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ABSTRACT 

 
Background: Cells release extracellular membrane vesicles including microvesicles known 

as exosomes. Exosomes contain microRNAs (miRNAs) however the full range within 

colorectal cancer cell secreted exosomes is unknown.  

Objective: To identify the full range of exosome encapsulated miRNAs secreted from 2 

colorectal cancer cell lines and to investigate engineering of exosomes over-expressing 

miRNAs.  

Methods: Exosomes were isolated from HCT-116 and HT-29 cell lines. RNA was extracted 

from exosomes and microRNA array performed. Cells were engineered to express miR-

379(HCT-116-379) or a non-targeting control (HCT-116-NTC) and functional effects were 

determined. Exosomes secreted by engineered cells were transferred to recipient cells and the 

impact examined.  

Results: Microvesicles 40-100nm in size secreted by cell lines were visualised and confirmed 

to express exosomal protein CD63. HT-29 exosomes contained 409 miRNAs, HCT-116 

exosomes contained 393, and 338 were common to exosomes from both cell lines. Selected 

targets were validated. HCT-116-379 cells showed decreased proliferation (12-15% decrease, 

p < 0.001) and decreased migration (32-86% decrease, p < 0.001) compared to controls. 

HCT-116-379 exosomes were enriched for miR-379. Confocal microscopy visualised transfer 

of HCT-116-379 exosomes to recipient cells.  

Conclusions: Colorectal cancer cells secrete a large number of miRNAs within exosomes. 

miR-379 decreases cell proliferation and migration, and miR-379 enriched exosomes can be 

engineered. 

 

Key words: exosomes, microRNAs, colorectal cancer 
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Abbreviations: HCT-116-379; HCT-116 colorectal cancer cells transduced with a miR-379 

over-expresing lentiviral vector, HCT-116-NTC; HCT-116 colorectal cancer cells transduced 

with a non-targeting control lentiviral vector, HCT-116-WT; non transduced, wild-type HCT-

116 colorectal cancer cells, CRC – Colorectal Cancer, PBS – phosphate buffered saline 
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INTRODUCTION 

Cancer cells are capable of promoting pro-tumorigenic features such as angiogenesis through 

paracrine signalling which can potentially promote metastases [1].  In addition to release of 

soluble proteins, multiple cell types including colorectal cancer cells have been shown to 

release a variety of extracellular membrane vesicles including microvesicles known as 

exosomes. Exosomes are lipid vesicles with a diameter of 40-100nm which are highly stable, 

facilitating collection from various body fluids as well as cell culture media [2]. They are 

known to contain lipids, DNA and RNA and have recently been recognised as vehicles 

capable of facilitating intercellular communication [3]. Emerging evidence indicates that 

exosomes may play a role in a range of biological processes through transfer of their contents 

from donor cells to recipient cells [4]. In cancer, exosomes also play a significant role with 

evidence showing a pro-tumorigenic effect associated with the transfer of protein content [5]. 

One of the most exciting aspects of exosomes involvement in cancer is that they have 

recently been found to contain miRNAs [6].  

 

miRNAs are a class of small non-coding RNA molecules 19-25 nucleotides in length. 

miRNAs regulate gene expression at a post transcriptional level leading to the inhibition of 

mRNA translation or mRNA degradation [7]. Functional studies have shown miRNAs to 

participate in almost every cellular process including apoptosis, proliferation and 

differentiation [7, 8]. Some miRNAs are dysregulated in the tissues and circulation of CRC 

patients making them promising as biomarkers [8, 9]. Recent studies, however, have reported 

a number of miRNAs believed to be released by colorectal tumours as circulating markers of 

disease are expressed by red blood cells and may be present in the plasma and serum 

secondary to haemolysis [10]. Tumour derived exosomal miRNAs may provide a more 

specific miRNA signature advancing the potential of early detection and individualised 

treatments [11, 12].  
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Recent studies have shown exosomes are capable of delivering chemotherapeutic agents in 

vitro and can deliver anti-tumour miRNAs to breast cancer cells and prostate cancer cells 

when injected systemically in vivo or directly into tumours [13-15]. Identification of potent 

tumour suppressor miRNAs in CRC is useful for development of therapeutics in this regard. 

