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Abstract: Delamination  is  a  commonly  observed  distress in  concrete  bridge  decks.  Among  all  the  delamination 

detection  methods,  acoustic  methods  have  the  advantages  of  being  fast  and  inexpensive. In  traditional  acoustic 

inspection methods, the inspector drags a chain alone or hammers on the bridge deck and detects delamination from 

the  “hollowness”  of  the  sound. The  signals  are  often  contaminated  by  ambient  traffic  noise  and  the  detection of 

delamination is highly subjective. This paper describes the performance of an impact-based acoustic NDE method 

where the  traffic  noise  was  filtered  by  employing  a  noise  cancelling  algorithm  and where subjectivity  was 

eliminated by introducing feature extraction and pattern recognition algorithms. Different algorithms were compared 

and the best one was selected in each category. The comparison showed that the modified independent component 

analysis (ICA) algorithm was most effective in cancelling the traffic noise and features consisting of mel-frequency 

cepstral coefficients (MFCCs) had the best performance in terms of repeatability and separability. The condition of 

the bridge deck was then detected by a radial basis function (RBF) neural network. The performance of the system 

was  evaluated using both  experimental  and  field  data.  The  results  show  that  the  selected  algorithms  increase  the 

noise robustness of acoustic methods and perform satisfactorily if the training data is representative. 
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Introduction 

Delamination refers to the separation of a layer of concrete from the main body and is a major form of damage in 

concrete decks. It is usually caused by traffic loads, corrosion of steel reinforcement and freeze-thaw of the water in 

concrete. The  initial  stage  of  delamination  occurs  under  the  surface  and is difficult  to detect  through visual 

inspection. As the delamination propagates, it leads to spalling of the bridge deck, causes an uncomfortable driving 

experience and can be potential threat to public safety. Small delaminated areas can be repaired by patching. A very 

large area of delamination usually requires replacement of the entire deck, which is expensive and causes significant 

user delay. It is therefore advantageous to detect delamination at an early stage to reduce the cost of repair. 

 Many methods have been considered for the inspection of bridge deck systems. In the impact echo method [1, 2] 

delamination is detected by measuring the time interval for the P-wave to be reflected between the surface of the 

deck  and  that  of  the  defect and the  recorded  signal is  analyzed in  the  frequency  domain.  The  delamination  is 

characterized  by  peaks  in  the  frequency  spectrum. In  the  ultrasonic  pulse  velocity method [3] delamination is 

detected by measuring the arrival time of ultrasonic waves inside concrete. The existence of defects changes the path 

of wave propagation and hence changes the arrival time. In both methods, sensors must be coupled to the surface for 

reliable measurements. In addition, the signal obtained from the impact-echo test in real situations can be difficult to 

interpret  when  the  surface  of  the  defect  is  irregular. Although  methods  that  do  not  require full surface  contact do 

exist [4], these techniques require sophisticated signal processing techniques and advanced sensors and are therefore 

impractical for the inspection of a large area like a bridge deck. Ground penetrating radar [5] detects objects in the 

concrete by measuring contrast in the dielectric properties of the materials. This is a non-contact method that is non-

destructive and fast, but it is not sensitive in detecting delaminations, voids and cracks filled with air because the 

contrast between the dielectric constants of air and concrete is small. Infrared thermography [6, 7] can also be used 

to  detect delamination in  concrete. Concrete  and  defects  usually have different thermal properties  that  can be 

captured  by  the  temperature  distribution  when  there  is a  heat  transfer. This makes  the  method environment 

dependent. In X-ray  imaging [8],  materials  with  different  densities are represented  by the darkness of  the  pixels. 

Defects and other objectives with different densities can then be identified by analyzing the X-ray images.  But the 

X-ray source is bulky, needs considerable power, and is a safety concern for the inspector, making it impractical for 
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the inspection of bridge decks. Sounding methods [9-11] detect delamination by the “hollowness” of the sound when 

excited by hammer impacts or a chain-drag. Good concrete with no delamination produces a clear, ringing sound, 

while delaminated concrete is characterized by a dull, hollow sound. Next to visual inspection, mechanical sounding 

is  the  most  prevalent  method  used  for  the  inspection  of  concrete  bridges [12]. However, there  are  two  major 

problems  associated  with  the traditional  sounding:  (1) the  detection  is  subjective; and (2) the  effectiveness  of  the 

method is affected by the level of ambient noise.  

Although several attempts have been made to improve sounding methods, research on this topic is still limited. 

Researchers  at  the  Michigan  Department  of  Transportation  (MDOT)  designed  a  cart-like  device  for  delamination 

detection [11]. The impulse was created by the chattering of two rigid wheels with the concrete and the vibration of 

the  concrete  was  captured  by  a  transducer  coupled  to  the  ground  through  soft  tires  and  liquid  in  the  wheels.  The 

recorded signals were first truncated to retain only 5 ms following the impulse and filtered by a fixed band pass filter 

with cut-off frequencies at 300 and 1200 Hz. The processed signals were recorded on charts. The delamination was 

detected  by  listening to  the  filtered sound through earphone.  The  method  showed  signs  of  improvement  but the 

signal  processing  algorithm  was  primitive and the  detection  is  still  subjective.  Henderson  et  al. [10] used  sound 

signals created by dragging a chain. The traffic noise was isolated by sound proofing around the chains. A computer 

algorithm based on linear prediction coefficients (LPC) was used to analyze the recorded signals and perform the 

detection.  Although  this  technique  showed  promise,  the  method  had  two major  drawbacks.  First,  the  traffic  noise 

was reduced only by physical isolation, which can be ineffective at high noise levels and for complex sound fields 

encountered on highway bridges. Second, traffic noise is usually non-stationary and simple filtering using LPC can 

be inadequate.  

