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Abstract

Peroxisome proliferator-activated receptor gamma (PPARc) is a transcription factor that regulates lipid and glucose
metabolism. Although studies of PPARc ligands have demonstrated its regulatory functions in inflammation and adaptive
immunity, its intrinsic role in T cells and autoimmunity has yet to be fully elucidated. Here we used CD4-PPARcKO mice to
investigate PPARc-deficient T cells, which were hyper-reactive to produce higher levels of cytokines and exhibited greater
proliferation than wild type T cells with increased ERK and AKT phosphorylation. Diminished expression of IkBa, Sirt1, and
Foxo1, which are inhibitors of NF-kB, was observed in PPARc-deficient T cells that were prone to produce all the signature
cytokines under Th1, Th2, Th17, and Th9 skewing condition. Interestingly, 1-year-old CD4-PPARcKO mice spontaneously
developed moderate autoimmune phenotype by increased activated T cells, follicular helper T cells (TFH cells) and germinal
center B cells with glomerular inflammation and enhanced autoantibody production. Sheep red blood cell immunization
more induced TFH cells and germinal centers in CD4-PPARcKO mice and the T cells showed increased of Bcl-6 and IL-21
expression suggesting its regulatory role in germinal center reaction. Collectively, these results suggest that PPARc has a
regulatory role for TFH cells and germinal center reaction to prevent autoimmunity.

Citation: Park H-J, Kim D-H, Choi J-Y, Kim W-J, Kim JY, et al. (2014) PPARc Negatively Regulates T Cell Activation to Prevent Follicular Helper T Cells and Germinal
Center Formation. PLoS ONE 9(6): e99127. doi:10.1371/journal.pone.0099127

Editor: Yeonseok Chung, The University of Texas Medical School at Houston, United States of America

Received February 13, 2014; Accepted May 10, 2014; Published June 12, 2014

Copyright: � 2014 Park et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Basic Science Research Program through National Research Foundation of Korea grants (NRF-2011-0012859 and NRF-
2013R1A1A2A10060048) to J.M. Choi. It also was supported by NIH grant HL088258 to A.L.M. Bothwell and AR40072 to J. Craft. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jeminchoi@hanyang.ac.kr (JMC); alfred.bothwell@yale.edu (AB)

" AB and JMC are joint senior authors on this work.

Introduction

Nuclear receptors constitute a superfamily of ligand-dependent

transcription factors that regulate diverse aspects of metabolism

and homeostasis. This family is further subdivided into three

subclasses based on their DNA-binding and ligand-binding

properties, including classical steroid hormone receptors, adopted

orphan receptors, and orphan receptors [1–4]. Peroxisome

Proliferator-activated Receptors (PPAR) are emerging adopted

orphan nuclear receptors that regulate lipid and glucose metab-

olism, as well as cell growth, differentiation, apoptosis, and

immunity, in a wide variety of cells. The PPAR subfamily consists

of three subtypes including PPARa, PPARb/d, and PPARc. Each

member binds multiple ligands, regulates target genes, and plays

different biological roles. The ligands for PPARc have been used

for therapeutic applications to treat atherosclerosis, obesity-

induced insulin resistance, and inflammatory bowel disease [5–

7]. For example, synthetic PPARc agonists called thiazolidine-

diones (TZD) improved insulin sensitivity in metabolic syndrome

[5,8]. The PPARc agonist 15-deoxy-g12,14-prostaglandin J2 (15-

PGJ2) has been shown to downregulate T cell proliferation and IL-

2 production [9]. Another PPARc agonist, ciglitazone, has been

shown to increase regulatory T (Treg) cell differentiation from

naı̈ve T cells [10], while pioglitazone has been demonstrated to

ameliorate EAE severity through selective inhibition of Th17

differentiation [11] and inhibit human alloresponses in a

humanized model of graft arteriosclerosis [12]. More recently,

PPARc has been shown to regulate Treg accumulation in visceral

adipose tissue, and pioglitazone treatment was required for

complete recovery from insulin sensitivity in obese mice [13].

Autoimmune disease occurs when the immune system recog-

nizes self-molecules and responds by inducing autoantibody

production, germinal center (GC) formation, and chronic inflam-

mation [14–16]. Follicular helper T (TFH) cells are involved in the

antibody response by providing selection signals to GC B cells and

promoting plasma and memory cell differentiation [17]. Bcl-6

mediates the development of TFH cells, which are characterized by

expression of the chemokine receptor CXCR5, ICOS, and PD-1

[18–21]. Recent studies have suggested TFH cells as a potential

therapeutic target for treating autoimmune diseases [15,22,23].

