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Abstract 13 

Taylor’s law (TL), a widely verified quantitative pattern in ecology and other sciences, describes 14 

the variance in a species' population density (or other nonnegative quantity) as a power-law 15 

function of the mean of the species' population density (or other nonnegative quantity): 16 

approximately, variance = a(mean)b, a > 0. In the past half-century, multiple mechanisms have 17 

been proposed to explain and interpret TL. Here we show analytically that TL arises when data 18 

are randomly sampled in blocks from any skewed frequency distribution with four finite 19 

moments. We give approximate formulas for the TL parameters and their uncertainty. In 20 

computer simulations and an empirical example using basal area densities of red oak trees from 21 

Black Rock Forest, our formulae agree with the estimates obtained by least-squares regression. 22 

Our results show that the correlated sampling variation of the mean and variance of skewed 23 

distributions is statistically sufficient to explain TL under random sampling, without the 24 

intervention of any biological or behavioral mechanisms. This finding connects TL with the 25 

underlying distribution of population density (or other nonnegative quantity) and provides a 26 

baseline against which more complex mechanisms of TL can be compared. 27 
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Significance Statement (limited to 120 words) 28 

One of the most widely confirmed empirical patterns in ecology is Taylor’s law (TL): the 29 

variance of population density is approximately a power-law function of the mean population 30 

density. We showed analytically that, when observations are randomly sampled in blocks from a 31 

single frequency distribution, the sample variance will be related to the sample mean by TL, and 32 

the parameters of TL can be predicted from the first four moments of the frequency distribution. 33 

The estimate of the exponent of TL is proportional to the skewness of the distribution. Random 34 

sampling of population data suffices to explain the existence and predict the parameters of TL in 35 

well-defined circumstances relevant to some, but not all, published empirical examples of TL.36 
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Introduction  37 

Taylor's law (TL), named after Taylor (1), relates the variance and the mean of population sizes 38 

or population densities of species distributed in space and time by a power-law function: 39 

, 0,  (Eqn 1)
 40 

or equivalently as a linear function when mean and variance are logarithmically transformed: 41 

log log log . (Eqn 2)
 42 

Eqns 1 and 2 may be exact if the mean and variance are population moments calculated from 43 

certain parametric families of probability distributions. Eqns 1 and 2 may be approximate if the 44 

mean and variance are sample moments based on finite random samples of observations. Most 45 

empirical tests of TL have not specified the random error associated with Eqns 1 or 2. 46 

TL has been verified for hundreds of biological species and non-biological quantities in more 47 

than a thousand papers in ecology, epidemiology, biomedical sciences and other fields (2-4). 48 

Recently, examples of TL were found in bacterial microcosms (5, 6), forest trees (7, 8), human 49 

populations (9), coral reef fish populations (10), and barnacles (11, 12). TL has been used 50 

practically in the design of sampling plans for the control of insect pests of soybeans (13, 14) and 51 

cotton (15). 52 

Scientific studies of TL largely focus on the power-law exponent b (or slope b in the linear 53 

form), which Taylor believed to contain information about how individuals of a species 54 

aggregate in space (1). Empirically, b often lies between 1 and 2 (16). Ballantyne and Kerkhoff 55 
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(17) suggested that individuals’ reproductive correlation determines the size of b. Ballantyne 56 

(18) proposed that b = 2 is a consequence of deterministic population growth. Cohen (19) 57 

showed that b = 2 arose from exponentially growing, non-interacting clones. From an ecological 58 

community perspective, Kilpatrick and Ives (20) proposed that interspecific competition could 59 

reduce the value of b. Other models that implied TL were the exponential dispersion model (21-60 

23), models of spatially distributed colonies of varying sizes (24, 25), a stochastic version of 61 

logistic population dynamics (16), and Lewontin-Cohen stochastic multiplicative population 62 

model (8).The substantive diversity of empirical confirmations has suggested that no narrowly 63 

specific mechanism, biological, physical, technological, or behavioral, explains all instances of 64 

TL. Such empirical ubiquity suggests that TL could be another of the so-called "universal laws" 65 

(26) like the laws of large numbers (27) and the central limit theorem (28). For example, 66 

independently of the present study, Xiao et al. (29) showed numerically (not analytically) that 67 

random partitions and compositions of integers led to TL with slopes often between 1 and 2, as 68 

observed in empirical examples of TL. 69 

The present work was kindred in spirit and intent, though distinct in technical approach and 70 

results. Here we demonstrated that TL arises when independently and identically distributed (iid) 71 

observations are sampled in blocks (not necessarily of equal size) from any nonnegative-valued 72 

skewed probability distribution with four finite moments. Under these assumptions, we derived 73 

analytically the explicit approximate formulae for the TL slope (b in Eqn 2), intercept (log(a) in 74 

Eqn 2), and standard error of the slope estimator ( , see Theorem in Results). In simulated 75 

random samples from probability distributions, these theoretical formulae approximated well the 76 

