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Abstract 
The main objectives of this research are to improve our understanding of energy-climate-manufacturing nexus within 

the context of regional and global manufacturing supply chains as well as show the significance of full coverage of 

entire supply chain tiers in order to prevent significant underestimations, which might lead to invalid policy 

conclusions. With this motivation, a multi-region input-output (MRIO) sustainability assessment model is developed 

by using the World Input-Output Database, which is a dynamic MRIO framework on the world’s 40 largest economies 

covering 1440 economic sectors. The method presented in this study is the first environmentally-extended MRIO 

model that harmonizes energy and carbon footprint accounts for Turkish manufacturing sectors and a global trade-

linked carbon and energy footprint analysis of Turkish manufacturing sectors is performed as a case study. The results 

were presented by distinguishing the contributions of five common supply chain phases such as upstream suppliers, 

onsite manufacturing, transportation, wholesale, and retail trade. The findings showed that onsite and upstream supply 

chains are found to have over 90% of total energy use and carbon footprint for all industrial sectors. Electricity, Gas 

and Water Supply sector was usually found to be as the main contributor to global climate change, and Coke, Refined 

Petroleum, and Nuclear Fuel sector is the main driver of energy use in upstream supply chains. Overall, the largest 

portion of total carbon emissions of Turkish manufacturing industries was found in Turkey’s regional boundary that 

ranged between 40 to 60% of total carbon emissions. In 2009, China, United States, and Rest-of-the-World’s 

contribution is found to be more than 50% of total energy use of Turkish manufacturing. The authors envision that a 

global MRIO framework can provide a vital guidance for policy makers to analyze the role of global manufacturing 

supply chains and prevent significant underestimations due to inclusion of limited number of tiers for sustainable 

supply chain management research.  

Key words Energy-Climate-Manufacturing Nexus; Multi-Region Input-Output Analysis; World Input-Output 

Database; Global Supply Chains; Sustainable Manufacturing. 
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1. Introduction 

According to the World Energy Outlook Energy Special Report published by the International Energy Agency, 

the world is unfortunately not on the track to achieve the global climate change targets set by the world leaders 

and we are running out of time to mitigate the rise of global temperature to 2 degrees Celsius (IEA, 2013). While 

we have already fallen far behind the sustainable development goals that we have to reach for our common future, 

the human beings have found themselves in the midst of the environmental, economic, social and political 

problems fueled by lack of an energy security and steeply rising carbon emissions. European economy has also 

become an energy and resource dependent economy and vulnerable to rising energy prices and raw material supply 

shocks (European Commission, 2013). These facts inevitably lead the policy makers to take solid actions toward 

a greener and resource efficient economy, and therefore the European manufacturing industry has been identified 

as one of the most important policy areas that need urgent attention.  

Statistics indicate that, European manufacturing represented approximately 26.8% of the European Union (EU)’s 

GDP and 22.6 % of its employment, providing more than 30 million jobs (European Commission, 2013). While 

manufacturing activities contribute significantly to the European economies and create critical socio economic 

benefits to the societies, their shares in the overall energy consumption and global climate change impacts are also 

considerably high compared to other industries due to the resource and energy intensity embed in the processes. 

Recent reports indicated that manufacturing sectors responsible for substantial amount of  greenhouse gas (GHG) 

emissions in the Europe, which are the third largest contributors after the power generation and transportation 

sectors (European Environment Agency, 2013). In addition, European manufacturing is responsible for around 

25% of total energy consumption, which is the third biggest energy consumer industry after the transportation 

sector and household consumption (European Commission, 2013).  

Sustainable manufacturing has inevitably become an integral part of EU’s sustainable development plans to 

support the EU’s 2020 strategic plan on promoting sustainable industrial growth through low-carbon and energy-

efficient production and economy (European Commission, 2014). To realize these goals, the European Union 

developed an integrated policy strategy for climate and energy policies which aims to combat with global climate 

change and improve the EU’s energy security, simultaneously (Helm, 2014). Such an integrated approach is 

necessary since energy consumption and climate change are fundamentally connected issues and it is not practical 

to look at these environmental challenges in isolation (WBCSD, 2009). In this regard, EU’s 2020 strategies on 

analyzing ‘energy-climate nexus’ are covered under the ‘20-20-20’ targets and identified as accomplishing a 20% 

reduction in GHG emissions from 1990 levels, raising the share of renewable energy resources to 20%, and having 

a 20% improvement in the EU’s energy efficiency (European Commission, 2014). In parallel with the EU’s ‘20-

20-20’ targets, the Turkish Ministry of Environment and Urban Planning has recently made the carbon footprint 

reporting mandatory for industrial facilities and started to develop pilot projects on carbon emissions of selected 

industrial sectors. Based on the information released in the Ministry’s official website, manufacturing sectors in 

Turkey must annually measure, report and validate their carbon emissions starting from 2015 (Turkish Ministry 

of Environment and Urban Planning, 2014). Furthermore, the Turkish Ministry of Energy and Natural Resources 

developed an energy strategy plan in which a 20% primary energy intensity reduction is targeted for 2023 

compared with the 2008 level (Turkish Ministry of Energy and Natural Resources, 2013).  

To realize sustainable development goals based on the aforementioned climate and energy strategies, 

sustainability impacts of European and Turkish manufacturing have to be analyzed from a supply chain 



4 
 

perspective. The supply chain encompasses all activities associated with the flow of goods and information from 

raw material extraction and processing through the customer (Seuring and Müller, 2008). The concept of 

sustainability in the supply chain management has become a topic of considerable interest worldwide and highly 

discussed in the regional policy making (Ahi and Searcy, 2013; Ayvaz et al. 2015; Park et al. 2015; Park et al. 

2016; Sarkis et al., 2011; Seuring, 2013; Soysal et al. 2014). Especially, system thinking in sustainable supply 

chain management is very crucial due to the fact that environmental impacts are variably located in the first, 

second, third, and even higher tiers of the supply chains of the manufacturing sectors. The results of past studies 

also indicated that focusing solely on the onsite or limited tiers of upstream supply chain impacts could result in 

significant underestimation about the overall impacts, which might lead to invalid policy outcomes (Egilmez et 

al. 2013; Egilmez et al. 2014; Feng et al. 2011). 

In the literature, process-based life-cycle assessment (LCA), economic input-output based LCA, and hybrid LCA 

are extensively used to quantify the environmental impacts of products or processes (Bush et al. 2014; Onat et al. 

2015a, b; Suh et al. 2004). In fact, when focusing on the holistic environmental burdens of large-scaled systems 

such as industrial sectors, Input-Output (I-O) based sustainability assessment models are more comprehensive 

approaches, which provide a macro-level analysis (Chen and Chen, 2015; Liu et al. 2012; Onat et al. 2014a; Song 

et al. 2015). The necessity of using system-based I-O models arises from the fact that process-based models 

involve the limited number of processes and inclusion or exclusion of processes is decided on the basis of 

subjective choices, which create the so-called system boundary problem (Onat et al. 2016a; Suh et al., 2004). 