Although previous studies focused on PPARc agonists revealed

its regulatory function in T cells, the mechanism and intrinsic roles
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of this nuclear receptor in TFH cells and autoimmunity is largely

uncharacterized. Therefore, we investigated the role of PPARc in

T cells using CD4 T cell-specific PPARc knockout mice.

Interestingly, we found that PPARc-deficient T cells exhibit

enhanced proliferation following T cell receptor (TCR) stimula-

tion and increased cytokine production under Th1, Th2, Th17,

and Th9 differentiation conditions. Interestingly moderate auto-

immune phenotypes developed spontaneously in 1-year-old CD4-

PPARcKO mice with increased activated T cells, TFH cells, and

GCs. Furthermore, PPARc regulated T cell activation by

modulating the stability of IkBa, Foxo1, and Sirt1, which are

negative regulators of NF-kB and TFH cells. These results suggest

the important regulatory roles of PPARc in TFH cells and GC

formation in the prevention of autoimmunity.

Results

PPARc is highly expressed in CD4 T cells upon TCR
stimulation

To determine its expression in various lymphocyte subsets, the

level of PPARc mRNA was examined in FACS-purified CD4+ T,

CD8+ T, and CD19+ B cells by quantitative real-time PCR

analysis. PPARc expression was significantly higher in CD4+ T

cells compared to CD8+ T cells and CD19+ B cells (Figure 1A),

suggesting that this nuclear receptor may play important roles in

CD4+ T cells. In addition, PPARc mRNA expression was

significantly increased following TCR stimulation (Figure 1B),

further implying its regulatory role in controlling activated CD4+

T cell functions.

Next, we generated mice in which PPARc was specifically

deleted in CD4+ T cells by breeding PPARcfl/fl with CD4-Cre

transgenic mice (Figure 1C&D). PPARc-deficiency did not affect

the frequency of CD4+, CD8+, and Foxp3+ natural regulatory T

cell (nTreg) in the thymus of 6- to 8-week-old mice (Figure S1A-D),

the proportion of lymphocyte population including B cells, NK

cells, and naı̈ve or memory T cells in the spleen (Figure S1E-L).

Altogether these data suggest that PPARc deletion in CD4+ T cells

does not affect thymic and splenic cell populations that PPARc is

dispensable for T cell development.

PPARc-deficient T cells are hyper-reactive to TCR
stimulation

Although PPARc is dispensable for lymphocyte development,

increased PPARc expression following TCR stimulation led us to

examine its function during T cell activation. To address this, we

examined cytokine production from purified CD4+CD252 T cells

stimulated with anti-CD3 and anti-CD28 antibodies. Various

cytokines including IFN-c, IL-4, IL-17, and IL-2 were increased in

PPARc-deficient T cells compared to littermate control T cells,

(Figure 2A-D) suggesting that these cells are hyper-reactive to

TCR stimulation. In addition, PPARc-deficient T cells prolifer-

ated significantly more than control CD4+ T cells (Figure 2E),

suggesting that PPARc plays a role as a negative regulator of T cell

activation and proliferation.

Next, we investigated cytokine production after CD4+CD252 T

cells were differentiated into various helper T cell subsets including

Th1, Th2, Th17, and Th9. Interestingly, production of all the

signature cytokines secreted by each helper T cell subset, namely

IFN-c, IL-13, IL-17, and IL-9, respectively, were significantly

increased in PPARc-deficient T cells (Figure 2F) without affecting

differentiation efficiency (Figure 2G). These results suggest that

PPARc has a negative regulatory role for T cell activation and

proliferation.

PPARc maintains the stability of IkBa, Foxo1, and Sirt1 to
regulate TCR signaling

A previous study reported that PPARc inhibits NF-kB in

macrophages [24]. However, the molecular basis of how PPARc
regulates T cell activation has not been fully elucidated. To

determine the mechanism, we assessed ERK and AKT phos-

phorylation in splenic naı̈ve CD4+ T cells

(CD4+CD252CD62Lhigh) stimulated with anti-CD3/CD28-coat-

ed beads. Following TCR stimulation for 20 min, the PPARc-

deficient CD4+ T cells showed increased ERK and AKT

phosphorylation compared to littermate control T cells

(Figure 3A), suggesting that PPARc inhibits events of TCR

downstream signaling pathway.

We performed microarray analysis to identify possible target

genes (e.g., Foxo1) regulated by PPARc (data not shown).

Interestingly, TCR stimulation of PPARc-deficient CD4+ T cells

resulted in reduced expression of IkBa, Foxo1, and Sirt1

(Figure 3B), which have been recently identified as negative

regulators of T cell activation [25,26]. In addition, phosphorylated

p65 level was increased in PPARc-deficient CD4+ T cells

suggesting that PPARc contributes to the stability of IkBa, Foxo1,

and Sirt1 to regulate NF-kB in activated T cells.