miR-379 has previously been identified as a tumour suppressor in breast cancer [16]. A 

genome wide analysis of miRNAs imprinted on the 14q32.31 locus including miR-379 

reveals downregulation of these miRNAs in human cancers indicating this entire miRNA 

cluster is a locus of tumour-suppressors [17]. These data, taken in conjunction with previous 

studies showing compelling evidence that miR-379 is a tumour suppressor in breast cancer, 

indicate miR-379 is an ideal candidate for further investigation in CRC. This study aimed to 

firstly identify the full range of miRNAs packaged into exosomes and secreted by two CRC 

cell lines with different phenotypical characteristics. The effect of miR-379 in CRC cells and 

its potential to be transferred to recipient cells in exosomes was also examined. 
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METHODS 

Cell Lines and Culture Conditions 

HCT-116 and HT-29 CRC cells were purchased from the American Type Culture Collection 

(Manassas, VA, USA). Cell lines were last authenticated in May 2014 using DNA 

fingerprinting. Cells were cultured in McCoys-5A media supplemented with 10% fetal 

bovine serum (FBS) and 100U/ml penicillin/ 100 µg streptomycin (P/S). Cells were 

incubated at 370C and 5% CO2.   

 

Isolation of CRC Cell Secreted Exosomes 

To prepare exosome-free media, exosomes were removed from FBS. FBS was centrifuged at 

300 x g for 10 minutes followed by 2000 x g for 10 minutes to remove cellular debris. The 

supernatant was then passed through a 0.2µm sterile filter. Exosomes were separated from the 

supernatant by ultracentrifugation at 110,000 x g at 4°C for 70 minutes. After 

ultracentrifugation the exosome free FBS supernatant was collected. 

 

For exosome isolation, 2 x 106 cells were seeded into T-175 flasks containing 17 mLs of pre-

prepared exosome free culture medium and cultured for 48 hours. A process of differential 

centrifugation, passage through a microfilter and ultra-centrifugation was performed to 

isolate exosomes [6]. In detail, following 48 hours incubation the media containing exosomes 

secreted by cells was harvested. The cells remaining in the T-175 cm2 flask were then 

trypsinised, counted and stored. A falcon containing cell conditioned media with exosomes 

was placed into a centrifuge and spun at 300 x g for 10 minutes at 4 oC. The media was then 

carefully collected from the falcon using a pipette leaving 1-2 mL remaining at the bottom 

which contains cellular debris. Collected media was then transferred to a new falcon. This 

underwent centrifugation at 2000 x g for 10 minutes at 4 oC. It was carefully collected from 

the falcon using a pipette leaving 1-2 mL remaining at the bottom, passed through a 0.2 µm 
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sterile filter and collected in a new 50 mL falcon. A primary fixative was added at this point 

prior to ultracentrifugation to maintain exosome morphology if exosomes were being isolated 

for visualisation with Transmission Electron Microscopy (TEM). The media containing 

exosomes was then transferred to an ultracentrifugation tube taking care to avoid any bubble 

formation. A Sorvall 100SE ultracentrifuge was used with a Ti70 fixed angle rotor. The 

following settings are used on the ultracentrifuge: spinning time was set for 1 hour and 10 

minutes, temperature was set at 4 oC, acceleration was set at 9, deceleration at 1 and speed 

was set at 100,000 x g. The ultracentrifugation tubes were carefully removed from the rotor 

following the spin and the supernatant collected from the tubes using a disposable pipette. 

The supernatant represents the cell conditioned media from which exosomes have been 

removed. The exosome pellet was collected by pipetting 60 µL of PBS up and down the area 

marked where the exosome pellet forms in the ultracentrifugation tube. Alternatively if 

exosomes were harvested for Western Blot analysis, protein lysis buffer was used to re-

suspend the exosome pellet. 

 

Transmission Electron Microscopy 

HCT-116 and HT-29 exosomes were isolated as previously described. A primary fixative 

(2% Glutaraldehyde, 2% Paraformaldehyde in a 0.1M Sodium Cacodylate/HCL buffer at a 

pH of 7.2) was added to exosome containing media prior to the final ultracentrifugation step. 