The goal  of  the  research described  in this paper was  to  develop  an  automated  inspection system  to  accurately 

detect delamination in concrete bridge decks. This was achieved by accomplishing the following tasks: 

1. Develop a noise cancelling algorithm that can cancel or separate ambient noise from field measurements. 

There are different noise cancelling algorithms and each has its own range of application. The performance 

of different algorithms was evaluated so that the optimal algorithm could be selected. 
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2. Develop algorithms that can differentiate between soundings on solid concrete and those on delaminated 

concrete. Two steps were needed for this objective. First, the “hollowness” of the acoustic signals needed to 

be quantified to eliminate subjectivity. Second, an automatic detection method was needed to classify the 

signals into two groups: those from solid and those from delaminated concrete. These algorithms needed be 

robust, fast and effective in the field. 

Noise Cancelling Algorithms 

Noise cancelling is a basic yet difficult problem. Fig. 1 shows the spectra of a typical impact signal and traffic 

noise and  there is significant overlap between  the  two.  This  means  that  the  noise  cannot  be  filtered  using  simple 

band-pass filters. Fig. 2 shows that the properties of the traffic noise change due to changing traffic. Due to the non-

stationarity  and  unpredictability  of  traffic  noise,  the  noise  cancelling  algorithm should be adaptive and require no 

prior  information  about  the  noise. Extensive  research  has  been  performed  on  this  topic  and  various  types  of 

algorithms have  been  proposed [13-16].  This section compares the performance  of the  following commonly  used 

algorithms to help select an effective algorithm for traffic noise cancellation: spectrum subtraction, adaptive filters, 

independent  component  analysis  (ICA)  and  modified  ICA. The  performance  of the different  algorithms  was 

evaluated by visual inspection as well as a numerical criterion. 

In spectrum subtraction [13], it was assumed that the spectrum of the noisy recording could be expressed by the 

summation of the target signal and the noise, which can be expressed in the frequency domain as: 

( ) ( ) ( )j j  jMe Se New w  w= +  (1)  

where ( )jMew ,( )jSew and ( )jNew refer  to  the  spectrum  of  the  noisy  measurement, original signal  and  traffic 

noise, respectively. 

If the noise is short-term stationary, the spectrum of the noise can be estimated from the “quiet” period where the 

target signal is absent, and the spectrum of the estimated signal can then be estimated by: 
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( ) ( ) ( )ˆ j j jSe Me ew w wµé ù= -
ê úë û

 (2) 

where, ( )ˆ jSew and ( )jewµ are the estimated spectrum  of the  signal  and  the  average spectrum  of  the  noise in the 

“quiet” period, respectively. 

This method requires that the properties of the noise in the “quiet” period are the same as those in the period 

when the signal is present. This requirement cannot be guaranteed in real situations as the noise in the adjacent lanes 

change due to different types of passing vehicles. 

Adaptive filtering provides one solution to this problem. In this method, there are two microphones. The primary 

microphone  records  a  mixture  of  the  target  signal  and the  noise and  the  reference  microphone  records  a filtered 

version  of  the  noise.  The  adaptive  filter estimates  the  noise  component  in  the  primary  microphone  from  the 

recording of the reference microphone. The coefficients of the filter adaptively change such that the filter output is a 

best  estimate  of  the  noise  in  the  sense  of  mean-square-error (MSE). The  noise  in  the  primary  recording  is  then 

cancelled by subtracting the estimated noise from the recording of the primary microphone. Fig. 3 shows the signal 

flow of the adaptive filter [16].  

This method is adaptive and is able to cancel noise with changing properties. However, it requires a reference 

input (the noise) that contains no target signal component. This cannot be guaranteed in practice, because the target 

signal will always leak into the reference microphone. When the reference input contains some of the target signal, a 

part of the signal will inevitably be cancelled and the output of the system will be distorted. Also, the length of the 

filter must be predefined, although in reality, the length of the filter is unknown. In order to have a better estimate, a 

long filter length is preferred, but this will increase the computation time. 

To release the requirement that the reference signal be pure noise, independent component analysis (ICA) was 

employed. Multiple microphones are used in this method, and the recorded signals are viewed as a mixture of the 

signal and noise. The signal and the noise are assumed to be independent, which is usually the case. A de-mixing 

matrix  is  used  to separate  the  signal  and  the  noise.  The  elements  of  the  matrix  adaptively  change  such  that the 

statistical independence between output channels is maximized. The outputs of the algorithm will be scaled versions 



 6 

of the original sources because the sources are mutually independent. The signal flow of traditional ICA is shown in 

Fig. 4 [14]. 