PPARc deficiency in T cells spontaneously enhances
activated T cells in vivo

The TCR-stimulated hyper-reactivity observed in PPARc-

deficient T cells from 6- to 8-week-old CD4-PPARcKO mice

prompted us to investigate spontaneous changes in the T cell

phenotype of 1-year-old CD4-PPARcKO mice. CD62L is a cell

adhesion molecule, which is highly expressed on naı̈ve T

lymphocytes. The frequency of CD4+CD62Llow cells was

increased significantly in the mesenteric lymph nodes (MLN) of

CD4-PPARcKO mice compared to age-matched control mice

(Figure 4A&B). The proportion of CD4+CD62Llow cells of CD4-

PPARcKO mice was augmented compared to littermate control.

These results are supported by an increase of the early activation

marker CD69 expressing CD4+ T cells (Figure 4C&D). Addition-

ally, we investigated the expression of IL-7Ra, which has been

shown to be decreased in activated T cells [27]. PPARc deficiency

in T cells from 1-year-old CD4-PPARcKO mice showed signifi-

cantly reduced proportion of CD4+IL-7Rahigh cells in the MLN

(Figure 4E&F). Collectively, these data demonstrate that PPARc
deficiency in T cells contributes to their hyper-reactivity, which

induces spontaneous T cell activation in vivo.

PPARc-deficient T cells in mice develop a spontaneous
autoimmune phenotype

Because the number of activated T cells was increased in 1-year-

old CD4-PPARcKO mice, we next investigated autoimmune

phenotype in these animals. Flow cytometric analysis of spleno-

cytes from 6-month-old CD4-PPARcKO mice demonstrated that

the proportion of CD19+ B cells was increased while CD4+ T cells

were slightly decreased compared to littermate control mice

(Figure 5A). Based on this observation, we hypothesized that the

hyper-reactive PPARc-deficient T cells promote greater B cell

activation, thereby leading to autoantibody production. Our data

reveal that the proportion of CD19+ and CD138+ plasma cells was

increased in the spleen of CD4-PPARcKO mice (Figure 5B&C).

Moreover, the level of anti-nuclear antibodies (ANA) in serum

from 6-month-old mice (Figure 5D) and the level of anti-double-

stranded DNA (dsDNA) antibodies in serum from 1-year-old mice

(Figure 5E) were higher than age-matched control mice.

Role of PPARc in T Cells and Autoimmunity
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To further examine the autoimmune phenotype, inflammation

in the kidneys was examined and scored by histologic analysis of

hematoxylin and eosin-stained sections (Figure 5F&G). Kidney

from 1-year-old CD4-PPARcKO mice exhibited an expanded

double layer around the glomerulus with thicker tubules compared

to age-matched control mice. These results suggest that PPARc
deficiency in T cells leads to autoantibody production and

spontaneous autoimmune disease in aged mice.

PPARc-deficient T cells contribute to TFH cells and GC
development

TFH cells are crucial for providing help to B cells within the

germinal center, where somatic hyper-mutation, class-switch

recombination, and differentiation of memory B cells and long-

lived plasma cells occur [28–31]. Due to increased B cell numbers,

including plasma cells, in 6-month-old CD4-PPARcKO mice, we

hypothesized that PPARc deficiency in T cells lead to increased

TFH cells in vivo. Previous report has shown that PSGL-1 low

population enriched more TFH cells than PSGL-1 high [31] so

that PSGL-1low gating strategy was applied to analyze TFH cells.

Flow cytometric analysis revealed an increased proportion of

CXCR5+PD-1+ TFH cells in 1-year-old CD4-PPARcKO mice

(Figure 6A - C). The number of GCs found in the spleen of these

animals was also increased compared to age-matched control mice

(Figure 6D&E). In addition, proportion of germinal center B cells

(CD95+GL7+ from B220+ cells) were increased in the spleen with

elevated amount of IgG1 and reduced IgM from the sera in 1-

year-old CD4-PPARcKO mice (Figure 6F&G). These results

suggest that the spontaneous autoimmune phenotypes observed

were related to increased TFH cells and enhanced GC reaction.

