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Abstract 
 

Systems chemistry is a new discipline which investigates the interactions within a network of 

chemical reactions.  We have studied several computational models of chemical systems inspired by 

mathematical paradoxes and have found that even simple systems may behave in a counterintuitive, non-

linear manner depending upon various conditions.  In the present study, we modeled a set of reactions 

inspired by one such paradox, Braess’ paradox, an interesting phenomenon whereby the introduction of 

additional capacity (e.g. pathways) in some simple network systems can lead to an unexpected reduction 

in the overall flow rate of “traffic” through the system.  We devised several chemical systems that 

behaved in this counterintuitive manner; the overall rate of product formation was diminished when an 

additional pathway was introduced and, conversely, there was an enhancement of product formation when 

the same interconnecting pathway was removed.  We found that, unlike a traffic model, the chemical 

model needed to include reversible pathways in order to mimic “congestion” – a condition necessary to 

produce Braess-like behavior. The model was investigated numerically, but a full analytical solution is 

also included.  We propose that this intriguing situation may have interesting implications in chemistry, 

biochemistry and chemical engineering.

 

Key Words:  Kinetic models     Chemical networks    Systems chemistry
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1 Introduction 

Systems chemistry is a fairly new and unconventional chemical niche discipline that 

investigates interactions of reactions in a chemical network, rather than single, independent chemical 

reactions [1].  One typical feature of systems in chemistry, biology, engineering and physics is the 

presence of outcomes that are difficult to predict solely by observing the individual components; 

given enough time, asymmetries may arise in seemingly simple networks.  An important challenge in 

systems chemistry is that of understanding how the various reactions interact with each other, 

especially in the fields of prebiotic synthesis and chemical evolution [2].   

Mathematical paradoxes have inspired chemical systems that yield counterintuitive results, 

which may be exploited for novel applications.  One such example is Parrondo’s paradox, which 

inspired an investigation of the effect of oscillating thermal conditions in simple chemical reaction 

systems; in these systems, thermal cycling counterintuitively produced a greater yield of product than 

any fixed temperature in the range of cycled temperatures [3]. 

Might other mathematical paradoxes also suggest novel chemical models? To answer this 

question, we investigated a paradox attributed to Dietrich Braess.   Braess’ paradox is an interesting 

relationship whereby the introduction of additional capacity (i.e. pathways) into some simple 

networks can lead to an unexpected reduction in the overall rate of flux through the system.  

Conversely, in some systems, eliminating pathways can indeed result in an overall increase in flow 

through the systems.  Braess’ paradox is typically applicable to traffic flow [4].  Notable examples 

include the improvement of travel time in New York City when 42nd Street was closed, and in 

Stuttgart, Germany when construction of a new road led to an increase in travel time [5,6].  Variations 

of the paradox have been demonstrated with electrical, hydraulic, mechanical and thermal networks 

[7].  Further examples of Braess’ paradox can be found at the following references [8, 9]. 

Fig.1 shows a schematic of a simple network of pathways displaying Braess’ paradox.  In 

traveling from Start to Finish, there is more than one possible route.  In the absence of the extra 

pathway (green), there are two possible routes from Start to Finish -- blue – red or red – blue.  In the 
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presence of the extra pathway, there is a third possible route, red – green – red.    The constant rate of 

travel on the blue pathway is slow, and on the green pathway, it is fast.  The hash marks on the red 

pathways denote that the rate of travel on the red road is not constant but rather is capacity dependent, 

i.e. subject to congestion.  The emergence of Braess’ paradox is dependent upon the total traffic 

through the system, rates of flow through the individual pathways, the magnitude of the capacity- 

dependent congestion and the presence or absence of the extra connecting pathway.  Additional 

constraints necessary for a Braess’ paradox-like effect in the traffic model are first that the travelers 

moving through the system act selfishly in finding the most expedient route and second that 

significant congestion increases the travel time of the red pathways, but not the blue pathways [4]. 

