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Sasakian metric as a Ricci soliton
and related results

Amalendu Ghosh1 and Ramesh Sharma2

1Department Of Mathematics, Krishnagar Government College, Krishnana-
gar 741101, West Bengal, India, E-mail: aghosh 70@yahoo.com
2Department Of Mathematics, University Of New Haven, West Haven,
CT 06516, USA, E-mail:rsharma@newhaven.edu

Abstract: We prove the following results: (i) A Sasakian metric as a non-
trivial Ricci soliton is null η-Einstein, and expanding. Such a characterization
permits to identify the Sasakian metric on the Heisenberg group H2n+1 as
an explicit example of (non-trivial) Ricci soliton of such type. (ii) If an η-
Einstein contact metric manifold M has a vector field V leaving the structure
tensor and the scalar curvature invariant, then either V is an infinitesimal
automorphism, or M is D-homothetically fixed K-contact.

MSC : 53C15, 53C25, 53D10

Keywords : Ricci soliton, Sasakian metric, Null η-Einstein, D-homothetically
fixed K-contact structure, Heisenberg group.

1 Introduction

A Ricci soliton is a natural generalization of an Einstein metric, and is defined
on a Riemannian manifold (M, g) by

(£V g)(X, Y ) + 2Ric(X, Y ) + 2λg(X, Y ) = 0 (1)

where £V g denotes the Lie derivative of g along a vector field V , λ a con-
stant, and arbitrary vector fields X, Y on M . The Ricci soliton is said to
be shrinking, steady, and expanding accordingly as λ is negative, zero, and
positive respectively. Actually, a Ricci soliton is a generalized fixed point of
Hamilton’s Ricci flow [7]: ∂

∂t
gij = −2Rij, viewed as a dynamical system on

the space of Riemannian metrics modulo diffeomorphisms and scalings. For
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details, see Chow et al. [4]. The vector field V generates the Ricci soliton
viewed as a special solution of the Ricci flow. A Ricci soliton is said to be a
gradient Ricci soliton, if V = −∇f (up to a Killing vector field) for a smooth
function f . Ricci solitons are also of interest to physicists who refer to them
as quasi-Einstein metrics (for example, see Friedan [6]).

An odd dimensional analogue of Kaehler geometry is the Sasakian geom-
etry. The Kaehler cone over a Sasakian Einstein manifold is a Calabi-Yau
manifold which has application in physics in superstring theory based on a
10-dimensional manifold that is the product of the 4-dimensional space-time
and a 6-dimensional Ricci-flat Kaehler (Calabi-Yau) manifold (see Candelas
et al. [3]). Sasakian geometry has been extensively studied since its recently
perceived relevance in string theory. Sasakian Einstein metrics have received
a lot of attention in physics, for example, p-brane solutions in superstring
theory, Maldacena conjecture (AdS/CFS duality) [9]. For details, see Boyer,
Galicki and Matzeu [2].

In [12] Sharma showed that if a K-contact (in particular, Sasakian) metric
is a gradient Ricci soliton, then it is Einstein. This was also shown later
independently by He and Zhu [8] for the Sasakian case. Recently, Sharma and
Ghosh [13] proved that a 3-dimensional Sasakian metric which is a non-trivial
(i.e. non-Einstein) Ricci soliton, is homothetic to the standard Sasakian
metric on nil3. In this paper, we generalize these results and also answer the
following question of H.-D. Cao (cited in [8]):“Does there exist a shrinking
Ricci soliton on a Sasakian manifold, which is not Einstein?”, by proving

Theorem 1 If the metric of a (2n + 1)-dimensional Sasakian manifold M
(η, ξ, g, ϕ) is a non-trivial (non-Einstein) Ricci soliton, then (i) M is null
η-Einstein (i.e. D-homothetically fixed and transverse Calabi-Yau), (ii) the
Ricci soliton is expanding, and (iii) the generating vector field V leaves the
structure tensor ϕ invariant, and is an infinitesimal contact D-homothetic
transformation.

Conversely, we consider the following question: “What can we say about
an η-Einstein contact metric manifold M which admits a vector field V that
leaves ϕ invariant?” and answer it by assuming the invariance of the scalar
curvature under V , in the form of the following result.

Theorem 2 If an η-Einstein contact metric manifold M admits a vector
field V that leaves the structure tensor ϕ and the scalar curvature invariant,
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then either V is an infinitesimal automorphism, or M is D-homothetically
fixed and K-contact.