To further confirm that PPARc regulates induction of TFH cells

and GC reaction, 8-week-old mice were immunized with sheep

red blood cells (SRBC) and the TFH cells and GC number were

analyzed on day 7 (Figure 7A). Following SRBC immunization,

the proportion of CXCR5+PD-1+ TFH cells (Figure 7B&C) and

total number of spleen cells were significantly increased (Figure 7D)

which is correlated to enhanced GC number (Figure 7E&F) in

CD4-PPARcKO mice than in control animals. Next, we examined

IL-21 and Bcl-6 expression levels, which are important molecules

for induction of TFH cells and GC reaction. CD4-PPARcKO T

Figure 1. PPARc expression in T cells and generation of CD4-PPARcKO mice. (A) Expression of PPARc in FACS-purified CD4+, CD8+, and
CD19+ cells from female wild type C57BL/6J mice was analyzed by quantitative real-time PCR and normalized to b-actin. Values represent the mean 6
SEM, n = 4. **P,0.01 when CD19 and CD8 were compared. (B) MACS-purified naı̈ve (CD4+CD252CD62LhighCD44low) T cells from female wild type
C57BL/6J mice were stimulated with plate-bound anti-CD3 and soluble anti-CD28 antibodies for the indicated times. PPARc expression was
determined by quantitative real-time PCR. Relative PPARc expression level was calculated as the fold-change relative to 0 h. Values represent the
mean 6 SEM, n = 4. *P,0.05, **P,0.01 when 0 h, 24 h, and 48 h were compared. (C) FACS-sorted cells from female littermate control (Cre-) and CD4-
PPARcKO (Cre+) mice were harvested and PPARc expression was determined by quantitative real-time PCR. Values represent the mean 6 SEM, n = 3.
*P,0.05. (D) Cre-mediated PPARc deletion in cell lysate prepared from CD4+ T cells was confirmed by western blot analysis.
doi:10.1371/journal.pone.0099127.g001

Role of PPARc in T Cells and Autoimmunity
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cells expressed significantly higher level of IL-21 and Bcl-6

(Figure 7G&H) while they have reduced level of Blimp-1

(Figure 7I) in Th2 or Th17 cells suggesting PPARc negatively

regulates Bcl-6 and IL-21 to inhibit TFH cell differentiation and

GC reaction. These results suggest that PPARc inhibits formation

of TFH cells and GC reaction via regulation of Bcl-6 and IL-21 to

prevent autoimmune disease.

Discussion

Based on its ligand-dependent functions, PPARc has been

demonstrated to be an important negative regulator in T cells,

Figure 2. PPARc deficiency induces hyper-reactivity in T cells. CD4+CD252 T cells from the spleens of 6- to 8-week-old female littermate
control (Cre2) and CD4-PPARcKO (Cre+) mice were stimulated for 24 h with plate-bound anti-CD3 and soluble anti-CD28 antibodies. (A) IFN-c, (B) IL-4,
(C) IL-17, and (D) IL-2 levels in culture supernatants were measured by ELISA. (E) Proliferation of 3-day-anti-CD3/CD28 stimulated cells was measured
by H3-thymidine incorporation. Values represent the mean 6 SEM of counts per minute (CPM) in triplicate wells. CD4+252 T cells were differentiated
under Th1, Th2, Th17, and Th9 differentiation conditions. (F) After 5 days, the culture supernatants were collected and cytokine levels (IFN-c, IL-13, IL-
17, and IL-9) were measured by ELISA. Values represent the mean 6 SEM, n = 4–6. *P,0.05. (G) Flow cytometric analysis for lineage-specific cytokines
(IFN-c, IL-4, IL-17, and IL-9) of Th1, Th2, Th17 and Th9 were determined by intracellular staining. Representative data were shown from five
independent experiments.
doi:10.1371/journal.pone.0099127.g002

Role of PPARc in T Cells and Autoimmunity
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macrophages, and dendritic cells [9,24]. Previous studies have also

suggested that PPARc is an important therapeutic target for

treating autoimmune disease [5–7]. Here, for the first time, we

characterized CD4-PPARcKO mice to investigate the intrinsic role

of PPARc in T cells and autoimmunity related to TFH cells and

GC reaction.

We found that, among lymphocytes, PPARc was expressed

predominantly in CD4+ T cells. The expression level of PPARc,

however, increased following TCR stimulation. This is consistent

with a previous study that reported an increase in PPARc
expression following anti-CD3 antibody stimulation and PPARc
ligand (15d-PGJ2 and ciglitazone) treatment, which it also

contributed to the inhibition of T cell proliferation and IL-2

production [9]. Taken together, these results imply that PPARc
expression and TCR stimulation function together to regulate T

cell response.

One recent study reported that pioglitazone, a PPARc ligand,

inhibited PPARc-meditated differentiation of Th17, but not Th1,

cells in an autoimmune EAE model, which suggested the

possibility of selective regulation of Th17 cells by PPARc [11].

