

Coconut shell activated carbon 0.42-1.70 5-10 6 5-25   Cr VI 2.2 
Coconut shell charcoal coated with 
chitosan activated carbon 

0.42-1.70 5-10 6 5-25   Cr VI 3.7 

Coconut shell charcoal Oxidized with 
sulfuric acid activated carbon 

0.42-1.70 5-10 6 5-25   Cr VI 4.1 

Coconut shell charcoal oxidized with 
sulfuric acid and coated with chitosan 

0.42-1.70 5-10 6 5-25   Cr VI 9 
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Adsorbent Particle 
size of 

adsorbent
, mm 

Surface 
area,  
m2/g 

pH Contaminants 
concentration

, mg/l 

Adsorbent 
dose, 

g/l 

Contact 
time, 
hour 

Adsorbed 
material 

Adsorption 
capacity, 

mg/g 

References 

Coconut shell charcoal oxidized with 
nitric acid activated carbon 

0.42-1.70 5-10 6 5-25   Cr VI 11 

Commercial activated carbon type 
Filtrasorb-400 

 1000 2 100   Cr VI 53.2 (Babel and Kurniawan, 
2004) 

Waste tire activated carbon   2 100   Cr VI 58.5 
Rice husk activated carbon   2-3 300   Cr VI 45.6 
Coconut tree sawdust activated carbon 0.125-

0.250 
5-10 3 20   Cr VI 3.5 (Babel and Kurniawan, 

2004; Selvi et al., 2001) 
Sugar beet tailing biochar       Cr VI 123 (Dong et al., 2011; 

Suguihiro et al., 2013) 
Banana Peduncle Biochar ≤ 0.1  2  2 24 Cr VI 114 (Karim et al., 2015) 
Anaerobically digested sugarcane 
bagasse biochar 

0.5–1 17.7  20 1.6 24 Pb 136 (Inyang et al., 2011) 
 

Granular activated carbon 0.5–1 1100  20 1.6 24 Pb 81.9 
Sugarcane bagasse biochar 0.5–1 14.1  20 1.6 24 Pb 6.5 
Pinewood biochar < 0.5  5 20 4 24 Pb 4.25 (Liu and Zhang, 2009) 
Rice husk biochar < 0.5  5 20 4 24 Pb 2.4 
Digested dairy waste biochar 0.5–1 555.2 5 20 2 24 Pb 33.5 (Inyang et al., 2012) 
Digested whole sugar beet biochar 0.5–1 128.5 5 20 2 24 Pb 18 
Coconut shell activated carbon 1-2 728 5  4  Pb  112 (Issabayeva et al., 2006; 

Kobya et al., 2005; 
Momčilović et al., 2011; 

Song et al., 2014) 

Coconut shell carbon (CSC-B) 2:1 
(KOH/CSC) AC 

1-2 1135 5  4  Pb  152 

Pine cone activated carbon  1094 5  2  Pb  27.5 
Palm shell activated carbon  957 5  5  Pb  95.2 
Apricot stone activated carbon  566 5  2  Pb  22.8 
Pig manure chemically treated biochar 0.42-0.6 15 5 20-517 5  Pb 21.4 (Kołodyńska et al., 2012) 
Rice straw biochar  0.25 26.45 5    Pb 8.3-8.7  (Jiang et al., 2012) 
Dairy manure biochar  6.4  207 5 4 Pb 41 (Cao et al., 2009) 
Commercial activated carbon 0.15 421  207 5 4 Pb 7 
Switchgrass biochar > 0.0002 3.6 4.8  10 24 Zn 0.33-9.6  (Han et al., 2013) 

 Hardwood biochar > 0.0002 372.75 4.8  10 24 Zn 0.07-188 
Softwood biochar > 0.0002 362.33 4.8  10 24 Zn 0.45-256 
Activated carbon > 0.0002 167.8 4.8  10 24 Zn 0.20 - 9  
Pig manure chemically treated biochar 0.42-0.6 15 5 6.5-163 5  Zn 6.5 (Kołodyńska et al., 2012) 