TL parameters. An empirical example using basal area densities of red oak trees in a temperate 77 
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forest showed that our theory explained some published estimates of the TL slope when the 78 

assumptions of the theory were satisfied, and also successfully predicted the TL slope when the 79 

assumptions of the theory were shown to be mildly violated. Our results showed that TL may 80 

arise without any complicated ecological or statistical mechanisms, and provided a null 81 

hypothesis against which empirical applications of TL can be tested. 82 

Results 83 

Analytical Results 84 

Suppose X is a nonnegative real-valued random variable with cumulative distribution function F, 85 

mean E(X) = M > 0, variance var(X) = V > 0, and finite central moments E([X - M]h) = μh, h = 3, 86 

4. Consider N > 2 "blocks" or sets of iid observations (random samples) of X. Let xij denote 87 

observation i of block j, i = 1, …, nj, assuming the number of observations in block j satisfies nj > 88 

3, j = 1, …, N. The total number of observations is n1+ n2+⋯ + nN. For block j the sample mean 89 

of observations and the expectation and variance of the sample mean are, respectively, 90 

⋯ , , ⁄ . The unbiased sample variance of block j 91 

and its expectation and variance are, respectively, 92 

1
1 1

, ,
1 3

1
.		

The formula for  is from Neter, Wasserman and Kutner (30). As nj → ∞, Prob{mj = 0} 93 

→ 0 and Prob{vj = 0} → 0 by Chebyshev's tail inequality (31). We assume that nj is large 94 

enough that mj > 0 and vj > 0. 95 
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In this theory, the variation between blocks in the sample mean is small because it arises only 96 

from differences due to random sampling of the same distribution for every block. In empirical 97 

examples, if the variation of sample means among blocks is too large to arise from random 98 

sampling alone, e.g., if analysis of variance rejects homogeneity of block means, then the theory 99 

of TL here is inapplicable. 100 

Variation between blocks in the sample variance is also small for the same reason, under the 101 

assumptions of this theory. Since any two smoothly varying functions can be locally linearly 102 

related, the logarithm of the sample variance of a block can be approximated as a linear function 103 

of the logarithm of the sample mean of that block. The following result interprets this 104 

observation analytically. 105 

By definition, the coefficient of variation of X is CV = V1/2/M, the skewness is γ1 = μ3/V
3/2, and 106 

the kurtosis is κ = μ4/V
2. Most empirical tests of TL estimated the intercept log(a) and the slope b 107 

of TL using ordinary least-squares regression of log(vj) as the dependent variable and log(mj) as 108 

the independent variable, and we follow this practice here. 109 

Definition. Suppose a random variable Y is a function of a random sample of size n from a 110 

distribution F, and suppose the expectation E(Y) exists. Then the expression , where K is a 111 

constant independent of the random sample, is defined to mean that, for some 0,112 

. 113 

Theorem. Suppose the nonnegative real-valued random variable X has finite first four moments, 114 

with strictly positive mean and strictly positive variance. Suppose that nj > 1 observations xij (i = 115 

1, …, nj) of X are randomly assigned to block j (j = 1, …, N), N > 2, and all the observations, 116 
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which number ∑  in total, are independently and identically distributed. Let ,  be the 117 

sample mean and the sample variance, respectively, of the nj observations in block j, and suppose 118 

nj is large enough that  and are strictly positive. Let  and log	  denote the least-squares 119 

estimators of b and log(a) in TL, log log log , 	 1, … ,  (Eqn 2) 120 

respectively. Let  denote the standard error of the least-squares slope estimator . Then, in 121 

the limit of large N and large , 122 

,
⁄ ⁄   (Eqn 3)

 123 

log	 log ⋅ log   (Eqn 4)

  

2
1
2

 

(Eqn 5)

 124 

Proof of this Theorem is given in the Supporting Information (SI). Since CV > 0, Eqn 3 shows 125 

that random sampling in blocks of any right-skewed distribution (one with 0) generates a 126 

positive TL slope. 127 

Squaring both sides of Eqn 5 yields the estimated variance of . Since any variance is 128 

nonnegative by Cauchy's inequality (31), the numerator of the variance estimate ( 1 ) is 129 

nonnegative. Eqn 5 thus provides an alternative proof and adds a new interpretation of the 130 

inequality 1 0 which was obtained by Rohatgi and Székely (32). 131 

Numerical Simulations 132 
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We illustrate our theory of TL using six probability distributions, five of which are positively 133 

skewed. We created six square matrices to mimic the blocks commonly found in ecological field 134 

data. Each column can be viewed as a block containing n observations (rows). For each matrix, 135 

we plotted the log of the sample variance vj of each column j on the ordinate against the log of 136 

the sample mean mj on the abscissa, j = 1, …, N. Fig. 1 visualizes the relationship between 137 

population distributions and TL. 138 

For each of the five positively skewed distributions, an approximately linear relationship with 139 

positive slopes was observed (Fig. 1 a-e), but the lognormal slope was larger than most estimates 140 

observed in ecological applications. For the shifted normal distribution, which had zero 141 

skewness, no relationship between the log sample variance and the log sample mean was 142 

observed, i.e., analytically b = 0 and numerically and by regression b̂ = 0 (Fig. 1 f). 143 

