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Abstract

Based on Läuter’s (Biometrics, 1996) exact t test for biometrical studies related

to the multivariate normal mean, we develop a generalized F -test for the multivariate

normal mean and extend it to multiple comparison. The proposed generalized F -

tests have simple approximate null distributions. A Monte Carlo study and two

real examples show that the generalized F -test is at least as good as the optional

individual Läuter’s test and can improve its performance in some situations where

the projection directions for the Läuter’s test may not be suitably chosen. It is

discussed that the generalized F -test could be superior to individual Läuter’s tests

and the classical Hotelling T 2-test for the general purpose of testing the multivariate

normal mean. It is shown by Monte Carlo studies that the extended generalized F -

test outperforms the commonly-used classical test for multiple comparison of normal

means in the case of high dimension with small sample sizes.
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1. Introduction

It is well known that the Hotelling T 2-test is a commonly-used method

for testing the multivariate normal mean (Anderson, 1984). Theoretically, the

null hypothesis for such a test can be reduced to

H0 : µ = 0 (1.1)

versus H1: µ 6= 0 based on an i.i.d. sample x1, . . . , xn from a multivariate nor-

mal distribution Np(µ,Σ), where Σ is unknown and assumed to be positively

definite (Σ > 0). The classical Hotelling T 2-test is equivalent to an exact

F -test (Anderson, 1984) and is based on the condition that the sample size n

must be greater than the dimension p (i.e., n > p) so that the sample covari-

ance matrix is nonsingular. This condition, however, may not be satisfied in

some situations where experimental data are costly obtained. For example, in

a longitudinal study that may last for months or even years, the available num-

ber of experimental subjects is often limited or costly to obtain but the number

of time points for observing the experimental subjects is usually large. In this

case, the number of time points is the dimension of the observed data and the

number of experimental subjects is the sample size. We often face analysis of

high dimensional data with small sample sizes in longitudinal studies or other

medical research.

In their biometrical studies on treatment effects with multiple endpoints,

Läuter (1996) and Läuter et al. (1996) developed some exact t- and F -tests.

We will call these tests the Läuter’s tests in the subsequent discussion. The

remarkable advantage of Läuter’s tests is that they are applicable to both

cases of large and small sample sizes and even the case of n ≤ p. This is a

noteworthy improvement over the classical Hotelling T 2-test. Läuter’s tests

maintain the exact α-level for any pre-assigned significance level α (e.g., 1%,

5% and 10%) and possess some dimension stability. This implies that the tests

are applicable for both n > p and n ≤ p. This kind of dimension stability can
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also be found from the goodness-of-fit tests developed by Fang et al. (1998),

Liang and Fang (2000), and Liang et al. (2000).

In this paper, we will propose a generalized F -test for a general purpose

of testing the multivariate normal mean as in hypothesis (1.1) and extend it

to multiple comparison of normal means. The proposed test can improve the

power performance of Läuter’s tests in some situations and possesses the same

dimension stability property. This paper is organized as follows. Section 2

presents the theoretical outline for deriving the generalized F -test. Section 3

extends the results in Section 2 to multiple comparison of population means.

A Monte Carlo study is given in Section 4. Applications of the proposed

generalized F -test are illustrated by two real examples in Section 5. Some

remarks are given in the last section.

2. The Generalized F -Test

Läuter’s tests are based on the following Lemma (Läuter, 1996).

Lemma 1. Let X = (x1, . . . , xn)′ (n × p, n > p) be the observation ma-

trix of an i.i.d. sample x1, . . . , xn from the p-dimensional normal distribution

Np(µ,Σ) (Σ > 0) and d = f(X ′X) be a p×1 random vector that is a function

of X ′X and is uniquely determined by X ′X. Define the random vector

z = Xd. (2.1)

Then z has a spherical distribution (Fang et al., 1990) with P (z = 0) = 0.

Läuter (1996) proposed the following exact t-test for hypothesis (1.1):

T =
√

nz̄
/ [

1

n− 1

n∑

i=1

(zi − z̄)2

] 1
2

, (2.2)

where z = (z1, . . . , zn)′ is obtained from (2.1) and z̄ =
∑n

i=1 zi/n. Under the

assumption in Lemma 1, T has an exact t-distribution t(n − 1) with (n − 1)

degrees of freedom. Note that T in (2.2) does not depend on the dimension p.

That explains why T has the property of dimension stability. In other words,

3



T is not sensitive to the increase of dimension and it is applicable to the case

of n ≤ p.

The choice of d = f(X ′X) in Lemma 1 is an interesting issue that de-

serves further study. Briefly, it acts as a projection direction for projecting the

multivariate data in X onto the direction d. Läuter’s t-test in (2.2) is con-

structed from the one-dimensional “observations” z1, . . . , zn in z = (z1, . . . , zn)′

determined by (2.1). z1, . . . , zn may not be independent but have the same dis-

tribution (Fang et al., 1990). The spherical property of z in (2.1) guarantees

T in (2.2) has an exact t-distribution t(n − 1). Theoretically, any direction

d = f(X ′X) in Lemma 1 can lead to an exact t-test given by (2.2). Läuter

et al. (1996) gave a discussion on some meaningful choices of d in Lemma 1.

There is no optimal choice available in the literature. However, the principal

component (PC) direction was found to have good performance for general

purposes. This was also empirically verified by Liang et al. (2000).

For a general purpose without considering the directional interpretation of

rejecting the null hypothesis (1.1), the exact t-test (2.2) is equivalent to the

F -test given by

LF = T 2 = nz̄2
/ [

1

n− 1

n∑

i=1

(zi − z̄)2

]
. (2.3)

LF has an F -distribution F (1, n− 1) under Lemma 1. We will call a test for

(1.1) based on (2.3) the Läuter’s F -test in the subsequent context. Following

the discussion in Läuter et al. (1996) on the PC directions, we define the p

sample PC directions from the observation matrix X in Lemma 1 by

( 1

n
X ′X

)
D = DΛ, (2.4)

where D = (d1, . . . , dp)
′ (p×p) consists of the p PC directions d1, . . . , dp, and

Λ = diag(λ1, . . . , λp) (a diagonal matrix) with λ1 ≥ . . . ≥ λp ≥ 0. We impose

the condition on the matrix D so that D has positive diagonal elements for

the eigenvectors associated with the positive eigenvalues to ensure the unique
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solution to the eigenvalue-eigenvector problem (2.4). The population PC di-

rections {
∼
d1, . . . ,

∼
dp} are defined by the solutions to the eigenvalue-eigenvector

problem

Σ
∼
D=

∼
D

∼
Λ (2.5)

where
∼
D= (

∼
d1, . . . ,

∼
dp)

′ (p×p), and
∼
Λ= diag(

∼
λ1, . . . ,

∼
λp) with

∼
λ1≥ . . . ≥∼λp> 0.