Earlier studies on the carbon and energy footprints of economic sectors showed that process-based life-cycle 

inventories suffer from significant truncation errors which can be order of 50% or higher (Feng et al. 2011; 

Kucukvar and Tatari 2013; Lenzen, 2000; Matthews et al. 2008). At this point, I-O based models provide a top-

down analysis that uses sectoral monetary transaction matrixes considering complex interactions between the 

sectors of national economies (Li et al. 2012; Onat et al. 2014b; Wiedmann and Minx, 2008). I-O analysis is 

widely used and accepted as a suitable methodological approach for calculation of energy and carbon footprints 

(Kucukvar et al. 2014; Larsen and Hertwich, 2010; Lin et al. 2013; Minx et al. 2009; Wiedmann, 2009). Although, 

the majority of studies using I-O analysis were case studies that focus on carbon or energy footprint analysis of a 

single country for a single year (Hoekstra, 2010), a Multi Region Input-Output (MRIO) analysis is critical in order 

to take into account the role of international trade over a period of time (Arto et al. 2015; Peters and Hertwich, 

2009; Wiedmann and Barret, 2013). This is important since the majority of countries in the world prefer open 

economic structure, which allows the importing goods and services from foreign countries. Hence, single-region 

models could lead to erroneous results due to unrealistic domestic technology assumption (Tukker and 

Dietzenbacher, 2013; Dietzenbacher et al. 2013).  

In this regard, MRIO models have extensively used in carbon and energy footprint studies (Ewing et al. 2012; 

Lan et al. 2016; Liang et al. 2007; Mundaca et al. 2015; Zhang et al. 2014). Currently, there are a number of global 

MRIO models available in the literature and/or online. These databases are named as EoRA, Externality Data and 

Input-Output Tools for Policy Analysis (EXIOPOL), Global Trade Analysis Project (GTAP), and World Input-

Output Database (WIOD) (Andrew and Peters 2013; Lenzen et al. 2013; Moran and Wood, 2014; Oita et al. 2016; 

Peters et al. 2011; Tukker et al. 2009). Several studies based the methodological framework on the aforementioned 

MRIO initiatives and focused on tracing the carbon and energy footprints of households (Galli et al. 2013; Weber 

and Matthews, 2008), consumption and production (Kucukvar et al. 2015; Kucukvar and Samadi, 2015; Yu et al. 

2010; Yu et al. 2016; Zhang et al. 2014), international trade (Peters et al. 2011; Su and Ang, 2014; Wiedmann, 
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2009), cities (Wiedmann et al. 2015), and nations (Andrew et al. 2009; Hertwich and Peters, 2009; Wiedmann et 

al. 2010).  

1.1. State-of-the-Art and Research Objectives 

Although there are solid actions taken to realize a low-carbon economy and energy-efficient manufacturing 

simultaneously, many policy questions still remain unanswered regarding the use of methodological approaches 

that can better estimate the carbon emissions and energy use of Turkish manufacturing sectors and identify 

significant energy and carbon hotspots for effective policy making. In addition, majority of research efforts 

focuses on particular parts of the manufacturing activates from products or processes with limited focus on 

regional impacts and supply chain phases. Although such efforts are necessary and useful, they lack of system 

perspective and therefore, underestimate the impacts from upper tiers of global supply chains. Based on the 

aforementioned research needs, this research aims to advance the body of knowledge by filling three major 

research gaps: “lack of application of MRIO methodology for global supply chain of national economies” and 

“lack of understanding of carbon-energy-manufacturing nexus”, and “lack of holistic system-based decision-

support methods for effective policy making”. In this regards, this research aims to provide answers the following 

questions: 

 What are the direct and indirect carbon and energy footprint of Turkish manufacturing sectors at national 

and global level? 

 What are the contributions of individual supply chain phases such as upstream suppliers, onsite 

manufacturing, transportation, wholesale and retail trade to overall carbon and energy footprint? 

 What is the global distribution of upstream energy use and carbon footprints over a period of time? 

 What is the nexus between energy and carbon footprints of each manufacturing sector based on major 

supply chain phases? 

 What is the trend for national and global energy and carbon footprints of industrial sectors? 

To be able to respond to the aforementioned policy questions adequately, a system-based holistic carbon and 

energy footprint accounting framework, which can capture all direct and indirect impacts at regional and global 

scale over a period of time, is required. Hence, in this paper, a global MRIO model is developed by utilizing the 

WIOD on the world’s 40 largest economies covering 1440 economic sectors. By answering these questions, this 

paper will help the policy makers to  

(i) identify the key industrial sectors and supply chain phases (upstream, onsite, transportation, 

wholesale and retail trade) with the greatest carbon and energy footprints for the period between 

2000 and 2009,  

(ii) determine the energy-climate nexus based on each supply chain phase,  

(iii) propose effective carbon and energy footprint reduction strategies considering the regional and 

global supply chains of Turkish manufacturing sectors, and 

(iv) show the importance of complete coverage of all supply chain tiers in order to prevent the erroneous 

results due to narrowly defined system boundary.  

The rest of the paper is organized as follows. Section 2 introduces the methods. Results are provided in section 3.  

Discussion and conclusions were made in section 4, And, section 5 provides the policy recommendations and 

future directions of the current research. 
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2. Methods 

The MRIO models consist of trade flow matrices covering all countries or regions in the model. These matrices 

are able to track international supply chains of world economies and the global trade links among the trading 

partners (Arto et al. 2014a; Miller and Blair, 2009; Rueda-Cantuche et al. 2009). A MRIO model typically involves 

national input output (I–O) tables, which represent financial transactions between economic sectors within a 

country and international trade flows. In a typical MRIO framework, monetary flows present the amount of 

imports and exports made by economic sectors of countries. All these import and export flows are then merged 

into one consistent financial accounting framework (Tukker and Dietzenbacher, 2013). This combined inter-

industry transaction matrix is linked to primary inputs between economic sectors and final demand categories 

including household consumption, private fixed investments, and government purchases and investments 

(Wiedmann et al. 2011; Zhang et al. 2015).  

In this research, the researchers used the WIOD to obtain monetary flows between the world’s major economies 

represented by 40 countries. This database is supported by the European Commission under the 7th framework 

programme and developed a time series of symetric I-O tables during the period from 1995 to 2011 for 40 

countries (27 EU member states and 13 other major countries, see Table 1) distinguishing 35 industries and 59 

products (Dietzenbacher et al. 2013). In this database, an I-O table is constructed by using Supply and Use Tables 

at basic prices with a fixed product sales assumption. In this assumption, each product has its own specific sales 

structure irrespective of the industry where it is produced. All tables presented in the WIOD are obtained from the 

National Accounts Statistics (NAS) and are based primarily on publicly available data. For a detailed information 

about the sources and methods used in compiling the WIOD, constructing a symetric industry-by-industry I-O 

tables and detailed sector classifications, please refer to Timmer (2012) and EuroStat (2008). 

Table 1. WIOD manufacturing sectors and their abbreviations 

Manufacturing Sectors Abbreviations 
Agriculture, Hunting, Forestry and Fishing AHFF 
Basic Metals and Fabricated Metal BMFM 
Chemicals and Chemical Products CCP 
Coke, Refined Petroleum and Nuclear Fuel CRPNF 
Electrical and Optical Equipment EOE 
Food, Beverages and Tobacco FBT 
Leather, Leather and Footwear LLF 
Machinery, Nec MN 
Manufacturing, Nec; Recycling MNR 
Mining and Quarrying MQ 
Other Non-Metallic Mineral ONMM 
Pulp, Paper, Paper, Printing and Publishing PPPPP 
Rubber and Plastics RP 
Textiles and Textile Products TTP 
Transport Equipment TE 
Wood and Products of Wood and Cork WPWC 

 
In our MRIO model, Ars

ij matrix consists of multiple rows which present the input of sector i from country r (= 

1,...,n) into industry j in country s (=1,...,n). In this matrix, i and j equal to 35 which is the total number of sectors 

in each country. Also, r and s are equal to 41 which is the total number of countries including the Rest-of-the-

World (RoW). This matrix is also known as the direct requirement matrix, and each row represents the inputs 

from other sectors (domestic inputs plus inputs from other countries) to produce a dollar of output. Overall, the 



7 
 

MRIO analysis produces a set of multipliers that show the total environmental impacts based on per dollar 

economic output, and therefore quantifies a global multiregional environmental footprint of supply chains 

(Wiedmann, 2009). After the MRIO model is constructed and total requirement matrix is derived from the direct 

requirement matrix using the taylor series approximation (Miller and Blair, 2009), carbon and energy footprints 

of the Turkish manufacturing sectors (presented in Table 2) can be estimated by multiplying the output of each 

sector by its carbon or energy impact per million dollar ($M) of economic output. The mathematical foundation 

of a multi region input-output analysis is explained in the following sub-section. 