ICA does not require prior information about the sources, but it requires that the recordings be a linear mixture, 

meaning that different sources in the mixture should arrive at all microphones at the same time. This requirement 

cannot be easily satisfied in the field because the distance between the source and different microphones are usually 

different. 

To overcome the requirement for a linear mixture, a modified ICA [15] was used in this study. The method is 

briefly described as follows. First, the number of samples representing the largest delay between the arrival times of 

different sources is estimated through: 

( )1 2/
sFL

v d d
=

-
 (3) 

where sF is the sampling frequency (Hz) of the measurement, vis the velocity of the sound in air, and 1d-2dis the 

distance between the two microphones. 

After the maximum delay is estimated, each measurement channel is shifted by an increment of one sample at a 

time until the maximum delay is reached. The shifted measurement is then rearranged and fed into the traditional 

ICA and the resulting independent components are scaled and shifted versions of each source. The outputs of the 

traditional ICA are grouped into different groups based on a similarity measurement as the independent components 

from  the  same  source  have  greater  similarity. The  individual  source is then  estimated  from  the  independent 

components identified from the same source. The steps of this modified ICA are shown in Fig. 5 [15]. 

To  evaluate  the  performance  of the different  algorithms,  the  impact  signal recorded  in  a  quiet  laboratory 

environment and  traffic  noise recorded near a  highway were  mixed  in  the  computer  to  create various noisy 

measurements. The algorithms summarized above were used to estimate the target signal. The results are shown in 

Fig. 6 through Fig. 9. Based on visual inspection of the recovered signal, the modified ICA has the best performance.  
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A numerical performance criterion was used to provide an objective comparison of different algorithms. In this 

criterion, the estimated signal was decomposed into four parts: the part from the desired source (targets ), the part 

from  unwanted  sources (interfe ),  measurement  noise (noisee ) and  artifacts (artife ). In  this  study, because  the 

recordings were obtained by mixing the impact signal obtained in a quiet environment with noise recorded near a 

highway,  there was  no contribution  from unwanted  sources  and  measurement  noise (i.e.,  there  was  no interfe  or 

noisee ). Therefore, 

ˆ target interf noise artif

target artif

s s e e e

s e

= + + +

= +
 

(4) 

The four noise components  can  be  obtained  through  orthogonal  projections. targets  can  be  calculated  from  a 

simple inner product [17]: 

2

,̂j j j
target

j

ss s
s

s
=

 

(5) 

where js is the original signal and jŝis the estimated signal. Once targets is available, artife can be calculated as: 

ˆartif targete ss= -
 

(6) 

The performance of different algorithms was measured by the signal to distortion ratio (SDR) given by: 

2

10 2

2

10 2

10 log

10 log

target

interf noise artif

target

artif

s
SDR

e e e

s

e

=
+ +

=

 (7) 

The SDRs of the different noise cancelling algorithms are shown in Table 1. The SDR measure also indicates that 

the  modified  ICA  had the  best  performance  and  therefore it was  selected as  the  best  algorithm  for  impact-based 

delamination detection. 
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Feature Extraction Algorithms 

After the noise in the recordings was removed by implementing the noise canceling algorithm, the next step was 

to relate the characteristics of the acoustic signals with the existence of delamination.  Fig. 10 shows typical impact 

signals  from solid  and  delaminated  concrete.  It  is  very difficult to  differentiate the two  signals by  inspecting  the 

waveforms.  Therefore,  other  characteristics  of  the  signals need  to be  extracted  for  the  purpose  of  detection. Even 

though delamination  of  the  concrete  bridge  deck  is  characterized  by  a  hollow  sound, this  criterion is  highly 

subjective and difficult to implement in an automatic detection algorithm. One way to eliminate the subjectivity is to 

parameterize the acoustic signals using different models. The parameters in these models are called features of the 

signals and  the  process  of  parameterization  is  called  feature  extraction.  Different  models  represent  a  signal  in 

different ways and extract different features of the signal. In this section, five different features were extracted and 

compared to select the best one.  

Frequency characteristics are probably the most widely used feature in the processing of acoustic signals since 

they have a clear physical meaning. The effectiveness of the sub-band energy as a candidate feature was evaluated. 

To  compute  sub-band  energy,  the  frequency  spectrum was  filtered  by  16  rectangular  filters  evenly spaced  on  the 

frequency axis. The energy of the filter output was used as features of the signal. 

Similar to sub-band energy, the energy of a wavelet packet tree can also be used as features of signals. In this 

research, the signals were decomposed to level 4 using Haar wavelets. The energy of the 16 sub-bands at the lowest 

(the 4th) level was extracted as candidate features. 

