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Electrochemical-Mechanistic Model for Concrete Cover Cracking due to 

Corrosion Initiated by Chloride Diffusion 

 

G. Nossoni1 and R.S. Harichandran,2 F. ASCE 

 
ABSTRACT 

A holistic electrochemical-mechanistic model of the corrosion of steel reinforcing 

bars inside concrete and the time to cracking of the concrete cover is presented. The 

model accounts for the diffusion of oxygen and moisture into the concrete and rust layers, 

the densification of rust due to confinement, the flow of rust into the concrete pores, the 

development of internal pressure due to rust build-up, and cracking of the concrete cover. 

The relationship between the corrosion current and the pressure build-up due to the 

corrosion products for different concrete cover thicknesses was calibrated through 

experiments using an accelerated corrosion test with an applied current. Results from 

finite element analysis with an inelastic smeared crack concrete model were used to 

calibrate a simple analytical model of the critical internal pressure required to cause 

cracking of the concrete cover. The various sub-models are linked together to predict the 

time for cracking of the concrete cover from the time of corrosion initiation. Results of 

parametric studies using the model indicate that the main factors that control the 

corrosion current and the time to cracking are the boundary condition, water/cement ratio 

and concrete cover.  
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INTRODUCTION 

Reinforced concrete is one of the most common construction materials. High quality 

concrete is a very durable material and can remain maintenance free for many years when 

properly designed. Steel reinforcement is used to improve the tensile strength of concrete 

structures, and more generally their mechanical resistance. The high alkalinity of 

concrete can prevent the reinforcing steel from corroding within it; in other words steel is 

passive inside concrete. Depassivation of steel reinforcement embedded in concrete and 

the onset of active corrosion can arise due to two causes: carbonation of the concrete, or 

chloride diffusion. For pore solution which has a pH of about 13.5, corrosion will 

commence when the [Cl−]/[OH−] ratio reaches a threshold value. For synthetic concrete 

pore solution this ratio is about 0.6 (Mindess et al. 2003, Haussmann 1967), but the 

threshold values reported in literature vary from 0.3 to above 3 depending on many 

factors such as temperature, stress level, pitting potential, experimental conditions, and 

experiment methods (Alson et al. 2002, Ann and Song 2007).  The depassivation 

condition and the time at which the chloride concentration reaches the threshold value 

have been the subjects of many investigations (Truc et al. 1999, Gowripalan, et al. 2000, 

Stanishn and Thomas 2001, Xi et al. 2000, Glass and Buenfield 1999) and the 

depassivation time can be predicted with good accuracy. 

The corrosion process is very complex and modeling is often based on observation or 

speculation rather than a clear understanding of the physical and chemical processes 

involved (Palle 2002, Du et al. 2006). Considerable experimental data and semi-empirical 

models are available on the corrosion rate of steel in chloride-contaminated concrete (Liu 
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1996, Newhouse and Weyers 1996, Newhouse 1993). However, to our knowledge no 

electrochemical-mechanistic model exists for the corrosion of steel reinforcement in 

concrete due to chloride diffusion and the subsequent cracking of the concrete cover  

Corrosion of steel in concrete consists of two stages. The first stage is controlled by 

the anodic reaction and is very short despite having a high corrosion rate. In the second 

stage the current is limited by the cathodic reaction. This is the corrosion current often 

measured by researchers (Liu 1996). In this paper an electrochemical-mechanistic model 

is developed for the corrosion rate during the second stage based on a fundamental 

understanding of the electrochemical corrosion reaction and the effect of oxygen 

concentration on the cathodic reaction. The corrosion rate is then used to predict the time 

for cracking of the concrete cover due to corrosion. The cathodic control corrosion rate 

has been proposed for modeling the corrosion rate in carbonated concrete but has not 

been studied for corrosion due to chloride diffusion, although the corrosion reaction in 

both cases is similar (Huet et al. 2006, Liang et al. 2004). 