Table 2. WIOD countries and their regional aggregation (Dietzenbacher et al. 2013) 

Euro-Zone Non-Euro EU NAFTA China East Asia BRIIAT 
Austria Bulgaria Canada China Japan Brazil 

Belgium Czech Rep. Mexico 
 

Korea Russia 
Cyprus Denmark USA 

 
Taiwan India 

Estonia Hungary 
   

Indonesia 
Finland Latvia 

   
Australia 

France Lithuania 
   

Turkey 
Germany Poland 

    

Greece Romania 
    

Ireland Sweden 
    

Italy UK 
    

Luxembourg 
     

Malta 
     

Netherlands 
     

Portugal 
     

Slovakia 
     

Slovenia 
     

Spain 
     

 

2.1 A Multi-region Input-Output Analsis 
For a brief explaination, the MRIO model is illustrated for the case of 3 regions with n sectors. However, this 

illustration can be applied to any number of regions and sectors as discussed in the Arto et al. (2014b). In a typical 

MRIO economy, there are 3 main components such as inter-industry transactions matrix (Z), final demand vector 

(f), and total industry output vector (x). 

𝐙𝐙 = �
𝐙𝐙𝐫𝐫𝐫𝐫 𝐙𝐙𝐫𝐫𝐫𝐫 𝐙𝐙𝐫𝐫𝐫𝐫
𝐙𝐙𝐫𝐫𝐫𝐫 𝐙𝐙𝐫𝐫𝐫𝐫 𝐙𝐙𝐫𝐫𝐫𝐫
𝐙𝐙𝐫𝐫𝐫𝐫 𝐙𝐙𝐫𝐫𝐫𝐫 𝐙𝐙𝐫𝐫𝐫𝐫

�; 

𝐟𝐟 = �
𝐟𝐟𝐫𝐫
𝐟𝐟𝐫𝐫
𝐟𝐟𝐫𝐫
� = �

𝐟𝐟𝐫𝐫𝐫𝐫 + 𝐟𝐟𝐫𝐫𝐫𝐫 + 𝐟𝐟𝐫𝐫𝐫𝐫
𝐟𝐟𝐫𝐫𝐫𝐫 + 𝐟𝐟𝐫𝐫𝐫𝐫 + 𝐟𝐟𝐫𝐫𝐫𝐫
𝐟𝐟𝐫𝐫𝐫𝐫 + 𝐟𝐟𝐫𝐫𝐫𝐫 + 𝐟𝐟𝐫𝐫𝐫𝐫

�; 

𝐱𝐱 = �
𝐱𝐱𝐫𝐫
𝐱𝐱𝐫𝐫
𝐱𝐱𝐫𝐫
� 

As an element of Zrs, 𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 accounts for the purchases of industry j in country s from industry i in country r. In 

addition, frs represents a column vector with final demands that can be household demand, government 

consumption and investments, private fixed investments, etc. For example, 𝑓𝑓𝑖𝑖𝑟𝑟𝑟𝑟 represents the final demand of 

country s for commodities produced by sector i in country r. Also, xr denotes the column vector of total industry 

outputs in region r. Overall, the linear relation between total industry output (x), inter-industry transactions (Z) 

and final demand (f) is given in eqn.1 (Miller and Blair, 2009): 
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𝐙𝐙𝐙𝐙 + 𝐟𝐟 = 𝐱𝐱        (1) 

where i represents the vector of column summation. 

In a standard input-output model, total industry output vector, x can be expressed as (Miller and Blair, 2009): 

x=Ax+f           (2) 

where A is known as the technical coefficients matrix or direct requirements matrix. Using the Leontief’s inverse 

function, the solution of eqn. 2 is given by x=Lf, where L= (I-A)-1 is called as the Leontief inverse (Leontief, 

1970). In the MRIO analysis, the multiregional technical coefficients matrix is defined as: 

       𝐀𝐀 = �
𝐀𝐀𝐫𝐫𝐫𝐫 𝐀𝐀𝐫𝐫𝐫𝐫 𝐀𝐀𝐫𝐫𝐫𝐫
𝐀𝐀𝐫𝐫𝐫𝐫 𝐀𝐀𝐫𝐫𝐫𝐫 𝐀𝐀𝐫𝐫𝐫𝐫
𝐀𝐀𝐫𝐫𝐫𝐫 𝐀𝐀𝐫𝐫𝐫𝐫 𝐀𝐀𝐫𝐫𝐫𝐫

� 

                             where 𝐀𝐀𝐫𝐫𝐫𝐫 = 𝐙𝐙𝐫𝐫𝐫𝐫𝐱𝐱�−𝟏𝟏            (3) 

After that, Leontief matrix and Leontief inverse matrix are calculated using the eqn. 4 and 5, respectively: 

[𝐈𝐈 − 𝐀𝐀] = �
𝐈𝐈 − 𝐀𝐀𝐫𝐫𝐫𝐫 −𝐀𝐀𝐫𝐫𝐫𝐫 −𝐀𝐀𝐫𝐫𝐫𝐫
−𝐀𝐀𝐫𝐫𝐫𝐫 𝐈𝐈 − 𝐀𝐀𝐫𝐫𝐫𝐫 −𝐀𝐀𝐫𝐫𝐫𝐫
−𝐀𝐀𝐫𝐫𝐫𝐫 −𝐀𝐀𝐫𝐫𝐫𝐫 𝐈𝐈 − 𝐀𝐀𝐫𝐫𝐫𝐫

�            (4) 

𝐋𝐋 = [𝐈𝐈 − 𝐀𝐀]−1 = �
𝐈𝐈 − 𝐀𝐀𝐫𝐫𝐫𝐫 −𝐀𝐀𝐫𝐫𝐫𝐫 −𝐀𝐀𝐫𝐫𝐫𝐫
−𝐀𝐀𝐫𝐫𝐫𝐫 𝐈𝐈 − 𝐀𝐀𝐫𝐫𝐫𝐫 −𝐀𝐀𝐫𝐫𝐫𝐫
−𝐀𝐀𝐫𝐫𝐫𝐫 −𝐀𝐀𝐫𝐫𝐫𝐫 𝐈𝐈 − 𝐀𝐀𝐫𝐫𝐫𝐫

�
−1

= �
𝐁𝐁𝐫𝐫𝐫𝐫 𝐁𝐁𝐫𝐫𝐫𝐫 𝐁𝐁𝐫𝐫𝐫𝐫
𝐁𝐁𝐫𝐫𝐫𝐫 𝐁𝐁𝐫𝐫𝐫𝐫 𝐁𝐁𝐫𝐫𝐫𝐫
𝐁𝐁𝐫𝐫𝐫𝐫 𝐁𝐁𝐫𝐫𝐫𝐫 𝐁𝐁𝐫𝐫𝐫𝐫

�     (5) 

Furthermore, our MRIO model is extended with two environmental impact matrices, where C is a diagonal matrix 

of carbon emission coefficients and E is a diagonal matrix of energy use coefficients. Then, the total sectorial 

emissions and energy use are given by eqn. 6 and 7, respectively: 