To illustrate our Theorem numerically, we applied the theoretical formulae (Eqns 3-5) to each of 144 

the six probability distributions and analytically computed the predicted values of the slope and 145 

intercept in Eqn 2, and standard error of the slope estimator. The first four moments used in the 146 

formulae are standard results for these distributions. For each distribution, we also generated 147 

10,000 random copies of the n (= 100) by N (= 100) matrix to bootstrap medians and 95% 148 

confidence intervals (CIs) (2.5% and 97.5% quantiles) of TL parameters from the corresponding 149 

regression point estimates, and median and 95% CIs of the quadratic coefficient from the 150 

corresponding quadratic regression. To test the robustness of our theory, the n×N observations in 151 

each matrix were used to calculate sample estimates of the first four moments of the 152 

corresponding probability distribution, as if the first four moments were not known a priori but 153 
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were based on a sample. These estimates were then plugged into the formulae (Eqns 3-5) to 154 

evaluate the theoretical TL slope, intercept, and standard error of the slope estimator. Their 155 

medians and 95% CIs were similarly bootstrapped from the 10,000 random copies of the matrix. 156 

Estimates from the regression were compared with the corresponding theoretical predictions 157 

computed from the formulae analytically and numerically (Table 1). 158 

The mean, variance, third and fourth central moments, computed analytically using the given 159 

parameters, are respectively 1, 2, 5, and 15 for Poisson (λ = 1), 7.5, 75, 142.5, and 9553.125 for 160 

negative binomial (r = 5, p = 0.4), 1, 2, 6, and 24 for exponential (λ = 1), 4, 20, 120, and 840 for 161 

gamma (α = 4, β = 1), 4.4817, 54.5982, 1808.0400, and 162754.7914 for lognormal (µ = 1, σ = 162 

1), and 5, 26, 140, and 778 for shifted normal (5 + (0,1)). Except for the shifted normal 163 

distribution, a positive slope estimate  was observed when a linear regression was fitted to the 164 

independent variable log mean and dependent variable log variance. In all cases except the 165 

shifted normal distribution, the 95% bootstrapped CI of b under regression was on the right side 166 

of zero. The 95% bootstrapped CI of b under regression for the shifted normal contained zero 167 

and therefore a linear relationship between log mean and log variance was not observed. These 168 

findings were consistent with Fig. 1. The 95% bootstrapped CI of the quadratic coefficient from 169 

quadratic regression contained zero in all six distributions, so there was no statistically 170 

significant evidence that quadratic regression provided a better model than linear regression 171 

when describing the relationship between log variance and log mean. Therefore TL was 172 

confirmed for each for the five skewed probability distributions.  173 
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Except for the lognormal distribution, the theoretical values of b (Fig. 2) and log(a) (Fig. 3) 174 

predicted analytically from Eqns 3 and 4, and the standard error of the slope estimator (Fig. 4) 175 

calculated from Eqn 5 fell within the corresponding 95% CI from linear regression. In the 176 

lognormal distribution, the analytical predictions of the slope b and the standard error of its 177 

estimator were on the right side of the corresponding 95% CI from regression, meaning that the 178 

theoretically predicted values were significantly larger than those estimated from linear 179 

regression. Under the more robust calculations using random copies of n×N iid samples, for each 180 

combination of probability distribution and parameter, the 95% CI of the parameter from the 181 

theoretical formulae and from the regression overlapped.182 

Empirical Data 183 

The basal area density of red oaks (Quercus rubra, abbreviated as RO) in Black Rock Forest 184 

(BRF) illustrates empirically that random sampling of iid data can generate TL, and that the TL 185 

parameters and their CIs bootstrapped from least-squares linear regression using random samples 186 

agree with the corresponding values predicted analytically using our formulae. Moreover, four 187 

empirical methods of grouping observations into blocks give estimates of the TL slope that are 188 

not statistically distinguishable from the estimates of TL given by our random-sampling theory. 189 

The complete data on which this example is based were published and analyzed for other 190 

purposes (33). 191 

BRF is a 1550-hectare forest preserve in Cornwall, NY (34). In a 1985 forest-wide survey, 218 192 

sampling points were randomly designated to sample the basal area density of tree species. Each 193 

forest location was equally likely to be selected as a sampling point, and each sampling point 194 
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contributed one observation of basal area density for each tree species, with no repeated 195 

measurements at any sampling point (Friday and Friday, 1985 unpublished MS available from 196 

Black Rock Forest Consortium, Cornwall, NY, USA, courtesy of Dr. William S. F. Schuster, 197 

Executive Director). Each of the 218 sampling points is also geographically separated from the 198 

others so that the oak tree growth surrounding any two sampling points is not likely to be 199 

correlated due to geophysical or biological conditions (e.g. slope, soil moisture, topography). 200 

Hence the 218 measurements of basal area density could reasonably be interpreted as 201 

representing an iid sample of each tree species' basal area density in the whole BRF preserve in 202 