 

  

 

 

 

 

 

Fig. 1  Illustration of a network that can demonstrate Braess’ paradox.  In the absence of the extra 

pathway (green), there are two possible routes from Start to Finish: blue – red or red – blue.  In the 

presence of the extra pathway, there is a third possible route, red – green – red. 

 

 

Simple observation of the network of Fig.1 would suggest that the addition of the extra 

pathway might increase the overall transit rate at which travelers could move from Start to Finish.  

However, depending on the rates of each road, it turns out that the addition of the extra pathway can 

result in an overall reduction of the efficiency of system and increase the average travel time through 

the system because further congestion (reduced flow) develops on the red pathways (“fast”).   With 
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the addition of the extra path (green), it is assumed that most of the travelers will take the red-green-

red pathway; this increases the use of the red pathways, thus slowing down the rate of travel on these 

pathways and reducing the efficiency of the system.   

But is there a chemical analog to Braess’ paradox?  We have found a model of such a system 

of chemical reactions such that, under certain kinetic circumstances, the overall rate of the process 

can indeed be reduced by the addition of an interconnecting pathway.  Conversely, inhibition of an 

intermediate connecting reaction can result in an increase in the overall rate of reaction.   

 

2  The Model 

 To study Braess-like behavior in a chemical system, we designed a model that is a general 

chemical network with alternate pathways from the starting reactant (A) to the product (F) with the 

possibility of an additional pathway (green) linking intermediates (B and C) where all reaction steps 

are assumed to be first order (Fig. 2).   Unlike the traffic model described above where commuters are 

motivated to choose pathways to potentially optimize their speed through the network, molecules 

react by alternate pathways based on relative reaction rates, which reflect differences in energies of 

activation as determined by the Arrhenius equation.  The overall rate of formation of product in a 

complex system is analyzed by solving the governing equations using the individual reaction steps.  

The reversible pathways are represented by the reactions A ⇄ C and B ⇄ D and provide a means of 

introducing “congestion” in this reaction system; we define “congestion” in a chemical system as an 

obstruction to a forward reaction (AC or B  D) resulting from a reverse reaction (CA or 

DB).   The pathway D  F was added to provide insight into the overall system dynamics.  This 

pathway also controls the degree of “congestion” of the system.  The formation of the final product F 

was compared in the system when the intermediate pathway was active (k6, k-6 >0) to the system 

when the alternate pathway was absent (k6 = k-6 =0). 
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Fig. 2  A chemical reaction system inspired by Braess’ paradox. 

 

3   Preliminary Studies   

 The model shown in Fig.2 was initially explored using the chemical kinetic program, 

Kintecus.   Kintecus 3.96 is a deterministic, Arrhenius-based program developed by James Ianni and 

is free for academic use [10].   Various values of the rate constants were tested, and the 

concentrations of F were determined for 0<t< 1000 sec.  A network of chemical reactions that 

behaved analogous to Braess’ paradox is shown in Fig.3; note the inhibitory effect of the extra 

interconnecting pathway on the rate of production of the F. 

 

 

 

 

 

 

 
Fig. 3  Plot of the concentration of F  vs. reaction time of the system with (k6 = k-6= 2.00) 
and without (k6 = k-6 = 0.0)  the extra pathway,  B ⇄ C (Fig. 2) (Note: Ao = 1.0M and 
depleting)  
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The effect of the rate constant k5 on “congestion” and hence, the Braess-like behavior, was 

explored by varying k5, allowing A to deplete, and determining the concentration of reaction product 

F after 100sec. (Fig. 4a).  We note that k5 < 0.22 promotes sufficient congestion in the system to 

cause Braess-like behavior, which was lost when k5 > 0.22.  A similar trend was found if we fix A at 

1M, Fig.4b. In this case, the concentration of F was determined at 1000 secs, and Fig.4b indicates that 

the cross-over from Braess to non-Braess occurs for k5 = 0.16. 

 

 

 

 

 

 

Fig. 4a (left)  The production of F after 100 sec.      Fig. 4b (right) The production of F after 1000 
vs. the value of k5.  Note: A0  = 1.0M and A is      sec. vs. the value of k5 Note A =1.0M and 
depleting..          is held constant. 
 