However, we found significantly increase of all the cytokines,

including IFN-c, IL-13, IL-17, and IL-9 in each T cell

differentiation skewing media without affecting differentiation

efficiency possibly due to hyper-proliferative property of PPARc-

deficient T cells. This increased T cell sensitivity seems to be

correlated with higher AKT and ERK phosphorylation as well as

rapid IkBa degradation following TCR stimulation.

Previously PPARc was studied to inhibit the NF-kB and AP-1

transcription factors in macrophages and T cells [24,25,32] and

PPARc agonists were shown to inhibit inflammatory cytokine

production in monocytes [33], as well as proliferation or IL-2

production in T cells following TCR stimulation [9]. Our results

demonstrated a loss of Sirt1 and Foxo1, two negative regulators of

T cell activation, in PPARc-deficient T cells following TCR

stimulation. Sirt1, a histone deacetylase, was shown to inhibit AP-1

and is required for T cell tolerance [26]. Foxo1 is also required for

inhibiting T cell activation and acts as a T cell-intrinsic regulator

of tolerance [34]. The levels of Sirt1 and Foxo1 expression were

significantly down-regulated in PPARc-deficient T cells following

TCR stimulation, suggesting that PPARc controls the stability or

expression of Sirt1 and Foxo1 to inhibit NF-kB or AP-1 activation.

In addition, Foxo1 is a positive transcriptional regulator of Sirt1

and is deacetylated by Sirt1 [35]. Analysis of ChIP-seq data from

BIOBASE (http://www.biobase-international.com) identified var-

ious PPARc response elements within the Foxo1 promoter region

based on the study of genome wide analysis of PPARc binding

region in 3T3-L1 cells [36]. Foxo1 signaling through NF-kB has

been shown to mediate proinflammatory cytokine production by

interacting together in a synergistic manner in macrophages [37].

Another study also revealed the role of Foxo1 in T cell tolerance

by demonstrating that T cell-specific deletion of Foxo1 caused

hyper-reactivity of T cells [34]. In addition, Foxo1-deleted CD4 T

cells also spontaneously increased TFH cells and GC formation as

well as autoantibody production in 8-week-old mice [34]. ChIP

analysis examining the interaction of PPARc on Foxo1 promoter

region will be performed in a future study to elucidate more detail

mechanism.

Previous studies demonstrated treatment of T cells with a

PPARc agonist increases Foxp3 expression and iTreg generation

[10,38]. However, our results demonstrated that PPARc is not

required for Treg generation suggesting PPARc agonists possibly

increase Foxp3 expression PPARc independently. One recent

study reported that PPARc was dispensable for Foxp3 expression

in Treg cells yet critical for inhibiting colitis [39] while PPARc was

recently shown to influence the migration of Treg cells to visceral

adipose tissues by regulating chemokine receptor expression

without affecting Treg differentiation [13]. Collectively, these

results indicate that PPARc is required for the in vivo suppressive

function related to the migration of Treg cells into inflammatory

regions, but not Foxp3 expression itself.

This study is the first to characterize CD4-PPARcKO mice to

demonstrate spontaneous autoimmune phenotypes along with

TFH cells and GC formation. TFH cells have recently been

emerging as a T helper subset expressing Bcl-6 and IL-21 that

interacts with B cells during GC formation. CD28- or ICOS-

deficient mice exhibit defective GC formation, affinity maturation,

and TFH cell development [21,40–43]. CD28 or ICOS costimu-

latory signals and TCR signals are essential for the induction of

TFH cells [40,41]. Reports have also shown that stronger binding

to major histocompatibility complex (MHC) class II and TCR is

important for TFH cell development [44]. Therefore, increased

AKT phosphorylation and reduced expression of negative

regulators to NF-kB in PPARc-deficient T cells following TCR

stimulation could contribute to increased TFH cell generation in

vivo. We also demonstrate an increased proportion of TFH cells and

number of GCs following SRBC immunization in CD4-PPARcKO

mice. In addition, PPARc deficient Th2 and Th17 cells produced

higher IL-21 and Bcl-6 suggesting more TFH cells possibly are

generated and contributed GC reaction during antigen stimulation

Figure 3. PPARc deficiency in T cells reduces the expression of
molecules that inhibit NF-kB. MACS-purified CD4+CD252CD62Lhigh

naive T cells from the spleens of 6- to 8-week-old female littermate
control (Cre2) and CD4-PPARcKO (Cre+) mice were stimulated with anti-
CD3 and anti-CD28 Dynabeads for the indicated times. (A) Levels of ERK
and AKT phosphorylation and (B) Levels of p65 phosphorylation, IkBa,
Foxo1, and Sirt1 were assessed by western blot analysis. The arbitrary
unit represents band intensity normalized to b-actin and the relative
value to WT 0 min is indicated. Representative data were shown from at
least two independent experiments.
doi:10.1371/journal.pone.0099127.g003
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in vivo. One previous study suggested that PPARc sustains Foxo1

expression [45] and another study demonstrated that mice lacking

Foxo1 in T cells exhibited a large population of TFH cells and a

decreased number of Treg cells [25], suggesting a molecular

mechanism for increase of TFH cell differentiation may involving

relationship of PPARc and Foxo1.