The rust thickness is calculated and used to estimate the pressure applied to the 

concrete cover, accounting for the amount of rust products that flow into the concrete 

pores. The calculation of rust thickness as a function of corrosion current has not been 

studied extensively. An elasto-plastic concrete material model was used to calculate the 

pressure developed due to thickening of the rust layer. The critical pressure that causes 

the concrete cover to crack was calculated and calibrated with finite element analysis and 

experimental data.  
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CORROSION CURRENT MODELING 

The corrosion reaction can be described by two elementary anodic and cathodic 

reactions: 

-++ +® 2eFeFe          (1) 

-- ®++ 4OH4eO2HO 22        (2) 

When there is no limitation of oxygen in the corroding system, the corrosion current 

will increase with increasing chloride concentration. However, even if oxygen is 

available, the corrosion current will reach the anodic limiting current because the rate of 

diffusion of corrosion products away from the anode is limited (Nossoni 2010). This 

limiting current is very high and cannot be reached for the corrosion of steel inside 

concrete. We assume that the oxygen reduction in the catholic reaction (Equation 2) 

controls the corrosion rate. To determine the availability of oxygen for the cathodic 

reduction reaction and for corrosion to continue we must determine the path for oxygen 

diffusion to the corrosion pit. 

Corrosion Scale 

Knowledge of the composition and structure of the corrosion products in concrete is 

necessary not only to estimate the corrosion expansion and pressure applied on the 

concrete cover, but also to estimate the corrosion rate based on the limiting current, 

diffusion of oxygen, and reduction of species inside and outside the pit. The structure of 

the pit and corrosion products depends on the aqueous phase of the pore solution, steel 

type, and pressure adjacent to the bar. In general, the composition of the expansive 

corrosion products may be expressed as {a.Fe(OH)2+ b. Fe(OH)3+c.H2O} (Bhagava et al. 
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2005), where a, b and c are variables that depend on the alkalinity of the pore water 

solution of the concrete, the oxygen supply, and the moisture content. For example, black 

rust (Fe2O3) will form mostly in concrete immersed in deep water where the oxygen 

availability is low (Bazant 1997). 

The model adopted herein for the corrosion scale is taken from the literature (Sarin et 

al. 2004, Jones 1992, Huet et al. 2004) and is shown in Figure 1. The corrosion scale 

consists of three layers: the inside part (core layer), the outer part (top layer), and a hard 

shell layer that separates these two layers (Sarin et al. 2004). 

 The core layer is generally a porous mass made up of small particles of different 

component phases. Fe(II) is expected to dominate the core part of the scale due to a lack 

of hydroxide ions. The wet outside region of the scale on top of the shell layer is the top 

layer. Since the top layer is exposed to water and air in the concrete pores, the ferrous 

hydroxide is rapidly oxidized to the ferric components Fe(OH)3 and Fe(OH)3+3H2O, and 

consequently the concentration of Fe (III) is expected to be higher than in the core layer. 

The top layer is saturated with the concrete pore solution. Around the outside of the top 

layer particles are loosely held and can be easily transferred to the concrete pore water 

under the pressure that is produced (Sarin et al. 2004). 

Fe(II) products are more conductive than Fe(III) products and can transfer electrons 

outside  the core layer. We assume that the cathodic reaction takes place in the top layer 

where both oxygen and electrons are available. 

Corrosion Current 

Corrosion of steel in an alkaline environment starts when the chloride concentration 

reaches a certain threshold value. Most existing models treat corrosion as a steady state 
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phenomenon, although it is known that the corrosion rate varies with change in 

temperature, chloride content, and corrosion level (Pantaopoulou et al. 2001, Bhargava et 

al. 2005, El Maaddawy and Soudki 2007). No comprehensive model is available to take 

all of these factors into account and only an electrochemical-mechanistic model that 

accounts for most of these factors can predict the long-term behavior of concrete 

accurately. 

Initially, the rate of corrosion will depend on the chloride concentration and the rate 

of the anodic reaction. Shortly thereafter, as the corrosion becomes more severe and the 

rust layers build up, the corrosion rate will be controlled by the cathodic reaction and the 

availability of oxygen at the cathode. 

The limiting current at any time can be calculated through: 

usedoO jFni ,lim 22
..=   (3) 

where jO2 ,used  is the flux of the oxygen consumed at the cathode, 
2O

n  is 4 for the reduction 

of oxygen in the corrosion reaction,  and F is Faraday’s constant. 

Figure 2 shows a simplified model of the different stages of oxygen diffusion to the 

anode. The flux of oxygen to the steel bar can be divided into three stages. In the first 

stage oxygen diffuses through the concrete cover and will follow Fick’s Second Law 

(Castellote et al. 2001): 

2

2

0
22

x
C

D
t
C OO

¶

¶
=

¶

¶
    (4) 

where CO2
 is the oxygen concentration, and DO is the coefficient for diffusion of oxygen 

into the concrete cover. Only the dissolved oxygen can be used in the cathodic reaction. It 
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is assumed that the dissolved oxygen is in thermodynamic equilibrium with the oxygen 

partial pressure in the gaseous phase, and according to Henry’s Law 

H
ingOinlO K
RTCC ,,2,,2

=     (5) 

where inlOC ,,2
 is the dissolved oxygen concentration, ingOC ,,2  is the concentration of 

oxygen gas in the concrete adjacent to the bar, T is the temperature in degrees Kelvin, and 