Even  though  detection  of  delamination  by  the  “hollowness”  of  the  impact  signal  may  be  subjective,  it  is 

undeniable  that  the  human  ear  is effective at  detecting  differences in  sounds. Psycho-acoustic  based  features that 

approximate human hearing may therefore also be effective. Mel-frequency cepstral coefficient (MFCCs) [18] are 

one set of  pyscho-acoustic  features  and  were selected  as candidate features  of  the  signal because they closely 

approximate  the  human  hearing  system and  were  widely  used  in  speech  recognition. To calculate MFCCs,  the 

spectrum of the signal is filtered by a series of triangular filters whose center frequency is evenly distributed on the 

Mel-frequency scale. The Mel-frequency is proportional to the log of the regular frequency scale. The energy of the 
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output of each filter is then calculated and the MFCCs are calculated by taking the discrete cosine transform of the 

log of the energy. In this research, a total of 16 MFCCs were extracted for each signal. 

During  the  feature  extraction  process,  it  is  desirable  to  transform  the  signal  into  a  lower  dimension  with 

minimum loss. Energy loss is a commonly  used  cost  function during  dimension  reduction.  A  good  representation 

will retain as much energy as possible using the least number of features. Principal component analysis (PCA) [19] 

can  be  used  to  achieve  this  goal. PCA  finds  an  optimal  linear transformation such  that  the  energy  contained  in  a 

certain number of features is maximized. To find the features of the signal using PCA, a certain number of signals 

were  used  as  training  data  and  the  principal  components  of  the  training  signals  were  found  using the Hebbian 

learning algorithm [20]. The signals (both training and testing) were projected onto these principal components and 

the magnitudes of the projection were used as one of the candidate features.  

Another cost function to minimize during feature extraction is the amount of information. ICA is able to find the 

optimal transformation by minimizing the loss of information. The steps to find ICA-based features are similar to 

those  for  extracting MFCCs. The  triangular  filter used for MFCCs is  replaced by  the  frequency  spectrum  of the 

independent components of the training signals. 

For the purpose of delamination detection, the features of the acoustic signals need to have two properties. First, 

the features of the signal from concrete in the same condition must be consistent; i.e., the results must be repeatable 

or have intra-class similarity. Second, the difference between features from the solid and delaminated concrete must 

be large enough so that they can be easily separated from one another; i.e., the results must be separable. Assuming 

that  the  features  from  solid  and  delaminated  concrete  are  random  variables,  repeatability  can  be  measured  by  the 

coefficient  of  variation. For  multiple  random  variables,  the  repeatability  of  the  extracted  feature  can  then  be 

calculated as:  

( ) ( )
2 2

1 1

2

S D
S D

S D

S D

N N

REP
N N

s s

µ µ

æ ö æ ö
- + -ç ÷ ç ÷

è øè ø=
+ -

 
(8) 
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where Sµand Ss are  the  mean  and  variance  for  features  of  signals  from  solid  concrete, Dµ  and Ds are the mean 

and variance for features of signals from delaminated signals, and SNand DN are the number of signals from solid 

and delaminated concrete, respectively. The lower the value is, the better the repeatability of the features will be. 

The REP measure may become ill-conditioned if one or both means of the features is close to zero. 

Similarly, the separability of the features can be calculated through: 

( ) ( )2 21 1

2

S D

S S D D

S D

SEP
N N

N N

µ µ

s s

-
=

- + -

+ -

 
(9) 

A high SEP value indicates better separability.  

Another way to measure separability is through mutual information. Each feature contains a certain amount of 

information  about the condition of  the  concrete and  it  is  desirable  to select  those  features  that  contain  more 

information. Mutual information is one way of measuring the amount of information. It measures the reduction in 

uncertainty after observation of a feature. A feature with a high mutual information value contains more information 

about the class it belongs to. The value of mutual information can be calculated as [21]: 

( ) () ( ) ( )( )| | log |
cx

HC x px pC x pC x dx
æ ö

=- ç ÷ç ÷
è ø
åò  (10) 

where ()pxis the probability density function (PDF) for feature vectorx and ( )pCxis the conditional PDF of the 

class label after feature vectorx is observed.  

The REP, SEP and mutual information performance measures of the feature extraction algorithms considered are 

shown in Fig. 11 through Fig. 13. PCA has a high REP because this measure was ill-conditioned due to the small 

mean of the features extracted by PCA. The SEP values for PCA and ICA are very high and are truncated in Fig. 12. 

The reason for the high SEP values is that the variance for features extracted by PCA and ICA was very small and 

the expression of SEP was ill-conditioned. 
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The performance of different features varied when measured by different criteria. For example, MFCC had the 

best  performance  in  terms  of  repeatability,  while  sub-band  energy  had  the  best  performance  in  terms  of  mutual 

information. Another finding was that these criteria are not always consistent. For example, sub-band energy yielded 

a high mutual information value but had poor repeatability. A weighted rank was used to take both repeatability and 

separability into account when selecting the best feature extraction algorithm. The weight assigned to REP was 0.5; 

SEP and mutual information shared the remaining 0.5, as they are both measures of separability. The weighted rank 

of the different  algorithms is listed  in Table  2.    MFCC  had the lowest  weighted  rank and  the  best  overall 

performance.  