Exosomes were re-suspended in 50µL of PBS and treated with a secondary fixative (1% 

Osmium Tetroxide). The resultant exosome pellet was subsequently dehydrated with graded 

alcohol and then incubated in resin in a 65°C oven. The resin block was trimmed using an 

ultramicrotome to sections of 80-100nm thickness (Reichert-Jung Ultracut E). Slices were 

loaded onto a copper grid and stained with 1.5% aqueous uranyl acetate followed by lead 

citrate. Viewing was performed with a Hitcachi H7000 Transmission Electron Microscope. 
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Western Blotting 

HCT-116 and HT-29 secreted exosomes were collected as previously described. After 

ultracentrifugation, exosomes were re-suspended in Triton-X lysis buffer [150mM NaCl, 20 

mM HEPES, 2 mM EDTA, 1% Triton-X100, 2mM Sodium Orthovanadate, 10mM Sodium 

Fluoride, 10ul/mL Protease inhibitor cocktail (Fisher Scientific)] and frozen at -20°C. Protein 

content was determined using the Micro BCA™ Protein Assay Kit (Thermo Scientific). 

Protein (100µg) was reduced in DTT (0.5 M) for 10 minutes at 70°C and samples run on a 4-

15% gradient pre-cast Mini-PROTEAN® TGX™ Gels (Bio-Rad) for 60 minutes at 100V. 

Protein molecular weight standards (20-220 kDa) were run simultaneously on each gel. 

Electroblotting was performed for 60 minutes at 100V to transfer protein samples to a 

nitrocellulose membrane. Blots were blocked in 5% milk in TBS-T for 1 hour, and probed 

with an antibody targeting CD63 (1:1,000; Abcam) overnight and washed in TBS-T. 

Horseradish peroxidase labelled goat anti-rabbit (1:3,000; Abcam) secondary antibody was 

then added to the membranes for 1.5 hours. Following washing steps, SuperSignal West Dura 

Chemiluminescent substrate (Thermo Scientific) was applied to the membranes for 5 

minutes. Images were captured using a Syngene G-Box and GeneSnap software. 

 

RNA extraction and microRNA array 

RNA was extracted from exosomes using the mirVanaTM miRNA isolation kit following 

manufacturer’s instructions. The NanodropTM Spectrophotometer (Thermo Scientific) was 

used to assess RNA present. Samples extracted from HCT-116 and HT-29 exosomes were 

then delivered to Exiqon Services, Denmark. The quality of the total RNA was verified by an 

Agilent 2100 Bioanalyzer profile. All RNA from sample and artificial reference was labeled 

with Hy3™ and Hy5™ fluorescent label, respectively, using the miRCURY LNA™ 

microRNA Hi-Power Labelling Kit, Hy3™/Hy5™ (Exiqon, Denmark). The Hy3™-labeled 

samples and a Hy5™-labelled reference RNA sample were mixed pair-wise and hybridized 
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to the miRCURY LNA™ microRNA Array 7th Gen (Exiqon, Denmark), which contains 

capture probes targeting all human microRNAs registered in miRBASE 18.0 [18]. The 

hybridization was performed according to the miRCURY LNA™ microRNA Array 

Instruction manual. The miRCURY LNA™ microRNA Array slides were scanned using the 

Agilent G2565BA Microarray Scanner System (Agilent Technologies, Inc., USA) and image 

analysis was carried out using the ImaGene 9.0 software (BioDiscovery, Inc., USA). The 

quantified signals were background corrected [19] and normalized using quantile 

normalization method. Technical quality assessment was performed based on results from 

spike in controls in the array. miRNAs above a certain threshold were considered present. 

The background threshold was calculated for each individual microarray slide as 1.2 times 

the 25th percentile of the overall signal intensity of the slide. Expression levels were then 

calculated on a scale from 0-10 and those with levels less than 4 were deemed undetectable.  