KH is a constant. The degree of concrete saturation is in equilibrium with the outside 

relative humidity. The semi-empirical equations proposed by Bazant and Thongutha 

(1978, 1979) were used to calculate the water content of the concrete. 

inlOC ,,2
 diffuses across the top layer of the rust scale which is assumed to be fully 

saturated. The top layer consumes some of the oxygen in the secondary non-

electrochemical reaction, in which Fe(II) is oxidized to Fe(III):   

3222 4Fe(OH)OOH4Fe(OH) ¾®¾++      (6) 

OH4FeOOH-2O
2
14Fe(OH) 222 +¾®¾+ g    (7) 

Assuming that the top layer is a homogeneous porous medium, Fick’s First Law can be 

used to predict the flux of the diffused oxygen through the rust layer: 

)( 2
,,2 x

C
D

O
rousedOj

¶

¶
=      (8) 

where DO,r is the coefficient for diffusion of oxygen into the rust layer, and can be 

calculated from the general equation for diffusion in porous media  (Martys 1994).  
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The limiting current occurs when CO2
 at the bar lever is zero, and all the diffused 

oxygen is consumed. The limiting oxygen flux can be estimated from 

2

,,, 22

d
consumedOinlO CC

x
C -
=

¶
¶     (9) 

where d2 is the top rust layer thickness. 

The final limiting current will be 

).(..
2

,,,
,lim

22

2 d
consumedOinlO

roOit

CC
Dfni

-
=     (10) 

where consumedOC ,2
 is the loss in oxygen concentration due to consumption of oxygen  for 

the secondary reaction presented in Equation 6 in the top layer.  

According to Faraday’s Law, the flux of the Fe2+ produced will be  

Fn
i

j
Fe

corr
OHFe .2)(

=      (11) 

Assuming that Equation 6 dominates the secondary reaction: 

2)()( 3
OHFerOHFe

Jkj =      (12) 

kr is the fraction of Fe(OH)2 that is transformed to Fe(OH)3 in the secondary reaction and 

needs to be determined experimentally or obtained from the literature. kr can be assumed 

to be 1.0 in air since Fe(OH)2 is not a stable product when sufficient oxygen is available, 

and for corrosion of steel in concrete it can vary from 1.0 to less than 0.5 depending on 

the availability of oxygen. A parametric study was done to evaluate the effect of this 

factor on the limiting current. In this paper kr is assumed to be 0.5. This value does not 
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affect the results considerably since the rust thickness was calibrated using experimental 

test data. 

consumedOC ,2
 can be calculated from Equation 12 since the flux of the consumed 

oxygen is four times smaller than the flux of the Fe(OH)3 produced (see Equation 6). 

Thus, 

2

)(,

.4
32

d
OHFeconsumedO j

dt
dC

=       (13) 

Assuming that the density of the porous core and top layer is a function of pressure 

and 3.75 and 4.20 times smaller than the density of steel, respectively (Bhagava et al. 

2005) the rate of build-up of corrosion products is: 

PFe

OHFeOHFeOHFe

OHFe

OHFeOHFe

K
AjjAj

dt
d

.
).(75.3.

232

2

22 )()()(

)(

)()(1

rr
d -

==    (14) 

PFe

OHFeOHFe

OHFe

OHFeOHFe

K
AjAj

dt
d

.
.20.4.

32

3

33 )()(

)(

)()(2

rr
d

==            (15) 

where rFe, rFe(OH)2 and rFe(OH)3 are the densities of iron, Fe(OH)2 and Fe(OH)3, 

respectively. KP is a correction factor that accounts for pressure dependency of the 

density of the corrosion products. KP was calibrated using experimental test result. KP is 

an important parameter that affects the pressure applied to the concrete cover, the rust 

thickness that affects the oxygen diffusion (Figure 1), and the diffusion coefficient of 

oxygen in the rust.  
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MECHANISTIC MODEL OF CONCRETE COVER CRACKING 

Development of Pressure 

Concrete surrounding the rebar will be subjected to an internal radial pressure due to 

the expansive corrosion products modeled using Equations 14 and 15. It is assumed that 

the corrosion occurs uniformly around the steel bar. The radial strain is: 

r
u

dr
du

r .ne +=      (16) 

The rates of radial and circumferential strain due to thickening of the rust layer are: 

dt
d

dt
d

dt
d r qen

d
dddde .