The  classification  error  of  different  features  using  a linear Bayesian  classifier was also used  to evaluate the 

performance  of  different  feature  extraction  algorithms.  A  total  of 105  impact  signals  from  concrete with  no 

delamination (ND) and 132 from concrete with shallow delamination (SD) were used. 16 features were extracted for 

each algorithm. Since not all features are useful for detection purposes and “unwanted” features will decrease the 

accuracy  of  the  detection  and  increase  the  computational  load  for  classification, four features  with  the  highest 

mutual information values were selected as useful features and were used to train the classifier. This is because the 

optimal  performance  of  the  Bayesian classifier  was  reached  when  the  number  of  the  features  was four.  Detailed 

information about the effect of the number of features are described in the next section. The trained classifier was 

then used to classify the testing data and the error rate (the percentage of misclassification) of different algorithms 

was used as the criterion to evaluate the performance of the candidate feature extraction algorithms for the damage 

detection. The error rates using different candidate features are shown in Table 3. In this table, error 1 refers to the 

case where the concrete was solid but was classified as delaminated and, error 2 refers to the case where the concrete 

was delaminated but was classified as solid. The effectiveness of the algorithms based on the error rates agree well 

with the weighted rank.  

Based on the results of weighted ranks as well as the error rates, the MFCC was selected as the feature extraction 

algorithm for delamination detection. 
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Delamination Detection Algorithms 

The  problem  of  detecting  delamination from extracted  features can  be  formulated  as  classifying the recorded 

signals  into  two  groups:  signals  from  solid  concrete  and  those  from  delaminated  concrete. The  dividing  line  or 

decision surface cannot be drawn empirically “by eye” and should be determined optimally with respect to certain 

criteria. Commonly  used  classifiers include  the Bayesian  classifier,  support  vector  machine  (SVM),  multilayer 

perceptron (MLP), and radial basis function (RBF) network. This section compares these classification algorithms to 

select the best for delamination detection.  

The Bayesian classifier [21] finds the dividing surface by minimizing the probability of erroneous classification. 

The probability of erroneous classification can be expressed as: 

( ) ( )

( ) ( )

1 2  2 1

0

2 1

0

| |

e

x

x

P PCx C PC x C

x C dx x C dxP P
¥

-¥

= Î + Î

= +ò ò
 (11) 

where ( )1PxC is  the  conditional  PDF  of  the  feature xif  the  signal  belongs  to  class  1, and ( )2PxC  is  the 

conditional PDF of the feature xif the signal belongs to class 2.  

The  probability  of erroneous classification can  be  shown  as the shaded  area  in Fig.  14 and can  be  minimized 

when the threshold is at the intersection of the two PDFs. Therefore, the optimal threshold can be expressed as: 

() ( ) ( )1 2| | 0gx PxC PxC= - = (12) 

The  probability  density  function that  is  used  most  often in  practice  is  the  normal  (Gaussian)  distribution for 

which the  expression  of  the  threshold  can  be  further  simplified. The  conditional  probability  density  function  of  a 

jointly normal vector xcan be expressed as: 

( )
( )

( ) ( )1
1/ 2/2

1 1
| exp

22

T
i i i il

i

PxC x xµ µ
p

-æ ö
= - - S -ç ÷

è øS
 (13) 
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where iS is the covariance matrix of each class and iµ is the mean value. 

The decision surface for class  ican be expressed as: 

() ( ) ( ) ( )11 1
ln 2 ln

2 2 2

T
i i i i  i

l
g x x xµ µ p-=- - S - - - S (14) 

If the elements of the feature vectors are mutually independent and have a normal distribution, the decision surface 

will have a quadratic form and the classifier is called a quadratic Bayesian classifier. In addition, if the variances of 

the elements are equal, the decision surface will reduce to a hyper-plane and the classifier is called a linear Bayesian 

classifier. 

The performance of the Bayesian classifiers was evaluated using the same data mentioned in the previous section. 

Since  the  selection  of  training  samples  was  random,  the  results for  each  simulation could  be  different.  To 

accommodate the variance due to the random selection of the training samples and to have a fair comparison, the 

upper  limit  for  the  95%  confident  interval  (CL)  of  the  error  rates  was  used to  measure  the  performance. Fig.  15 

shows the performance of the Bayesian classifiers. For the linear Bayesian classifier, the error rate dropped with an 

increase in the number of features, but the increase in performance was not significant when the number of features 

exceeded four. This explains why the number of features used to evaluate different feature extraction algorithms is 

four. For the quadratic Bayesian classifier, the error rate first decreased and then increased. The reason for this was 

that information contained in the redundant features was not useful for or had a negative effect on the classification. 

The  Bayesian  classifiers require prior  information  about  the  underlying  distribution of  features, which  is  not 

always available. Linear classifiers which are not dependent on the underlying distribution of the training data [22] 

provide  one  solution  to  this  problem. Linear  classifiers  separate two  classes  by  a  hyper-plane. One  commonly 

observed linear classifier is the support vector machine (SVM).  

Assume that the decision surface is: 

() Tgx wx b= +  (15) 
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where wand bare the weighting vector and bias vector of the decision surface, respectively. 

The separation margin can then be expressed as: 

( ) ( )1 2 2s sgx gx
r

w w

+
= =  (16) 

where ( )1sgx and ( )2sgx are supporting vectors in the two classes, as shown in Fig. 16. 