 

Target validation using RQ-PCR 

Exosomal miRNAs of interest were reverse transcribed using the MultiScribe™-based High-

Capacity cDNA Archive Kit (dNTP 100mM, RT Buffer 10x, RNase Inhibitor 20U/µl, Stem 

loop primer 50nM, MultiScribe RT 50U/µl) (Applied Biosystems) and miRNA-specific 

primers. The miRNAs were quantified by real-time PCR using TaqMan microRNA kits (Life 

Technologies) and the ABI 79000 Fast real-time PCR system (Applied Biosystems) These 

reactions were carried out in a final volume of 10 µl comprising of 0.7 µl cDNA, 5 µl 

TaqMan® Universal PCR fast Master Mix (2x), 0.5 µl TaqMan® primer-probe mix (0.2µM), 

Forward primer (1.5µM), and Reverse Primer (0.7µM) (Applied Biosystems). For target 

validation the average cycle threshold at which the selected miRNA appeared is given as the 

mean cycle threshold (CT) over 3 separate exosome isolates +/- standard deviation. 

 

Cell transduction 
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HCT-116 cells were transduced with a miR-379 (mature sequence: 

UGGUAGACUAUGGAACGUAGG; 50nM, HCT-116-379) or a non-specific targeting 

control miRNA (non-target control, HCT-116-NTC) mimic (SMARTchoice shMIMIC 

Lentiviral microRNAs). Lentiviral vectors contained a red fluorescent protein and Puromycin 

resistance element. Transductions were performed using polybrene at a final concentration of 

8µg/mL. Puromycin selection was commenced 48 hours after transduction at a concentration 

of 8µg/mL. To confirm adequate transduction efficiency cells were fixed in 4% 

paraformaldehyde, nuclei were counterstained with DAPI and visualised using a fluorescence 

microscope (Olympus BX60, analaSIS® software - Ridom GmbH, Münster, Germany) to 

confirm the presence of red fluorescent protein. Confirmation of stable transduction was 

performed with RQ-PCR at 1 and 2 weeks. miR-16 was used as the endogenous control. 

miR-379 expression was calculated in miR-379 over-expressing versus NTC cells. For every 

sample, reactions were performed in triplicate for the miRNA of interest and the endogenous 

control miRNA. The relative quantity of mRNA and miRNA expression was calculated using 

the comparative cycle threshold (ΔΔCt). The geometric mean of the Ct value was used to 

normalise the data and the sample with the lowest expression level was applied as a 

calibrator. Following confirmation of transduction, exosomes secreted by HCT-116-379 cells 

and HCT-116-NTC were harvested as previously described and miR-379 levels were 

assessed using RQ-PCR to determine if miR-379 over-expression was observed in HCT-116-

379 exosomes establishing engineering of miRNA enriched exosomes. 

 

Proliferation Assays 

To assess the effect of miR-379 on cell proliferation, cells were seeded into a 96 well plate at 

a density of 1 x 103 cells per well. HCT-116-379 and HCT-116-NTC cells were seeded and 

incubated for 24, 48 or 72 hours. At each of these time-points cell proliferation was measured 

using a CellTiter 96® AQueousNon-Radioactive Cell proliferation Assay (Promega). To 
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establish any functional effect exerted by exosomes secreted by transduced cells exosomes 

were isolated from HCT-116-379, HCT-116-NTC and HCT-116-WT cells as previously 

described. HCT-116-WT cells were seeded onto a 96 well plate at a density of 1 x 103 per 

well and received media containing exosomes from HCT-116-379, HCT-116-NTC or HCT-

116-WT cells. Proliferation was measured at 48 hours. Each experiment was performed in 

triplicate with results expressed against a negative control (cells in exosome depleted media) 

as mean +/- SEM. P values were calculated using ANOVA. 

 

Migration Assays 

To assess the effect of miR-379 on cell migration, Transwell® Permeable Supports (Corning 

Inc, Sigma–Aldrich) with 8.0 μm pores were used to track migration of HCT-116-379 and 

HCT-116-NTC cells in response to a chemoattractant (10% FBS). 7.5 x 104 cells were seeded 

onto the membranes in serum free media. Migration in response to the same serum free 

medium was employed as a negative control. Migrated cells were stained using haematoxylin 

and counted in five fields of view per membrane using an Olympus B×60 microscope and 

image analysis software. Each experiment was repeated in triplicate, with results expressed 

against the negative control as Mean +/- SEM. P values were calculated using Students T test 

(two tailed). 