.
))(( 3021 +

--+
=     (17) 

dtd
d

dt
d

bar .
))((

.2 3021 ddddeq --+
=                                        (18) 

            

where d3 is the reduction in diameter of the steel bar due to corrosion and can be 

calculated using Faraday’s Law, d0 is the loss in rust layer thickness due to diffusion of 

rust products into the concrete, and d1 and d2 are the thicknesses of the porous core and 

top layer of rust. The rate of reduction in bar diameter is given by 

Fe

Fej
dt
d

r
d

=3       (19) 

where jFe is the flux of Fe into the system and rFe is the density of iron. 

The rate of pressure growth at the steel surface due to thickening of the rust layer 

was calculated using the nonlinear concrete constitutive relation given by (MacGrego 

1997): 
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2

0

0

)(1

)(2

e
e
e
e

q

q

+
=

cri

net

P
P            (20) 

where Pcri is the critical pressure that causes the concrete to crack. Pnet is net pressure on 

the concrete cover from corrosion products, eq is the strain obtained from Equation 18, 

and e0 can be calculated using 

ε0 =
1.75. ft
Econ

     (21) 

The accuracy of Equation 20 was verified using finite element analysis with a nonlinear 

concrete material model (Caré et al. 2008).  

The pressure is assumed to be uniform around the bar. The pressure will cause some 

amount of corrosion products (mainly red rust in the top layer) to flow into the concrete 

pores surrounding the steel rebar before the concrete cracks. Some researchers assumed a 

“gap” of 10 to 20 µm around the steel bar to account for the slower build-up of pressure 

(Du et al. 2006, El Maaddawy and Soudki 2007, El Maaddawy et al. 2006), and the size 

of this “gap” was calibrated based on experimental test results. We explicitly model the 

flow of rust products into the concrete pores. 

Calculation of d0 

The amount of accumulate pressure around the bar will decrease due to the flow of 

rust products from the top layer into the concrete pores, thereby increasing the time for 

the concrete to crack. 

Conservation of mass yields: 
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)()(
333 )()()( tOHFeOHFeOHFe V

t
wAjdjj
¶
¶

=-+      (22) 

where A is the cross sectional area of corrosion pit,  jFe(OH)3 is the  flux of the top layer 

products in concrete pores, w is the mass of Fe(OH)3 per volume of concrete, and Vt is the 

total volume of concrete. Expressing the saturation of rust as s = w/n, where n is the 

porosity, and since Vt = Adx, Equation 22 can be expressed as 

t
sn

dx
dj OHFe

¶
¶

=3)(      (23) 

Assuming that the flow of rust suspension is similar to the flow of water, Darcy’s 

equation can be used to relate the pressure to flow: 

    
t
sn

dx
dpk

dx
d

c ¶
¶

=÷
ø
ö

ç
è
æ                   (24) 

where p is the pore pressure and kc is the conductivity of the colloidal solution  of 

Fe(OH)3 inside the concrete. 

The Van Genuchten equation developed for the flow of liquid and gas in porous 

media relates pore pressure and saturation (Monlouis et al. 2007, Van Genuchten 1980): 

mmsMp --= 1
1

)1(       (25) 

where M and m are empirical parameters for concrete (Coussy et al. 2004). The 

conductivity of the colloidal suspension of rust products in water can be related to the 

conductivity of water through: 

      
r

k
c
K

k
h

=                                   (26)  
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where Kk is conductivity and hr  is the density of water relative to the density of colloidal 

suspension of rust products in water. 

Equations 24, 25 and 26 constitute the model for the flow of rust products into the 

concrete pores.  The internal pressure can be computed through an incremental time step 

procedure. After corrosion starts, the pressure begins to accumulate. This pressure pushes 

some amount of the corrosion products produced in the top layer (mostly red rust) into 

the concrete pores and this reduces the pressure around the bar. When the pressure of the 

rust suspension inside the concrete pores exceeds the tensile strength of the concrete, the 

concrete will crack.  

Critical Pressure 

Cracking of the concrete cover is highly dependent on the ratio of the concrete cover 

to reinforcing bar diameter defined as 

dDk /=      (27) 

where D is the diameter of the concrete cylinder and d is the diameter of the steel bar. 