𝐜𝐜 = 𝐂𝐂𝐁𝐁𝐟𝐟          (6) 

𝐞𝐞 = 𝐄𝐄𝐁𝐁𝐟𝐟          (7) 

where c is a column vector of total carbon emissions, and e is a column vector of total energy use. Hence, the 

sectorial emissions of a specific country r are given in eqn. 8: 

𝐜𝐜𝐫𝐫 = 𝐂𝐂𝐫𝐫𝐁𝐁𝐫𝐫𝐫𝐫𝐟𝐟𝐫𝐫 + 𝐂𝐂𝐫𝐫𝐁𝐁𝐫𝐫𝐫𝐫𝐟𝐟𝐫𝐫 + 𝐂𝐂𝐫𝐫𝐁𝐁𝐫𝐫𝐫𝐫𝐟𝐟𝐫𝐫                  (8) 

Finally, the sectorial energy uses of a specific country r are given in eqn. 9: 

𝐞𝐞𝐫𝐫 = 𝐄𝐄𝐫𝐫𝐁𝐁𝐫𝐫𝐫𝐫𝐟𝐟𝐫𝐫 + 𝐄𝐄𝐫𝐫𝐁𝐁𝐫𝐫𝐫𝐫𝐟𝐟𝐫𝐫 + 𝐄𝐄𝐫𝐫𝐁𝐁𝐫𝐫𝐫𝐫𝐟𝐟𝐫𝐫                  (9) 

 

2.5 Data Collection and Preparation 
This paper gathered the majority of its dataset from the WIOD to obtain sectoral transactions table and GHG 

emissions and energy consumption data. The global warming potential (GWP) of each sector is calculated by 

multiplying the total GHG emission of each sector with conversion factors obtained from the United States 

Environmental Protection Agency (U.S EPA, 2013). The GHG emission dataset involves the direct carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O) emissions of each sector. The GWP results are presented in terms 
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of metric tons of CO2-equivalent (mt CO2-eqv). Table 3 presents the GWPs of GHG emissions relative to CO2 

for a 100-year time horizon. 

Table 3. Direct Global Warming Potentials relative to CO2 (U.S. EPA, 2013) 

Common Name Chemical Formula Conversion factors of GWP  
for 100-year time horizon 

Carbon Dioxide CO2 1 
Methane CH4 25 
Nitrous Oxide N2O 298 

 

For total energy consumption, the sectorial energy use data are obtained from the WIOD. The energy data include 

the total fossil and non-fossil gross energy use of each sector and presented in tera-joules (TJ). In order to prevent 

a double counting issue in energy accounts, we only summed up the primary energy carries (crude oil, coal, natural 

gas, nuclear energy, hydropower, and renewables), which are shown in the WIOD energy accounts. Similar 

approach was also used by Bortolamedi (2015) and the primary energy carriers and their WIOD codes are 

presented in Table 4. All matrix calculations are performed by using a MatLab programming software (MATLAB, 

2012). 

Table 4. Primary Energy Carriers in WIOD (Bortolamedi, 2015) 

Primary Energy Carriers WIOD Code 
Crude Oil Crude 
Coal HCoal, BCoal, Coke 
Natural Gas NatGas, OthGas 
Nuclear Energy Nuclear 
Hydropower Hydro 
Renewables Waste, Biogasol, Biodiesel, Biogas, Geotherm, 
 Solar, Wind, Othsourc 

 

The followings briefly summarize the major research steps: 

 First, total economic transaction table is obtained from the WIOD and total requirement matrix is created 

by using the Leontief’s inverse, 

 Second, total economic output of each sector from all countries are gathered. Then, by dividing GWP 

and energy use of sectors to corresponding economic output, we obtaine the C  and E matrices. Each 

element of this matrices present the direct carbon and energy impact of 1435 sectors, 

 Finally, by using the MRIO framework, we calculate the onsite, upstream and T+W+R related GWP and 

energy use of 16 major Turkish manufacturing sectors between 2000 and 2009.  

 

3. Results 

3.1 Carbon footprint and energy use of manufacturing sectors and their supply chains 
Fig. 1 presents the total average carbon footprint and energy use of 16 manufacturing sectors based on per $M 

and total economic output during the period between 2000 and 2009. The results show the contributions of 

upstream, onsite manufacturing and transportation (T), wholesale (W) and retail (R) trade (hereafter called the 

“T+W+R”) to carbon footprint and energy use inventory. Fig. 1a indicates that AHFF, FBT, TTP, ONMM, BMFM 

and CCP are the top-6 industrial sectors based on total amount of carbon emissions. These sectors account for 
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over 50% of the total carbon emissions in the MRIO economy. In terms of the contribution to the supply chain 

phases, onsite manufacturing activities were found to be dominant only for AHFF and ONMM. For the rest of the 

sectors, the industries in the upstream supply chains were found to be responsible for over 90% of the total impacts 

and the contribution of onsite and T+W+R activities were found to be minimal.  

Fig. 1b presents the total carbon footprint of 16 manufacturing sectors based on the per $M as an average of carbon 

footprints during the period between 2000 and 2009. The results showed that ONMM, WPWC, CRPNF, BMFM, 

CCP, and RP were found to be as the top-6 industrial sectors based on total carbon footprints against per $M 

output. These sectors were found to be responsible for around 60% of total carbon footprints. When we look at 

more closely at contribution of supply chain phases, onsite manufacturing activities were found to be the major 

driver of footprints only for AHFF, ONMM and WPWC. The same as total carbon footprint results, upstream 

supply chains are responsible for over 90% of the total impacts and the contribution of direct and T+W+R related 

supply chain phases are quite low. Although AHFF, FBT and TTP have the largest total carbon emissions based 

on total economic output, their carbon emissions based on $M output are found to be lower when compared to 

emissions based on total economic output. On the other hand, sectors with low total carbon footprints such as 

WPWC and CRPNF have the highest carbon emissions per $M output. Among the major manufacturing sectors, 

ONMM sector is found to have high carbon emissions for both per $M and total output. In both cases, LLF sector 

has the lowest carbon emissions when compared with other sectors. 

Fig. 1c presents the total energy use of 16 manufacturing sectors based on total economic output as an average of 

total energy use for the period 2000 and 2009. The results showed that TTP, FBT, BMFM, CRPNF and AHFF 

represent the top- industrial sectors in total energy use category based on total economic output. The top sectors 

are found to be responsible for more than two third of total energy use. When we look at more closely at 

contribution of supply chain phases, onsite manufacturing is found to be dominant only for TTP and FBT. On the 

other hand, for the majority of the manufacturing sectors, upstream supply chains are responsible for over 65% of 

the total energy use. The contribution of direct and T+W+R related supply chain phases have a little contribution 

to overall energy use. LLF and WPWC are responsible for the least amount of energy in comparison with other 

sectors. 

Fig. 1d shows the total carbon footprint of 16 manufacturing sectors based on per $M activity. The results revealed 

that CRPNF, EOE, TTP, BMFM, and TE use the biggest energy resources within the manufacturing sectors. These 

sectors are found to have approximately more than 50% of total energy use among the16 manufacturing sectors. 