4  Model Analysis  

 By way of investigating the possible Braess-like behavior in chemical systems, an analysis of 

the model of Fig.2 is here presented.  Denoting the various concentrations by A,B,C,D,F, the 

governing equations  read: 
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d
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 We investigated the four following cases: 

  Case 1: A=A(t), k6>0 

  Case 2: A=A(t), k6=0 

  Case 3: A= constant, k6>0 

  Case 4: A= constant, k6=0 

(Note: The k6  = 0 and k6 > 0 cases are analyzed separately because for k6  = 0 the A,C equations 

decouple from the B, D equations and the eigenvalue-eigenvector approach used for k6 > 0 is not so 

conveniently used when k6  = 0. Furthermore, the analysis is carried out for the most general case of  

k-6 ≠ k6, though in most applications we will restricted ourselves to the special case of k-6 = k6.)   

Case 1: A=A(t), k6>0 

 For k6 > 0, the governing equations are fully coupled, and it is convenient to treat the problem 

as standard eigenvalue-eigenvector problem. The equations are cast into matrix form: 

 

 


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


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D
C
B
A
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d

,  

 
in which the matrix of coefficients, M, is given by 
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Now substitute A, B, C, D ~e-λt and solve the determinental equation (i.e. “frequency eqn.”)   M-

λI=0 for the four eigenvalues λ = λ1, λ2, λ3, λ4. For each λ there corresponds a non-normalized 

eigenvector satisfying the equation 
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The general solution to the governing equations follows: 
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where the coefficients ξ1,… ξ4 are found from the “initial- condition” matrix equation (for Ao=1): 
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F(t) follows from 
t

DdtkF
0

5 , viz: 

)]1(.....)1([/ 41

4
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1

11
5
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o eekAF 


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
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As t, this yields F/Ao    1].....[
4

44

1

11
5 





k .   

This result is to be expected of course since it represents the fact that “what goes in one end”, namely 

A=Ao, has to “come out the other end”, together with the observation that A,B,C,D, all deplete to zero 

as t. It is also easy to see this result using the governing equations which, when summed, yield 

d/dt (A+B+C+D+F) = 0, i.e. A+B+C+D+F = Ao yielding FAo as t, since A,B,C,D  0 in the 

same limit.   
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 Using the k values in Fig.3, with k6 = k-6 =2, we obtain eigenvalues:  λ1 = 0.250235,    λ2 = 

4.127255,   λ3=0.0002714,   λ4=0.123239 corresponding (resp.) to eigenvectors (for Ao=1.0M) 
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The corresponding values of  ξ are:   ξ1= 0.26647,    ξ2=0.0002674,     ξ3=0.22892,   ξ4=0.50434. 

It is clear that the transient contributions to F(t) corresponding to λ1, λ2, and λ4 become vanishingly 

small after a few seconds (t~20s) after which time F(t)/Ao ~  tek 3

3

33
51 


  , dominated by the 

“slow” eigenvalue λ3=0.000271. For k5=0.001, this reads t
o eAtF 30033.11/)(  . 

 

Case 2: A=A(t), k6=0   

 For k6 =0, the A and C equations decouple from the B and D equations, viz: 

dA/dt = -(k1 + k3)A + k-3C,  dC/dt = k3A – (k-3 + k4 + k-6)C, which are easily solved to yield    
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where η± are the solutions of  k3η2 + (k-3+k4+k-6 -k3-k1)η – k-3 = 0 and ξ± = k1+k3(1- η±).   
 
These solutions are then substituted into the B and D equations,  
 
dB/dt = -k2B + k-2D + k-6C + k1A,  dD/dt = k2B – (k-2+k5)D + k4C,    
 
and these equations are combined by introducing σ, as follows: 

CkkAkDkkkBkDB
dt
d

)())(()1()( 4615222     

 
Choosing σ± to be the solutions of the quadratic k2(1-σ)σ + k-2(1-σ)-k5σ = 0, we have 
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Integrating and applying the initial conditions, B(0)=0=D(0), the solutions for B(t) and D(t), follow. 