An empirical model from the literature was adopted in this study and validated and 

calibrated using finite element analysis performed with the ABAQUS commercial 

software. According to the empirical model, for k < 5 fracture occurs when the mean 

value of the circumferential stress reaches the tensile strength of the concrete: 

   mt ss =           (28) 

Equation 28 implies that cracking occurs when the net pressure on the concrete cover 

is 
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moutin kpp s).1( -=-                (29) 

where pin is the pressure that the rust layer applies to the concrete cover and pout is the 

pressure lost due to flow of rust from the top layer into concrete pores. However, for k > 

5 the first crack opens before the circumferential stress reaches the tensile strength of the 

concrete; i.e., when 

mt ass =       (30) 

moutin kpp sa ).(=-               (31) 

where a is a factor established in the literature through experiments and sm is the 

splitting tensile strength of concrete. In this study, finite element analysis was used to 

calibrate the a factor and yielded a = 0.72, which compares well with the value of a = 

0.8 reported by Shah and Swart (1987). 

Finite Element Analysis  

Since corrosion causes radial expansion, a 2-D plane strain model can be used to 

study the mechanical behavior of concrete. Three different k ratios of 3, 4 and 6 were 

used in the model to match the k ratios of experimental specimens described later. Figure 

3 shows the geometry of the FE models. Due to symmetry of the model, only half of each 

specimen was modeled and appropriate boundary conditions were applied. The concrete 

damage plasticity model was used to model concrete (ABAQUS 6.4). When the rebars 

corrode, the corroded steel swells to about 2 to 6 times of its initial volume (Mehta 1993). 

The expansion of the rust products will apply internal pressure to the concrete cover.  

This expansion causes the concrete cover to crack and eventually spall.  The objective of 

the FE analysis was to find the pressure-displacement relationship and calibrate the a 



 15 

coefficient in Equations 30 and 31. The reinforcing steel was replaced by a uniform 

radially outward pressure that was applied in increments over time steps until the 

concrete cover cracked. Since the ABAQUS concrete plasticity model cannot account for 

the opening of a large crack, the analysis terminates when the crack opens. The amount 

of pressure at this time step was considered to be the critical pressure, and the a factor 

was calibrated using this pressure. Figure 3 shows the rust thickens and applied pressure 

for both model and FEM for a = 0.72. 

Calibration of the Model 

The factor KP that accounts for densification of rust with pressure needs to be 

calibrated experimentally. To calibrate KP, the model was used to predict the rust 

thickness and cracking time for accelerated corrosion experiments using the applied 

constant current density of 0.0045 A/cm2. The goal was to establish a single 

representative value of KP for different k values using experimental data of the time to 

cracking. After calibration, the rust thicknesses obtained from the experimental test and 

the model were compared to establish the accuracy of the model. 

EXPERIMENTAL INVESTIGATION 

Experiments were conducted using an accelerated corrosion test with an applied 

current to measure the growth of rust thickness. The test was conducted in an 

environment in which all the applied current was consumed in corroding the steel bar 

(Nossoni et al. 2011). The rust thickness was measured under the microscope using 

photographs taken at different time intervals. The time to cracking was obtained as a 

function of the measured rust thickness.  
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Specimen Preparation 

A normal concrete mix with Portland cement Type I, a maximum coarse aggregate 

size of 9.5 mm (3/8²), and a water-cement ratio of 0.41 was used to prepare the 

specimens. The maximum aggregate size was chosen to be small due to the small 

dimensions of the specimens. No chloride was added to the mix. The concrete had a 28-

day compressive strength of 57.2 MPa (8,300 psi).  The specimens were cast in small 

cylindrical shapes having a thickness of 25 mm (1-inch) with a #4 carbon steel bar in the 

center to serve as an anode. The diameter of the cylinder was chosen to yield k ratios of 3, 

4, and 6. Figure 4 shows the schematic of the test specimens. 

Three #1 carbon steel wires to be used as cathodes were placed equi-distant from 

each other and the anode, close to the outer edge of each specimen. For each specimen 

size, tests were conducted on triplicates. The goal of the experiments was to obtain a 

single representative KP value for all specimen sizes, and the ratio of the maximum 

aggregate size to concrete cover being large was not expected to introduce much error in 

the final calibration results. 