1985. 203 

We tested TL using the basal area density data of RO because RO was the most dominant tree 204 

species in the 1985 survey (32.72% of all 2,078 stems sampled) and served as a biological 205 

indicator of the forest composition and timber production (Fig. 5 e). Taylor and colleagues (35) 206 

argued that when testing TL, the number of blocks should be at least 5 and the number of 207 

observations per block should be at least 15. Following this practice, we randomly assigned the 208 

218 observations into 14 blocks (15 observations in each of the first 13 blocks and 23 209 

observations in the 14th block) and computed the means and variances of RO basal area density 210 

across the observations within each block. We then fitted an ordinary least-squares regression of 211 

log variance of each block as a linear function of the log mean of the block and obtained point 212 

estimates for the slope and the intercept, and standard error of the slope estimator. Repeatedly 213 

randomizing the assignment of observations into blocks 10,000 times, we bootstrapped the 214 

median and 95% percentile CI of the slope, intercept and standard error of the slope estimator 215 

respectively from the corresponding 10,000 regression point estimates (Fig. 5 a-c). To check for 216 
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nonlinearity between log mean and log variance, we also fitted a quadratic regression under each 217 

random assignment of observations to blocks and bootstrapped the median and 95% CI of the 218 

quadratic coefficient. 219 

Eqn 2 held with median slope 0.8391 and 95% CI (0.0146, 1.5975), and median intercept 0.4196 220 

and 95% CI (0.0469, 0.8335). Quadratic fitting did not indicate statistically significant 221 

nonlinearity in the relationship between log mean and log variance: the median quadratic 222 

coefficient was -1.0665 and 95% CI was (-11.0598, 8.4996). The median of the standard error of 223 

the slope estimator was 0.4045 with 95% CI (0.2257, 0.7272). Thus TL held for RO basal area 224 

density with positive slope and positive intercept under random assignment of observations to 225 

blocks. The finding that the intercept was positive excluded the possibility that the basal area 226 

density of RO was Poisson distributed with different means in different blocks, because in that 227 

case the intercept would have been 0. Whether the observed positive intercept is due to 228 

measurement error, sampling scale, environmental variation in habitat suitability, or biological 229 

interactions of RO with conspecifics or other species remains to be determined. 230 

We computed the sample estimates of the mean (3.1193), variance (7.0917), skewness (0.6435) 231 

and kurtosis (2.5550) of RO density from the 218 observations. From the theoretical formulae 232 

(Eqns 3-5), the predicted slope, predicted intercept, and standard error of the slope estimator 233 

were respectively 0.7537, 0.4784, and 0.3230, all of which were comparable with the 234 

corresponding median values and fell within the corresponding 95% CI bootstrapped from point 235 

estimates under linear regression (Fig. 5 a-c). Our theory provided a reasonable estimate of the 236 

TL parameters for skewed biological field observations randomly grouped into blocks. 237 
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We also compared the TL slope estimated from random grouping in blocks with the published 238 

TL slopes estimated from four biological methods of grouping (33, their Supplementary Tables 239 

S1, S2, S3, and S4). In summary, all four point estimates of the slope of TL under the four 240 

biological groupings fell within the 95%  bootstrapped CI of the slope under random assignment 241 

of sampling points to blocks, and all four CIs of the slope under the biological groupings 242 

estimated from normal theory heavily overlapped the 95% bootstrapped CI of the slope under 243 

random assignment of sampling points to blocks. 244 

In detail, for Friday's grouping, the point estimate of the slope, 0.9854, fell within the 95% CI 245 

(0.0146, 1.5975) from the random grouping of sampling points into blocks, and the 95% 246 

confidence interval of the slope of TL under Friday's grouping, (0.0552, 1.9156), heavily 247 

overlapped the 95% CI under random assignment of sampling points to blocks. 248 

Under Schuster's grouping, the point estimate of the slope, 0.9316, again fell within the 95% CI 249 

(0.0146, 1.5975) from the random grouping and the 95% CI, (0.6940, 1.1692), of the slope of TL 250 

from Schuster's method fell entirely within that of the random grouping. 251 

Under the watershed grouping, the point estimate of the TL slope, 0.6234, again fell within the 252 

95% CI (0.0146, 1.5975) from the random grouping , and the 95% CI of the slope of TL under 253 

the watershed grouping (-0.2666, 1.5133), almost contained the 95% CI under random 254 

assignment of sampling points to blocks. 255 

Finally, under the topography grouping, the point estimate of the slope of TL, 0.2603, again fell 256 

within the 95% CI (0.0146, 1.5975) from the random grouping and the 95% CI, (-0.8830, 257 



 

15 
 

1.4037), again almost contained the 95% CI under random assignment of sampling points to 258 

blocks. 259 

The random sampling model of TL would account for the agreement between the slope from 260 

random grouping and the slopes from the four biological groupings if the model's assumption of 261 

iid sampling within and across all blocks were valid. To test that assumption, we did an analysis 262 

of variance of the mean basal area density by block, for each method (Fig. 6). For Friday’s, 263 