∼
D is assumed to have positive diagonal elements to ensure the unique solution.

The following theorem is the basis for constructing the generalized F-test.

Theorem 1. Let {d1, . . . , dp} be the sample PC directions given by the solu-

tions to eigenvalue-eigenvector problem (2.4) and let the random vectors

z1 = Xd1, . . . , zp = Xdp, (2.6)

where X (n×p) is observation matrix as in Lemma 1 and (2.4). Assuming the

null hypothesis (1.1) is true and n > p, we have the following two assertions.

(1) The random vector zi (i = 1, . . . , p) has a spherical distribution with

P (zi = 0) = 0;

(2) z1, . . . , zp are asymptotically independent when n →∞.

Proof. For assertion (1), it is noted from (2.4) that each eigenvector di is a

function of X ′X. That is, we can write di = fi(X
′X). Assertion 1 follows

from Lemma 1.

For assertion (2), under the null hypothesis (1.1), the random matrix X ′X

has a Wishart distribution W (Σ, n) (see Mardia et al. (1979, p. 66)). Accord-

ing to Theorem 8.3.3 of Mardia et al. (1979, p. 230), the sample PC direction

di ∼ Np(
∼
di, V i/n) (approximately, for some covariance matrix V i determined

by Σ), where
∼
di is the population PC direction determined by (2.5), we can

write

n1/2(di−
∼
di) = Op(1), or di =

∼
di +gn, gn = Op(n

−1/2), (2.7)

where “Op(n
−1/2)” and “Op(1)” are the common notations used in the limit

theory of probability (see, e.g., Mardia et al. (1979, p. 52)). gn = Op(n
−1/2)

5



and bn = Op(1) are equivalent to

lim
k→∞

sup
n≥k

P
(
‖n1/2gn‖ > c

)
→ 0 as c →∞,

and lim
k→∞

sup
n≥k

P (‖bn‖ > c) → 0 as c →∞,
(2.8)

respectively, where “‖ · ‖” stands for the Euclidean norm of a vector. From the

definition of zi in (2.6), we have

zi = Xdi = X
∼
di +Xgn. (2.9)

Since X ∼ Nn×p(0, In ⊗Σ) under hypothesis (1.1), it is easy to verify that

X
∼
di∼ Nn(0,

∼
λi In), (2.10)

and {X
∼
di: i = 1, . . . , p} are independent due to

cov(X
∼
di,X

∼
dj) = E

{
vec(X

∼
di)

′[vec(X
∼
dj)

′]′
}

= E
{
(In⊗

∼
d ′

i)vecX
′[vecX ′]′(In⊗

∼
dj)

}

= (In⊗
∼
d ′

i)E
{
vecX ′[vecX ′]′

}
(In⊗

∼
dj)

= (In⊗
∼
d ′

i)(In ⊗Σ)(In⊗
∼
dj)

= In ⊗ (
∼
d ′

iΣ
∼
dj) = δij

∼
λi Im,

(2.11)

where
∼
λi’s (i = 1 . . . , p) in (2.10) and (2.11) are the eigenvalues of Σ in

(2.5) with
∼
λ1≥ . . . ≥∼λp> 0, δij = 0 if i 6= j and δij = 1 if i = j. Since

gn = Op(n
−1/2), it can be verified that

‖Xgn‖2 = g′nX
′Xgn = ng′n(X ′X/n)gn

≤ nλ1g
′
ngn = nλ1‖gn‖2 = λ1‖Op(1)‖2

(2.12)

according to Corollary A.9.2.1 of Mardia et al. (1979, p. 480), where λ1 is

the maximum eigenvalue of X ′X/n determined by (2.4). According to the

conclusion λ1 ∼ N(
∼
λ1, 2

∼
λ

2

1 /n) (approximately) in Theorem 8.3.3 of Mardia

et al. (1979, p. 230), we can write

n1/2(λ1−
∼
λ1) = Op(1) or λ1 =

∼
λ1 +Op(n

−1/2). (2.13)
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Substituting (2.13) into (2.12), we obtain

‖Xgn‖2 ≤∼λ1 ‖Op(1)‖2 + Op(n
−1/2)‖Op(1)‖2. (2.14)

According to the definition for Op(1) and Op(n
−1/2) in (2.8),

∼
λ1 ‖Op(1)‖2 + Op(n

−1/2)‖Op(1)‖2 P→ 0, (2.15)

where “
P→” means convergence in probability. Combining (2.9)-(2.15), we can

reach the conclusion that {z1, . . . , zp} given by (2.6) are asymptotically inde-

pendent for a large sample size n as a result of the independence of {X
∼
di:

i = 1, . . . , p} and Xgn
P→ 0 (n →∞). This completes the proof.

From Theorem 1, each zi (i = 1, . . . , p) given by (2.6) determines an exact

Läuter’s F -test

LFi = nz̄2
i

/

 1

n− 1

n∑

j=1

(zij − z̄i)
2


 , (i = 1, . . . , p) (2.16)

where z̄i =
∑n

j=1 zij/n and zi = (zi1, . . . , zin)′ is given by (2.6). Under hypothe-

sis (1.1), LFi in (2.16) has an exact F -distribution F (1, n−1) and LF1, . . . , LFp

are asymptotically independent as a result of the asymptotic independence of

z1, . . . , zp in Theorem 1. Theoretically, each LFi (i = 1, . . . , p) in (2.16) based

on a single PC direction can be used as an individual exact F -test for hy-

pothesis (1.1). A statistic that can collect the sample information from all PC

directions in (2.4) should dominate any individual test based on a single PC

direction. Since a large value of any of the Läuter’s F -test in (2.16) indicates

that the underlying normal distribution for the sample {x1, . . . , xn} may have

a nonzero mean, we consider the following generalized F -statistic

GF = max
1≤i≤r

{LFi} (2.17)

for testing hypothesis (1.1), where r represents the number of nonzero eigen-

values in (2.4), that is, r = p if n > p, r = n if n < p and r = p− 1 if n = p. A

large value of GF implies possible rejection of hypothesis (1.1). We will call a

test for (1.1) by GF in (2.17) the generalized F -test.
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Since the Läuter’s F -tests LFi (i = 1, . . . , p) given by (2.16) have an exact

F -distribution F (1, n− 1) and they are asymptotically i.i.d. under hypothesis

(1.1), we can easily obtain the asymptotic null distribution of GF . For any

x > 0,

P (GF < x) = P
(

max
1≤i≤p

{LFi} < x
)
≈ [F (x; 1, n− 1)]p , (2.18)

where F (x; 1, n− 1) represents the c.d.f. (cumulative distribution function) of

the F -distribution F (1, n − 1). The p-value of the generalized F -test by GF

in (2.17) can be approximately calculated by

P (GF > GF0) ≈ 1− [F (GF0; 1, n− 1)]p , (2.19)

where GF0 stands for an observed value of GF calculated from a sample.