Then F(t) follows from 
t

DdtkF
0

5 . 

 For the k values in Fig.3, and k6 = k-6 = 0, the transient behavior of F/Ao is determined by 

exponentials e-0.03t, e-0.25t, e-0.22t, and e-0.0004534t, so that for t 50s, the transient behavior is dominated 

by the last exponential and we find that F(t)/Ao ~ 1 – 1.016 e-0.00045t. Comparing this with the k6=k-6=2 

form of F(t) (Case 1, above), it is clear that the behavior of F(t) is Braess-like, i.e. F(t) is greater for 

k6=k-6=0 (no pathway) than for k6 = k-6 = 2 (pathway), with both of them converging to Ao as t. 

 Plots of the concentrations A,B,C,D, and F vs t are shown in Fig.5 (open pathway) and Fig.6 

(closed pathway) In both cases, the transient behavior is “slow” (c.f. the inverse time constants 

0.000271 and 0.00045). However, an extension of t beyond 1000s would confirm that indeed A…D 

deplete to zero. Likewise, although the F(t)/Ao vs. t plots look linear, one does find that in both cases 

they do indeed approach 1 as t .  The most important point made by Figs. 5 and 6 is that the 

presence of the pathway BC (i.e. k6=k-6 >0) inhibits rather than enhances the production rate of F. 

 While Cases 1 and 2 are interesting from a chemical point of view and certainly suggestive of 

the possibility of a Braess-like phenomenon occurring in chemical systems, the relationship to the 

Braess paradox itself should not be taken too literally, primarily because the processes in the above 

cases are at best quasi-equilibrium; the input A depletes in a finite time before full equilibrium can be 

established. Thus, we now investigate the effect of keeping the input A constant, that is replenishing it 

as it is used up, as our best hope of achieving dynamical equilibrium. Again, we consider separately 

k6 > 0 and k6 = 0. 

})({}){( 461
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Fig. 5 Concentrations of A, B, C, D, and F                          Fig. 6 Concentrations of A, B, C, D, and F 
after 1000 seconds with k6 = k-6 = 2.00, using the                after 1000 seconds with k6 = k-6 = 0, using  
the nominal k values and the initial concentration                nominal k values and the initial of A being 
1.0M.  (Case 1)                                                                      concentration of A being 1.0M.  (Case 2) 
 

 

Case 3: A= constant, k6>0 

 Writing the equations for B, C, and D in matrix form: 
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with A = Ao, and separating B, C, D, into their transient and steady-state pieces,  
 
B  Bt + Bss , C  Ct + Css, D  Dt + Dss,   the steady-state values of B, C, D, follow from 
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and the transient parts of B, C, D satisfy 
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The problem again becomes an eigenvalue-eigenvector problem: Substituting 

B e C e D et t t         ~ , ~ , ~    

yields the determinant M  - (I)=0. The resulting cubic equation for  yields three solutions: 1, 2, 

3 and for each eigenvalue, i ,  there corresponds an eigenvector (non-normalized), the solution of 

     0

1



















i

ii IM

 . 

 
The general solution of the system equations now follow: 

 

ss
ttt

ss
ttt

ss
ttt

DeeeD

CeeeC

BeeeB













321

321

321

332211

332211

321













 

 
and the coefficients 1,  2,  3 follow from the initial conditions B(0) = 0, C(0) = 0, D(0) = 0. 

Finally, the concentration F follows from 
t

DdtkF
0

5 .  Note that Dss is the slope of the asymptotic 

straight-line solution for F, i.e. F = k5Dss t as t becomes large.   