Schuster’s, and watershed groupings, the null hypothesis that all blocks had equal means was 264 

rejected (P = 0.014, P < 0.001, P = 0.009, respectively), contrary to the random sampling model. 265 

Under the topography grouping, the mean basal area density did not differ significantly from one 266 

block to another (P = 0.115). 267 

This example shows that the random sampling model can predict the exponent of TL even when 268 

some of its assumptions are violated. How robust the predictions are with respect to violations of 269 

the assumptions is a question for future theoretical and empirical research. 270 

Discussion 271 

Our results show that random sampling of a distribution in blocks leads to TL. Moreover, the 272 

first four moments of the distribution and the number of blocks predict the TL parameters and 273 

the standard error of the slope estimator. No biological or physical mechanisms need be invoked 274 

to explain TL under this form of sampling. Our examples show that this model has relevance to 275 

some, but not all, published empirical examples of TL. 276 
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Our null hypothesis does not purport to be a universal explanation of TL in all or most 277 

circumstances. For example, when the mean population densities in large samples of different 278 

species of widely different body masses range over 7 or more orders of magnitude (36), the 279 

differences in mean and variance of population density probably cannot be attributed to random 280 

sampling variation from a single underlying distribution. On the other hand, when the mean 281 

population densities range over little more than one order of magnitude ((11), p.12, their Fig. 7), 282 

the invariance of TL parameters under different regimes of population dynamics might be 283 

accounted for by our sampling model. 284 

In our numerical examples, the discrepancy between the theoretical prediction and the regression 285 

estimate of TL slope b under random sampling was largest for the lognormal distribution, which 286 

also had the least realistic values of b̂ (Fig. 4 e). A possible reason is that s( ) for the lognormal 287 

distribution (namely, 0.6660 in Table 1) was twice as large as s( ) for any of the other four 288 

skewed distributions (the maximum being 0.3194 for the gamma distribution in Table 1), 289 

whereas the sample sizes for all of the distributions were the same n=100. In addition, since the 290 

fourth moment of lognormal distribution grows exponentially as a function of the parameter , 291 

our estimates of the variance for the lognormal distribution were likely to be least reliable among 292 

the estimates for the skewed distributions. Among tested distributions, the fourth moment of the 293 

lognormal distribution was at least 17 times the fourth moment of any other distribution. 294 

Evidently, in the lognormal example, we did not simulate enough linear regressions to sample 295 

adequately the full range of variation of the parameters. Nevertheless, when bootstrapped from 296 

the 10,000 random copies of n×N lognormal observations, our formula provided a robust 297 

theoretical estimate of b compatible with that from the regression (Table 1). 298 
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Previous works have analyzed TL in relation to frequency distributions. For example, Taylor (2) 299 

observed that insect populations at progressively higher densities conformed to different 300 

frequency distributions (e.g., Poisson, negative binomial, and lognormal) with identical slope 301 

parameter b, but he did not explain why TL arises from these distributions. Our formulae imply 302 

that TL slope b > 0 arises from random sampling of observations in blocks of any right-skewed 303 

distribution, and b < 0 arises from random sampling of observations in blocks of any left-skewed 304 

distribution. These results connect TL with the underlying probability distribution but do not 305 

explain why the distribution of observations (e.g. Fig. 5 e) was right-skewed. Future studies on 306 

TL and other general empirical scaling patterns should give attention to the role of population 307 

distributions in understanding these patterns. 308 

The usefulness of TL in deducing biological information about population aggregations is a 309 

subject of continuing scientific debate. Alternative mean-variance relationships have been 310 

proposed as competitors of TL (25, 37, 38). It has been argued that sampling error and sampling 311 

coverage may lead to TL-like patterns as statistical artifacts (39) and to substantially biased TL 312 

parameters (40). Our results offer another statistical mechanism that leads to TL. 313 

Methods 314 

Traditionally, when tested against empirical data, TL has been taken to be confirmed if the fitted 315 

linear regression Eqn 2 had statistically significantly non-zero linear coefficient (with P-value < 316 

α, where α is the significance level; here α = 0.05), and if a least-squares quadratic regression 317 

between the independent variable log(mean) and dependent variable log(variance) did not yield a 318 

statistically significant quadratic term (quadratic coefficient P-value > α). The use of the doubly 319 
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logarithmic scale in the testing of TL and other bivariate allometric relationships (e.g. scaling of 320 

metabolic rate with body mass) has been questioned (39, 41-43) and defended (44, 45). 321 

Our numerical examples combined the ordinary least-squares regression approach with 322 

parameter bootstrapping. Specifically, in multiple realizations, we sampled from a single 323 

probability distribution, organized each sample into a block, calculated the mean and the 324 

variance of sample observations per block, recorded the parameters and quadratic coefficient 325 

estimates from the corresponding linear and quadratic regressions (46, p. 155), respectively, for 326 

each realization, and constructed CIs of the parameters using percentiles of the regression point 327 

estimates from all bootstrap realizations. 328 

Similarly, in the empirical example of red oak trees, we randomly grouped observations into 329 

blocks. We adopted the bootstrapping method instead of using the standard P-value approach 330 

because the bootstrap CI does not assume normality of the parameter distribution (47, 48). Linear 331 

and quadratic regressions were performed using the MATLAB function “regress” (49). 332 

