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SUMMARY

A replication study of a previous genome-wide asso-
ciation study (GWAS) suggested that a SNP linked to
the POLB gene is associated with systemic lupus
erythematosus (SLE). This SNP is correlated with
decreased expression of Pol b, a key enzyme in the
base excision repair (BER) pathway. To determine
whether decreased Pol b activity results in SLE, we
constructed a mouse model of POLB that encodes
an enzyme with slow DNA polymerase activity. We
show that mice expressing this hypomorphic POLB
allele develop an autoimmune pathology that
strongly resembles SLE. Of note, the mutant mice
have shorter immunoglobulin heavy-chain junctions
and somatic hypermutation is dramatically in-
creased. These results demonstrate that decreased
Pol b activity during the generation of immune diver-
sity leads to lupus-like disease in mice, and suggest
that decreased expression of Pol b in humans is an
underlying cause of SLE.

INTRODUCTION

Base excision repair (BER) functions during class switch recom-

bination (CSR) and somatic hypermutation (SHM) (for a review,

see Alt et al., 2013). Although BER ismainly known for its function

in the repair of at least 20,000 endogenous base lesions per hu-

man cell per day (Barnes and Lindahl, 2004), it appears to have

been co-opted from this role to act in the generation of antibody

diversity (for a review, see Di Noia and Neuberger, 2007). DNA

polymerase beta (Pol b) is a key protein in the BER pathway,

where it repairs single-strand breaks. Deletion of the POLB

gene from mice results in embryonic lethality (Gu et al., 1994).

In a large-scale replication study based upon a previous

genome-wide association study (GWAS) of SLE in the Han Chi-

nese population, association evidence for rs12676482 with sys-

temic lupus erythematosus (SLE) was replicated independently

in two large cohorts (Sheng et al., 2011). The significance of

this lies in the fact that rs12676842 is a SNP in the noncoding re-

gion adjacent to the POLB gene on 8p11.21. Of note, the lupus-

associated SNP rs12676482 is in perfect linkage disequilibrium

with rs2272733, which is highly correlated with decreased

POLB expression (Zeller et al., 2010). This suggests that low

Pol b activity is an underlying cause of SLE. We reasoned that

mice expressing a slow Pol b mutant polymerase, such as the

Y265C hypermorphic allele, would be an excellent model to

test the hypothesis that limiting the levels of active Pol b leads

to SLE. The Y265C mutant of POLB encodes a protein that

synthesizes DNA significantly more slowly than wild-type (WT)

Pol b (Washington et al., 1997). Therefore, we constructed a

POLBY265C/C mouse model using targeted gene disruption (Sen-

ejani et al., 2012). We demonstrate that these mice exhibit

several pathologies associated with SLE. In addition, our strat-

egy allowed us to define the contributions of Pol b during V(D)J

recombination and SHM. Importantly, our studies suggest that

an imbalance of error-prone and error-free break repair during

V(D)J recombination and SHM results in autoimmune disease.

RESULTS

POLBY265C/C Mice Have Pathologies Resembling SLE
We previously constructed the POLBY265C/C mouse model using

targeted gene disruption (Senejani et al., 2012). Observation of

the mice as they aged revealed an intriguing set pathologies

resembling SLE. The POLBY265C/C and POLBY265C/+ mice

exhibited an increased prevalence of dermatitis (Figures 1A

and S1). Dermatitis is a major manifestation of SLE in humans

(Norris and Lee, 1985) and is also observed in the SLE-prone

MRL/lpr lupus-like mouse model (Furukawa et al., 1984). The

POLBY265C/+ and POLBY265C/C mice exhibited significantly

increased levels of antinuclear antibodies (ANAs) in their blood

sera compared with WT mice, and the ANA levels continued to

rise over the lifetime of the mice (Figure 1B).

Besides ANA, another hallmark feature of SLE is glomerular

nephritis (Radic et al., 2011), which results from the formation
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of immune complexes on the kidneys. The POLBY265C/+ and

POLBY265C/C mice developed significantly increased levels

of glomerular nephritis compared with WT mice (Figure 1C).