The results analyzing the contribution of supply chain phases to total energy use showed that onsite energy use of 

manufacturing is found to be dominant only for AHFF and ONMM. The same as total carbon footprint results, 

upstream supply chains were found to be responsible for over 90% of the total impacts. The contribution of direct 

and T+W+R related supply chain phases were seen as having nonsignificant impact share. It is also important to 

emphasize that FBT is found to be as the second largest energy consumer; however its total energy use based on 

per $M economic output was found to be lower compared to total energy use. Furthermore, sectors with high total 

energy use such as TTP and BMFM have the high energy use for both per $M and economic output basis. Among 

the major manufacturing sectors, AHFF sector was found to be among the top-5 energy consumer based on total 

economic activity. However, the total energy use of AHFF based on per $M economic output was observed as the 

lowest when compared to other sectors.  
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Fig 1. Average carbon footprint and energy use of major manufacturing sectors a) carbon footprint based on total 
output (t CO2-eqv/total $M) b) carbon footprint based on per $M output (t CO2-eqv/ $M) c) energy use based on 
total output (TJ/total $M) d) energy use based on per $M output (TJ/ $M) 

Fig. 2 depicts the contribution of each supply chain phase to carbon footprint and energy use extents. This analysis 

is important to understand the degree of nexus between supply chain phases for carbon footprint and energy 
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utilization. The results showed that the percentage contribution of upstream suppliers, onsite manufacturing and 

T+W+R phases were found to be similar for the sectors of BMFM, CRPNF, EOE, LLF, MN, MNR and TE for 

both carbon and energy categories. For these sectors, upstream supply chain impacts were found to be dominant 

compared to onsite manufacturing activities and T+W+R. For the manufacturing sectors such as AHFF, CCP, 

FBT, MQ, ONMM and WPWC, the contributions of different supply chain phases to total carbon emissions and 

energy use were found to be substantially different. For instance, upstream supply chains were found to be highly 

dominant in the total energy use of three manufacturing sectors: AHFF, ONMM, and WPWC. On the other hand, 

onsite manufacturing activities were found to have the biggest carbon emissions for these sectors in comparison 

with upstream supply chains and T+W+R phases. For CCP and MQ sectors, upstream supply chains were found 

to be the major driver of total energy use; whereas upstream supply chains and onsite manufacturing equally 

shared the total carbon emissions. For FBT, which is the second largest manufacturing sector in terms of total 

energy use and carbon emissions, upstream supply chains were found to be highly dominant and the percentage 

contribution of transportation and T+W+R phases are responsible for the minimum share of total impacts. On the 

average, the contribution of upstream supply chains to total energy use of the majority (75%) of the manufacturing 

sectors was found to 80% or higher.  

In carbon emissions category, only four sectors’ impacts were found to be driven by the onsite manufacturing 

activities and the rest of the sectors’ impacts (accounts for 75% of all sectors) were found to have the largest 

shares attributed to the upstream supply chain industries. For most of the sectors with an exception of CRPNF, 

the contribution of T+W+R was found to have less than 5% of overall carbon emissions and energy use.  
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Gas and Water Supply sector was mostly found to be as the main contributor to total carbon emissions. For 

instance, the carbon footprint shares of Electricity, Gas and Water Supply industry within the total supply chain-

linked impacts of ONMM, BMFM and TTP were found to be critically high, accounting for 42.3%, 38.2% and 

33.65% of total supply chain-related carbon emissions. On the contrary, inland transportation was found to have 

the least amount of carbon emissions with less than 5% impact share. 

Table 6 depicts the upstream supply chains sectors’ contribution to carbon emissions based on per $M economic 

activity. ONMM, WPWC, CRPNF, BMFM and CCP were found to have the highest carbon emissions per $M 

economic output.  Among these sectors, carbon footprint of ONMM, WPWC and CCP is largely driven by onsite 

activities whereas upstream supply chains of CRPNF and BMFM were found to be responsible for the biggest 

share of the total carbon footprint. For ONMM, WPWC and CCP, the percentage shares of direct impacts were 

found to be as 75% and 80%, respectively. For BMFM, FBT and TTP, upstream suppliers accounted for around 

80%, 68.9% and 53.2% of total carbon footprint based on per $M output. When analyzing top-5 contributors in 

upstream supply chains, Electricity, Gas and Water Supply sector was again found to be as the main contributor 

of the total carbon emissions. The share of the Electricity, Gas and Water Supply among the upstream suppliers 

ONMM, WPWC, CRPNF, and BMFM had the greatest values, accounting for 41.9%, 29.2%, 33.5%, and 38.3 of 

total supply chain-related carbon impacts. The same as overall carbon emissions based on total economic output, 

inland transportation had the least amount of carbon emissions, which account for less than 5% of total carbon 

emissions with an exception of CRPNF. For this sector, the percentage contribution of transportation sector was 

found to be approximately 15% of total upstream carbon footprints. 

Table 7 presents the upstream supply chains sectors’ contribution to energy use based on total economic output. 

TTP, FBT, BMFM, CRPNF and AHFF had the highest energy use when compared to other manufacturing sectors. 

The total energy consumption of these sectors was mainly driven by upstream supply chains whereas onsite 

manufacturing sectors have the least amount of energy use. For AHFF and BMFM, the percentage shares of onsite 

manufacturing were found to be noncritical, accounting for 13.38% and 17.23% of the total energy use, 

respectively. For TTP, FBT and CRPNF, upstream suppliers accounted for approximately 47.36%, 64.36% and 

73.26% of total energy consumption. The Coke, Refined Petroleum and Nuclear Fuel sector was usually found to 

be as the main driver of energy use in upstream supply chains. For example, the share of Coke, Refined Petroleum 

and Nuclear Fuel within the supply chain paths of AHFF, CRPNF and FBT had the following energy use shares: 

19.78%, 7.12% and 11.27%, respectively. In contrast, the percentage contribution of transportation and trade 

activities were not listed among the top-5 upstream suppliers for the energy use category. 

Lastly, Table 8 shows the contribution of upstream suppliers to total energy consumption based on per $M 

economic activity. The results revealed that CRPNF, EOE, TTP, BMFM and TE have the highest energy use 

against per $M economic output. For these manufacturing sectors, total energy use was only dominated by 

upstream suppliers. Especially, the upstream supply chain portions of energy use are the highest for EOE and TE 

which are 96.34% and 90.31% of total energy use. For BMFM, CRPNF and TTP, the percentage shares of onsite 

manufacturing are 17.98%, 27.29% and 53.72%, respectively. When the researchers analyzed the drivers of 

upstream supply chains, the Coke, Refined Petroleum and Nuclear Fuel sector is again observed as the main 

contributor. The share of the Coke, Refined Petroleum and Nuclear Fuel among the upstream suppliers including 

CRPNF, TTP and BMFM had the highest shares, which were found as 7.63%, 7.73% and 6.60% of the total 

upstream energy consumption. 
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Table 5. Supply chain decomposition analysis of carbon footprint for top 5 sectors based on total output 

AHFF Share (%) 
Avg. Onsite Carbon Footprint 75.0% 
Avg. Supply Chain Carbon Footprint 25.0%   
Top 5 Sectors in Supply Chains 

 

Electricity, Gas and Water Supply 29.5% 
Agriculture, Hunting, Forestry and Fishing 17.8% 
Chemicals and Chemical Products 11.6% 
Mining and Quarrying 8.1% 
Coke, Refined Petroleum and Nuclear Fuel 7.3%   

FBT 
 

Avg. Onsite Carbon Footprint 12.6% 
Avg. Supply Chain Carbon Footprint 87.4%   
Top 5 Sectors in Supply Chains 

 

Agriculture, Hunting, Forestry and Fishing 56.1% 
Electricity, Gas and Water Supply 15.4% 
Chemicals and Chemical Products 4.5% 
Mining and Quarrying 3.7% 
Other Non-Metallic Mineral 3.5%   

TTP 
 

Avg. Onsite Carbon Footprint 19.7% 
Avg. Supply Chain Carbon Footprint 80.3%   
Top 5 Sectors in Supply Chains 

 