In conclusion, we have revealed the importance of PPARc in

regulating T cell activation related to TFH cells and autoimmunity.

Modulating PPARc to dampen abnormal T cell activation and

TFH cell mediated GC reaction can be exploited for treating

autoimmune diseases.

Materials and Methods

Mice
B6.129-Ppargtm2Rev/J (PPARcfl/fl) mice were obtained from the

Jackson Laboratory (Bar Harbor, ME). To generate CD4-specific

PPARc knockout mice, PPARcfl/fl mice were crossed with CD4-

Cre+/2 transgenic mice. All mice were maintained at the Yale

University and Hanyang University mouse facilities under

pathogen-free conditions.

Figure 4. Increase of CD4+CD62Llow, CD4+CD69+ and CD4+IL-7Rahigh cells in 1-year-old CD4-PPARcKO mice. Lymphocytes from spleen
(SPL) and mesenteric lymph nodes (MLN) were isolated from 1-year-old control (Cre2) and CD4-PPARcKO (Cre+) mice and then stained with anti-CD4,
anti-CD62L, anti-CD69 and anti-IL-7Ra antibodies for flow cytometric analysis. (A, B) CD4+CD62Llow cells, (C, D) CD4+CD69+ cells, and (E, F) CD4+IL-
7Rahigh cells were analyzed. Values represent the mean 6 SEM, n = 5-6. *P,0.05.
doi:10.1371/journal.pone.0099127.g004

Figure 5. PPARc deficiency in T cells results in spontaneous autoimmune phenotypes. (A) Percentages of CD4, CD8, CD19, and NK in the
spleen of 6-month-old control (Cre2) and CD4-PPARcKO (Cre+) mice. Values represent the mean 6 SEM, n = 10. *P,0.05. (B, C) Comparison of the
frequency of CD19+CD138+ plasma cells in female control (Cre2) and CD4-PPARcKO (Cre+) splenocytes. Values represent the mean 6 SEM, n = 6. *P,
0.05. (D) The level of anti-nuclear antibody in the serum of 6-month-old mice was examined by immunofluorescence of pre-fixed NIH3T3 cells stained
with diluted (1:100) sera followed by Alexa Fluor 488-conjugated anti-mouse Ig antibody. (E) Quantitation of anti-dsDNA antibody in serum of 1-year-
old mice by ELISA, n = 8. (F) Hematoxylin and eosin staining of kidney from 1-year-old mice. (G) The severity of inflammation in 1-year-old mice,
n = 16–19. *P,0.05; ** P,0.01; *** P,0.001.
doi:10.1371/journal.pone.0099127.g005
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Figure 6. PPARc deficiency in T cells spontaneously increases follicular helper T cell and germinal center formation. (A) Representative flow
cytometric gating strategy for the identification of follicular helper T cells, which were identified as CD4+TCRb+CD62LlowCD44highPSGL-1lowCXCR5+PD-1+

cells in the spleen of 1-year-old mice. (B, C) Flow cytometric analysis of TFH cells from 1-year-old mice. Values represent the mean 6 SEM, n = 10. *P,0.05.
(D) Germinal centers of frozen 7-mm sections from spleen of 1-year-old mice were visualized by confocal microscopy. Slides were stained for PNA (green),
IgD (red), and CD4 (blue) to detect germinal centers, B cells, and T cells, respectively. (E) The number of PNA+ germinal centers per spleen section was
quantitated, n = 5. (F) The frequency of B220+GL7+CD95+ germinal center B cells from splenocytes and (G) amount of IgM and IgG1 from the sera of 1-
year-old control (Cre2) and CD4-PPARcKO (Cre+) mice was analyzed. Values represent the mean 6 SEM, n = 8–11. *P,0.05.
doi:10.1371/journal.pone.0099127.g006
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Ethics statement
All animal protocols used in this study were approved by the

Yale Institutional Animal Care and Use Committee and Hanyang

Animal Care and Use Committee.

Western blot analysis
CD4+ T cells were enriched from isolated splenocytes using

antibody-coated magnetic beads. The negatively selected CD4+ T

cells were labeled with CD62L MACS bead (Miltenyi Biotec,

Bergisch Gladbach, Germany) to purify CD4+CD62L+ naı̈ve T

cells. The purity of naı̈ve T cells was 95,96% (data not shown).