By 12 months of age, we observed increased levels of immuno-

globulin G (IgG) localized to the glomeruli of the POLBY265C/C

mice versus WT controls (Figure 1E). Approximately 70% of

thePOLBY265C/+ andPOLBY265c/c mice exhibited cervical lymph-

adenopathy (Figures 1F–1G)with significant infiltration of T andB

lymphocytes (Figure S2), which are recognized symptoms of

SLE (Jonsson et al., 1987; Lavoie et al., 2011). In contrast, few

of their WT siblings had enlarged cervical lymph nodes. Several

of the mutant mice also exhibited enlarged salivary glands that

had infiltrating lymphocytes, which were predominantly T and

B cells (Figure S3). In combination, our results are consistent

with the interpretation that expression of a low-activity Pol b

variant leads to lupus-like disease in mice.

Figure 1. POLBY265c/c and POLBY265c/+ Mice Exhibit Multiorgan Symptoms of SLE

(A) Levels of lupus-like dermatitis are increased significantly in POLBY265c/c and POLBY265c/+ mice compared withWTmice as themice age. Shown are curves for

each genotype (POLB+/+, POLBc/+, and POLBc/c) representing the percentage of mice with lupus-like dermatitis.

(B) POLBY265c/c and POLBY265c/+ mice have higher levels of ANA than WT mice. Shown above the graph is an example of immunofluorescence intensity in 12-

month-old mutant mice compared with their WT littermates and MRL/lpr mice. Note that the fluorescence pattern observed in the MRL/lpr mice differs from that

observed in the POLBY265c/c and POLBY265c/+ mice. In the graph, levels of ANA were quantified from several mice (WT, blue squares; c/+, red circles; c/c, green

triangles) at various ages. In brief, ANA was tested by immunofluorescence using human epithelial (HEp-2) cells in 12-well slides (Diasorin). For each run, 1:50

diluted sera were used in a screening investigation. Samples from mice with high and low ANA scores were used on the same slide to confirm the sensitivity and

specificity of the test during each scoring.

(C) POLBY265c/c and POLBY265c/+ mice exhibit increased severity of glomerular nephritis compared with WTmice. The severity of kidney lesions was scored from

0 to 3 for normal, mild, moderate, or severe, respectively. For each mouse, more than ten glomerular, tubular, or interstitial areas were evaluated and scored for

glomerular cellularity, infiltrating leukocytes, severity of tubular lesions, mesangial matrix expansion, crescent formation, and interstitial mononuclear cell

infiltrates in the medulla and cortex. Lesion scores for each mouse were calculated as the mean of the summed individual scores from each evaluated factors.

(D) Examples of renal disease in POLBY265c/c mice compared with WT. The black arrow points to mesangial hypercellularity. The white arrow denotes basement

membrane thickening, and white arrowheads indicate glomerular crescents. The gray arrow denotes deposits of antibodies, and the black arrow indicates

shrunken glomeruli in the outer cortex.

(E) The kidneys of POLBY265c/c mice exhibit significantly more intense IgG staining than those of WT mice.

(F) POLBY265c/c mice exhibit significantly increased levels of cervical lymphadenopathy compared with WT mice.

(G) Examples of enlarged cervical lymph nodes in POLBY265c/c and POLBY265c/+ mice compared with the normal nodes shown in the WT mouse. Arrows point to

the cervical lymph nodes.