A certain amount of chloride ions is needed even in the accelerated corrosion test so 

that all the applied current is consumed in oxidizing the steel bar (Caré et al. 2008, 

Nossoni et al. 2011, Austin et al. 2008). Therefore, before testing the specimens were 

soaked in 3.5% NaCl by weight for one week for the smallest specimens having a 

concrete cover of 10 mm, and more than one month for the largest specimens. This 

allowed the chloride concentration at the bar surface to be sufficient so that all the 

applied current oxidized the steel. The specimens were immersed in the salt solution after 

28 days of curing.  
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Before testing, each specimen’s top surface was polished with grade 400 sand paper 

and then cleaned with methanol to expose the steel bars (anode and cathodes). The 

bottom surface was coated with epoxy to prevent the corrosion products from escaping 

out of the concrete. Also, the surfaces of the steel bars that were not embedded inside the 

concrete and were needed for the electrical connection were coated with epoxy to prevent 

any corrosion in this part and to prevent any variation in current density due to change in 

electrode surface area. 

Accelerated Corrosion Test and Test Set up 

The accelerated corrosion test consisted of applying a current so that the reinforcing 

bar served as an anode and corroded in a short time. Figure 4 shows the test set up for the 

accelerated corrosion test under the microscope. A power supply was used to apply a 

constant direct current between the anode and cathodes. The applied current was limited 

to 0.05 A yielding a current density of 0.0045 A/cm2 at the anode.  The high current 

density was not expected to be problematic because the test environment assured that all 

the applied current would be consumed in corroding the steel bar (Nossoni et al. 2011). 

An optical microscope with a magnification of 25 to 100 was used to capture images 

of the concrete and steel interface to measure the rust layer thickness. After immersion in 

salt water, the surfaces of specimens were dried and the test was conducted in a dry 

condition. The dry condition prevented any escape of rust products outside the concrete 

during the test. Initial images were taken before the test began. When the current was 

applied, images were captured at 15 to 30 minute intervals depending on the size of 

specimens.  
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Before capturing images, the test was stopped temporarily, and each specimen’s 

surface was polished again with sand paper and cleaned with methanol. Methanol was 

used to minimize damage to the rust layer during the polishing stage since it has minimal 

reaction with rust. The test was continued until cracking initiated in the concrete and the 

rust thickness was measured. Although the main purpose of the test was to estimate the 

rust thickness and time to concrete cracking as a function of the applied current, the test 

was continued even after the concrete cracked. 

Measurement of Rust Thickness  

Observation of specimens subjected to the accelerated corrosion test under the 

optical microscope allowed measurement of the rate of rust thickness build-up as a 

function of applied current and time.  Figure 6 shows that during the first 15 minutes of 

the test no identifiable rust layer was observed. It is likely that during this period the rust 

mostly diffused into the micro-pores around the steel bar.   

After about 30 minutes the rust layer became visible, mostly around the areas where 

some rust had already accumulated in the pores. The rust thickness was not uniform 

around the steel bar and the areas surrounding the micro-pores had a thicker rust layer 

than other areas.  

Figure 7 shows that the average rust thickness had an approximately linear 

relationship with time in this experiment since the corrosion current was constant, but this 

may not be the case in real corrosion where the corrosion current may vary with time. For 

the specimens with k = 3, it took 45 to 60 minutes for the first crack to appear, at which 

time the average rust thickness around the steel bar was between 0 0.012 and 0.0142 mm 

(0.00046 and 0.00056 in.). For specimens with k = 4 it took between 65 to 80 minutes for 
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the first crack to appear, at which time the average rust thickness around the bar was 

between 0.014 and 0.021 mm (0.00057 and 0.00082 in.). For specimens with k = 6 it 

took between 95 to 125 minutes for the first crack to appear, at which time the average 

rust thickness was between 0.023 and 0.033 mm (0.0009 and 0.0013 in.). As shown in 

Figure 7, using Kp = 1.56 in the model yields predictions of the cracking time that match 

well with the cracking times observed in the experiments for all three k values. 

PARAMETRIC STUDIES 

After calibrating the corrosion model using the experimental test results, the model 

was used to calculate the corrosion current and the time to cracking of the concrete cover 

for typical structural elements. The effect of different boundary conditions, concrete 

cover thicknesses, and concrete quality (represented by the water/cement ratio) were 

assessed. 

The chloride on the concrete surface can originate from various sources. Bridge 

structural components can be categorized as superstructure components (boundary 

condition type 1), splash zone components (boundary condition type 2), and submerged 

components (boundary condition type 3). For submerged components (BC3), there is a 

constant supply of water and chloride to the surface of the concrete. However, corrosion 

of steel is often limited by the lack of oxygen dissolved in the water. Components in the 

splash zone (BC2) have a good supply of both oxygen and chloride, and these 

components experience the greatest corrosion. For superstructure components (BC1), the 

chloride supply can limit the initiation of corrosion since it is supplied mainly by deicing 

salts. 