The analytical formulae for the TL parameter estimators and the standard error of the slope 333 

estimator were derived using the delta method (50, 51). The delta method, which is commonly 334 

used by statisticians, relies on Taylor series expansions (not the same Taylor as in Taylor’s law) 335 

for moments of functions of random variables. To implement the delta method we relied on a 336 

moment estimate of the difference between population mean and sample mean by Loève (52) 337 

and the consistency of sample estimators (see SI). The delta method is increasingly accurate as 338 

the variation around the point of expansion becomes smaller. Since the variation in sample 339 

means and sample variances is small when sufficiently large random samples are blocked, it is 340 
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not surprising that the delta method yields a quite accurate approximation to TL parameters 341 

estimated from linear regression. 342 
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Figure Legends 453 

Fig. 1. Taylor's law with positive slope arises from random samples from a single (a) Poisson (λ 454 

= 1), (b) negative binomial (r = 5, p = 0.4), (c) exponential (λ = 1), (d) gamma (α = 4, β = 1), and 455 

(e) lognormal (µ = 1, σ = 1) distribution, but not from a (f) shifted normal (5 + (0,1)) 456 

distribution, i.e., a (0,1) distribution with 5 added to each value to make each block's mean 457 

positive with high probability. For each panel, 10,000 iid observations from the selected 458 

distribution were arranged randomly in a square matrix with n = 100 rows and N = 100 columns. 459 

For each column j, the sample mean mj and the sample variance vj were calculated and plotted on 460 

log-log coordinates using open circles,  j = 1, …, N. The solid grey line is the least-squares linear 461 

regression log10 vj = log10 a + b log10 mj. Slope and intercept of the dashed black line were 462 

computed analytically from Eqns 3 and 4 respectively (see Table 1). Population skewness in 463 

each distribution is 1 (Poisson), 0.9238 (negative binomial), 2 (exponential), 1 (gamma), 6.1849 464 

(lognormal), and 0 (shifted normal). 465 

Fig. 2. Comparison of TL slope estimator  predicted from theory and computed using linear 466 

regression for (a) Poisson (λ = 1), (b) negative binomial (r = 5, p = 0.4), (c) exponential (λ = 1), 467 

(d) gamma (α = 4, β = 1), (e) lognormal (µ = 1, σ = 1), and (f) shifted normal (5 + (0,1)) 468 

distributions. Grey histogram shows the distribution of point estimates of b from 10,000 linear 469 

regressions. For each distribution, the black solid line and dashed lines give respectively the 470 
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median and 95% CI of b bootstrapped from 10,000 random copies of n×N iid samples using the 471 

theoretical formula (Eqn 3). 472 

Fig. 3. Comparison of TL intercept estimator log  predicted from theory and computed using 473 

linear regression for (a) Poisson (λ = 1), (b) negative binomial (r = 5, p = 0.4), (c) exponential (λ 474 

= 1), (d) gamma (α = 4, β = 1), (e) lognormal (µ = 1, σ = 1), and (f) shifted normal (5 + (0,1)) 475 

distributions. Grey histogram shows the distribution of point estimates of log(a) from 10,000 476 

linear regressions. For each distribution, the black solid line and dashed lines gave respectively 477 

the median and 95% CI of log(a) bootstrapped from 10,000 random copies of n×N iid samples 478 

using the theoretical formula (Eqn 4). 479 

Fig. 4. Comparison of standard error of the slope estimator ( ) predicted from theory and 480 

computed using linear regression for (a) Poisson (λ = 1), (b) negative binomial (r = 5, p = 0.4), 481 

(c) exponential (λ = 1), (d) gamma (α = 4, β = 1), (e) lognormal (µ = 1, σ = 1), and (f) shifted 482 

normal (5 + (0,1)) distributions. Grey histogram shows the distribution of point estimates of 483 

the standard error of  from 10,000 linear regressions. For each distribution, the black solid line 484 

and dashed lines gave respectively the median and 95% CI of the standard error of  485 

bootstrapped from 10,000 random copies of n×N iid samples using the theoretical formula (Eqn 486 

5). 487 

Fig. 5. Testing TL using basal area density of red oak in Black Rock Forest. (a-c) Histograms of 488 

the slope, intercept, and standard error of the slope estimator, respectively, estimated by 489 

regression from 10,000 random assignments of observations into blocks, with the theoretically 490 

predicted values marked by the solid vertical lines. (d) A bivariate fit between the independent 491 
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variable log(mean) and dependent variable log(variance) under one realization of random 492 

groupings. Each open circle represents a mean and a variance calculated over observations 493 

within a single block. The grey line is the least-squares linear regression line. (e) Histogram of 494 

basal area density of red oaks at 218 sampling points is right-skewed. 495 

Fig. 6. Analysis of variance (ANOVA) of basal area density of red oak in Black Rock Forest, 496 

according to four biological methods of assigning plots to blocks. In each boxplot, the median is 497 

the bold black bar, the box covers the interquartile range, and the whiskers cover the entire range 498 

of basal area density within a block. One-way unbalanced ANOVA tests of the null hypothesis of 499 

no difference between blocks in mean basal area density rejected the null hypothesis (P < 0.05) 500 

for all grouping methods except for the topography grouping. (a) Friday's grouping. (b) 501 