The error bars represent the SEM for the results of at least three experiments, and p values were calculated using the unpaired t test.
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The CDR3 Junctions of the Heavy Chains Are Short in
POLBY265c/c Mice
To determine whether the process of V(D)J recombination was

altered in our mice, we sequenced the V-D and D-J junctions

of T and B cell receptors from the WT and POLBY265C/C mice,

and found that the B cells derived from mutant mice had shorter

CDR3 junctions in the Ig heavy chain compared with those from

the WT (Figures 2A, 2B, and S4). The majority of CDR3 junctions

in the POLBY265C/C mice were 31–35 base pairs in length,

whereas they were 41–45 base pairs in the WT mice (Figure 2A),

withmanymore unidentifiable D regions in themutant versusWT

mice (Figure 2C; Bertocci et al., 2006). The lengths of N/P

additions between the rearranged V andD segments were signif-

icantly shorter in the POLBY265C/C mice than in WT controls (p <

0.05; Figure 2D). No significant differences in length of the Ig light

chain junctions or the T cell receptors were observed (data not

shown). Thus, the slow polymerase activity of the Y265C variant

leads to fewer N/P additions between the rearranged V and D

segments of the Ig heavy chain.

CSR Is Similar in WT and POLBY265C/C Mice
Previous work suggested that Pol b functions in CSR (Wu and

Stavnezer, 2007). In that study, fetal liver cells isolated from

WT or POLBD/D mice were transplanted into irradiated hosts,

and in vitro CSR assays showed slight increases in switching

to IgG2a. As shown in Figure 3, we observed no differences in

the levels of IgG1, IgG2a, IgG2b, or IgG3 in the POLBY265C/C

versus WT mice, suggesting that CSR is not altered in the Pol

b mutant mice.

The Rate of SHM Is Significantly Higher in POLBY265C/C

Mice
SHM is a co-opted form of BER and occurs in later stages of B

cell development within the germinal center (GC) (Di Noia and

Neuberger, 2007; Maul and Gearhart, 2010; Victora and

Nussenzweig, 2012). SHM occurs primarily in the variable region

of the Ig heavy chain, which results in the production of high-

affinity antibodies (Di Noia and Neuberger, 2007; Liu and Schatz,

2009; Rajewsky et al., 1987; Weigert et al., 1970). Because

Y265C Pol b is a very slow BER polymerase, gaps in DNA that

are generated during SHM are unlikely to be filled efficiently

during SHM in the POLBY265C/C mice. To determine whether

this was the case, we characterized SHM in the JH4 intron down-

stream of VHJ558-JH4 using PCR followed by DNA sequencing.

Our analysis revealed that the POLBY265C/C mice exhibited a

significantly increased frequency of SHM compared with WT

(Figures 4A and 4B). The frequencies of transversions at GC

Figure 2. VDJ Recombination Is Aberrant in

POLBY265c/c Mice

(A) PCR-amplified products from B220+ IgM�

bone marrow and splenic cell genomic DNA

of 3- to 4-week-old POLB+/+ and POLBC/C mice

were cloned and sequenced. The lengths of

the CDR3 sequences as a function of the per-

centage of sequences with particular lengths

are plotted in the graph. Note that the majority

of CDR3 sequences from the POLBY265c/c mice

have a length of 31–35 bases, whereas the CDR3

region of WT mice is 41–45 bases in length.

At least three mice of each genotype were

characterized.

(B) The table shows the ranges of lengths of the

CDR3 regions from spleen and bone marrow

found in WT and POLBY265c/c mice.

(C) The percentage of D regions in the POLBC/C

mice that were unidentifiable was significantly

greater than that observed in WT controls. D re-

gions were identified on the basis of six contig-

uous nucleotides.

(D) The average length of N/P-nucleotide addition was reduced in POLBC/C mice. The allocation of N/P nucleotides was based on the known sequences of the

germline elements. The average length of the N/P region between the rearranged V and D junction (N1) was significantly shorter in POLBC/C mice compared with

WT controls. The N/P region between the rearranged D and J junction (N2) was not significantly different between POLB+/+ and POLBC/C mice.

The error bars represent the SEM for the results of at least three experiments, and p values were calculated using the unpaired t test.

Figure 3. CSR Is Normal in POLBY265c/c Mice

Naive splenic B cells were isolated from spleens of three to five POLBY265C/C

and WT control mice, and induced in vitro with either LPS to induce

switching to IgG1, LPS with IL-4 to induce switching to IgG3, LPS with INFg

to induce switching to IgG2a, or LPS with TGFb to induce switching to IgG2b.