 20 

Three different concrete cover thicknesses of 25, 38, and 70 mm, and water cement 

ratios of 0.4, 0.5, and 0.6 were used. Table 1 shows typical values of the oxygen and 

chloride concentrations for each boundary condition. The oxygen and chloride diffusion 

coefficients are highly dependent on concrete quality and can increase by orders of 

magnitude from good quality concrete to poor quality concrete (Neville 2000).  

The concrete cover and bar diameters used are shown in Table 2. These were chosen 

to yield the same k ratios as in the experimental specimens, but with dimensions close to 

those of full size structural components. 

Effect of Boundary Conditions 

Figures 8, 9 and 10 show the calculated corrosion current for the first 200 days 

after corrosion starts. The corrosion current decreases as the rust thickness increases. The 

decrease in the corrosion current continues over the duration of corrosion until cracking 

of the concrete.  

The corrosion rates for boundary condition types 1 and 2 (BC1 and BC2) are quite 

similar. In the model, the available oxygen controls the corrosion rate and in both cases 

the oxygen availability is the same as shown in Table 1. Nevertheless, the corrosion 

current is slightly higher for BC2 compared to BC1 due to the greater availability of 

water in the concrete pores for BC2. In the model, only dissolved oxygen in water can 

contribute to the corrosion process (see Equation 10). The concrete water content 

resulting from equilibrium with the outside humidity (Bazant and Thonguthai 1978, 

1979) is lower for BC1 than for BC2 and therefore the corrosion current is 

correspondingly lower. For comparable concrete cover the corrosion current is almost 5% 

higher in BC2 compared to BC1. The time to cracking of the concrete cover for BC1 and 
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BC2 is shown in Figure 11. The 5% increase in corrosion current from BC1 to BC2 

decreases the time to cracking by 10% to 25%. For BC3 (substructure submerged in 

water), the corrosion current is an order of magnitude smaller than for BC1 and BC2 

because the oxygen availability is very limited. This can increase the life of the structure 

by more than an order of magnitude. The cracking time for BC3 was not calculated since 

it was computationally very expensive and after more than 25 years the concrete cover 

did not crack even for the smallest k = 3. 

Effect of Concrete Quality 

The concrete quality is controlled mainly by the w/c ratio. Concrete with a high w/c 

ratio has high porosity and diffusion of oxygen through the concrete cover is highly 

dependent on the concrete porosity (Neville 2000). As Figure 8, 9 and 10 show, 

decreasing the w/c ratio from 0.6 to 0.5 reduces the corrosion current by about 45%, and 

decreasing the w/c ratio from 0.5 to 0.4 reduces it again by about another 45% for all the 

cases. Also decreasing the w/c ratio by 0.1 increases the concrete strength by almost 

6,895 to 10,342 kPa (1000 to 1500 psi) (Neville 2000). As shown in Figure 11, 

decreasing the w/c ratio by 0.1 increases the cracking time by 1.5 to 3 times (depending 

on other factors) due to the combination of increased concrete strength and decreased 

porosity. 

Effect of Concrete Cover 

Although the concrete cover has a significant effect on the time for depassivation and 

initiation of corrosion, it does not seem to have a significant effect on the corrosion rate. 

The corrosion rate is about the same for all three k ratios considered.  
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After concrete quality, the next most important factor that affects the cracking time 

of the concrete cover is the k factor. A larger cover increases the time for chloride 

diffusion. However, a larger k value provides more mechanical resistance to cracking and 

thereby significantly increases the cracking time as shown in Figure 12. Increasing k from 

3 to 4 approximately doubles the cracking time, and increasing it from 4 to 6 

approximately doubles it yet again. 

Rust Thickness Growth 

Several models such as linear, parabolic, and more complicated power laws have 

been proposed for the growth of rust with time (Tomoshov 1966) and may be expressed 

in the general form: 

ktny =        (32) 

where y is the rust thickness, t is time, and n is an empirical constant. 

Here we present results of the rust thickness growth over time based on the holistic 

electrochemical-mechanistic model presented herein and compare them to the empirical 

model in Equation 32. 

Rust Build-Up 

Figure 13 shows the results of the rust growth predicted by the electrochemical 

model over time for different w/c ratios. In the model the rate of rust growth is 

independent of the concrete cover and is affected only by the boundary condition and w/c 

ratio. 
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Although the electrochemical model is more complex than the simple empirical 

equation, the end results are very similar as shown in Figure 13 if the parameters n and k 

in Equation 32 are properly calibrated. However, the more complex model is based on 

material and environmental characteristics and can be used in a variety of situations 

without the need for calibration. 