Schuster's grouping. (c) Watershed grouping. (d) Topography grouping. 502 
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Table 1. Estimating the slope (b), intercept (log(a)), and standard error of the slope estimator in Taylor's law using the theoretical formulae (Eqn 3)-(Eqn 5) and linear regression 

for six probability distributions. Each parameter was first predicted analytically from the corresponding formula using the given distribution parameters (Formula (analytic)), then 

approximated using the n×N random observations of each distribution from the formulae (Formula (numeric)) and from the regression (Regression) separately. For the last two 

methods, median and 95% CI of each parameter were bootstrapped by repeating the corresponding procedure for 10,000 random copies of the n×N iid observations (95% CI is 

given below the associated median value). For each distribution, the median and 95% CI of the quadratic coefficient from the least-squares quadratic regression were similarly 

bootstrapped from the 10,000 random copies of the n×N iid observations. 

Probability distribution  log  s( ) Quadratic coefficient 

Formula 
(analytic) 

Formula 
(numeric) 

Regression Formula 
(analytic) 

Formula 
(numeric) 

Regression Formula 
(analytic) 

Formula 
(numeric) 

Regression Regression 

Poisson 
(λ = 1) 

1.0000 0.9976 
(0.9458, 1.0551) 

1.0027 
(0.7211, 1.2775) 

0.0000 -0.0001 
(-0.0119, 0.0118) 

-0.0043 
(-0.0164, 0.0076) 

0.1429 0.1424 
(0.1357, 0.1508) 

0.1416 
(0.1157, 0.1738) 

0.0550 
(-4.9482, 4.9072) 

negative binomial 
(r = 5, p = 0.4) 

1.6000 1.5972 
(1.4860, 1.7213) 

1.6017 
(1.0729, 2.1367) 

-0.1271 -0.1250 
(-0.2340, -0.0263) 

-0.1351 
(-0.6023, 0.3312) 

0.2711 0.2701 
(0.2573, 0.2882) 

0.2703 
(0.2214, 0.3322) 

0.2370 
(-16.0949, 16.6441) 

exponential 
(λ = 1) 

2.0000 1.9929 
(1.8709, 2.1518) 

1.9972 
(1.6235, 2.3849) 

0.0000 -0.0001 
(-0.0174, 0.0174) 

-0.0123 
(-0.0288, 0.0042) 

0.2020 0.1990 
(0.1812, 0.2313) 

0.1920 
(0.1560, 0.2352) 

0.0332 
(-6.4607, 7.0247) 

gamma 
(α = 4, β = 1) 

2.0000 1.9957 
(1.8562, 2.1496) 

2.0011 
(1.3760, 2.6237) 

-0.6021 -0.5995 
(-0.6928, -0.5140) 

-0.6096 
(-0.9848, -0.2312) 

0.3194 0.3180 
(0.3019, 0.3411) 

0.3178 
(0.2607, 0.3900) 

-0.0815 
(-22.7731, 22.7344) 

lognormal 
(µ = 1, σ = 1) 

4.7183 4.0982 
(3.2918, 7.4927) 

3.5991 
(3.0485, 4.2296) 

-1.0970 -1.1320 
(-3.2884, -0.6054) 

-0.8815 
(-1.2848, -0.5294) 

0.6660 0.4155 
(0.2880, 0.9895) 

0.2662 
(0.2132, 0.3305) 

3.6911 
(-3.7832, 12.3419) 

shifted normal 
(5 + (0,1)) 

0.0000 -0.0009 
(-0.2407, 0.2386) 

0.0011 
(-1.4290, 1.4273) 

0.0000 -0.0006 
(-0.1659, 0.1694) 

-0.0062 
(-1.0024, 0.9936) 

0.7143 0.7140 
(0.6946, 0.7345) 

0.7249 
(0.5933, 0.8843) 

-0.1759 
(-128.0845, 124.9325) 
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If X is a real-valued random variable with finite mean E(X) and finite variance var(X), and if a 11 

real-valued function f of real x is twice differentiable at E(X), then the delta method (1, 2, pp. 12 

355-358) gives the approximations 13 

| , 14 

|	 ⋅ , 15 

| . 16 

In practice, we compute sample moments from observations of X, plug them in to replace the 17 

population moments, and accept the result as approximations to the left sides. 18 



Lemma 1. If x > 0 and f(x) = log(x), then 1⁄ , . Assume sampled 19 

observations are iid and the sample size in block  is  ( 1, 2, … , ) and N is the number of 20 

blocks. Assume mj is the sample mean of observations in block j and E(mj) = M > 0. Then the 21 

approximations given by the delta method are log log ⁄ , log22 

	 ⁄ , log log 2⁄ . 23 

Proof. In the delta method, we set X = mj, f(x) = log(x). From Loève (3, p. 276, Exercise 5), 24 

Oehlert (1) showed essentially that for 0, . We shall use 25 

this bound with q = 0, 1/2, and 1 separately. Applying Taylor’s expansion to log  yields 26 

log log / / 2 . 