No significant change in CSR in the B cells was observed between the

POLBY265C/C and WT mice.
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base pairs were most significantly increased (Figures 4A and

4C), although increases in mutations at A:T base pairs were

also elevated. The POLBY265C/C mice also displayed increased

levels of mutation in the hotspot motifs that are targeted by acti-

vation-induced cytidine deaminase (AID; Figure 4D).

Increased Numbers of GCs in POLBY265C/C Mice
The increased frequencies of SHM in POLBY265C/C mice promp-

ted us to determine whether these mice possess increased

numbers of GCs, as is often found in lupus-prone mice. The

POLBY265C/C mice exhibited increased numbers of GCs in

spleen (Figure 5A). This observation is supported by a fluores-

cence-activated cell sorting (FACS) analysis that showed

elevated numbers of GC B cells and follicular T helper cells

(TFH) in the spleens of POLBY265C/C mice compared with WT

mice (Figure 5B). However, there were significantly higher levels

of apoptosis in the spleens of the POLBY265C/C mice compared

with WT mice (Figure 5C). To determine whether cell death

was occurring in the GCs, we performed a terminal deoxynu-

cleotidyl transferase dUTP nick end labeling (TUNEL) analysis.

The POLBY265C/C mice exhibited significantly increased levels

of TUNEL-positive cells that mostly overlapped with CD4 T help-

er cells (Figures 5D and 5E).

DISCUSSION

Here, we show that mice carrying the Y265C hypomorphic allele

of POLB develop several SLE-associated pathologies, suggest-

ing that low activity of Pol b leads to SLE. Our results suggest that

this phenotype arises as a result of aberrant V(D)J recombination

and a high frequency of SHM. Our findings strongly implicate Pol

b as a critical player in both V(D)J recombination and SHM.

Figure 4. The Rate of SHM Is Increased in POLBY265c/c Mice

(A) Products were amplified using PCR and genomic DNA isolated from B220+ PNAhigh Peyer’s patches of 3- to 5-month-old POLB+/+ and POLBC/C mice. These

products were cloned and sequenced. SHM results show that the overall frequencies are increased in the POLBY265c/c mice compared with the WT.

(B) For SHM, the 344 nucleotides downstream of the JH4 gene region of rearranged VDJ segments on the heavy-chain locus of the VHJ558 gene were PCR

amplified and sequenced. The numbers of mutations versus the total length of DNA sequences and the mutation frequency were analyzed in three mutant mice

and three age-matched WT animals with the use of SHMTool, which is a webserver for comparative analysis of SHM data sets. At the center of the pie chart is

shown the numbers of clones analyzed for each genotype. Segments show the percentage of each clone that contained a defined number of mutations, and

these are indicated with different colors.

(C) All types of mutations are increased (p = 3.7 3 10�18) in the JH4 intron from the POLBY265c/c mice, but the types of mutations that are most significantly

increased are transversions at GC base pairs (p = 2.83 10�8), followed by transitions at GC (p = 7.03 10�7), transversions at AT (p = 33 10�5), and transitions at

AT base pairs (p = 0.0029). At least three mice of each genotype were used for these experiments.

(D) Amino acid motifs shown on the x axis are where many of the SHMmutations occur in the POLBY265c/c mice. Mutations arise predominantly in GYW (p = 7.43

10�5), RGYW (p = 0.0003), and DGYW (p = 7.4 3 10�5), which are the motifs in which deamination catalyzed by AID occurs.