Electricity, Gas and Water Supply 33.6% 
Chemicals and Chemical Products 14.7% 
Agriculture, Hunting, Forestry and Fishing 12.1% 
Mining and Quarrying 7.1% 
Inland Transport 4.2%   

ONMM 
 

Avg. Onsite Carbon Footprint 80.0% 
Avg. Supply Chain Carbon Footprint 20.0%   
Top 5 Sectors in Supply Chains 

 

Electricity, Gas and Water Supply 42.3% 
Mining and Quarrying 20.3% 
Chemicals and Chemical Products 6.3% 
Other Non-Metallic Mineral 4.9% 
Inland Transport 4.5%   

BMFM 
 

Avg. Onsite Carbon Footprint 29.8% 
Avg. Supply Chain Carbon Footprint 70.2%   
Top 5 Sectors in Supply Chains 

 

Electricity, Gas and Water Supply 38.2% 
Basic Metals and Fabricated Metal 24.1% 
Mining and Quarrying 9.9% 
Other Non-Metallic Mineral 8.3% 
Inland Transport 3.2% 
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Table 6. Supply chain decomposition analysis of carbon footprint for top 5 sectors based on per $M output 

ONMM Share (%) 
Avg. Onsite Carbon Footprint 80.0% 
Avg. Supply Chain Carbon Footprint 20.0%   
Top 5 Sectors in Supply Chains 

 

Electricity, Gas and Water Supply 41.9% 
Mining and Quarrying 21.1% 
Chemicals and Chemical Products 6.7% 
Inland Transport 4.6% 
Coke, Refined Petroleum and Nuclear Fuel 4.2%   

WPWC 
 

Avg. Onsite Carbon Footprint 68.9% 
Avg. Supply Chain Carbon Footprint 31.1%   
Top 5 Sectors in Supply Chains 

 

Electricity, Gas and Water Supply 29.2% 
Agriculture, Hunting, Forestry and Fishing 27.1% 
Chemicals and Chemical Products 13.4% 
Mining and Quarrying 6.7% 
Inland Transport 3.5%   

CRPNF 
 

Avg. Onsite Carbon Footprint 25.1% 
Avg. Supply Chain Carbon Footprint 74.9%   
Top 5 Sectors in Supply Chains 

 

Mining and Quarrying 34.8% 
Electricity, Gas and Water Supply 33.5% 
Inland Transport 15.0% 
Coke, Refined Petroleum and Nuclear Fuel 3.0% 
Basic Metals and Fabricated Metal 2.4%   

BMFM 
 

Avg. Onsite Carbon Footprint 29.8% 
Avg. Supply Chain Carbon Footprint 70.2%   
Top 5 Sectors in Supply Chains 

 

Electricity, Gas and Water Supply 38.3% 
Basic Metals and Fabricated Metal 23.2% 
Mining and Quarrying 10.1% 
Other Non-Metallic Mineral 8.5% 
Inland Transport 3.2%   

CCP 
 

Avg. Onsite Carbon Footprint 53.2% 
Avg. Supply Chain Carbon Footprint 46.8%   
Top 5 Sectors in Supply Chains 

 

Electricity, Gas and Water Supply 28.6% 
Chemicals and Chemical Products 17.5% 
Mining and Quarrying 13.2% 
Agriculture, Hunting, Forestry and Fishing 6.6% 
Other Non-Metallic Mineral 5.5% 
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Table 7. Supply chain decomposition analysis of energy use for top 5 sectors for total economic outputs 
 
1.TTP Share (%) 
Average Onsite Carbon Footprint 52.64% 
Average Supply Chain Carbon Footprint 47.36% 
Top 5 Sectors in Supply Chains 

 

Textiles and Textile Products 9.27% 
Coke, Refined Petroleum and Nuclear Fuel 6.84% 
Chemicals and Chemical Products 6.23% 
Renting of M&Eq and Other Business Activities 4.57% 
Mining and Quarrying 4.20%   

2.FBT 
 

Average Onsite Carbon Footprint 35.64% 
Average Supply Chain Carbon Footprint 64.36% 
Top 5 Sectors in Supply Chains 

 

Coke, Refined Petroleum and Nuclear Fuel 11.72% 
Food, Beverages and Tobacco 7.45% 
Renting of M&Eq and Other Business Activities 4.53% 
Chemicals and Chemical Products 4.18% 
Mining and Quarrying 4.69%   

3.BMFM 
 

Average Onsite Carbon Footprint 17.23% 
Average Supply Chain Carbon Footprint 82.77% 
Top 5 Sectors in Supply Chains 

 

Basic Metals and Fabricated Metal 17.46% 
Mining and Quarrying 9.14% 
Renting of M&Eq and Other Business Activities 7.88% 
Coke, Refined Petroleum and Nuclear Fuel 5.20% 
Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 3.09%   

4.CRPNF 
 

Average Onsite Carbon Footprint 26.74% 
Average Supply Chain Carbon Footprint 73.26% 
Top 5 Sectors in Supply Chains 

 

Mining and Quarrying 26.40% 
Coke, Refined Petroleum and Nuclear Fuel 7.12% 
Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 3.49% 
Renting of M & Eq and Other Business Activities 1.43% 
Inland Transport 1.02%   

5.AHFF 
 

Average Onsite Carbon Footprint 13.38% 
Average Supply Chain Carbon Footprint 86.62% 
Top 5 Sectors in Supply Chains 

 

Coke, Refined Petroleum and Nuclear Fuel 19.78% 
Chemicals and Chemical Products 6.19% 
Mining and Quarrying 7.24% 
Food, Beverages and Tobacco 4.76% 
Renting of M & Eq and Other Business Activities 4.22% 
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Table 8. Supply chain decomposition analysis of energy use for top 5 sectors based on per $M output 
 
1.CRPNF Share (%) 
Average Onsite Carbon Footprint 27.29% 
Average Supply Chain Carbon Footprint 72.71% 
Top 5 Sectors in Supply Chains 

 

Mining and Quarrying 27.94% 
Coke, Refined Petroleum and Nuclear Fuel 7.63% 
Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 3.84% 
Renting of M&Eq and Other Business Activities 1.63% 
Inland Transport 1.09%   

2.EOE 
 

Average Onsite Carbon Footprint 3.66% 
Average Supply Chain Carbon Footprint 96.34% 
Top 5 Sectors in Supply Chains 

 

Electrical and Optical Equipment 31.75% 
Basic Metals and Fabricated Metal 9.10% 
Renting of M&Eq and Other Business Activities 6.46% 
Coke, Refined Petroleum and Nuclear Fuel 5.52% 
Chemicals and Chemical Products 4.01%   

3.TTP 
 

Average Onsite Carbon Footprint 53.72% 
Average Supply Chain Carbon Footprint 46.28% 
Top 5 Sectors in Supply Chains 

 

Textiles and Textile Products 8.90% 
Coke, Refined Petroleum and Nuclear Fuel 7.73% 
Chemicals and Chemical Products 6.98% 
Renting of M&Eq and Other Business Activities 4.88% 
Mining and Quarrying 4.50%   

4.BMFM 
 

Average Onsite Carbon Footprint 17.98% 
Average Supply Chain Carbon Footprint 82.11% 
Top 5 Sectors in Supply Chains 

 

Basic Metals and Fabricated Metal 18.09% 
Mining and Quarrying 9.95% 
Fuel Renting of M&Eq and Other Business Activities 8.05% 
Coke, Refined Petroleum and Nuclear 6.60% 
Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 4.71%   

5.TE 
 

Average Onsite Carbon Footprint 9.69% 
Average Supply Chain Carbon Footprint 90.31% 
Top 5 Sectors in Supply Chains 

 