 In anticipation of investigating the effect of k5 (DF rate constant) the above system was 

solved using the nominal values in Fig. 3 with k6 = k-6  = 2, to yield the following eigenvalue, 

eigenvector, and steady-state-concentration data: 

 
k5 = 0.001 
       1 = 0.03364 2 = 0.21117 3 = 4.126187     

1 = -0.9564 2 = -0.15616 3 = 0.008516  Bss=1.10402 
1 = 0.94502 2 = 1.03155 3 = -1.01205  Css=1.0735 
1 = 1.4693 2 = -1.45223 3 = -0.01739  Dss=1.17858 

k5 = 0.01 
       1 = 0.038153 2 = 0.21566 3 = 4.126189     

1 = -0.8867 2 = -0.14524 3 = 0.00852  Bss=1.02342 
1 = 0.94704 2 = 1.03394 3 = -1.012049 Css=0.99853 
1 = 1.39809 2 = -1.52954 3 = -0.01743  Dss=1.01767 



14 
 

 
k5 = 0.03 
       1 = 0.047358 2 = 0.226447 3 = 4.126194     

1 = -0.79097 2 = -0.12229 3 = 0.008519  Bss=0.90475 
1 = 0.95118 2 = 1.03974 3 = -1.012046 Css=0.88814 
1 = 1.25227 2 = -1.71611 3 = -0.017514  Dss=0.78079 
 

k5 = 0.05 
       1 = 0.055471 2 = 0.23833 3 = 4.126199     

1 = -0.73775 2 = -0.10166 3 = 0.008519  Bss=0.83089 
1 = 0.95487 2 = 1.04620 3 = -1.01204  Css=0.81943 
1 = 1.12326 2 = -1.92282 3 = -0.017602  Dss=0.63336  

 
k5 = 0.1 
       1 = 0.071462 2 = 0.272325 3 = 4.126213     

1 = -0.67574 2 = -0.06192 3 = 0.008519  Bss=0.72914 
1 = 0.962215 2 = 1.065147 3 = -1.012037 Css=0.72478 
1 = 0.86757 2 = -2.52182 3 = -0.017828  Dss=0.43026 
 

For k5 = 0.001, the eigenvalues   1 = 0.03364, λ 2 = 0.21117, 3 = 4.126187 indicate that the transient 

behavior of F(t) is dominated by the e-0.03364t contribution for t>20s at which time the other two 

transient pieces are vanishingly small. Substituting the above data into the expression for D(t) and 

evaluating 
t

DdtkF
0

5 subject to F(0)=0, we obtain for t>20s 

])[(~/)( 1

1

11

3

33

2

22

1

11
5 tDekAtF ss

t
o  













 

 
i.e.  F(t)/Ao ~ 0.001[1.1786t + 41.773 e-0.03364t – 40.7] 
 
 From the above data we note that as k5 is increased, the resulting value of Dss decreases. 

However the asymptotic production rate of F, namely dF/dt = k5Dss increases. This is consistent with 

Fig. 4b: Increasing k5 reduces congestion in the system, so promoting the production rate of F(and 

subsequent value of F at time t) and pushing the system towards the non-Braess part of parameter 

space. As indicated in Fig. 4b the cross-over from Braess to non-Braess behavior occurs at k5=0.16. 
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Case 4: A= constant, k6=0 

 For k6=0, the dC/dt equation decouples from the B and D eqns., viz: 

dC/dt = -(k-3 + k4 + k-6)C + k3Ao , with solution  

)1( )(
0

364

3 643 tkkkeA
kkk

kC  






 . 

The B and D equations, dB/dt = -k2B +k-6C + k-2D + k1A0 and dD/dt = k2B – (k-2+k5)D + k4C may 

now be combined by introducing σ, as follows: 

 

])())(()1()( 46015222 CkkAkDkkkBkDB
dt
d     

 
Choosing σ± to be the solutions of the quadratic k2(1-σ)σ + k-2(1-σ)-k5σ = 0, we have 

 

 
 
 
 

Integrating and applying the initial conditions, B(0)=0=D(0), the solutions for B(t) and D(t), follow. 

Then F(t) follows from 
t

DdtkF
0

5 .   