Remark 1 Note that a Ricci soliton as a Sasakian metric is different from
the Sasaki-Ricci soliton in the context of transverse Kaehler structure in a
Sasakian manifold, for example see Futaki et al. [5]).

Remark 2 Boyer et al. [2] have studied η-Einstein geometry as a class of
distinguished Riemannian metrics on contact metric manifolds, and proved
the existence of η-Einstein metrics on many different compact manifolds. We
would also like to point out that Zhang [18] showed that compact Sasakian
manifolds with constant scalar curvature and satisfying certain positive cur-
vature condition is η-Einstein.

Remark 3 Theorem 2 provides a generalization of the infinitesimal version
of the following result of Tanno [15] “The group of all diffeomorphisms Φ
which leave the structure tensor ϕ of a contact metric manifold M invariant,
is a Lie transformation group, and coincides with the automorphism group
A if M is Einstein.” Note that the scalar curvature of an Einstein metric is
constant. We also note that the set of all vector fields on a contact metric
manifold M , that leave ϕ and scalar curvature invariant, forms a Lie sub-
algebra of the Lie algebra of all smooth vector fields on M .

2 A Brief Review Of Contact Geometry

A (2n + 1)-dimensional smooth manifold is said to be contact if it has a
global 1-form η such that η ∧ (dη)n 6= 0 on M . For a contact 1-form η there
exists a unique vector field ξ such that dη(ξ,X)= 0 and η(ξ) = 1. Polarizing
dη on the contact subbundle η = 0, we obtain a Riemannian metric g and a
(1,1)-tensor field ϕ such that

dη(X, Y ) = g(X,ϕY ), η(X) = g(X, ξ), ϕ2 = −I + η ⊗ ξ (2)

g is called an associated metric of η and (ϕ, η, ξ, g) a contact metric structure.
Following [1] we recall two self-adjoint operators h = 1

2
£ξϕ and l = R(., ξ)ξ.

The tensors h, hϕ are trace-free and hϕ = −ϕh . We also have these formulas
for a contact metric manifold.

∇Xξ = −ϕX − ϕhX (3)
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l − ϕlϕ = −2(h2 + ϕ2) (4)

∇ξh = ϕ− ϕl − ϕh2 (5)

Trl = Ric(ξ, ξ) = 2n− Trh2 (6)

where ∇, R, Ric and Q denote respectively, the Riemannian connection, cur-
vature tensor, Ricci tensor and Ricci operator of g. For details see [1]

A vector field V on a contact metric manifold M is said to be an infinites-
imal contact transformation if £V η = ση for some smooth function σ on M .
V is said to be an infinitesimal automorphism of the contact metric structure
if it leaves all the structure tensors η, ξ, g, ϕ invariant (see Tanno [14]).

A contact metric structure is said to be K-contact if ξ is Killing with
respect to g, equivalently, h = 0. The contact metric structure on M is
said to be Sasakian if the almost Kaehler structure on the cone manifold
(M × R+, r2g + dr2) over M , is Kaehler. Sasakian manifolds are K-contact
and K-contact 3-manifolds are Sasakian. For a Sasakian manifold,

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X (7)

R(X, Y )ξ = η(Y )X − η(X)Y, Qξ = 2nξ (8)

For a Sasakian manifold, the restriction of ϕ to the contact sub-bundle D
(η = 0) is denoted by J and (D, J, dη) defines a Kaehler metric on D, with
the transverse Kaehler metric gT related to the Sasakian metric g as g =
gT + η ⊗ η. One finds by a direct computation that the transverse Ricci
tensor RicT of gT is given by

RicT (X, Y ) = Ric(X, Y ) + 2g(X, Y )

for arbitrary vector fields X, Y in D. The Ricci form ρ and transverse Ricci
form ρT are defined by

ρ(X, Y ) = Ric(X,ϕY ), ρT (X, Y ) = RicT (X,ϕY )

for X, Y ∈ D. The basic first Chern class 2πcB1 of D is represented by ρT . In
case cB1 = 0, the Sasakian structure is said to be null (transverse Calabi-Yau).
We refer to [2] for details.
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A contact metric manifold M is said to be η-Einstein in the wider sense,
if the Ricci tensor can be written as

Ric(X, Y ) = αg(X, Y ) + βη(X)η(Y ) (9)

for some smooth functions α and β on M . It is well-known (Yano and Kon
[17]) that α and β are constant if M is K-contact, and has dimension greater
than 3.