Theorem 2. The generalized F -test for hypothesis (1.1) based on the GF-

statistic (2.17) is robust in the sense that GF (X)
d
= GF (X0) for any random

matrix X (n×p) with a stochastic decomposition X
d
= sX0, where “

d
=” means

that the two sides of the equality have the same probability distribution, s > 0

is a positive random variable with probability 1 and X0 ∼ Nn×p(0, In ⊗ Σ),

which implies that the rows of X0 are i.i.d. and have a normal distribution

Np(0,Σ).

Proof. When the stochastic decomposition X
d
= sX0 is true, the eigenvalue-

eigenvector problem (2.4) can be written as

( 1

n
s2X ′

0X0

)
D = DΛ, or

( 1

n
X ′

0X0

)
D = DΛ/s2. (2.20)

This implies that the eigenvectors {di : i = 1, . . . , p} determined by D =

(d1, . . . , dp) in (2.20) are the sample PC directions from the observation matrix

X0 consisted of an i.i.d. sample from Np(0,Σ). Then the random vectors

ẑi = Xdi = sX0di = szi, with zi = X0di, (2.21)

for i = 1, . . . , p. By the definition of the GF -statistic (2.17), we have

GF (X) = GF (ẑ1, . . . , ẑr) = max
1≤i≤r

{LFi(ẑi)}, (2.22)
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where r =the number of positive eigenvalues in (2.20), and

GF (X0) = GF (z1, . . . , zr) = max
1≤i≤r

{LFi(zi)}. (2.23)

Note that the statistics LFi(zi)’s (i = 1, . . . , r) defined by (2.16) are asymp-

totically (n →∞) i.i.d. and have the same F -distribution F (1, n− 1) when zi

is obtained from (2.21) according to Theorem 1. It is easy to verify that the

location-scale invariance for the statistics LFi(zi)’s:

LFi(ẑi) = LFi(szi) ≡ LFi(zi), i = 1, . . . , r. (2.24)

Summarizing (2.21) through (2.24), we can conclude

GF (X)
d
= GF (X0), if X

d
= sX0 with X0 ∼ Nn×p(0, In ⊗Σ), (2.25)

This completes the proof.

The conclusion in Theorem 2 implies that the GF -test (2.17) possesses

robustness in the family of “generalized normal mixtures”. That is, GF (X)

maintains the same distribution for X
d
= sX0 with s > 0 being a positive

random variable and X0 ∼ Nn×p(0, In ⊗ Σ). The GF -test (2.17) also main-

tains almost all of the good properties (such as the dimension stability) that

an individual Läuter’s F -test possesses, except that GF does not have an ex-

act F -distribution. For an arbitrarily chosen individual Läuter’s F -test, when

the direction d = f(X ′X) in Lemma 1 is not chosen as one of the sample

PC directions as in (2.4), all individual Läuter’s F -tests may have strong de-

pendence among themselves. This may cause the α-level not to be maintained

unless only one Läuter’s F -test is used. One of the obvious weaknesses of using

a single Läuter’s F -test is the possible loss of sample information from other

projection directions. The GF -test (2.17) can be considered to combine all

sample information from individual PC directions into one statistic. This is a

common practice in PC analysis (Jolliffe, 1986). A Monte Carlo study on the

performance of the GF -test (2.17) will be given in Section 4.
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3. Extension of the Generalized F -Test

The generalized F -test (2.17) can be extended to multiple comparison of

normal population means as specified by the following hypothesis

H0 : µ1 = µ2 = . . . = µk, (k ≥ 2) (3.1)

versus the alternative hypothesis H1: at least two means differ. This is exactly

the problem of classical multivariate analysis of variance (MANOVA) when

assuming normal populations with an identical covariance matrix. Let {xij :

i = 1, . . . , ni} be an i.i.d. sample from a normal population Np(µj,Σ) (j =

1, . . . , k) and assume that the k samples are independent with one another.

We want to test hypothesis (3.1). It is well-known that hypothesis (3.1) is

commonly tested by the classical Wilks lambda statistic, which is defined by

Λ = |W |/|W + B| ∼ Λ(p, n− k, k − 1) (3.2)

under hypothesis (3.1), where

W =
k∑

j=1

nj∑

i=1

(xij − x̄j)(xij − x̄j)
′ and B =

k∑

j=1

nj(x̄j − x̄)(x̄j − x̄)′ (3.3)

are respectively the “within-samples” and “between-samples”, and

x̄j =
1

nj

nj∑

i=1

xij, x̄ =
1

n

k∑

j=1

nj∑

i=1

xij, n =
k∑

j=1

nj, (3.4)

where x̄j stands for the j-th sample mean for the sample from the j-th popu-

lation and x̄ for the overall sample mean from all samples. The distribution

Λ(p, n− k, k − 1) in (3.2) is called the Wilks lambda distribution (see Mardia

et al. (1979, p. 81)). Hypothesis (3.1) is rejected for small values of Λ in (3.2).

The exact distribution of the Wilks Λ-statistic (3.2) is only available for the

special cases of k = 2 and k = 3 (see Mardia et al. (1979, p. 83)):

k = 2 :
n− p− 1

p
· 1− Λ(p, n− 2, 1)

Λ(p, n− 2, 1)
∼ F (p, n− p− 1),

k = 3 :
n− p− 2

p
· 1− Λ1/2(p, n− 3, 2)

Λ1/2(p, n− 3, 2)
∼ F (2p, 2(n− p− 2)).

(3.5)
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For the general case of k, the asymptotic χ2-distribution is employed when

using the Wilks Λ-statistic (3.2):

−
[
n− k − 1

2
(p− k + 2)

]
log Λ(p, n−k, k−1) ∼ χ2((k−1)p), n →∞. (3.6)

Now we extend the GF -test (2.17) to testing hypothesis (3.1). Let

X = (x11, . . . , x1n1 ,x21, . . . , x2n2 , . . . , xk1, . . . , xknk
)′ : n×p, n =

k∑

j=1

nj (3.7)

be the total observation matrix. The extended GF -test is based on the follow-

ing theorem.

Theorem 3. Let the total observation matrix X be defined by (3.7) and A a

constant matrix defined by

A =
(
aij

)
: (n− 1)× n, aij =





1√
i(i + 1)

, j = 1, . . . , i,

−i√
i(i + 1)

, j = i + 1,

0, otherwise.

(3.8)

Define the random matrix

Y = AX : (n− 1)× n, (3.9)

and the eigenvalue-eigenvector problem

1

n− 1
Y ′Y H = HΓ, (3.10)

where H = (h1, . . . , hp) (p× p) consists of the eigenvectors {h1, . . . , hp} and

Γ = diag(γ1, . . . , γp) consists of the eigenvalues γ1 ≥ . . . ≥ γp > 0 (assuming

n− 1 > p). Let

ui = Y hi, i = 1, . . . , p. (3.11)

Under hypothesis (3.1), we have the following assertions:

(1) Each ui (i = 1, . . . , p) has a spherical distribution with P (ui = 0) = 0;
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(2) {ui : i = 1, . . . , p} are asymptotically independent (n →∞).