 

Confocal microscopy 

Exosomes were isolated from transduced cells expressing a red fluorescent protein. Recipient 

WT cells without a red fluorescent protein were seeded onto glass coverslips at a density of 4 

x 105 per coverslip. Isolated exosomes were added to coverslips and incubated in a 

humidification box for 4 hours. Following incubation cells on coverslips were fixed with 4% 

Paraformaldehyde. DNA in cell nuclei was then stained using DAPI (Invitrogen) and the 

slides mounted using slowfade gold anti-fade reagent (Invitrogen). Immunofluorescent Z-
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stack images (0.1 μm steps) were captured using an Olympus IX81 Microscope fitted with an 

Andor Revolution Confocal system (Andor, Belfast, Northern Ireland), 60× oil immersion 

objective lens and an EMCCD Andor iXonEM + camera.  

 

RESULTS 

Exosome characterisation 

Microvesicles with a spherical morphology ranging in size between 40 and 100 nm consistent 

with exosomes were found to be secreted by both cell lines and successfully visualised with 

TEM (Figure 1A). Western Blot for the exosome-associated protein CD63 revealed a 

characteristic band between 50-60 kDa in size (Figure 1B).  

 

Identification of exosomal microRNA content 

Expression analysis revealed the number of miRNAs present in the exosomes of both CRC 

cell lines to be within the expected range for human samples. 409 miRNAs were detected 

above threshold in HT-29 derived exosomes. 393 miRNAs were detected in HCT116 

exosomes, with 338 miRNAs common to exosomes from both HCT-116 and HT-29 cells. 

The 20 most highly expressed miRNAs in HCT-116 cell secreted exosomes and HT-29 cell 

secreted exosomes were identified (Table 1). The miRNAs which were found to have the 

highest difference in expression levels between the exosomes secreted by either HCT-116 or 

HT-29 cell lines were also identified (Table 2).  

 

Validation of selected array data by qRT-PCR 

Selected miRNAs (miR-10b, miR-143 and miR-149-5p) were validated in three separate 

exosome isolates from both HCT-116 and HT-29 cell secreted exosomes. miR-10b, miR143 

and miR-149-5p were consistently detectable in exosome extracts from both cell lines. miR-

10b (HCT-116 exosomes 36.25 +/- 0.84 CT, HT-29 exosomes 35 +/- 0.3 CT) , miR-143 
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(HCT-116 exosomes 36.42 +/- 2.42 CT, HT-29 exosomes 35.98 +/- 2.32 CT) and miR-149-

5p (HCT-116 exosomes 35.41 +/- 1.85 CT, HT-29 exosomes 37.94 +/- 0.34 CT). 

 

miR-379 over-expression in exosomes and functional impact  

HCT-116 cells were transduced with a miR-379 and NTC-mimic as described, and the 

successfully transduced cells were visualized using fluorescence microscopy (Figure 2A). A 

significant elevation in miR-379 expression in HCT-116-379 cells (2.20 log10 RQ increase 

relative to HCT-116-NTC) was confirmed at 1 and 2 weeks following transduction (Figure 

2B).  Proliferation at 24, 48 and 72 hours was determined in HCT-116-379 cells compared to 

NTC cells. A significant decrease in proliferation was observed in HCT-116-379 cells 

compared to HCT-116-NTC cells (12-15% decrease, ANOVA p < 0.001, Figure 3A). A 

significant decrease of up to 86% was observed in HCT-116-379 cell migration towards a 

chemo-attractant (10% FBS) when compared to HCT-116-NTC cells (32-86% decrease, p < 

0.001, Figure 3B). Exosomes secreted by HCT-116-379 cells contained detectable levels of 

miR-379 while those secreted by WT and NTC cells did not.  

 

Transfer of exosomes between cell populations and functional effects 

Exosomes with a red fluorescing protein were isolated from miR-379 over-expressing cells. 