Transport Equipment 19.59% 
Basic Metals and Fabricated Metal 13.67% 
Renting of M&Eq and Other Business Activities 8.56% 
Coke, Refined Petroleum and Nuclear Fuel 6.46% 
Mining and Quarrying 4.17% 

 

The aforementioned analysis indicates that the total carbon and energy impacts of sectors were largely attributed 

to the upstream suppliers and onsite activities; whereas T+W+R have the lowest contribution. Although these 

sectors have a little contribution, Fig. 3 presented the contribution of transportation and trade activities to the total 

energy consumption for the top-5 manufacturing sectors: TTP, FBT, BMFM, CRPNF and AHFF. The results 

indicated that inland transportation had higher share compared to water and air transportation. On average, the 

share of transportation was found to be 50% or over among the downstream supply chain phases. The wholesale 

and retail trade phases had lower impact share than inland transportation with an exception of CRPNF sector. For 

this sector, until 2007, wholesale trade had the biggest share compared to retail trade and all other transportation 
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sectors. In general, the total share of transportation phase started to increase during the period between 2008 and 

2009, and showed a decreasing trend for wholesale and retail trade. This proved the growing dependency of 

manufacturing sectors to inland transportation sector, mainly the truck mode. The contribution of air transport was 

found to have a minimal impact in comparison with inland air transportation.  

Fig. 4 represents the contribution of air, water and inland transport, wholesale and retail trade to total carbon 

emissions. The sectors presented in Fig. 4 were the ones which had the highest total carbon footprints between 

2000 and 2009. The results showed that inland and water transportation modes had the biggest carbon emissions 

whereas the share of air transport in carbon emissions is found to be minimal. After air transportation, retail and 

wholesale trade were found to have the lowest portion of total carbon footprint. For ONMM, the share of inland 

transportation in total emissions was observed as the largest. On the other hand, the water transportation’s share 

in carbon footprint of AHFF and FBT was found to be as highly dominant compared to other transportation sectors 

and trade activities. Overall, the percentage share of transportation modes and trade activities were not changed 

significantly between 2000 and 2009 period. Although water transportation was found to be responsible for the 

lowest energy use; its contribution to total carbon emissions was found to be quite high. 
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Fig 3. Contribution of transportation and trade activities for energy use of top-5 sectors based on total energy use 

(average of 2000 and 2009) 
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Fig 5. A global carbon footprint and energy use distribution of 16 Turkish manufacturing sectors as an average of 
impacts between 2000 and 2009 (a: carbon footprint, b: energy use) 

Finally, Fig 6 presents the global distribution of energy and carbon impacts of manufacturing sectors for the period 

between 2000 and 2009. This analysis is important to see the variation of global distribution of energy and carbon 

effects of each manufacturing sector. The results indicated that CHN, RUS, TUR and RoW had the greatest shares 

of carbon emissions over the 9-year period. The shares of CHN and RUS showed a declining trend from 2000 to 

2009. On the other hand, TUR’s share started to increase in 2007. Overall, the largest portion of total carbon 

emissions was found in TUR’s regional boundary, which ranged between 40% and 60% of total carbon emissions. 

For instance, in 2009, TUR was found to be responsible for around 60% of total carbon emissions and the rest 

was distributed to other world countries (see Fig 6a). 

Fig 6b also showed the contribution of trading countries to total energy use of Turkish manufacturing. Among the 

nations, CHN, DEU, FRA, TUR, USA and RoW had the biggest share of energy production to support Turkish 

manufacturing sectors. As an important fınding, the share of CHN showed a steady increase between 2000 and 

2009. In 2009, China, United States, and Rest-of-the-World’s contributions, as a whole, were found to be more 

than 50% of total energy use of Turkish manufacturing. The CHN’s contribution in 2009 was found to be more 

than 10% of total energy use while over 20% of total energy was attributed to production activities of other 

countries grouped under RoW. Starting from 2001, USA has shown a declining trend for its contribution to total 

energy use. TUR’s energy share varied between 9% and 23% of total impacts, and had its highest value in 2008, 

and 2009. The countries such as ESP, FIN, FRA, GBR, ITA, JPN, KOR and RUS had the least portion among the 

global trading partners of TUR, and their share in total energy footprint of Turkish manufacturing did not show a 

considerable fluctuations over the 10-years period. 
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chains. Furthermore, it provides crucial insights for policy makers, industry stakeholders, and the scientific 

community and can pave the way for further development in manufacturing sustainability assessment research. 

For practical applications, the proposed decision-support framework should include further collaborations with 

industry stakeholders. Since the major hotspots in global supply chains were revealed, policy makers can identify 

the major stakeholders in each sector and can investigate the root causes. The major insights and conclusions are 

presented as follows: 

4.1 One size does not fit all: The need for sector-specific strategies 
The global trade-linked carbon emissions and energy consumption of the manufacturing sectors highlighted the 

need for sector-specific strategies to mitigate GHG emissions and shift to a more energy-efficient economy. 

Consequently, strategies should be developed based on the supply chain characteristics reflecting the contribution 

of onsite, upstream and T+W+R segments, and energy and carbon footprint reduction potential of each sector. 

While carbon and energy intensity of some sectors were attributed to supply chain, for other sectors such as 

ONMM, WPWC, TTP, FBT and AHFF, reducing onsite impacts should be prioritized. The percentage 

contribution of upstream suppliers to the total carbon emissions is found to be much higher (80% or higher) for 

majority of the sectors (about 75% of the sectors), whereas onsite emissions of sectors such as WPWC, ONMM, 

and AHFF have much greater shares. On the other hand, upstream energy consumption of these sectors is greater 

than their onsite emissions. Hence, the policies aiming to increase energy efficiency may not necessarily reduce 

the GHG emissions effectively. While AHFF sector had the highest carbon emissions based on their total output, 

the total energy use of AHFF was not the highest. Although there might be strong correlation between energy and 

carbon footprints, different trends can also be observed in such sectors. Another example is the ONMM sector: 

The results showed that ONMM is the most carbon-intensive sector in the terms of emissions per $M of output 

and it is the fourth largest contributor in the terms of its relative size. However, ONMM sector was not found to 

be among the top-5 sectors based on its total and per $M output energy consumption. Similarly, WPWC was 

responsible for the least amount of energy in comparison with other sectors; whereas it was found to be as one of 

the top contributors of carbon emissions per $M basis.  

4.2 Carbon and energy hotspots: Insights for Turkish manufacturing sectors and supply chains 
Revealing the most carbon and energy intensive supply chain components is crucial to be able to identify the root 

causes and detect the right domains to focus on. Results indicate that the total carbon and energy impacts of sectors 

are largely attributed to upstream suppliers and onsite activities; whereas T+W+R have relatively much smaller 

impact. Among the upstream suppliers, Electricity, Gas and Water Supply (EGWS) was found to be most 

dominant supply chain component of the top carbon intensive sectors. Although this is an expected finding, it 

highlights the fossil fuel dependence of electric power generation. Hence, use of renewable energy for electricity 

production is vital to mitigate carbon emissions and stabilize the global warming threat in the long run. 

Furthermore, any improvement in EGWS sector can result in credible footprint reductions compared to other 

supply chain components since it is a major component of the supply chain of manufacturing sectors and the 

largest contributor to carbon emissions. On the other hand, major supply chain contributors to the energy 

consumption of manufacturing sectors have a different structure. The Coke, Refined Petroleum and Nuclear Fuel 

sector was found to be the main driver of energy use in upstream supply chains.  Similarly, energy efficiency 

improvement for this sector will increase performance of other sectors significantly. Furthermore, CRPNF was 

the most energy intensive sector and supply chain energy consumption account for about 70% of the sector’s total. 
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The most influential component of its supply chain is the MQ sector whose energy consumption trend is expected 

to increase due to expanding coal mining in Turkey in recent years. 