Proof. Assuming hypothesis (3.1) is true, we have µ1 = . . . = µk = µ, say.

From the assumption on the normal samples in (3.7), the random matrix X

in (3.7) has a matrix normal distribution Nn×p(1nµ′, In⊗Σ). So the random

matrix Y in (3.9) also has a matrix normal distribution. The mean and the

covariance matrix of Y can be computed as follows. By the definition of the

constant matrix A in (3.8), it can be easily verified that A satisfies A1n = 0

and AA′ = In−1. Then

E(Y ) = AE(X) = A1nµ′ = 0,

cov(vecY ′) = (A⊗ Ip)cov(vecX
′)(A′ ⊗ Ip)

= (A⊗ Ip)(In ⊗Σ)(A′ ⊗ Ip)

= (AA′)⊗Σ = In−1 ⊗Σ.

(3.12)

That is, Y ∼ N(n−1)×p(0, In−1 ⊗ Σ). This implies that Y = (y1, . . . , yn−1)
′

is an (n − 1) × p observation matrix with i.i.d. observations {y1, . . . , yn−1}
from the normal population Np(0,Σ). Comparing the eigenvalue-eigenvector

problems (3.10) and (2.4), and (3.11) with (2.6), we can conclude that the two

assertions in Theorem 3 are true as a result of the two assertions in Theorem

1. This completes the proof.

Following the same approach as to defining the GF -statistic (2.17), we can

define the multiple GF -statistic (denote by MGF ) for testing hypothesis (3.1)

as follows. Let ui = (ui1, . . . , ui,n−1)
′ (i = 1, . . . , p) be given by (3.11) and

ūi =
∑n−1

j=1 uij/(n− 1). Define

MLFi(ui) = (n− 1)ū2
i

/

 1

n− 2

n−1∑

j=1

(uij − ūi)
2


 . (i = 1, . . . , p) (3.13)

Under hypothesis (3.1), MLFi(ui) in (3.13) has an exact F -distribution F (1, n−
2) and MLF1, . . . ,MLFp are asymptotically independent as a result of the

asymptotic independence of u1, . . . , up in Theorem 3. The MGF -test for (3.1)
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is defined by

MGF = max
1≤i≤p

{MLFi}. (3.14)

A large value of MGF implies rejection of hypothesis (3.1). Referring to (2.18)

and (2.19), we can obtain the approximate null distribution of MGF in (3.14):

P (MGF < x) ≈ [F (x; 1, n− 2)]p , x ≥ 0, (3.15)

where F (x; 1, n− 2) represents the c.d.f. of the F -distribution F (1, n− 2) as

in (2.18). The approximate p-value of the MGF -test for (3.1) by

P (MGF > MGF0) ≈ 1− [F (MGF0; 1, n− 2)]p , (3.16)

where MGF0 stands for an observed value of MGF calculated from the ob-

servations {xij : i = 1, . . . , ni; j = 1, . . . , k} and n is the total sample size

given by (3.4). By referring to Theorems 2 and 3, we have the following direct

corollary.

Corollary 1. The MGF -test (3.14) for hypothesis (3.1) is robust in the sense

that MGF (Y )
d
= MGF (Y 0) for any random matrix Y ((n − 1) × p) with

a stochastic decomposition Y
d
= RY 0 with R > 0 being a positive random

variable and Y 0 ∼ N(n−1)×p(0, In−1 ⊗Σ).

The robustness of the MGF -test (3.14) ensures the power stability for

observed data with some kind of departure from normal distribution. Based

on Corollary 1, we can expect the same power performance for non-normal

data Y
d
= RY 0 as for the normal data Y 0 after the transformation (3.9) for

the raw data. A simple empirical comparison between the MGF -test (3.14)

and the classical Wilks Λ-test (3.2) is given in next section.

4. A Monte Carlo Study

4.1. The finite-sample property

The asymptotic distribution (2.18) of the GF -statistic (2.17) is obtained

under large sample sizes. Its performance under finite-sample sizes can be

13



studied by the Monte Carlo method. A commonly-used method is to com-

pare the finite-sample quantiles of the GF -statistic (2.17) with the quantiles

of the asymptotic distribution (2.18) under the null hypothesis (1.1). This can

be assessed by the Q-Q (quantile-quantile) plot method. The finite-sample

quantiles of the GF -statistic (2.17) can be approximated by Monte Carlo sim-

ulation. Since the null distribution (2.18) does not depend on the unknown

covariance matrix Σ > 0 in hypothesis (1.1), we can generate empirical sam-

ples from the standard normal Np(0, Ip) in the Monte Carlo study. Let GFk

denote the empirical value of GF in (2.17) obtained from the k-th set of gen-

erated sample (k = 1, . . . , 10, 000). Repeating the simulation for 10,000 times,

we obtain 10,000 values of GF and arrange them in ascending order

GF(1) ≤ . . . ≤ GF(10000). (4.1)

Let α = (α1, . . . , α99) = (0.01, 0.02, . . . , 0.99). The empirical finite-sample

quantiles of GF at the percentages in α can be approximated by

GF(10000α1) ≤ GF(10000α2) ≤ . . . ≤ GF(10000α99). (4.2)

The corresponding asymptotic quantiles of GF by the distribution in (2.18)

are computed by

F−1[(1− αi)
1/p; 1, n− 1], i = 1, . . . , 99, (4.3)

where F−1(·; 1, n−1) represents the inverse c.d.f. of the F -distribution F (1, n−
1). The Q-Q plots for a number of selected sets of (n, p) under 10,000 sim-

ulation replications are presented in Fig. 1, where all the Q-Q plots show

satisfactory approximation: the empirical quantiles given by (4.2) (at the hor-

izontal axes) are roughly equal to the asymptotic quantiles computed by (4.3)

(at the vertical axes) because all plots are close to the equiangular line y = x.

Insert Fig. 1 here
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4.2. Type I error rates

The goodness-of-fit of the finite-sample distribution of GF in (2.17) by

the asymptotic distribution in (2.18) can be further studied by comparing the

empirical type I error rates of GF with the approximate type I error rates

computed from the asymptotic distribution in (2.18). Let x1−α be the (1−α)-

quantile (e.g., α = 1%, 5% and 10%) computed from (2.18). That is,

P (GF < x1−α) ≈ [F (x1−α; 1, n−1)]p = 1−α, or x1−α = F−1[(1−α)1/p; 1, n−1)].