Given a contact metric structure (η, ξ, g, ϕ), let η̄ = aη, ξ̄ = 1
a
ξ, ϕ̄ =

ϕ, ḡ = ag + a(a − 1)η ⊗ η for a positive constant a. Then (η̄, ξ̄, ϕ̄, ḡ) is
again a contact metric structure. Such a change of structure is called a D-
homothetic deformation, and preserves many basic properties like being K-
contact (in particular, Sasakian). It is straightforward to verify that, under
a D-homothetic deformation, a K-contact η-Einstein manifold transforms to
a K-contact η-Einstein manifold such that ᾱ = α+2−2a

a
and β̄ = 2n − ᾱ.

We remark here that the particular value: α = −2 remains fixed under a
D-homothetic deformation, and as α + β = 2n, β also remains fixed. Thus,
we state the following definition.

Definition 1 A K-contact η-Einstein manifold with α = −2 is said to be
D-homothetically fixed.

3 Proofs Of The Results

Proof Of Theorem 1: Using the Ricci soliton equation (1) in the commu-
tation formula (Yano [16], p.23)

(£V∇Xg −∇X£V g −∇[V,X]g)(Y, Z) =

− g((£V∇)(X, Y ), Z)− g((£V∇)(X,Z), Y ) (10)

we derive

g((£V∇)(X, Y ), Z) = (∇ZRic)(X, Y )

− (∇XRic)(Y, Z)− (∇YRic)(X,Z) (11)

As ξ is Killing, we have £ξRic = 0 which, in view of (3), the last equation
of (8) and h = 0, is equivalent to ∇ξQ = Qϕ − ϕQ. But for a Sasakian
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manifold, Q commutes with ϕ, and hence Ric is parallel along ξ. Moreover,
differentiating the last equation of (8), we have (∇XQ)ξ = QϕX − 2nϕX.
Substituting ξ for Y in (11) and using these consequences we obtain

(£V∇)(X, ξ) = −2QϕX + 4nϕX (12)

Differentiating this along an arbitrary vector field Y , using (7) and the last
equation of (8), we find

(∇Y £V∇)(X, ξ)− (£V∇)(X,ϕY ) = −2(∇YQ)ϕX + 2η(X)QY − 4nη(X)Y

The use of the foregoing equation in the commutation formula [16]:

(£VR)(X, Y )Z = (∇X£V∇)(Y, Z)− (∇Y £V∇)(X,Z) (13)

for a Riemannian manifold, shows that

(£VR)(X, Y )ξ − (£V∇)(Y, ϕX) + (£V∇)(X,ϕY ) = −2(∇XQ)ϕY

+2(∇YQ)ϕX + 2η(Y )QX − 2η(X)QY + 4nη(X)Y − 4nη(Y )X

Substituting ξ for Y in the foregoing equation, using (12) and the formula
∇ξQ = 0 noted earlier, we find that

(£VR)(X, ξ)ξ = 4(QX − 2nX) (14)

Equation (1) gives (£V g)(X, ξ) + 2(2n+ λ)η(X) = 0, which in turn, gives

(£V η)(X)− g(£V ξ,X) + 2(λ+ 2n)η(X) = 0 (15)

η(£V ξ) = (2n+ λ) (16)

where we used the Lie-derivative of g(ξ, ξ) = 1 along V . Next, Lie-differentiating
the formula R(X, ξ)ξ = X−η(X)ξ [a consequence of the first formula in (8)]
along V , and using equations (14) and (16) provides

4(QX − 2nX)− g(£V ξ,X)ξ + 2(2n+ λ)X = −((£V η)(X))ξ

By the direct application of (15) to the the above equation we find

Ric(X, Y ) = (n− λ

2
)g(X, Y ) + (n+

λ

2
)η(X)η(Y ) (17)
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which shows that M is η-Einstein with scalar curvature

r = 2n(n+ 1)− nλ (18)

At this point, we recall the following integrability formula [12]:

£V r = −∆r + 2λr + 2 |Q|2 (19)

for a Ricci soliton, where ∆r = −divDr. A straightforward computation
using (17) gives the squared norm of the Ricci operator as |Q|2 = 2n(n2 −
nλ+ λ2

4
+4n2). Using this and (18) in (19), we obtain the quadratic equation

(2n+ λ)(2n+ 4− λ) = 0. As λ = −2n corresponds to g becoming Einstein,
we must have λ = 2n + 4 and hence the soliton is expanding, which proves
part (ii). Moreover, equation (18) reduces to r = −2n. Thus equation (17)
assumes the form

Ric(Y, Z) = −2g(Y, Z) + 2(n+ 1)η(Y )η(Z) (20)

Hence, as defined in Section 2, M is a D-homothetically fixed null η-Einstein
manifold, proving part (i). Using (20) in (11) provides