4.3 Revealing the big picture: Broadening the current understanding of supply chain sustainability 
Globalization of the world economy fastens the separation between the consumption and production spatially. 

While resource extraction and agricultural production take place in some parts of the word, industrial 

manufacturing, redistribution, and consumption occur in different parts of the world (Wiedmann et al. 2011). 

Hence, to be able to analyze supply chain sustainability and promote sustainable consumption and production 

policies, international supply chains need to be considered as part of life cycle assessment methodologies 

(Chaabane et al. 2012). On the other hand, current sustainable supply chain management understanding prioritizes 

the social, environmental, and economic goals of an individual company or a country, region,etc. for improving 

long-term economic performance of the focused system and its supply chains (Carter and Rogers, 2008). While it 

is appropriate from an individual company’s perspective, when the entire supply chain network and its integration 

with environmental sustainability are considered, a broader understanding is necessary. In the literature, most of 

the studies addressing issues related to supply chain sustainability assessment lack holistic international trade-

linked scope, and focus on a specific phase of supply chain such as transportation and logistics (Cholette and 

Venkat, 2009; Egilmez and Park, 2014; Elhedhli and Merrick, 2012; Halldórsson and Kovács, 2010; Soysal et al. 

2012) and inventory management (Bouchery et al. 2012; Hua et al. 2011). Although analyzing different segment 

of supply chains are necessary and can be beneficial for corporate level supply chain management efforts 

(Benjaafar et al. 2013), the results of this research showed that these segments have very small impact compared 

to onsite and upstream impacts. Hence, mapping the energy and carbon hotspots for each sector throughout global 

supply chain can guide policy makers, industry stakeholders, and researchers to canalize the efforts to the right 

domains.   

4.4 Lack of Communication in a Globalized World 
In a globalized world, which is woven by highly complex web of global supply chains, sustainability of any region 

depends on the sustainability of many other regions (Kissinger and Rees, 2010). Considering that individual 

companies does not have control over their higher order upstream suppliers; top-down approaches and 

communication among international authorities, organizations, policy makers are essential actions need to be 

taken in order to address issues related to climate change as well as energy efficiency, and trigger transformation 

of long talks into actions. Lack of communication about the risks of climate change is a major problem preventing 

science contributing the decision making processes and playing appropriate role in policies addressing issues 

related to Climate (Moser, 2010; Sterman, 2011). Mental models of individuals and prejudices prevent the 

communications and result in biases (Sterman & Sweeney, 2007). A long term commitment and strategy is needed 

to coordinate and improve the effectiveness of policies.  

5. Recommendations & Future Remarks 

This paper is an important step toward integrating a global MRIO perspective into macro level energy and climate 

effects of manufacturing supply chains. While the majority of researchers have been focusing on particular parts 

of the manufacturing activities from product or process perspectives with a limited focus on regional impacts and 

supply chain phases, sustainability assessment research often lacks a systems-level approach. In this context, 

current research methodology will be a robust framework since it provides a comprehensive sustainability 
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assessment that addresses the supply chains and global impacts as an “umbrella” type of research methodology. 

For future research, the authors also propose the important extensions of current sustainable supply chain research 

for manufacturing activities as ‘using high sector and country resolution global MRIO frameworks’, ‘considering 

the social and economic aspects of manufacturing in addition to the environment’ and finally ‘considering the 

dynamics relationships between the indicators of sustainability and their ripple effects on the long-term 

sustainability of manufacturing’. 

5.1 High-resolution sectors, more detailed regions, improved data availability, quality, and accuracy 

In this paper, the researchers used the WIOD which has become very popular and is widely cited global MRIO 

database (Arto and Dietzenbacher, 2014). Although the proposed methodology is robust and sound as it is capable 

of capturing global trade-links through time, there is need for certain improvements to develop more effective and 

accurate framework. First, the level of aggregation is critical point that needs to be addressed in future. The 

findings of recent studies also showed that disaggregation of I–O data are superior to aggregating environmental 

data in determining I–O multipliers and minimize uncertainties in LCI results (Lenzen, 2011; Steen-Olsen et al. 

2014). Second, the comprehensive review on I-O studies strongly emphasized that sustainability implications of 

manufacturing sectors must be analyzed with a set of environmental metrics as extensive as possible, covering the 

globe and discerning as many as possible sectors and countries, including long-time series (Hoekstra, 2010; 

Tukker and Dietzenbacher, 2013). Therefore, the authors aim to expand the methodology of current analysis with 

high country and sector resolution MRIO data and even more intra-country regional detail. This level of 

disaggregation will be so critical for analysis of industrial sectors with upstream supply chain dominance. For 

instance, the EXIOPOL covers the 27 EU member states as well as 16 non-EU countries with RoW accounts 

(Tukker et al. 2009). This global MRIO database aims to have a detailed view of economic sectors discerning 129 

sectors. This global MRIO database used more detailed sector and product accounts to split up product and 

industry totals; however current version is limited to 2000 data which does not enable us to conduct a time series 

analysis. Furthermore, it should be noted that global MRIO modes are subject to uncertainties due to sectoral 

aggregation and gathering the environmental accounts data (Lenzen et al. 2010). Also, combining regional models 

with MRIO analysis can be a sound methodology in order to consider the role of regional variations (Liang et al, 

2007; Okedera et al. 2006). 

5.2 The Balancing Act: Towards triple bottom line sustainability assessment of manufacturing sectors 

Although the primary goal of supply chain management is considered as supply chain surplus through minimizing 

total supply chain cost and maximizing profits, this understanding has to be shifted to a broader concept that aims 

to find balance between the economic, social and ecological consequences of supply chain operations. To be able 

to manage the technological advancements towards realizing the goals of sustainable development, it is crucial to 

evaluate the TBL sustainability impacts of industrial activities in order to achieve economically 

viable, environmentally benign and socially acceptable policies towards realizing the objectives of sustainable 

development (Elkington, 1997). In the literature, several studies emphasized the importance of the three pillars of 

sustainability in supply chain management research (Clift, 2004; Seuring and Muller, 2008; Seuring et al. 2008). 

However, only a handful of studies have focused on integrating all dimensions of sustainability into sustainable 

supply chain management research (Foran et al. 2005; Wiedmann and Lenzen, 2009; Onat et al. 2014a). 

Furthermore, globalization is an important factor for shaping the global supply chain networks of production 

activities and associated TBL impacts. There are important efforts towards presenting the critical TBL measures 
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for domestic economies and their global effects. In near future, a global MRIO analysis can be primary policy 

making framework for world economies in order to trace the TBL sustainability performance of their production 

supply chains at regional and global scale (Balancing the G20’s Global Impact, 2014). 

5.3 Revealing the causal relationship and the system behavior  
Effective decision-making requires a system thinking approach and an understanding of the behavior of the 

growing dynamic complexity of the globally linked manufacturing sectors (Egilmez and Tatari, 2012; Onat et al. 

2014c; Sterman, 2000, Onat et al. 2016b). The global warming, energy consumption and economic output of 

manufacturing sectors are interconnected with feedback relationships, ripple and side effects. While MRIO 

models are very significant, they are not capable of capturing the causal relationships among the manufacturing 

sectors and environmental impacts. System dynamics modeling serves best to reveal these relationships since it 

helps to quantitatively define the feedback mechanisms, potential delays, and multi-dimensional causal 

relationships of a particular system (Davies, 2008; Sterman, 2012). With the integration of system dynamics 

modeling, the nexus between the energy use and global climate change and the system’s behavior over time can 

be identified and more effective policies can be developed. 
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