(4.4)

After generating 5,000 sets of empirical samples from Np(0, Ip) for each pair

of (n, p), we summarize the empirical type I error rates of GF in Table 1 for

α = 1%, 5% and 10%. The results in Table 1 show that the empirical type

I error rates of GF in (2.17) are well approximated by the type I error rates

computed from the distribution in (2.18) for most cases of (n, p) with n > p or

n ≤ p. This also provides the justification of using the asymptotic distribution

in (2.18) as the finite-sample null distribution of generalized F -statistic GF in

various cases of (n, p).

Insert Table 1 here

4.3. Power study

Since the asymptotic distribution in (2.18) gives satisfactory type I error

rates as presented in Table 1, we can use it as the finite-sample null distribution

in computing the empirical power of the GF -statistic (2.17). Without loss

of generality, we can generate empirical samples from an alternative normal

distribution Np(µ,Σ) by assuming Σ = Ip and µ = c1p, where 1p stands for

the vector of ones (p × 1), c is a constant to be taken as 0 (0.05) 0.30 (i.e.,

the values c=0, 0.05, 0.10, . . ., 0.30). We call 1p the power direction in Table

2. It indicates that the power is computed based on the increasing distance of

the mean vector from the origin (c = 0) along this direction. We have tried

different choices of power directions in our simulation and obtained similar
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power performance to that based on the direction 1p for each selected set of

(n, p). The statistics in Table 2 are:

(a) GF : the generalized F -statistic (2.17);

(b) LF1: Läuter’s F -test in (2.16) by choosing the first PC direction d1

determined by (2.4);

(c) LFm: Läuter’s F -test in (2.16) by choosing the middle PC direction dm

determined by (2.4) with m = [p/2] if n > p, m = [n/2] if n < p, and

m = [(p − 1)/2] if n = p, where [ · ] denotes the integer part of a real

number;

(d) LFp and LFn: Läuter’s F -test in (2.16) by choosing the PC direction dp

(for n > p) or dn (for n < p) or dp−1 (for n = p) determined by (2.4).

The following conclusions can be summarized:

(1) The generalized F -test GF seems to be powerful for all pairs of (n, p) when

the normal mean µ = c1p increases along the direction 1p at c ≥ 0.20 for

n > p and at c = 0.15 for n ≤ p. It has approximately the same power

performance as that for the Läuter’s F -test LF1 in the case of n ≤ p;

(2) GF could improve the power performance of the Läuter’s F -test LF1 in

the case of large sample sizes. For example, for the cases n = 100, p = 5

and p = 10, c = 0.10, GF could improve the power of the best Läuter’s

F -test LF1 by more than 30%;

(3) Not all PC directions are suitable for constructing the Läuter’s F -tests.

When using the PC directions di for i ≥ m = [p/2] (n > p) or i ≥ m =

[n/2] (n ≤ p) in (2.4), Läuter’s F -tests may completely lose power. This

is indicated by the zero power values in Table 2;

(4) GF completely outperforms the individual Läuter’s F -tests LFm and LFp

(n > p) or LFn (n ≤ p) constructed from the PC directions associated

with small eigenvalues in (2.4).

Insert Table 2 here
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4.4. Empirical study on multiple comparison

In this subsection we present a simple Monte Carlo study on the multiple

comparison of normal means specified by hypothesis (3.1). The MGF -test

(3.14) is compared with the classical Wilks Λ-test (3.2) in the performance of

controlling type I error rates and power. Because the asymptotic distribution

(see (3.15)) of the MGF -test (3.14) does not depend on the common mean µ

and the common covariance matrix Σ under the null hypothesis (3.1), we can

choose an arbitrary common mean vector µ = 1p, say, and Σ =
(
σij

)
with

σii ≡ 1 and σij ≡ 0.5 for i 6= j (i, j = 1, . . . , p) in the Monte Carlo study.

The results for selected dimensions p =5, 10, 15 and 20 with the balanced

sample size for all populations ni ≡ 5 and ni ≡ 10 are summarized in Table 3,

where the critical values for the MGF -test are computed by (3.15) and those

for Wilks’ Λ-test by (3.6), the number of simulation repetition is 2,000. For

comparison, the corresponding results from Wilks Λ-test are also presented

in Table 3. It shows that the type I error rates of the MGF -test (3.14) are

satisfactorily controlled for all cases as considered. But Wilks Λ-test has poor

control of type I error rates for the cases of high dimension with small sample

sizes. For example, for the cases of p ≥ 15 and ni ≡ 5 in Table 3, Wilks Λ-test

has much higher type I error rates than those of the MGF -test. This implies

that, in the case of high dimension with small sample sizes, Wilks Λ-test tends

to reject the null hypothesis more frequently than does the MGF -test when

the null hypothesis is actually true.

Insert Table 3 here

Power comparison between the MGF -test and Wilks Λ-test can be partially

studied by assuming equal difference between any two population means in the

alternative hypothesis of the null hypothesis (3.1). That is, let

µi+1 − µi = c1p, i = 1, . . . , k − 1, (4.5)
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in the alternative hypothesis of (3.1) and the same common covariance matrix

Σ as that in Table 3, where c > 0 in (4.5) is a constant for measuring the

increasing difference between the population means. The simulation results

for the selected cases are presented in Fig. 2, where the number of simulation

repetition=2,000 and the balanced sample size ni ≡ 10, the critical values for

the MGF -test and those for Wilks’ Λ-test are obtained in the same way as in

Table 3, the number of simulation repetition is 2,000. Fig. 2 shows that the

MGF -test clearly outperforms Wilks Λ-test, especially when the dimension

becomes higher and higher while the sample size remains unchanged.

Insert Fig. 2 here

5. Applications

Example 1. The real data were collected from 19 depressive patients acquired

at the beginning and at the end of a six-week therapy. The nine variables

represent the changes of the absolute theta power of electroencephalogram

(EEG) during the therapy in nine selected channels (n = 19 and p = 9). The

full data can be found in in Läuter et al. (1996). The purpose is to see whether

the six-week therapy is effective (effectiveness means that significant nonzero

changes of the absolute theta power are observed after the six-week therapy).

The sample data in this example can be considered to be coming from

a 9-dimensional population associated with a 9-dimensional random vector

x = (X1, . . . , X9)
′. Without verifying the multivariate normal assumption on

the data set, Läuter et al. (1996) employed Läuter’s (1996) exact t-test (2.2)

to test hypothesis (1.1) by choosing two projection directions: (a) the SS-

test by choosing the projection direction d = diag(X ′X)1p (X is the n × p

observation matrix, and diag(X ′X) stands for the diagonal matrix with the

same diagonal elements as in X ′X); and (b) the PC-test by choosing the first

PC direction associated with the largest eigenvalue λ determined by

(X ′X)d = λdiag(X ′X)d, d′diag(X ′X)d = 1.
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Läuter et al. (1996) got the p-value 0.0489 for the SS-test and the p-value

0.0487 for the PC tests. Hence, they claimed that the six-week therapy is

effective at α = 5% and therefore reject the null hypothesis in (1.1). There

are two questions needed to be clarified in their analysis: (1) Is the multivari-

ate normal assumption on the underlying distribution of the sample satisfied?

and (2) What is the actual significance level when using the two individual

Läuter’s exact t-tests simultaneously? While question (1) may be easily an-

swered by employing some popular tests for multinormality such as Mardia’s

(1970) skewness and kurtosis tests, it is difficult to answer question (2) since it

is hard to show whether the two individual Läuter’s exact t-tests are asymp-

totically independent.