The error bars represent the SEM for the results of at least three experiments, and p values were calculated using the unpaired t test.
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Processing by POLBY265C/C Leads to Short CDR3
Junctions During V(D)J Recombination
SLE is a classic autoimmune disease that is characterized by

the production and circulation of ANAs that participate in tissue

destruction. We have shown that POLBY265C/C mice produce

significantly higher levels of ANA than WT mice by 6 months

of age, and that the levels of ANA continue to increase over the

lifetime of the mice, leading to glomerulonephritis, dermatitis,

and cervical lymphadenopathy. Because the production of

ANA is a major causative factor of SLE, and because DNA repair

proteins are central players in development of the lymphocyte

repertoire, we investigated the potential role of Pol b Y265C in

that process, starting with VDJ recombination. We showed

that the CDR3 junctions of IgH, especially the N/P additions

between the V and D fragments, are shorter in the

POLBY265C/C mice than in the WT. A model depicting the role

of Pol b Y265C in joining the V and D fragments is shown in Fig-

ure 6. After cleavage by RAG proteins, hairpins are formed and

cut by the Artemis endonuclease. If the incision by Artemis

results in staggered ends, as shown in Figure 6, a DNA polymer-

ase fills the gap, followed by ligation. When Y265C is present,

gap filling is slow and inefficient, leading to nuclease activity

that results in a shorter CDR3 junction. We suggest that Y265C

Pol b acts in a dominant-negative manner by not permitting

access of other DNA polymerases, including Pol l and Pol m,

to the gapped DNA, eliminating functional redundancy. We point

out that short gaps are the optimum DNA substrate for Pol b

(Chagovetz et al., 1997). Previous work using mice deleted of

the POL L gene provided evidence that Pol l processes this

gap (Bertocci et al., 2006). Characterization of V(D)J recombina-

tion in the absence of Pol b was not possible because POLBD/D

mice do not survive past birth. In vitro reconstitution studies (Ma

et al., 2004) did not demonstrate a role for Pol b. However, in

these studies, Pol b was never assessed in combination with

terminal transferase, Pol l, and/or Pol m, so its participation

may not have been detected.

The Presence of POLBY265C/C Does Not Alter CSR
CSR occurs by a process of intrachromosomal deletion that

is initiated by the formation of double-strand breaks (DSBs).

DSB formation is initiated when AID deaminates cytosine on

both strands of the DNA in the switch regions. The resulting uracil

residues are recognized and excised by uracil DNA glycosylase

(UNG), followed by apurinic/apyrimidinic endonuclease 1 (APE1)

incision (for a review, see Stavnezer et al., 2008). If the uracils are

clustered and on opposite strands of the DNA, incision by APE1

will result in DSBs. Alternatively, the U:G mispair will be recog-

nized by mismatch repair proteins that recruit exonuclease I

(Exo I) to the DNA. Exo 1 excision opposite a nick that results

from incision by APE1 can also result in a DSB. Therefore, gap

filling by Pol b can prevent the formation of DSBs during CSR,

as suggested previously when a slight increase in switching to

Figure 5. POLBY265c/c Mice Have Increased

Numbers of GCs Compared with WT Mice

(A) Spleens of three or four 5-month-old mice were

frozen with OCT compound, prepared as a frozen

section, and stained overnight at 4�C for confocal

analysis. PNA-positive GCswere counted per field

(253). The graph compares the numbers of GCs

in POLBY265c/c and WT mice, and the image

depicts an example of multiple GCs in the spleen

of a POLBY265c/c mouse.

(B) Examples of FACS-sorted splenic cells. For

flow cytometry, splenic cells from three to five

5-month-old mice were processed and stained

with anti-mouse antibodies (eBioscience) as

described in the Supplemental Experimental

Procedures. Top: GC B cells from a 5-month-old

mouse were CD19+IgD-lo gated, followed by

gating for CD95 Gl7 double-positive cells (WT

(+/+) is on the left and c/c is on the right). Bottom:

TFH cells were CD4+ CD44-lo gated, followed by

gating for CXCR5 PD-1 double-positive cells.

(C) Graph showing the percentage of TUNEL-

positive cells from POLBY265c/c and WT spleens,

which is representative of at least three mice of

each genotype.