 Again, k5 was varied to yield the following data: 
 
     k5  σ+  σ-   k2(σ+ -1)   k2(σ- -1) 
 
 0.001  0.99546  -1.2055  -0.000454  -0.22055 
 0.01  0.95567  -1.2557  -0.00443  -0.36057 
 0.03  0.87361  -1.3736  -0.01264  -0.2374 
 0.05  0.8  -1.5  -0.02   -0.25 
 0.1  0.649  -1.849  -0.0351   -0.2849 
 
 
 For the k values of Fig.3, with k6=k-6=0 and k5=0.001, the transient behavior of F/Ao is now 

determined by exponentials  e-0.15t, e-0.22t, and e-0.00045t, so that at “large” t, the transient behavior is 

})({}){( 4601
)1()1( 22 CkkAkeeDB

dt
d tktk




    
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dominated by the last exponential. Evaluating 
t

DdtkF
0

5  using F(0)=0 as usual, we find that for t 

 20s,  F(t)/Ao ~  [0.05t – 110.29 + 110.23 e-0.00045t].  

 We should here note that the coefficient of t in the expression for F/Ao is actually 

independent of k5, deriving from a steady state (t) component of D(t)/Ao of the form α/k5 where α 

depends on the remaining rate constants but is independent of k5. This fact is also evident from Fig.4b 

where the plot of F(1000)/Ao vs k5 flatlines for k50.05. (At lower values of k5 the parts of F(t) that 

are not linear in t and which depend on  k5 are such that the piece that is linear in t and independent of  

k5 has yet, at t=1000s, to dominate the solution for F.)  Recalling the data for Case 3 above, it is clear 

that for an open B  C pathway, k5Dss ≠ constant and thus the asymptotic (t ) rate of production 

of F is strongly dependent on the D  F rate constant k5. 

 We further note that as k5 increases, the value of the slower “eigenvalue” k2(1 - σ+) increases 

(to 0.0351 at k5=0.1) meaning the corresponding transient term in F(t) decreases quicker, which in 

turn means the rate dF/dt = k5D reaches its asymptotic value of 0.05 quicker, meaning F(1000) 

approaches its flatline value of 50 as k5 increases, again as indicated again in Fig.4b. 

 The predictions of our model for Cases 3 and 4, A = constant (i.e. A being continually 

replenished), for k5 = 0.001, are shown in Fig. 7 and 8, which make clear the fact that chemicals B, C, 

and D asymptote to steady values and, since dF/dt = k5Dss,  this leads directly to a constant rate of 

formation of F.  Also obvious from Figs. 7 and 8 is the significant (order of magnitude) inhibitory 

effect of opening the BC pathway (k6 = k-6 >0) analogous to the classical Braess paradox in 

transportation systems. 
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Fig. 7 Concentrations of A, B, C, D, and F                        Fig. 8 Concentrations of A, B, C, D, and F 
after 1000 seconds with k6 = k-6 = 2.00, using the              after 1000 seconds with k6 = k-6 = 0, using 
the nominal k values and the concentration                        nominal k values and the concentration of A  
of A being a constant 1.0 M. (Case 3)                 being a constant 1.0 M  Note differences in 
        y- axis values compared to Fig. 7. (Case 4) 
 
5.  Further Investigation of System Dynamics 

In order to explore the behavior of the model, the actual rates of each reaction (e.g. rate A 

B is k1A, rate B D is  k2B …) were calculated at 1000 seconds using the solutions for Cases 3 to 4 

for various values of rate constants k1 and k5 and using a fixed concentration of A = 1M; the resulting 

rates are shown in Table 1, which clearly reflects a Braess-like effect for certain ranges of k1 and k5, 

in that the D  F rate (bolded) decreases when the interconnecting pathway is active (k6 = k-6 = 2).  