The isolated naı̈ve T cells were stimulated with anti-CD3 and anti-

CD28 antibody coated Dynabeads (Life Technologies, Carlsbad,

CA) at 37uC for 0, 5, 10, and 20 min. The cells were then lysed

with RIPA buffer (Cell Signaling Technology, Danvers, MA) on

ice for 20 min and the protein content was determined using the

Pierce BCA protein assay kit (Thermo Fisher Scientific, Waltham,

MA). The proteins were resolved on 9% SDS polyacrylamide gels

and transferred onto PVDF membrane (Millipore, Temecula,

CA). After blocking with 5% skim milk, the membrane was

incubated with specific antibodies against P-ERK, P-AKT, P-P65,

IkBa, Foxo1, Sirt1 and b-actin (Cell Signaling Technology)

overnight at 4uC. HRP-conjugated secondary antibody followed

by incubation with Supersignal West Femto ECL solution

(Thermo Fisher scientific) were used to detect primary antibody

binding.

Flow cytometry
Splenocytes and mesenteric lymph node cells were isolated and

then stained with anti-mouse CD4-APC, CD8-PerCP-Cy5.5,

CD19-PE, CD44-PE, CD62L-FITC, CD69-FITC, IL-7Ra-PE,

CD138-APC, PSGL-1-APC, CXCR5-PE, PD-1-FITC, GL-7-

FITC, CD95-PE-Cy7, B220-Alexa647 and NK1.1-FITC

(eBioscience, San Diego, CA) antibodies for 15 min at 4uC. To

assess intracellular cytokine levels, cells were differentiated for 5

days and then re-stimulated with Cell Stimulation Cocktail plus

Protein Transport Inhibitors reagent (eBioscience) for 5 h. Then,

the cells were fixed, permeabilized, and stained with anti-mouse

Figure 7. PPARc deficiency in T cells increases follicular helper T cell and germinal center formation following SRBC immunization.
(A) Experimental scheme for SRBC immunization to analyze TFH cells and GC reaction. (B, C) Flow cytometric analysis of TFH cells in the spleen and (D)
total cell number of spleens and lymph nodes from 8-week-old control and SRBC-immunized mice. Values represent the mean 6 SEM, n = 7–10. *P,
0.05, **P,0.01, ***P,0.001. (E) Germinal centers of frozen 7-mm sections from spleen of 8-week-old control (non-immunized Cre-) and SRBC-
immunized mice were visualized by confocal microscopy. Slides were stained for PNA (green), IgD (red), and CD4 (blue) to detect germinal centers, B
cells, and T cells, respectively. (F) The number of PNA+ germinal centers per spleen section was quantitated n = 5–7. Expression level of (G) IL-21, (H)
Bcl-6 and (I) Blimp-1 was assessed by real-time PCR and normalized to b-actin. Values represent the mean 6 SEM, n = 3. **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0099127.g007
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IFN-c-FITC, IL-4-PE, IL-17-APC, and IL-9-APC antibodies.

Intracellular Foxp3 staining was performed using the Foxp3

Staining Kit (eBioscience). To determine the purity of isolated

CD4+CD252 T cells, these cells were stained with anti-CD4 and

anti-CD25, and followed by FACS analysis.

Quantitative real-time PCR
RNA from FACS-sorted CD4+, CD8+, and CD19+ cells was

isolated using the RNeasy Mini kit (Qiagen, Venlo, Limburg)

according to the manufacturer’s protocol. cDNA synthesis was

performed using the iScript kit (Bio-Rad, Hercules, CA). Real-time

PCR was performed on a Bio-Rad CFX Connect real-time PCR

detection system using iQ SYBR Green Supermix (Bio-Rad). The

level of PPARc expression was assessed in triplicate with specific

primers and normalized to b-actin. The primer sequences used

were: PPARc (forward): 59-CCAGAGTCTGCTGATCTGCG-

39; PPARc (reverse): 59-GCCACCTCTTTGCTCTGCTC-39;

Bcl-6 (forward): 59-CCGGCACGCTAGTGATGTT-39; Bcl-6

(reverse): 59-TGTCTTATGGGCTCTAAACTGCT-39; IL-21

(forward): 59-GGACCCTTGTCTGTCTGGTAG-39; IL-21 (re-

verse): 59-TGTGGAGCTGATAGAAGTTCAGG-39; Blimp-1

(forward): 59-TTCTTGTGTGGTATTGTCGGGACTT-39; Blimp-

1 (reverse): 59-TTGGGGACACTCTTTGGGTAGAGTT-39; b-

actin (forward): 59-TGTCCCTGTATGCCTCTGGT-39; and b-

actin (reverse): 59-CACGCACGATTTCCCTCTC-39 (34).