Actually, the 9-dimensional sample data set used by Läuter et al. (1996)

was found to show evidence of departure from multinormality by Mardia’s

(1970) multivariate skewness and kurtosis tests (e.g., p-values based on 10,000

replications of simulation are 0.0053 and 0.0000, respectively) and by the low-

dimensional projection tests for multinormality in Liang et al. (2000) with

almost all p-values below 0.001. It was pointed out by Liang et al. (2000) that

the source of non-multinormality of the whole data set is very likely to come

from the two variables X2 and X5 based on the single one-dimensional skew-

ness and kurtosis tests. We apply the power transformation y = sign(x)|x|β

(β > 0) to the observations from X2 and X5. Here, sign(x) denotes the com-

mon sign function. It turns out that β = 1/19 gives a p-value=0.1202 for

Mardia’s 9-dimensional skewness test and a p-value= 0.8264 for Mardia’s 9-

dimensional kurtosis test by generating 10,000 sets of standard normal samples

(Note: Mardia’s skewness and kurtosis are location-scale invariant. We can

generate standard normal samples in the simulation without loss of generality).

Therefore, after the power transformation y = sign(x)|x|1/19 on the observa-

tions from the two variables X2 and X5, we can consider the 9-dimensional
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data set from the population associated with the 9-dimensional random vector

x = (X1, sign(X2)|X2|1/19, X3, X4, sign(X5)|X5|1/19, X6, . . . , X9)
′ (5.1)

as multivariate normally distributed. Hence, the multivariate normal assump-

tion is now satisfied and we can carry out the Läuter’s F -tests (2.16) and the

generalized F -test (2.17). The results are summarized in Table 4, where the

observed values of the statistics are computed from the sample data after the

above transformation (5.1), the exact P-V (P-V=p-value) of the correspond-

ing statistics are computed from their exact distributions: for the Läuter’s

tests LFi (i = 1, . . . , 9), their exact distributions are the same F -distribution

F (1, n−1) = F (1, 18) (n = 19); for the generalized F -test GF , its exact distri-

bution is taken as the asymptotic distribution given in (2.18). The empirical

P-V for each statistic in Table 4 is obtained from 10,000 sets of empirical stan-

dard normal samples. The p-values for all tests in Table 4 are greater than the

significance level α = 5%. This provides enough evidence on the insignificance

of all tests in Table 4. That is, we should not reject hypothesis (1.1) and

consider there is no evidence to show the effectiveness of the six-week therapy

based on the experimental data at the significance level α = 5%. From Table

4, the p-value of Läuter’s test LF1 is 0.0559 < 10% but all other Läuter’s tests

have p-values that are greater than 10%. This implies that individual Läuter’s

tests may give inconsistent results in practice.

Insert Table 4 here

Example 2. In longitudinal studies, sample data are usually observed at

different time points. Suppose that we have observations at p time points:

t = 1, 2, . . . , p, here t = 1 means the initial time point (e.g., before the start

of an experiment). The observations of a random index (variable) X from n ex-

perimental subjects at the p time points are denoted by xi = (xi1, . . . , xip)
′ for

i = 1, . . . , n. For example, each observed value xij (i = 1, . . . , n; j = 1, . . . , p)
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may denote the tumor volume of mouse i at week j after some treatment in

a cancer research project. Assume that the data {x1, . . . , xn} are indepen-

dently observed and from the same population and E(xi) = µ = (µ1, . . . , µp)
′

(i = 1, . . . , n). We want to test the null hypothesis

H0 : µ1 = µ2 = . . . = µp. (5.2)

Note that this is not the usual one-way ANOVA (analysis of variance) problem

since the observations at different time points are usually dependent and may

not have the same variance in longitudinal studies. In order to test hypothesis

(5.2) by our generalized F -test (2.17) and the Läuter’s F -tests (2.16), let

X = (x1, . . . , xn)′, Y = (y1, . . . , yn)′ = XA,

A =
(
aij

)
: p× (p− 1), aij =





1, if i = j,

−1, if i = j + 1,

0, otherwise.

(5.3)

Hence, testing hypothesis (5.2) from the observation matrix X in (5.3) is

equivalent to testing hypothesis

H0 : µy = (µ1 − µ2, µ2 − µ3, . . . , µp−1 − µp)
′ = 0, 0 : (p− 1)× 1, (5.4)

from the observation matrix Y in (5.3), where µy is the mean vector of the i.i.d.

observations {y1, . . . , yn} in (5.3). If we assume that {x1, . . . , xn} in (5.3) is

an i.i.d. p-dimensional normal sample from Np(µ,Σ), then {y1, . . . , yn} in

(5.3) is a (p− 1)-dimensional i.i.d. normal sample from Np−1(µy, A
′ΣA) with

A given in (5.3). If hypothesis (5.4) is rejected at level α (e.g., 1%, 5% and

10%), we can conclude that hypothesis (5.2) is also rejected at level α. It is

obvious that hypothesis (5.4) is only one of the many equivalent alternatives

to hypothesis (5.2).

Now we apply the above transformation method to a real data set. Tan

et al. (2005) examined the multivariate normal assumption on a data set
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used in a cancer research project. The data of tumor volumes of mice in

experiment were observed weekly for a period of 12 weeks. It is the aim

to study the activity of a new anticancer drug irinotecan (CPT-11) against

neuroblastoma in xenograft models for two treatment regimens. The tumor-

bearing mice in Group I received 0.4 mg/kg CPT-11 and those in Group II

received CPT-11 0.26 mg/kg. Mice from the same strain were used and they

are virtually genetically identical. Eleven mice have been successfully cultured

with subcutaneous transplant of tumor and are divided into two groups. The

tumor volumes (cm3) were measured at the initial time and once every week

for 12 weeks. Missing data arise because six mice died of toxicity or were

sacrificed due to its tumor volume quadrupled early (it is marked “*” in Table

4, meaning missing values in the observation). The full data set in Table 5 is

borrowed from Tan et al. (2005).

Insert Table 5 here

From Table 5, it can be seen that most of the mice (except mouse #10)

can survive in the first 9 weeks. We have complete data from 10 mice (except

mouse 10) in the first 9 weeks. It is of interest to see whether there is a

significant difference among the cancer tumor volumes in the 10 mice during

the first 9 weeks. This leads us to consider the statistical hypothesis (5.2)

with p = 10 (i.e., weeks 0, 1, ..., 9). That is, we want to test hypothesis (5.4)

based on the observed data in Y given by (5.3) with dimension p − 1 = 9.