Recipient WT cell nuclei were stained blue with DAPI. Exosomes isolated from HCT-116-

379 cells were incubated with HCT-116-WT cells and confocal microscopy visualised 

exosomes clustering around HCT-116-WT cells suggesting uptake of miR-379 enriched 

exosomes by HCT-116-WT cells (Figure 4A). Proliferation of HCT-116-WT cells in 

response to -379, -NTC and -WT secreted exosomes was measured at 48 hours. A trend 

towards decreased proliferation of WT cells in response to miR-379 exosomes compared to 

NTC and WT exosomes was observed, although this was not significant (Figure 4B). 
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DISCUSSION 

Dysregulated circulating miRNAs have been identified as promising biomarkers in CRC in 

several studies but contradicting evidence exists regarding their reproducibility [9].  Patient 

factors, medium from which miRNA is extracted (whole blood/serum/plasma), and differing 

collection and storage have led to heterogeneous data. Exosomal miRNAs may provide 

tumour specific biomarkers negating these concerns. The profiling of miRNAs secreted 

within exosomes by both HCT-116 and HT-29 CRC cells has identified a large number of 

miRNAs. Overall, when non-human spike-in miRNAs were excluded, array data revealed 

409 miRNAs detected above threshold in HT-29 derived exosomes. 393 miRNAs were 

detected in HCT-116 exosomes, with 338 miRNAs common to exosomes from both HCT-

116 and HT-29 cells. Analysis of miRNA expression levels in both CRC cell secreted 

exosomes show areas with distinct differences. The differences between the miRNA profiles 

of exosomes secreted by these two distinct CRC cell lines may represent differences in 

growth pattern and phenotype [20]. 

 

Previous studies have identified selected miRNAs present in exosomes secreted by CRC cells 

in vitro [11]. A number of miRNAs have also been identified in exosomes isolated from the 

circulation of CRC patients [12]. This is the first study to describe the full range of miRNAs 

present in both HCT-116 and HT-29 CRC cell secreted exosomes, demonstrating a large 

range of miRNAs some of which have well described roles in cancer pathogenesis, and others 

which have only recently been discovered. Among the most highly expressed miRNAs in 

both CRC cell line exosomes are several which have previously described roles in 

gastrointestinal cancers (miR-10b-3p, let7b-5p, miR-378c, miR-145-5p)  [21-24]. In addition, 

included in the most highly expressed are some miRNAs with little or no available data 

regarding their association with disease states, associated gene targets or functional roles. 

These miRNAs may represent new targets as biomarkers worthy of further investigation. 
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miR-10b was found to be among the most highly expressed miRNAs in both CRC cell line 

exosomes and was validated in multiple exosome samples. High levels of miR-10b have been 

associated with a higher incidence of lymphatic invasion and poor prognosis in CRC tissues 

[25]. Interestingly, exosome-mediated transfer of miR-10b to recipient non-invasive breast 

cancer cell lines has been shown to promote cell invasion in breast cancer [26]. miR-143 and 

miR-149-5p were also validated. These miRNAs were not among the most highly expressed 

but the fact that they are detectable in multiple exosome isolated from both CRC cell lines 

indicates validity of array data. 

 

miR-379 down-regulates several genes involved in the TGF-β signalling pathway and a large 

proportion of CRCs are known to display abnormalities in TGF-β pathway factors [27,28]. A 

significant reduction in colorectal cancer cell proliferation in response to over-expression of 

miR-379 was observed. Cells over expressing miR-379 were found to proliferate between 12-

15% slower compared to controls. A marked reduction in migration of CRC cells in response 

to over-expression of miR-379 was observed ranging as high as an 86%. This effect is 

interesting as miR-379 has a documented effect on cyclin B1. Cyclin B1 in turn has a 

documented inhibitory effect on E-cadherin leading to induction of CRC cell migration and 

invasion which is contrary to the effect observed in this study and worthy of further 

investigation [28]. Exosomes which were secreted from miR-379 over-expressing cells were 

found to contain detectable levels of miR-379 compared to exosomes secreted by HCT-116-

NTC and HCT-116-WT cells. In addition, miR-379 was not detected through miRNA array 

performed on HCT-116-WT exosomes. Incubation of HCT-116-WT cells in media 

containing exosomes enriched in miR-379 produced an observable decrease in proliferation 

however it was not significant. As the effect of miR-379 over-expression on migration was 

very significant, ranging from 32-86%, further investigation of the effect of miR-379 

enriched exosomes on cell migration may yield a more pronounced effect.  