(D) Spleen frozen sections were stained overnight

at 4�C for confocal analysis. The image represents

an example of GCs in the spleens of POLBY265c/c

and WT mice. PNA-positive GCs are shown in

green (fluorescein isothiocyanate), CD4-positive

T helper cells are shown in blue (aCD4-Cy5), and

TUNEL-positive cells are shown in red.

(E) Graph showing the percentage of TUNEL-

positive cells in the GCs of POLBY265c/c and WT

mice, which is representative of eight to ten GCs of

two to three mice of each genotype.
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IgG2a was observed in POLBD/D B cells (Wu and Stavnezer,

2007). In contrast, we observed no significant increases in

CSR in the B cells from POLBY265C/C mice that were induced

to switch in vitro. One explanation for our results is that the

presence of the Y265C Pol b polymerase prevents significant

DSB formation through the APE1 pathway because it has

the ability to bind to and slowly fill the DNA gap. This suggests

that mismatch repair could constitute a major DSB-formation

pathway during CSR. The binding of Y265C Pol b to the 30OH

of the gap could also prevent further processing by nucleases.

Lack of Gap Filling by Y265C Pol b Results in Increased
SHM
We showed that the frequency of SHM in the POLBY265C/C mice

was significantly increased over that of WT mice, and we

observed increases predominantly in transversions at AID hot-

spots. These findings are consistent with the idea that Pol b plays

a critical role in maintaining a balance between error-free and er-

ror-prone repair during SHM. Amodel for the role of Pol b Y265C

is presented in Figure 7. After AID deaminates cytosine to uracil,

there are three pathway choices. If replication occurs, transitions

are observed at AID deamination hotspots. If the U:G mismatch

is recognized by the mismatch repair pathway, mutations at A:T

base pairs are observed. Alternatively, UNG removes uracil.

Bypass of the resulting AP site by a translesion polymerase leads

to transversions at the AID hotspot. However, should APE1

incise the backbone, a single nucleotide gap could be filled in

by a translesion polymerase, resulting in transversions, or the

gap could be filled in by Pol b in the canonical BER pathway,

resulting in error-free repair. We suggest that gap filling is slow

in the presence of Y265C Pol b, which would eventually lead to

gap filling by TLS polymerases and the transversions we observe

during SHM. Alternatively, Y265C could fill the gap in an error-

prone manner. We do not favor this explanation, however,

because we do not observe increased levels of transversions

at G:C base pairs in in vivo or in vitro studies with Y265C Pol b

(Clairmont et al., 1999; Opresko et al., 1998; Washington et al.,

1997). Another possibility is that many gaps remain unfilled,

eventually resulting in cell death, consistent with our observation

of increased TUNEL foci in the spleens of the POLBY265C/C mice.

We note that in addition to increased levels of mutation at G:C

base pairs, we also observe increases of A:T mutations. This

could occur if the unfilled gap is bound by a nuclease, which

would enlarge the gap. Filling of the larger gap by a translesion

polymerase would lead to mutations at A:T base pairs.

Our findings are significant because they show that a balance

between error-prone and error-free repair during SHM is critical,

and that Pol b plays an important role in maintaining this bal-

ance. Our results suggest that too much mutagenesis during

SHM has the potential to lead to autoimmune disease. In sup-

port of this suggestion, reversion of the mutations produced

during SHM results in antibodies that no longer have antinuclear

activity, suggesting that SHM itself is one mechanism for

creating autoreactive antibodies (Guo et al., 2010; Wellmann

et al., 2005).