As in Example 1, we also employ Mardia’s (1970) multivariate skewness and

kurtosis tests to check the multinormality assumption of the data in Y given

by (5.3). By generating 10,000 sets of standard normal samples, we obtain

p-value=0.8090 for Mardia’s skewness test and p-value=0.1855 for Mardia’s

kurtosis test. Therefore, we can consider that the data in Y given by (5.3)

with dimension p− 1 = 9 are from a 9-dimensional normal population. Hence,

we can apply the Läuter’s tests (2.16) and the generalized F -test (2.17) to
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hypothesis (5.4). The results are summarized in Table 6, where the observed

values of the statistics are computed from the data in Y given by (5.3), the

exact P-V (P-V=p-value) of the corresponding statistics are computed from

their exact distributions: for the Läuter’s tests LFi (i = 1, . . . , 9), their exact

distributions are the same F -distribution F (1, n − 1) = F (1, 9) (n = 10); for

the generalized F -test GF , its exact distribution is taken as the asymptotic

distribution given in (2.18). The empirical P-V for each statistic in Table 6 is

obtained from 10,000 sets of empirical standard normal samples. The p-values

of almost all tests (except LF2, whose exact p-value= 0.0164 < 5%) in Table

6 show that all tests are insignificant at level α = 5%, implying no significant

difference among the cancer tumor volumes observed in the first 9 weeks from

the 10 selected mice. That is, we do not reject hypothesis (5.4) at level 5%

based on the observed data from the first 9 weeks. This can be interpreted

as no significant increase for the cancer tumors in the mice during the first 9

weeks. The drug seems to take effect after week nine for most mice. It is noted

that the individual Läuter’s tests in Table 5 give inconsistent results: seven of

them have p-values> 10%, implying insignificance at level 10%, while two of

them (LF1 and LF2) have p-values< 10%, implying significance at level 10%.

This results in inconsistent interpretation in practical application.

Insert Table 6 here

6. Remarks

From the limited Monte Carlo study and the applications in two real data

sets, we conclude that the generalized F -test GF in this paper is generally

at least as good as the individual Läuter’s F -tests constructed from the PC

directions in (2.4). GF could markedly improve the individual Läuter’s F -

tests when the Läuter’s test chooses an unsuitable projection direction such as

those PC directions associated with small eigenvalues. Application in the two

examples shows that the generalized F -test GF is superior to the individual
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Läuter’s F -tests based on PC directions when they are used separately, which

may lead to differences among their p-values for the same data set.

It is a remarkable advantage that both the proposed generalized F -test

and the Läuter’s F -tests are applicable to testing the multivariate normal

mean with high dimension and possibly very small sample size compared to

the dimension. Classical tests such as the Hotelling T 2-test or likelihood-ratio-

type tests require that the sample size should be larger than the dimension

to ensure good approximation by the limiting distribution of a test statistic.

In terms of dimension stability, both the proposed generalized F -test and the

Läuter’s F -tests are superior to the Hotelling T 2-test or likelihood-ratio-type

tests. Example 2 illustrates the application of the generalized F -test and

the Läuter’s F -tests in the case of very small sample size compared to the

dimension.

Extension of the GF -test (2.17) to the MGF -test (3.14) for multiple com-

parison of normal population means greatly improves the classical Wilks Λ-test

in controlling type I error rates and maintaining high power in the case of high

dimension with small sample sizes. This implies that the MGF -test (3.14) is

especially suitable for the case of high dimension with small sample sizes.

It is noted that the GF -test (2.17), the Läuter’s F -tests and the MGF -test

(3.14) do not possess location-scale invariance as compared to the Hotelling

T 2-test and Wilks Λ-test. Glimm and Läuter (2003) pointed out that location-

scale invariance is not always an advantage in some practical data analysis.

Both the GF -test (2.17) and the MGF -test (3.14) possess some kind of ro-

bustness against a departure from multinormality for the raw data as summa-

rized in Theorem 2 and Corollary 1. This implies that the GF -test (2.17) and

the MGF -test (3.14) can still give reliable results for some kind of non-normal

data as mentioned in Theorem 2 and Corollary 1. It is an open problem to

find the noncentral distributions of the Läuter’s F -tests (2.16), the GF -test

(2.17), and the MGF -test (3.14). This exceeds the scope of this paper.
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Table 1

Empirical type I error rates by using the approximate distributions (No. of

simulations=5,000)

(n, p) α = 1% α = 5% α = 10% (n, p) α = 1% α = 5% α = 10%

(20,3) 0.0100 0.0484 0.0968 (40,3) 0.0100 0.0526 0.0964

(20,5) 0.0090 0.0506 0.0994 (40,5) 0.0086 0.0484 0.1012

(20,8) 0.0092 0.0492 0.1030 (40,8) 0.0104 0.0524 0.1006

(20,10) 0.0108 0.0514 0.1060 (40,10) 0.0120 0.0510 0.1004

(25,30) 0.0096 0.0428 0.0894 (30,30) 0.0092 0.0502 0.1002

(30,35) 0.0080 0.0424 0.0872 (35,35) 0.0096 0.0550 0.1146

(35,40) 0.0100 0.0500 0.1016 (40,40) 0.0090 0.0514 0.1058

(40,45) 0.0084 0.0424 0.0932 (45,45) 0.0114 0.0546 0.1058

26



Table 2

Power comparison between the generalized F -test and selected Läuter’s tests

(No. of simulations=2,000)

Sample Dimension p = 5, Power Direction=c15, α = 5%
Size Stat. c = 0.00 c = 0.05 c = 0.10 c = 0.15 c = 0.20 c = 0.25 c = 0.30

n = 40 GF 0.0590 0.0690 0.2345 0.8000 0.9995 1.0000 1.0000
LF1 0.0500 0.0650 0.2335 0.7440 0.9930 1.0000 1.0000
LFm 0.0550 0.0615 0.1530 0.2815 0.1035 0.0030 0.0000
LFp 0.0510 0.0565 0.0700 0.0560 0.0145 0.0005 0.0000

n = 100 GF 0.0480 0.1000 0.6255 0.9970 1.0000 1.0000 1.0000
LF1 0.0465 0.0805 0.4640 0.9655 0.9995 1.0000 1.0000
LFm 0.0555 0.0875 0.3135 0.3290 0.0575 0.0015 0.0000
LFp 0.0435 0.0595 0.1360 0.0855 0.0145 0.0000 0.0000