	 27 

Adsorbent Particle 
size of 

adsorbent
, mm 

Surface 
area,  
m2/g 

pH Contaminants 
concentration

, mg/l 

Adsorbent 
dose, 

g/l 

Contact 
time, 
hour 

Adsorbed 
material 

Adsorption 
capacity, 

mg/g 

References 

Dairy manure-derived biochar 0.5 5.61  327  10 Zn 32.8 (Xu et al., 2013) 
Hardwood biochar < 0.5 0.43 7.5 65 5 24 Zn  4.5 (X. Chen et al., 2011) 
Corn straw biochar < 0.5 13.98 8 65 5 24 Zn  11 
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Appendix B 
 
Table B1. Distance (km) between U.S. states and country capitals that were included in this study (Google Maps, 2015; Searates, 2015) 

 U.K., 
London 

Nigeria, 
Abuja 

Iraq, 
Baghdad 

India, 
New 
Delhi 

Germany, 
Berlin 

France, 
Paris 

China, 
Beijing 

Canada, 
Ottawa 

Brazil, 
Brasilia 

Australia, 
Canberra 

Washington 
D.C. 

New 
York 

Missouri Florida California 

California 340 a; 
14850 b 

910a; 
16000b 

910a; 
20700b 

1220a; 
18500b 

460a; 
15800b 

460a; 
14700b 

510a; 
10350b 

4190 a 1470a; 
14100b 

600a; 
12000b 

4500 a 4600a 3000 a 4300 a - 

Florida 160 a; 
8000 b 

720a; 
10500b 

700a; 
17400b 

990 a; 
17100 b 

260 a; 
8900 b 

240 a; 
7950 b 

290 a; 
18200 b 

3800 a 1250a; 
8970 b 

460a; 
16400 b 

1500 a 1800 a 1900 a -  

Missouri 250 a; 
10300 b 

800a; 
12700b 

1250a; 
19100b 

1280 a; 
19000 b 

490 a; 
10850 b 

340a; 
10200b 

380 a; 
20200 b 

2900 a 1350a; 
11260b 

560 a; 
18400 b 

1500 a 1700a -   

New York 5900 b; 
30 a 

590a; 
9600b 

580 a; 
15600 b 

15250b; 
880a 

6700 b; 
140 a 

5800 b; 
130 a 

19700b; 
180 a 

1130 a 1100 a; 
8900b 

260 a; 
17900 b 

360 a -    

Washington 
D.C. 