The  optimal  decision  surface  can  be  found  by  maximizing  the  separation margin.  In  the  case  where  the  data 

cannot be separated by a hyper-plane, the data may be transformed using a non-linear transformation such that the 

transformed data is linearly separable. The transformation function is called the kernel function. The performance of 

the SVM is dependent on the kernel function used.  

For a linear SVM, the kernel function can be written as: 

( ),' 'Kxx xx= × (17) 

and for a quadratic SVM, the kernel function will have the form: 

( )( )2,' 'Kxx xx= ×  (18) 

where ×refers  to  the  dot  product  operation. The  kernel  function  was  determined  in  the  training  process  by 

minimizing the training  error (cost  function). Fig.  17 shows  the  performance  of  SVMs with  linear  and  quadratic 

kernels. The  error  rate  decreased with  an  increase  in  the  number  of  features.  However,  the  improvement  in 

performance was not significant when the number of features exceeded 5. The SVM with a quadratic kernel had a 

better performance than that with a linear kernel. 

Another way to separate data that is not linearly separable is to use a non-linear classifier whose decision surface 

has a non-linear form. The multi-layer perceptron (MLP) neural network [20] belongs to this category. It consists of 

three parts: an input layer, one or more hidden layers, and an output layer. The input layer consists of a series of 
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neurons that receive the input data, in this case the extracted features of the impact signals. The hidden layer consists 

of several layers of neurons, which take the outputs of the previous layer as inputs, compute the outputs and feed 

them to neurons in the next layer. The neurons in the output layer receive the outputs from the last hidden layer and 

compute the final output. Each neuron in the system is a computation unit. The neuron computes the weighted sum 

of the inputs and the summation is fed into an activation function that produces the output. The weights that connect 

different  neurons  are  updated  based  on  the  error  signal,  which  is  the  difference  between  the  actual  output  of  the 

network  and  the  desired  output.  The  update  process  is  called  back-propagation  because  the  process  goes  layer  by 

layer from the output to the input. The structure of the MLP is shown in Fig. 18.  

The performance of the MLP can be influenced by the number of hidden layers and the number of neurons in 

each layer. There is no systematic way to find the optimal structure. Due to the relatively low dimension of the input 

(maximum dimension is 16), a two-layer MLP was used and the number of perceptrons in each hidden layer was 

assumed to be the same. The activation function for all perceptrons was chosen to be the log-sigmoid function. The 

performance  of the MLP  is  shown  in Fig.  19 in  which MLP44 means  that  the  number  of  neuron  in both hidden 

layers is  four. Similar  to  the  linear  Bayesian  classifier,  the  performance  of  the  MLP  was  unsatisfactory  when  the 

number of features was too small or too large. This further confirmed that redundant features had a negative effect 

on performance. MLP44 was found to have the lowest error rate and the optimal performance was reached when the 

number of features was eight. 

Another type of non-linear classifier is the radial basis function (RBF) neural network [20]. Fig. 20 shows the 

structure of the RBF network which consists of three layers: the input layer, the hidden layer and the output layer. 

The difference between the RBF and MLP is that the RBF has only one hidden layer. The input layer obtains the 

input  from  the  environment.  The  hidden  layer applies a non-linear  transformation through  a  radial  basis  function. 

The  output  of  the  system  is  computed by sending the weighted  sum  of  the  outputs  of  the  hidden  neurons  to  an 

activation  function. The  difference  between  the  outputs  of  the  network  and  the desired  output  is  called  the  error 

signal. The synaptic weights that connect different neurons are updated such that the error signal is minimized. After 

the synaptic weights are optimized, the network can be used to classify the new data.  

Similar to the MLP, the structure of the RBF also affects the performance. Fig. 21 compares the effect of the 

number of neurons in the hidden layer. The best performance is reached when the number of neurons is 20. Fig. 22 
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depicts the effect of the spread of the activation function and shows that the performance improves when the spread 

of  the  RBF  increases  but  the  improvement  is  not significant when  the  spread  is  greater  than  10.  The best 

performance was reached when the number of neurons in the hidden layer was 20 and the spread of the radial basis 

function (in this case, Gaussian function) was 10.  

Fig. 23 compares the performance of the best classifiers from each category. The RBF with 20 hidden neurons 

and a neuron spread of 10 had the best performance and the optimal performance was reached when the number of 

features was eight. These parameters were used in the delamination detection algorithms in this research. 

Performance Verification 

The performance of different algorithms in each category was evaluated in the previous sections. An automatic 

impact-based  delamination  detection  (AIDD)  system [23] was  developed  using  the  optimal  algorithm  in  each 

category (i.e., MFCC features and RBF classifier). The impact was created by the free fall of the impactor from a 

constant  height.  The  impactor  was a  stainless  steel  bar  of  25  mm  (1  inch) diameter with  a  ball-shaped  head. The 

impact and ambient sound were recorded by a condenser microphone. The AT831b condenser microphone produced 

by Audio-Technica was used. The frequency response of the microphone is shown in Fig. 24 and indicates that the 

microphone had good sensitivity in the frequency range of interest. The microphone was directional and recorded 

the sound within a narrow cone, which helped limit extraneous noise. Two microphones were mounted on the cart. 