ELISA
Cytokine levels in the supernatants of polarized Th1, Th2,

Th17, and Th9 cultures were determined by ELISA using

antibodies against mouse IL-2 (Biolegend, San Diego, CA), IFN-

c, IL-13, IL-17 and IL-9 (eBioscience) according to the

manufacturer’s instructions. Anti-dsDNA antibody in mouse

serum was determined by ELISA (Alpha Diagnostic International

Inc, San Antonio, TX).

Confocal microscopy
Mice aged 6 to 8 weeks old were immunized with sheep red

blood cells (SRBC) and spleens were harvested 9 days later.

Spleens from 1-year-old mice were also collected to analyze TFH

cells and GC formation. The tissues were frozen in OCT reagent

and sectioned into 7-mm slices. The frozen sections were stained

with anti-PNA-FITC (Sigma-Aldrich, St. Louis, MO), IgD-PE,

and CD4-APC (eBioscience) overnight at 4uC. After washing,

Anti-Fade reagent (Invitrogen, Life Technologies, Carlsbad, CA)

was added to the slides, which were visualized using a Leica DM

IRE2 confocal microscope.

T cell activation, proliferation, and differentiation
Spleens were isolated from mice and a single-cell suspension was

prepared. The single cell suspension was stained against CD4 and

CD25, and CD4+CD252 T cells were purified by MoFlo

(Beckman Coulter, Inc., Brea, CA), while naı̈ve CD4 T cells were

isolated using the CD4+CD62L+ T cell isolation kit (Miltenyi

Biotec, Bergisch Gladbach, Germany) according to the manufac-

turer’s instructions. Purified T cells were stimulated with plate-

bound anti-CD3 and soluble anti-CD28 antibodies in 96-well

plates and differentiated under the following subset-specific

conditions: IL-12 (2 ng/ml), IL-2 (50 U/ml), and anti-IL-4

(5 mg/ml) for Th1 differentiation; IL-4 (30 ng/ml), IL-2 (50 U/

ml), and anti-IFN-c (5 mg/ml) for Th2 differentiation; TGF-b
(2 ng/ml), IL-4 (30 ng/ml), and anti-IFN-c (5 mg/ml) for Th9

differentiation; TGF-b (0.5 ng/ml), IL-6 (30 ng/ml), IL-23

(20 ng/ml), IL-1b (20 ng/ml), anti-IFN-c (5 mg/ml), and anti-IL-

4 (5 mg/ml) for Th17 differentiation; TGF-b (5 ng/ml) and IL-2

(100 U/ml) for Treg differentiation. The cells were pulsed with

H3-thymidine (1 mCi/well) overnight and H3-thymidine incorpo-

ration was measured to assess T cell proliferation.

Histology
Kidney tissues from 1-year-old mice were isolated, fixed,

embedded in paraffin, and stained with hematoxylin and eosin.

For each mouse, the level of kidney inflammation and more than

15 glomerular, tubular, or interstitial areas were evaluated and

scored blindly for glomerular cellularity, leukocyte infiltration,

severity of tubular lesions, mesangial matrix expansion, crescent

formation, and interstitial mononuclear cell infiltration in the

medulla and cortex. The severity of kidney lesions was determined

by scoring each feature (from 0 to 3) and then calculating the mean

of each set of scores. For example, glomerular inflammation was

scored as follows: 0 = normal or no inflammatory cells; 1 = few

inflammatory cells; 2 = moderate inflammation; and 3 = severe

lymphocyte infiltration.

Statistical analysis
All data were analyzed statistically analyzed with the Student’s

t-test and Mann-Whitney test using Prism5 (GraphPad, San

Diego, CA). p-values (P) less than 0.05 were considered statistically

significant.

Supporting Information

Figure S1 Characterization of lymphocyte populations
in CD4-PPARcKO mice. (A-D) Thymic and (E-H) splenic

CD4+, CD8+, and Foxp3+ populations from 6- to 8-week-old

female wild type and CD4-PPARcKO mice were analyzed by flow

cytometry. Total CD4+ or CD8+ cells were gated from live cells

while Foxp3+ cells were gated from CD4+ T cells. (I, J) Splenic B

and NK cells, which were gated from live cells, and (K, L) CD62L

and CD44 populations gated from CD4+ T cells of 6- to 8- week-

old female littermate control (Cre-) and CD4-PPARcKO (Cre+)

mice were analyzed by flow cytometry. Values represent the mean

6 SEM. *P,0.05.
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