Also, when the extra pathway is present in the system, the “congestion” of the system (i.e. the 

obstruction to the forward reaction by the reverse reaction) increases.  For example if k4 = k1 = 0.03 

and k5 = 0.001, when the pathway is absent, the BD reaction rate (2.19M/sec) is greater than the D 

 B reaction rate (2.18M/sec), whereas when the pathway is present, the reverse reaction rate D  B 

(0.14 M/sec) now exceeds the forward reaction rate B  D (0.11 M/sec).  This trend continues as k1 

increases as long as k5 remains sufficiently low.  At the same time, for low k1, even a relatively high 

k5, results in non-Braess behavior, e.g. for k1 = 0.03 and k5 = 0.20, with the presence of the pathway, 

the reaction rate D  B (0.031 M/sec) no longer exceeds the reaction rate of BD (0.064 M/sec), i.e. 

the presence of the pathway does not cause congestion.  Note the value dF/dt= 0.052 when the 

pathway is present compared with 0.05 when closed (non-Braess behavior).  These observations on 
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reaction rates are yet again consistent with the production of final product shown in Fig. 4b., which, 

again, confirms the  k1 = 0.16 transition from Braess to non-Braess behavior.  

It is also evident in Table 1that introducing the extra pathway causes congestion independent 

of whether or not the reversible reactions have the higher rate constant than the irreversible reactions.  

This is significant because in a traffic Braess paradox, the “fast” pathway is subject to congestion, and 

thus longer travel time, because the extra pathway causes all cars prefer to travel on these “fast” 

pathways.  We have found that for a chemical system, the “fast” pathways (highest rate constant) do 

not have to be subject to “congestion” (i.e. reversible reaction) in order for a Braess-like effect to 

emerge; the reversible reactions need only be present in the system. 

 

  

 

6   Conclusions 

When dealing with chemical networks, complex behavior may arise unexpectedly and it is 

imperative to examine interactions of reactions in the system and not simply independent reactions 

[1].  In the present study, we modeled a set of reactions inspired by Braess’ paradox and we 

  Table 1. Rates of reaction (M/sec) at 1000 seconds 
   k1= 0.03 k1 = 2.0 k1= 0.03 
 k6 = k-6 0.0 2.0 0 2.0 0.0 2.0 
 k5 0.001 0.001 0.001 0.001 0.20 0.20 

Rate 
Constants Reaction             

k1 A --> B 0.03 0.03 2.00 2.00 0.03 0.03 
k2 = 0.10 B --> D 2.19 0.11 92.6 3.12 0.06 0.064 
k‐2 = 0.12 D --> B 2.18 0.14 91.3 33.17 0.03 0.031 
k3 = 0.10 A --> C 0.10 0.10 0.10 0.10 0.10 0.10 
k‐3 = 0.12 C --> A 0.08 0.13 0.006 1.82 0.08 0.077 
k4 = k1 C --> D 0.02 0.03 0.094 30.33 0.02 0.02 

k5 D --> F 0.017 0.001 0.761 0.276 0.050 0.052 
k6 B --> C 0.00 2.21 0.00 62.38 0.00 1.29 
k‐6 C --> B 0.00 2.15 0.00 30.33 0.00 1.30 
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concluded that the introduction of additional capacity (e.g. pathways) in some chemical systems led 

to an unexpected reduction in the overall formation of product.   Conversely, inhibition of specific 

intermediate pathways can result in increased product formation.   

 Novel chemical systems can be inspired by mathematical paradoxes [3,11].  Here, we have 

explored the kinetic relationships of a system of reactions that mimic the counterintuitive activity 

described in Braess’ paradox.  The model provided in the present investigation is a general chemical 

system so as to explore scenarios leading to Braess-like behavior.  This model may thus lead to the 

creation of novel chemical systems and to the understanding of biochemical pathways that naturally 

behave in a Braess-like manner.  Another possible extension of this model might be to improve the 

understanding of some chemical inhibitors, which may act paradoxically.   Drugs are often designed 

to inhibit the production of an intermediate in a reaction pathway in order to reduce the formation of a 

final product.  However, our present investigation suggests that in some cases the opposite effect 

might occur, i.e. there may be circumstances when an inhibitor actually increases the efficiency of the 

overall chemical system.   Braess’ paradox might be just as relevant to chemical and biochemical 

systems as to everyday traffic networks [6,7], and thus worthy of further investigation.  
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