The primary microphone (Mic 1) was mounted under the base of the cart and pointed toward the impact point to 

record the impacting sound. A sound proofing curtain was mounted as a physical barrier to block traffic and wind 

noise. The secondary microphone (Mic 2) was mounted outside the sound shield pointing away from the impacting 

point to measure the ambient noise. The signals from both microphones were collected by a National Instruments 

data acquisition card (Model  No. USB 6211), which has a USB interface and a maximum sampling frequency of 

250 kHz. A sample frequency of 10 kHz was used and the length of the signal was 3 seconds. The use of multiple 

impacts increased the accuracy of the detection. The prototype of the system is shown in Fig. 25. 

 To  test  the  performance  of  the  proposed  algorithms,  signals  with  different  signal  to  noise  ratios (SNR)  were 

obtained  by  mixing  the  impact  signal  obtained  in  a  quiet laboratory environment  with  traffic  noise  recorded  on  a 

highway  bridge. The  impact  sound  was  created  by  impacting  the  surface  of  a  concrete  slab  with  artificial 
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delamination as shown in Fig. 26. The thickness of the slab was 229 mm and the depth of the two “delaminated” 

parts were 76 mm (for the left  block) and 152 mm (for the right  block),  respectively, to  simulate  different 

delamination depths. The depth of the delamination was controlled by the location of the separation. The acoustic 

properties of the materials were not tested because the results should not be dependent on these. Trial tests showed 

that  the  sound  produced  from  the 152 mm delamination  was  very  similar  to  that  produced  by  the  solid  concrete. 

Methods  such  as  impact-echo can have better  performance  in  detecting  deep  delaminations, but  require  data  in a 

broader  frequency  range.  The method outlined  here focuses  on  acoustic  methods  and the human  ear  is  not very 

sensitive to high frequency signals. Therefore the signals from the 152 mm block were considered as “solid” in this 

study. 

A  total  of  228  impacts  were  recorded  on  different  days  to  account  for  variance  between  days.  120  recordings 

were  obtained  from  solid  concrete and  108  recordings  were  obtained  from  delaminated  concrete.  40  randomly 

selected impacts were used for feature extraction and classifier training. The remaining signals were classified by the 

trained  classifier.  The  average  error  rates  under  different  conditions  were  calculated  using  the AIDD  system are 

listed  in Table  4. The  proposed  algorithms performed  well  in  a  quiet  environment,  yielding  an  error  rate  of  only 

2.3%.  However,  the  accuracy  of  the  algorithms dropped  (error  rate  increased)  as  the  noise  level  increased  if  the 

signals were not pre-processed with the modified ICA algorithm. When the signals were filtered with the modified 

ICA algorithm, the detection algorithm became less noise sensitive and the error rate remained constant (around 5%) 

for all noise levels considered. 

To evaluate the detection algorithms under field conditions, tests were performed on two bridges using the AIDD 

system. Both  bridges  had  concrete  decks  with  delaminations.  The  concrete  condition  at  several  spots  was  first 

identified through traditional bar tapping (i.e., impacting the bridge deck using a steel bar and listening to the sound). 

The AIDD system shown in Fig. 25 was then used to test these spots and the sound signals were collected using the 

data acquisition card. 

In  real  situations,  the  training  signals  can  only  be  obtained  from  existing  recordings.  To  simulate  this,  data 

obtained from the two bridges was divided into four groups and labeled as A, B C and D and different combination 

of the four groups were used as the training data. One group that was not in the training pool was used as testing 

pool. The  training  data  and  testing  data  were  randomly  selected  from  the  recordings  in  the  training  pool and  the 
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testing pool. The number of impacts in the training data and testing data were 150 and 100, respectively, and were 

fixed for all cases for fair comparison. Table 5 shows the error rates based on different training sets. If the number of 

groups in the training pool increased, the average error rate dropped for most cases (except for group D, possibly 

due to variance in the data). This indicates that the performance increases when more data is included in the training 

pool. Even with the limited amount of training data in this study, the performance of the system was still satisfactory 

with a maximum error rate of around 17%.  As more bridges are inspected and more data becomes available, the 

performance will improve. 

Conclusions 

This paper describes algorithms to improve the performance of traditional impact-based delamination detection 

methods  whose  performance  is  affected  by  traffic  noise  in  adjacent  lanes  and  subjectivity of  the  inspection.  To 

eliminate the  influence  of  traffic  noise,  different  noise  cancelling  algorithms  were  evaluated  using  both  visual 

inspection  as  well  as  a  numerical  criterion. Modified independent  component  analysis  (ICA) was  selected  as  the 

noise cancelling algorithm in this work because of its good performance. Subjectivity in the delamination detection 

was removed by extracting features of the signal. Mel-frequency cepstral coefficients (MFCCs) of the signals were 

selected as  features for  delamination  detection because they  had the  best  overall  performance in  terms  of 

repeatability  and  separability among  all  the  feature  extraction  algorithms  considered.  Delamination  detection  was 

posed as a classification problem and different classifiers were tested to select the best classifier. An RBF network 

with  20  hidden  neurons and a neuron spread  of  10 had the  lowest  error  rate, was selected  as  the  classifier  for 

delamination detection, and the best performance was reached when the number of features was eight. It is possible 

that  a  combination  of  different  feature  extraction  algorithms  and  different  classifiers  could  produce  better  results 

than the use of a single set of features with a single classifier. However, this was not investigated. 