60 a, 
6500 b 

640a; 
9900b 

640a; 
16100b 

940 a; 
15780 b 

190 a; 
7300 b 

180 a; 
6400 b 

220 a; 
19500b 

1460 a 1190 a; 
9160b 

400 a; 
17700 b 

-     

Australia, 
Canberra 

260 a; 
21200 b 

830a; 
15500 b 

840a; 
13700b 

1330 a; 
11750 b 

480 a; 
22300 b 

380a; 
2100b 

430 a; 
9500b 

530 a; 
20000 b 

1360a; 
14500b 

-      

Brazil, 
Brasilia 

1130a; 
9700b 

1710a; 
6540b 

1730a; 
15700b 

1980a; 
15060b 

1280a; 
10700b 

1260a; 
9600b 

1300a; 
21200b 

1330a; 
10600b 

-       

Canada, 
Ottawa 

220 a; 
5650 b 

750a; 
10100b 

740a; 
15900b 

1250 a; 
14880 b 

320 a; 
6400 b 

300 a; 
5550 b 

330 a; 
22100 b 

-        

China, 
Beijing 

20300b; 
180 a 

750a; 
19600b 

750a; 
12200b 

1060 a; 
10100 b 

320a; 
21300 b 

300 a; 
20100 b 

-         

France, 
Paris 

450 a 700a; 
8100b 

700a; 
12000b 

1180 a; 
11280 b 

1680 a -          

Germany, 
Berlin 

1100 a 700a; 
9180b 

860a; 
12700b 

1150 a; 
12340 b 

-           

India, New 
Delhi 

11800b; 
880 a 

1640a; 
13200b 

1460a;  
3000 b 

-            

Iraq, 
Baghdad 

620a; 
12100b 

1170a; 
14100b 

-             

Nigeria, 
Abuja 

580a; 
8200b 

-              

U.K., 
London 

-               

a: Land transport (km) 
b: Waterborne transport (km) 



	 29 

Table B2. Energy consumed to transport biochar between U.S. states and country capitals that were included in this study (MJ/ton biochar) 

 U.K., 
London 

Nigeria, 
Abuja 

Iraq, 
Baghdad 

India, 
New 
Delhi 

Germany, 
Berlin 

France, 
Paris 

China, 
Beijing 

Canada, 
Ottawa 

Brazil, 
Brasilia 

Australia, 
Canberra 

Washington 
D.C. 

New 
York 

Missouri Florida California 

California 2240 2710 3370 3230 2450 2290 1710 2310 2760 1990 2460 2550 1640 2380 - 
Florida 1200 1850 2800 2910 1370 1230 2680 2100 1930 2530 810 1010 1030 -  
Missouri 1570 2200 3330 3340 1770 1600 3020 1610 2300 2860 820 940 -   
New York 840 1660 2480 2590 1010 870 2820 620 1860 2620 198 -    
Washington 
D.C. 

940 1720 2590 2700 1120 980 2830 800 1920 2670 -     

Australia, 
Canberra 

3090 2610 2370 2360 3350 3130 1550 3060 2760 -      

Brazil, 
Brasilia 

1980 1850 3120 3170 2190 2020 3660 1460 -       

Canada, 
Ottawa 

900 1810 2610 2750 1060 940 3250 -        

China, 
Beijing 

2910 3130 2110 1970 3120 2960 -         

France, Paris 250 1500 2050 2220 920 -          
Germany, 
Berlin 

600 1660 2230 2350 -           

India, New 
Delhi 

2120 2730 1220 -            

Iraq, 
Baghdad 

2020 2600 -             

Nigeria, 
Abuja 

1450 -              

U.K., London -               
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Table B3. Greenhouse gas emissions resulting from international trade of biochar between U.S. states and country capitals that were included in this study (kg 
CO2 eq./ton biochar) 

 U.K., 
London 

Nigeria, 
Abuja 

Iraq, 
Baghdad 

India, 
New 
Delhi 

Germany, 
Berlin 

France, 
Paris 

China, 
Beijing 

Canada, 
Ottawa 

Brazil, 
Brasilia 

Australia, 
Canberra 

Washington 
D.C. 

New 
York 

Missouri Florida California 

California 450 590 710 710 500 470 370 780 640 420 830 860 550 800 - 
Florida 240 410 590 630 280 250 530 410 470 520 270 340 350 -  
Missouri 320 480 730 740 380 330 600 540 550 590 280 320 -   
New York 160 360 520 540 200 180 550 210 450 520 70 -    
Washington 
D.C. 

180 380 540 590 230 200 550 270 460 540 -     

Australia, 
Canberra 

610 560 520 550 680 620 330 620 630 -      

Brazil, 
Brasilia 

470 490 730 760 520 490 800 520 -       

Canada, 
Ottawa 

190 400 550 620 230 200 640 -        

China, 
Beijing 

570 650 460 460 620 580 -         

France, Paris 80 340 350 520 310 -          
Germany, 
Berlin 

200 370 490 540 -           

India, New 
Delhi 

470 650 350 -            

Iraq, 
Baghdad 

430 590 -             

Nigeria, 
Abuja 

320 -              

U.K., London -               
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