Rust Flow into Pores 

One of the factors that affect the time to cracking of the concrete cover is the flow of 

rust products into the concrete pores. The process of rust flow has not been effectively 

modeled in the past. The rust products can only flow a certain distance from the steel bar 

before cracking of the concrete. The calculated distance according to our model can be 

between 2 to 15 mm, depending on many factors such as the w/c ratio and boundary 

conditions. 

The flow of rust products into the concrete pores decreases the amount of 

accumulated pressure and increases the time to cracking. Figure 14 shows the reduction 

in accumulated pressure for different cases. The loss in pressure is 1% to 2% for a w/c 

ratio of 0.4, and 5% to 17% for the w/c ratios of 0.5 and 0.6. Concrete with a high w/c 

ratio has higher porosity and therefore more rust can flow into it. The amount of rust that 

flows into the surrounding concrete is highest for BC1 due to the lower degree of 

saturation, and similar but lower for BC2 and BC3.  

CONCLUSIONS 

A holistic electrochemical-mechanistic model is developed for the corrosion of 

reinforcing steel in concrete in the presence of chloride ions, and the time to cracking of 

the concrete cover. The limiting corrosion current is modeled based on the cathodic 
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limiting reaction and oxygen diffusion. The model was calibrated using accelerated 

corrosion testing under a microscope to establish the relationship between rust thickness 

and the time to cracking of the concrete cover. In the constant current test, the 

accumulated rust thickness varied approximately linearly with time until cracking of the 

concrete cover.  

The developed model was used to predict the corrosion current and the time to 

cracking of the cover for three classes of concrete components in bridges. The corrosion 

current was calculated for different boundary conditions, concrete properties and concrete 

cover. The concrete cover did not have a significant effect on the corrosion current. The 

two main factors that influence the corrosion current are the boundary conditions and the 

concrete quality. When the w/c ratio is increased, the concrete quality decreases, the 

permeability of concrete increases, the diffusion of oxygen and water into the concrete 

increase, and consequently the corrosion current increases. 

The time to cracking of the concrete cover is influenced by the corrosion rate, the 

concrete quality and the cover. Increasing the w/c ratio by 0.1 decreases the time to 

cracking by 1.5 to 3 times depending on other factors.  

Concrete bridge components in the splash zone have the highest availability of water, 

chloride and oxygen, corrode about 5% faster than superstructure components, and the 

life of the former can be 10% to 25% less than the latter. Due to the lack of oxygen, the 

corrosion rate in submerged components is an order of magnitude lower than components 

exposed to air tremendously lengthening their life. Increasing the concrete cover from 38 

to 51 mm (1.5 to 2 in.) can double the time to cracking. Increasing the cover further from 

51 to 76 mm (2 to 3 in.) further doubles the time to cracking. 
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Using good quality concrete with a low w/c ratio and the largest affordable cover are 

the easiest ways to protect concrete structures from corrosion damage.  
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Table 1: Different Concentration Boundary Conditions (g/cm3) 

Boundary 

Condition 

Oxygen 

Concentration 

Chloride 

Concentration 

Type 1 3.04 x10-4 1.495 x10-3 

Type 2 3.04 x10-4 1.301 x10-2 

Type 3 7.0x10-7 1.91 x10-2 

 

 

Table 2: Geometry  

Ratio (k) 
D (Concrete Cover) 

mm (in.) 

d (Bar Diameter) 

mm (in.) 

3 25 (1.0) 25 (1.0) 

4 38 (1.5) 25 (1.0) 

6 63 (2.5) 25 (1.0) 
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Figure 1: Corrosion scale model (adopted from Jones 1992, Sarin et al. 2004) 
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Figure 2: Oxygen diffusion path 
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Figure 3: Finite element analysis for calibrating the model 
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Figure 4: Test Specimens 
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Figure 5: Test set up under microscope 
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Figure 6: Images of rust thickness under the microscope for specimens with k = 6 
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Figure 8: Corrosion current for BC1

Figure 7: Rust thickness over time for specimens with k = 3, 4,and 6 
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Figure 9: Corrosion current for BC2 
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Figure 10: Corrosion current for BC3 
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(a) 

 
(b) 

Figure 11: Effect of water cement ratio on concrete cracking time: (a) BC1 
and (b) BC2  
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(a) 

 
(b) 

Figure 12: Effect of concrete cover on cracking time (a) BC1 and (b) BC2 
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Figure 13: Comparison between model and equation 32 

Figure 14: Reduction in pressure as a percentage of the final pressure 
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