Following Oehlert’s notation, we define log , and log /27 

/ 2 . Because M > 0 and because the logarithmic function is infinitely 28 

differentiable in any open interval that contains M, by Taylor’s theorem, there exists a finite 29 

constant C > 0, such that . From Oehlert (1) with q = 1/2, 30 

we have ⁄ . Therefore, as →∞, for 1 , ⋅31 

→ 0. Here “→” denotes point-wise convergence. By the 32 

triangle inequality (4), . After substitution, log33 

log / / 2 log 2⁄34 

. Hence log log 2⁄ . As →∞, this leads to the first-order 35 

approximation log log . 36 



Now we estimate log  using the first-order Taylor expansion of log , namely, 37 

log log / . Denote log / . 38 

By Taylor’s theorem, there exists a finite constant 0, such that 39 

. From Oehlert (1) with q = 0, we have . We now 40 

approximate log  using the delta method. 41 

2 ⋅ . 

In other words, 42 

2 ⋅ . 

Since , . So 43 

⋅ log ⋅ . 

2 log ⋅
2

. 

From Oehlert (1) using q = 1 for the first term on the right side, q = 0 for the second term, and q 44 

= 1/2 for the third term, the expectation of the right side of the above inequality is . As 45 

→ ∞, for 0 1, → 0. From the triangle 46 

inequality, . Thus the approximate mean of log  47 



is log log / log 2 log /48 

⁄ log ⁄ . 49 

Overall, the estimated variance of log  from the delta method using the first-order Taylor 50 

expansion of log  is log log log log51 

⁄ log ⁄ . This proves Lemma 1. 52 

Lemma 2. Under the assumptions of Lemma 1, also assume vj is the sample variance of 53 

observations in block j and E(vj) = V > 0. Then the approximations given by the delta method are 54 

log log ⁄ , log 	 / , log log55 

. 56 

Proof. Setting X = vj and following the same arguments as in the proof of Lemma 1 gives the 57 

results. 58 

Lemma 3. Under the assumptions of Lemmas 1 and 2, the covariance of the sample mean and 59 

sample variance is , ⁄ , where μ3 is the third central moment.  60 

Zhang (5) gives a proof of this classical formula, which has been known at least since 1903 (6, 61 

pp. 279, equation (xiii), 7, pp. 7, equation (xxvi), 8, pp. 479, equation (67), 9). 62 

Proof of Theorem. When all blocks are weighted equally, the least-squares estimators of slope b 63 

and intercept log	 , and standard error of the slope estimator  are respectively (10, pp. 155) 64 

	 log , log log , 65 



log log ⋅ log  

log log log , log log / 2 . 66 

The notations ⋅ , ⋅ , and ⋅,⋅  are to be read as the mean, variance, and 67 

covariance across all blocks and not as referring to any single block j. Explicitly, the sample 68 

estimators are defined by 69 

log ∑ log , 70 

log ∑ log , 71 

log ∑ log ∑ log ,	72 

log ∑ log ∑ log , 73 

log , log ∑ log ⋅ log ∑ log ∑ log . 74 

They are all consistent by the law of large numbers: as →∞, log → log , 75 

log → log , log → log , log → log , 76 

and log , log → log , log . Here the symbol ''→ " means convergence in 77 

probability. 78 

To find the limits in probability of  and , we approximate the above estimators by the delta 79 

method using Lemmas 1, 2, and 3. We first approximate the numerator and the denominator of  80 

separately. For the numerator of b̂, namely, log , log , the first term is approximately 81 



1
1

log ⋅ log
1
1

log
1

⋅ log
1

1
⋅ log ⋅ log

log
1

log
1

1
1

. 

The second term of the numerator of b̂ is approximately 82 

∑ log ∑ log ∑ log ⋅ ∑ log83 

⋅ log ⋅ log ∑ ∑84 

∑ ∑ .  85 

Therefore log , log ∑ ∑86 

∑ ∑ ∑ ∑
,
. Similarly, the 87 

denominator of  is approximately log ∑ ∑88 

⁄ . Consequently, for large nj,	 1, 2, … , , 	
,

. By 89 

consistency, for large N, using Lemma 3 in the numerator, ,
90 

⁄ ⁄ . 91 

Using the consistency of estimator ⋅  and existing expressions for log , log  92 

and , for large  and , 1, 2, … , , 93 



log log ⋅ log

log
1
2

3
1

log 2⁄

log ⋅ log  

The derivation of log  is the same as that of log . Replacing  with  and  94 

with  yields log ⁄ . For large N and , 1, 2, … , , substituting into 95 

the formula for  the estimators corresponding to , , and  yields 96 

1
2

1 ⁄
2

1
2

, 

where κ = μ4/V2 is the kurtosis. This completes the proof. 97 
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