Tests under different noise levels showed that the proposed method increased the noise robustness of traditional 

sounding methods. Field tests demonstrated that the performance of the proposed algorithm was satisfactory even 

with the limited amount of training data. As more data becomes available for training, the performance will further 

improve. 
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Table 1. Performance of Different Noise Cancelling Algorithms 
 

 
Spectral 

Subtraction 
Adaptive Filter ICA Modified ICA 

SDR (dB) -6.51 -6.21  -10.81 1.21 

 

Table 2. Weighted Rank of Different Feature Extraction Algorithms 
 

 Sub-band WPT MFCC PCA ICA 

REP 2 3 1 5* 4 

SEP 5 3 4 2* 1* 

Mutual Info. 1 4 2 5 3 

Weighted Rank 2.5 3.25 2 4.25* 3* 

Note: * means the performance measure is ill-conditioned. 

 

Table 3. Error Rates of Different Feature Extraction Algorithms 
 

Algorithm Sub-band WPT MFCC PCA ICA 

Error 1 (%) 7.0 13.2 4.0 21.0 8.6 

Error 2 (%) 9.1 17.0 6.3 28.5 11.2 

Total Error (%) 15.8 30.4 10.2 49.6 19.8 

 

Table 4. Performance under Different Noise Levels 
 
 

SNR 
(a) 

Measurements 

Filtered Signals Noisy Signals 

Error 1 Error 2 Total Error 1 Error 2 Total 

¥ m s=  1.3 0.5 1.8 N/A N/A N/A 

10 10m s n= +  4.4 1.0 5.4 4.5 4.0 8.5 

1 m s n= +  4.8 0.1 4.9 9.1 5.3 14.4 

0.1 0.1m s n= +  5.2 0.1 5.4 15.4 5.0 20.3 
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Table 5. Performance in the Field 
 

Groups in 
Training 

Groups in Testing Error 1 (%) Error 2 (%) Total Error (%) 
Average Error 

(%) 

B A 1.7 4.1 5.8 

8.7 C A 13.3 0.3 13.6 

D A 6.7 0.0 6.7 

BC A 1.9 1.6 3.5 

5.3 BD A 2.3 0.1 2.4 

CD A 9.8 0.2 10.0 

BCD A 2.4 0.3 2.6 2.63 

A B 0.0 12.5 12.6 

14.6 C B 14.2 5.7 19.9 

D B 5.4 6.0 11.4 

AC B 1.5 6.6 8.1 

10.1 AD B 9.8 5.4 15.2 

CD B 0.4 6.8 7.2 

ACD B 1.4 6.0 7.4 7.4 

A C 0.0 24.6 24.7 

21.0 B C 2.3 16.7 19.0 

D C 4.8 14.5 19.3 

AB C 0.9 17.5 18.4 

17.4 AD C 0.3 15.9 16.2 

BD C 2.4 15.3 17.6 

ABD C 1.2 14.5 15.6 15.6 

A D 0.3 6.4 6.7 

8.8 B D 0.6 9.5 10.1 

C D 7.7 1.8 9.5 

AB D 0.2 8.5 8.7 

14.3 AC D 15.9 2.3 18.1 

BC D 11.0 5.1 16.1 

ABC D 10.3 3.0 13.3 13.3 
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Fig. 1. Spectrum of Impact and Traffic Noise 
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Fig. 2. Non-Stationarity of Traffic Noise 
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Fig. 3. Signal Flow of the Adaptive Filter 

 

 

Fig. 4. Illustration of Mixing and Demixing 

 

R1(t)
shift

re-arrange ICA

R2(t)
shift

group

reconstruct

reconstruct

S1(t)

S2(t)

 

Fig. 5. Modified ICA 
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Fig. 6. Performance of Spectrum Subtraction 
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Fig. 7. Performance of Adaptive Filter 
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Fig. 8. Performance of ICA 
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Fig. 9. Performance of Modified ICA 
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Fig. 10. Example Impact Signals 
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Fig. 11. REP of Different Feature Extraction Algorithms 
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Fig. 12. SEP of Different Feature Extraction Algorithms 
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Fig. 13. Mutual Information of Different Feature Extraction Algorithms 
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Fig. 14. Threshold of Bayesian Classifiers 
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Fig. 15. Performance of Bayesian Classifiers 
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Fig. 16. Support Vector Machine 
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Fig. 17. Performance of SVM 
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Fig. 18. Structure of MLP 
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Fig. 19. Performance of MLP 
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Fig. 20. Architecture of Radial Basis Function Network 
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Fig. 21. Effect of the Number of Neurons 
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Fig. 22. Effect of Spread of Radial Basis Function 
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Fig. 23. Comparison of Different Classifiers 
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Fig. 24. Frequency Response of the Microphone 
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Fig. 25. Schematic of Impacting Cart 
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Fig. 26. Test Slab 
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