16 
 

 

The data presented identifies a wide range of miRNAs present in CRC cell secreted exosomes 

which may provide useful targets as biomarkers for further investigation. miR-379 displays 

tumour suppressor properties in CRC cells and its potential to be delivered to recipient cells 

warrants further investigation. 
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Figure and Table Legends 

Figure 1 

Title: Characterisation of exosomes isolated from HCT-116 and HT-29 colorectal cancer cell 

lines. 

A) Transmission electron microscopy images of exosomes from HCT-116 and HT-29 

CRC cells (bar = 500nm) 

B) Western Blot for exosome associated protein CD63 performed with protein extracted 

from both HCT-116 and HT-29 CRC cell lines.  

 

Figure 2 

Title: Confirmation of transduction forcing miR-379 over-expression in HCT-116-379 CRC 

cells  

A) Visualisation of transduced cells with fluorescence microscopy. (i) - Cell nuclei 

stained blue with DAPI. (ii) – Red Fluorescent Protein of successfully transduced cells         

B) Elevated miR-379 expression in HCT-116-379 cells 1 and 2 weeks following 

transduction 

 

Figure 3  

Title: Analysis of functional effects of miR-379 over-expression 

     A) Cell proliferation following transduction resulting in a decrease in proliferation (range     

          12-15%) in the presence of miR-379 over-expression (p<0.001) 

B) Cell migration following transduction resulting in a decrease in migration (range 32  

     86% decrease) in the presence of miR-379 over-expression (p<0.001) 
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Figure 4 

Title: Exosome transfer and functional effect on recipient cells 

A) Confocal microscopy image of exosomes isolated from miR-379 over expressing 

cells (red due to RFP labelling) clustering around WT cells (blue DAPI stained 

nuclei).  

B) Functional effects of exosomes isolated from HCT-116-WT, HCT-116-NTC and 

HCT-116-379 cells on recipient WT cells.  

 

Table 1 

Title: The 20 most highly expressed miRNAs in HCT-116 and HT-29 cell secreted exosomes. 

(Complete dataset available at www.microvesicles.org. Experiment ID – Vesiclepedia_557) 

[29] 

 

Table 2 

Title: The 10 most differentially expressed miRNAs contained within exosomes secreted by 

both cell lines (the miRNAs with the most significant difference in expression in one cell line 

compared to another) 

 

 

 

 

 

 

 

http://www.microvesicles.org/
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Table 1 

Most highly expressed 
microRNAs in  

HCT-116 exosomes 

Most highly expressed 
microRNAs in HT-29 

exosomes 
hsa-miR-3679-3p hsa-miR-642b-5p 

hsa-miR-4279 hsa-miR-10b-3p 
hsa-miR-642b-5p hsa-miR-3679-3p 

hsa-miR-4454 hsa-miR-4279 
hsa-miR-10b-3p hsa-miR-943 
hsa-miR-624-5p hsa-miR-624-5p 

hsa-miR-943 hsa-miR-1248 
hsa-miR-4723-3p hsa-miR-145-5p 

hsa-miR-1249 hsa-miR-1249 
hsa-miR-378c hsa-miR-4723-3p 
hsa-miR-1248 hsa-let-7b-5p 
hsa-miR-718 hsa-miR-378c 
hsa-let-7b-5p hsa-miR-365a/b-3p 
hsa-miR-1246 hsa-miR-30d-3p 
hsa-miR-4274 hsa-miR-4274 

hsa-miR-1207-3p hsa-miR-718 
hsa-miR-4728-3p hsa-miR-548k 

hsa-miR-365a/b-3p hsa-miR-361-5p 
hsa-miR-30d-3p hsa-miR-1207-3p 
hsa-miR-3679-3p hsa-miR-4311 

 

 

 

 

 

 

 

 

 

 



23 
 

 

 

 

Table 2 

HCT-116 cell secreted exosomes HT-29 cell secreted exosomes 
Differentially expressed 

microRNAs 
Differentially expressed 

microRNAs 
miR-4497 miR-1250-5p 

miR-377-5p miR-511-5p 
miR-3960 miR-1224-3p 

miR-670-5p miR-29c-5p 
miR-4787-5p miR-3144-3p 

miR-1246 miR-513c-5p 
miR-5100 miR-25-3p 
miR-4454 miR-192-3p 

miR-1260b miR-1225-5p 
miR-4708-3p miR-1304-5p 
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