(£V∇)(Y, Z) = 4(n+ 1){η(Y )ϕZ + η(Z)ϕY } (21)

Differentiating this along X, using equations (3) and (7), incorporating the
resulting equation in (13), and finally contracting at X we get

(£VRic)(Y, Z) = 8(n+ 1){g(Y, Z)− (2n+ 1)η(Y )η(Z)} (22)

Equation (20) reduces the soliton equation (1) to the form

(£V g)(Y, Z) = −4(n+ 1){g(Y, Z) + η(Y )η(Z)} (23)

Next, Lie-differentiating (20) along V , and using (23) shows

(£VRic)(Y, Z) = 8(n+ 1){g(Y, Z) + η(Y )η(Z)}
+ 2(n+ 1){η(Z)(£V η)(Y ) + η(Y )(£V η)Z} (24)

Comparing equations (22) with (24) and substituting ξ for Z leads to

£V η = −4(n+ 1)η (25)
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Therefore, substituting ξ for Z in (23) and using (25) we immediately get
£V ξ = 4(n + 1)ξ. Operating (25) by d, noting d commutes with £V and
using the first equation of (2) we find

(£V dη)(X, Y ) = −4(n+ 1)g(X,ϕY )

Its comparison with the Lie-derivative of the first equation of (2) and the use
of (23) yields £V ϕ = 0, completing the proof.

Before proving Theorem 2, we state and prove the following lemma.

Lemma 1 If a vector field V leaves the structure tensor ϕ of the contact
metric manifold M invariant, then there exists a constant c such that
(i)£V η = cη, (ii)£V ξ = −cξ, (iii) £V g = c(g + η ⊗ η).

Though this lemma was proved by Mizusawa in [10], to make the paper self-
contained, we provide a slightly different proof as follows.

Proof: Lie-differentiating the formulas ϕξ = 0 and η(ϕX) = 0 and using
£V ϕ = 0, we find £V ξ = −cξ, and £V η = cη for a smooth function c on M .
Next, Lie-derivative of the formula η(X) = g(X, ξ) along V gives

(£V g)(X, ξ) = 2cη(X) (26)

The Lie-derivative of the first equation of (2) along V provides

(£V g)(X,ϕY ) = ((dc) ∧ η)(X, Y ) + cg(X,ϕY ) (27)

Substituting ξ for Y in the above equation we get dc = (ξc)η. Taking its
exterior derivative, and then exterior product with η shows (ξc)(dη)∧ η = 0.
By definition of the contact structure, (dη) ∧ η is nowhere zero on M , and
so ξc = 0. Hence dc = 0, i.e. c is constant. Using this consequence, and
equations (26) and (27) we obtain (iii), completing the proof.

Proof Of Theorem 2 : By virtue of Lemma 1, we have

(£V g)(Y, Z) = c{g(Y, Z) + η(Y )η(Z)} (28)

Differentiating this and using (3) we get

(∇X£V g)(Y, Z) = −c{η(Z)g(Y, ϕX + ϕhX) + η(Y )g(Z, ϕX + ϕhX)} (29)
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Equation (10) can be written

(∇X£V g)(Y, Z) = g((£V∇)(X, Y ), Z) + g((£V∇)(X,Z), Y ) (30)

A straightforward computation using (29) and (30) shows

(£V∇)(Y, Z) = −c{η(Z)ϕY + η(Y )ϕZ + g(Y, ϕhZ)ξ}

Its covariant differentiation and use of (2) provides

(∇X£V∇)(Y, Z) = −c{η(Z)(∇Xϕ)Y + η(Y )(∇Xϕ)Z

− g(Z, ϕX + ϕhX)ϕY − g(Y, ϕX + ϕhX)ϕZ

− g(ϕhY, Z)(ϕX + ϕhX) + g((∇Xϕh)Y, Z)ξ}

Using this in the commutation formula (13) for a Riemannian manifold, con-
tracting at X, and using equations (2), (3) and also the well known formula:
(divϕ)X = −2nη(X) for a contact metric (see [1]), we find

(£VRic)(Y, Z) = c{−2g(Y, Z) + 2g(hY, Z)

+ 2(2n+ 1)η(Y )η(Z)} − cg((∇ξϕh)Y, Z) (31)

Also, Lie-differentiating (9) along V and using Lemma 1 we have

(£VRic)(Y, Z) = (V α + cα)g(Y, Z) + (V β + c(α + 2β))η(Y )η(Z) (32)