Selection in the GC?
Not only do the POLBY265C/C mice have increased numbers of

GCs, but the GCs exhibit significantly increased TUNEL staining

compared with WT mice. Gaps that arise during SHM or during

the repair of oxidative damage that occurs during the prolifera-

tion of B cells in the GC may not be filled in efficiently by

Y265C Pol b, leading to cell death. The presence of apoptotic

or dying cells in the GCs could result in the release of antigen,

resulting in positive selection of GC B cells that produce auto-

antibodies. This suggestion is supported by studies showing

that mice with defective clearance of apoptotic cells develop

lupus-like disease (Bickerstaff et al., 1999; Hanayama et al.,

2004; Napirei et al., 2000). We suggest that in POLBY265C/C

mice, the large amount of apoptotic cells in GCs could over-

whelm the apoptotic clearance machinery, thereby escaping

clearance and being used for positive selection of autoreactive

B cells. It is also possible that the increased SHM generates

autoreactivity by targeting IgG-expressing memory B cells reen-

tering the GC as a result of chronic exposure to self-antigen

(Köhler et al., 2008; Meffre and Wardemann, 2008). Finally, it is

possible that extrafollicular B cells could play a role in the gener-

ation of autoantibodies, as described for the MRL/lpr mouse

model of SLE (Teichmann et al., 2010).

Aberrant DNA Repair and Autoimmunity
Previous work has shown that mutations of the TREX1 DNA

repair gene in humans are also associated with SLE (Stetson

et al., 2008), but there is no evidence that these proteins act

during the immunological processes of V(D)J, CSR, and SHM.

Our findings demonstrate that a balance of hypermutation and

Figure 6. Model of Aberrant V(D)J and SHM in POLBY265c/c Mice

Y265C Pol b promotes deletion during joining of the V and D fragments. This

cartoon depicts joining of the V to the D fragment. After the Rag proteins cleave

the DNA, hairpins form. Artemis nicks the hairpins, which sometimes results in

a substrate with DNA gaps. WT Pol b or other X family polymerases fill the

gaps. However, in the presence of the slow Y265C Pol b polymerase, gaps are

filled inefficiently, which can result in nuclease activity leading to deletions and

shortening of the CDR3 junction.
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error-free BER during SHM is critical for the prevention of auto-

immune disease. Our results do not rule out the possibility of

other mechanisms that are not B cell intrinsic. For example,

many cell types utilize Pol bY265C during BER, and the accumu-

lation of BER intermediates in these cells could lead to alter-

ations in a variety of tissues, such as the gut epithelial barrier

(including stem cells). Any resulting mucosal alterations could

drive expansion of autoreactive clones. The results of our study

suggest that mutations in DNA repair genes associated with

immunological processes could lead to the development of

autoimmune disease, including SLE.

EXPERIMENTAL PROCEDURES

Strain and Genotyping of Mice

Hybrid (129/Sv and C57BL/6) mice of both sexes were used for this study. All

work with mice was carried out with oversight by the Yale University Institu-

tional Animal Care and Use Committee.

Skin Histology

Skin tissues were fixed in histological 10% formalin solution fixative (Sigma-

Aldrich) and embedded in paraffin. Skin sections were analyzed by a

dermatopathologist.

Detection and Scoring of ANAs

ANAs were tested by immunofluorescence using human epithelial (Hep-2)

cells on 12-well slides (Diasorin).

Histology and Scoring of Kidney Lesions

Tissues frommice were isolated and fixed in histological 10% formalin solution

fixative (Sigma-Aldrich), and embedded in paraffin. Hematoxylin and eosin-

stained tissueswere evaluated as described in the Supplemental Experimental

Procedures.

Immunohistochemistry

Details regarding immunohistochemistry are described in Supplemental

Experimental Procedures.

Analysis of SHM

Genomic DNA was extracted from B220+PNAhigh cells obtained from Peyer’s

patches of two nonimmunized mice that were 3.5–5 months of age, and

analyzed as described previously (Jolly et al., 1997; McDonald et al., 2003;

Maccarthy et al., 2009).

Preparation of Genomic DNA, PCR Amplification, and Analysis of

VDJ Recombination Sequences

Genomic DNA was prepared from B220+ IgM� cells from spleen and bone

marrow of three to five 3-week-old mice and analyzed as described in Supple-

mental Experimental Procedures (Gilfillan et al., 1993; Komori et al., 1993).

ELISA

ELISA 96-well plates were coated overnight at 4�C with the appropriate anti-

sera and analyzed as described in Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2013.12.017.
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