Dimension p = 10, Power Direction=c110, α = 5%
c = 0.00 c = 0.05 c = 0.10 c = 0.15 c = 0.20 c = 0.25 c = 0.30

n = 40 GF 0.0535 0.0700 0.2795 0.9365 1.0000 1.0000 1.0000
LF1 0.0465 0.0640 0.3165 0.9125 1.0000 1.0000 1.0000
LFm 0.0520 0.0620 0.1000 0.0525 0.0015 0.0000 0.0000
LFp 0.0555 0.0515 0.0490 0.0155 0.0010 0.0000 0.0000

n = 100 GF 0.0555 0.1120 0.7510 1.0000 1.0000 1.0000 1.0000
LF1 0.0515 0.0995 0.5775 0.9970 1.0000 1.0000 1.0000
LFm 0.0565 0.0790 0.1695 0.0615 0.0020 0.0000 0.0000
LFp 0.0540 0.0625 0.0785 0.0220 0.0015 0.0000 0.0000

Sample Dimension p = 30, Power Direction=c130, α = 5%
Size Stat. c = 0.00 c = 0.05 c = 0.10 c = 0.15 c = 0.20 c = 0.25 c = 0.30

n = 25 GF 0.0515 0.0520 0.1710 0.9590 1.0000 1.0000 1.0000
LF1 0.0545 0.0780 0.3715 0.9815 1.0000 1.0000 1.0000
LFm 0.0420 0.0420 0.0230 0.0010 0.0000 0.0000 0.0000
LFn 0.0505 0.0430 0.0170 0.0095 0.0080 0.0045 0.0015

n = 30 GF 0.0505 0.0495 0.2660 0.9970 1.0000 1.0000 1.0000
LF1 0.0580 0.0830 0.4550 0.9955 1.0000 1.0000 1.0000
LFm 0.0435 0.0405 0.0220 0.0000 0.0000 0.0000 0.0000
LFn 0.0520 0.0450 0.0185 0.0045 0.0075 0.0015 0.0010
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Table 3.

Comparison of the empirical type I error rates between Wilk’s Λ-test and the

MGF -test

Multiple comparison of k = 5 population means

p = 5 p = 10

Test α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

ni ≡ 5 Λ 0.0085 0.0485 0.0985 0.0165 0.0755 0.1330

MGF 0.0075 0.0485 0.1000 0.0090 0.0485 0.1055

ni ≡ 10 Λ 0.0070 0.0430 0.0880 0.0085 0.0605 0.1090

MGF 0.0135 0.0545 0.1035 0.0105 0.0505 0.1120

Test p = 15 p = 20

ni ≡ 5 Λ 0.0650 0.1805 0.2860 0.7385 0.8605 0.9145

MGF 0.0120 0.0440 0.1000 0.0085 0.0500 0.1010

ni ≡ 10 Λ 0.0110 0.0635 0.1130 0.0175 0.0775 0.1385

MGF 0.0110 0.0635 0.1175 0.0135 0.0595 0.1120

Multiple comparison of k = 10 population means

p = 5 p = 10

Test α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

ni ≡ 5 Λ 0.0105 0.0475 0.0945 0.0145 0.0605 0.1180

MGF 0.0060 0.0465 0.0960 0.0045 0.0390 0.0820

ni ≡ 10 Λ 0.0110 0.0505 0.1000 0.0060 0.0410 0.0875

MGF 0.0085 0.0505 0.0985 0.0115 0.0535 0.0970

Test p = 15 p = 20

ni ≡ 5 Λ 0.0205 0.0690 0.1310 0.0265 0.1065 0.1900

MGF 0.0100 0.0530 0.1000 0.0140 0.0545 0.1080

ni ≡ 10 Λ 0.0105 0.0555 0.1095 0.0115 0.0515 0.1105

MGF 0.0115 0.0535 0.1025 0.0105 0.0600 0.1065
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Table 4

Comparison between empirical p-values and exact p-values of the GF -test and

Läuter’s tests

Test Observed value Exact P-V Empirical P-V

GF 4.1749 0.4044 0.4439

LF1 4.1749 0.0559 0.0530

LF2 0.0509 0.8240 0.8225

LF3 0.3341 0.5704 0.5764

LF4 0.2064 0.6550 0.6599

LF5 0.0548 0.8176 0.8130

LF6 2.4705 0.1334 0.1323

LF7 0.0346 0.8546 0.8567

LF8 0.1546 0.6988 0.6991

LF9 0.9772 0.3360 0.3352
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Table 5

Volumes (cm3) of NB-SD tumor measured in 12 weeks for different combina-

tions

Weeks

Group Mouse 0 1 2 3 4 5 6 7 8 9 10 11 12

1 2.34 2.48 2.04 1.06 1.26 0.91 0.84 1.08 0.86 0.59 * * *

2 1.11 1.54 0.81 0.93 1.37 1.00 0.98 1.70 0.77 0.51 1.88 4.97 *

I 3 0.96 0.99 0.99 0.53 0.72 0.36 0.17 0.63 0.45 0.48 2.14 2.89 *

4 0.66 0.60 0.49 0.78 1.40 1.33 1.11 1.31 0.69 0.98 3.44 3.08 *

5 2.08 2.15 1.87 0.83 0.78 0.26 0.16 0.64 0.30 0.51 2.02 * *

6 1.09 1.04 0.76 0.77 0.72 0.29 0.20 0.29 0.68 0.55 0.55 * *

7 0.74 0.93 0.83 0.59 0.60 0.41 0.22 0.31 0.15 0.18 1.03 8.21 *

II 8 0.94 1.12 1.67 2.69 3.51 2.77 2.36 2.89 2.49 2.64 3.96 * *

9 1.84 1.99 2.75 4.29 6.41 4.04 3.20 3.89 4.10 6.38 * * *

10 1.21 1.41 1.97 2.07 2.98 2.30 * * * * * * *

11 1.24 1.32 1.63 2.43 3.00 2.04 1.08 1.07 0.39 0.88 1.86 5.90 *

30



Table 6

Comparison between empirical p-values and exact p-values of the GF -test and

Läuter’s tests

Test Observed value Exact P-V Empirical P-V

GF 8.6533 0.1386 0.1486

LF1 4.2508 0.0693 0.0710

LF2 8.6533 0.0164 0.0155

LF3 0.0486 0.8304 0.8316

LF4 0.1406 0.7164 0.7177

LF5 0.3415 0.5733 0.5852

LF6 0.0012 0.9730 0.9736

LF7 0.1608 0.6978 0.6984

LF8 0.2633 0.6202 0.6094

LF9 0.4154 0.5353 0.5324
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Fig. 1. Q-Q plots for the empirical quantiles (4.2) (the horizontal axis) of

the generalized F -statistic (2.17) versus the asymptotic quantiles (the vertical

axis) computed by (4.3).
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Fig. 2. Power comparison (level α = 5%) between the MGF -test and

Wilks Λ-test. In each plot, the population mean difference μi+1 − μi = c1p

(i = 1, . . . , k − 1) with the increasing c-values as indicated. k =number of

populations, p =population dimension.
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