Comparing the previous two equations shows that

[V α + c(α + 2)]g(Y, Z) + [V β + c({α + 2β − 2(2n+ 1)}]η(Y )η(Z)

−c[2g(hY, Z)− g((∇ξϕh)Y, Z)] = 0

On one hand, we substitute Y = Z = ξ in the above equation getting one
equation, and on the other hand, we contract the above equation (noting
that both h and ϕh are trace-free) getting another equation. Solving the two
equations we obtain

V α + c(α + 2) = 0, V β + c(α + 2β − 4n− 2) = 0 (33)

The g-trace of equation (9 ) gives the scalar curvature

r = (2n+ 1)α + β (34)
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The divergence of (9) along with the contracted second Bianchi identity yields
dr = 2dα+ 2(ξβ)η. Taking its exterior derivative, and then exterior product
with η we have (ξβ)η ∧ dη = 0. As η ∧ dη vanishes nowhere on M , we find
ξβ = 0 whence dr = 2dα. Hence V α = V r = 0, by hypothesis. Thus,
it follows from (34) that V β = 0. Consequently, equations (33) reduce to:
c(α + 2) = 0 and c(α + 2β − 4n − 2) = 0, and hence imply that, either
c = 0 in which case V is an infinitesimal automorphism, or α = −2 and
α+2β = 4n+2. In the second case, adding the two equations gives α+β = 2n.
But, from equation (9) we have α + β = Tr.l. Therefore, Tr.l = 2n, and
applying equation (6) we obtain h = 0, i.e. M is K-contact. As α = −2, the
η-Einstein structure is D-homothetically fixed, completing the proof.

4 An Explicit Example

An explicit example of non-trivial Ricci soliton as a Sasakian metric is the
(2n+1)-dimensional Heisenberg groupH2n+1 (which arose from quantum me-

chanics) of matrices of type

 1 Y z
Ot In X t

0 O 1

, where X = (x1, ..., xn), Y =

(y1, ..., yn), O = (0, ..., 0) ∈ Rn, z ∈ R. As a manifold, this is just R2n+1

with coordinates (xi, yi, z) where i = 1, ..., n, and has the left-invariant
Sasakian structure (η, ξ, ϕ, g) defined by η = 1

2
(dz −

∑n
i=1 y

idxi), ξ = 2 ∂
∂z

,
ϕ( ∂

∂xi
) = − ∂

∂yi
, ϕ( ∂

∂yi
) = ∂

∂xi
+ yi ∂

∂z
, ϕ( ∂

∂z
) = 0, and the Riemannian met-

ric g = η ⊗ η + 1
4

∑n
i=1((dx

i)2 + (dyi)2). Its ϕ-sectional curvature (i.e.
the sectional curvature of plane sections orthogonal to ξ) is equal to −3,
so its Ricci tensor satisfies equation (20), as shown by Okumura [11], and
hence H2n+1 is a D-homothetically fixed null η-Einstein manifold. Setting
V =

∑n
i=1(V

i ∂
∂xi

+V̄ i ∂
∂yi

)+V z ∂
∂z

, using equations: £V ξ = 4(n+1)ξ, £V ϕ = 0
obtained in the proof of Theorem 1, and the aforementioned actions of ϕ on
the coordinate basis vectors, shows that V i and V̄ i do not depend on z and
yields the PDEs:

∂V i

∂xj
=

∂V̄ i

∂yj
,
∂V i

∂yj
= −∂V̄

i

∂xj
, yi

∂V i

∂yj
=
∂V z

∂yj

V̄ j = yj
∂V z

∂z
− yi∂V̄

i

∂yj
,
∂V z

∂z
= −4(n+ 1)
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The last equation readily integrates as V z = −4(n + 1)z + F (xi, yi). For a
special solution, assuming F = 0, V i = cxi, V̄ i = cyi and substituting in
the above PDEs, we get c = −2(n + 1), and hence the Ricci soliton vector
field V = −2(n + 1)(xi ∂

∂xi
+ yi ∂

∂yi
+ 2z ∂

∂z
). For dimension 3, this reduces to

V = −4(x ∂
∂x

+ y ∂
∂y

+ 2z ∂
∂z

) which occurs on p. 37 of [4] without the factor

4, but gets adjusted with our λ = 6 which is 4 times their λ = 3/2.

Remark 4 Another conclusion that we draw for Theorem 1 is the following:
The value −2n for the scalar curvature r obtained during the proof, and the
equation (17) show that the generalized Tanaka-Webster scalar curvature [1]
W = r −Ric(ξ, ξ) + 4n vanishes.
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