
The Busy Coder's Guide to Android 
Development

by Mark L. Murphy



The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or 
business use. For more information, contact direct@commonsware.com.

Printing History:
Jul 2008: Version 1.0 ISBN: 978-0-9816780-0-9

The  CommonsWare  name  and  logo,  “Busy  Coder's  Guide”,  and  related  trade  dress  are 
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages 
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Table of Contents

Welcome to the Warescription!..................................................................................xiii

Preface..........................................................................................................................xv

Welcome to the Book!...........................................................................................................xv

Prerequisites..........................................................................................................................xv

Warescription.......................................................................................................................xvi

Book Bug Bounty.................................................................................................................xvii

Source Code License..........................................................................................................xviii

Creative Commons and the Four-to-Free (42F) Guarantee............................................xviii

The Big Picture................................................................................................................1

What Androids Are Made Of.................................................................................................3

Activities...........................................................................................................................3

Content Providers...........................................................................................................4

Intents..............................................................................................................................4

Services.............................................................................................................................4

Stuff At Your Disposal.............................................................................................................5

Storage..............................................................................................................................5

Network............................................................................................................................5

Multimedia.......................................................................................................................5

GPS...................................................................................................................................5

Phone Services.................................................................................................................6

Project Structure............................................................................................................7

Root Contents..........................................................................................................................7

The Sweat Off Your Brow.......................................................................................................8

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



And Now, The Rest of the Story.............................................................................................8

What You Get Out Of It.........................................................................................................9

Inside the Manifest........................................................................................................11

In The Beginning, There Was the Root, And It Was Good.................................................11

Permissions, Instrumentations, and Applications (Oh, My!).............................................12

Your Application Does Something, Right?..........................................................................13

Creating a Skeleton Application...................................................................................17

Begin at the Beginning...........................................................................................................17

The Activity............................................................................................................................18

Dissecting the Activity...........................................................................................................19

Building and Running the Activity.......................................................................................21

Using XML-Based Layouts............................................................................................23

What Is an XML-Based Layout?...........................................................................................23

Why Use XML-Based Layouts?............................................................................................24

OK, So What Does It Look Like?..........................................................................................25

What's With the @ Signs?....................................................................................................26

And We Attach These to the Java...How?...........................................................................26

The Rest of the Story.............................................................................................................27

Employing Basic Widgets.............................................................................................29

Assigning Labels....................................................................................................................29

Button, Button, Who's Got the Button?..............................................................................30

Fleeting Images......................................................................................................................31

Fields of Green. Or Other Colors..........................................................................................31

Just Another Box to Check....................................................................................................34

Turn the Radio Up.................................................................................................................37

It's Quite a View....................................................................................................................39

Useful Properties...........................................................................................................39

Useful Methods..............................................................................................................39

Working with Containers.............................................................................................41

Thinking Linearly..................................................................................................................42

Concepts and Properties...............................................................................................42

Example..........................................................................................................................45

All Things Are Relative.........................................................................................................50

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Concepts and Properties...............................................................................................50

Example..........................................................................................................................53

Tabula Rasa............................................................................................................................56

Concepts and Properties...............................................................................................56

Example..........................................................................................................................59

Scrollwork..............................................................................................................................60

Using Selection Widgets...............................................................................................65

Adapting to the Circumstances............................................................................................65

Using ArrayAdapter......................................................................................................66

Other Key Adapters.......................................................................................................67

Lists of Naughty and Nice....................................................................................................68

Spin Control...........................................................................................................................70

Grid Your Lions (Or Something Like That...).....................................................................74

Fields: Now With 35% Less Typing!.....................................................................................78

Galleries, Give Or Take The Art...........................................................................................82

Employing Fancy Widgets and Containers..................................................................83

Pick and Choose....................................................................................................................83

Time Keeps Flowing Like a River.........................................................................................88

Making Progress....................................................................................................................89

Putting It On My Tab...........................................................................................................90

The Pieces.......................................................................................................................91

The Idiosyncrasies..........................................................................................................91

Wiring It Together........................................................................................................93

Other Containers of Note.....................................................................................................96

Applying Menus............................................................................................................97

Flavors of Menu.....................................................................................................................97

Menus of Options.................................................................................................................98

Menus in Context................................................................................................................100

Taking a Peek.......................................................................................................................102

Embedding the WebKit Browser................................................................................107

A Browser, Writ Small.........................................................................................................107

Loading It Up.......................................................................................................................109

Navigating the Waters..........................................................................................................111

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Entertaining the Client.........................................................................................................111

Settings, Preferences, and Options (Oh, My!)....................................................................114

Showing Pop-Up Messages..........................................................................................117

Raising Toasts........................................................................................................................117

Alert! Alert!............................................................................................................................118

Checking Them Out.............................................................................................................119

Dealing with Threads..................................................................................................123

Getting Through the Handlers............................................................................................123

Messages.......................................................................................................................124

Runnables.....................................................................................................................127

Running In Place..................................................................................................................127

Utilities (And I Don't Mean Water Works).......................................................................128

And Now, The Caveats........................................................................................................128

Handling Activity Lifecycle Events..............................................................................131

Schroedinger's Activity.........................................................................................................131

Life, Death, and Your Activity.............................................................................................132

onCreate() and onCompleteThaw()............................................................................132

onStart(), onRestart(), and onResume().....................................................................133

onPause(), onFreeze(), onStop(), and onDestroy()...................................................134

Using Preferences........................................................................................................137

Getting What You Want......................................................................................................137

Stating Your Preference.......................................................................................................138

A Preference For Action......................................................................................................138

Accessing Files.............................................................................................................143

You And The Horse You Rode In On.................................................................................143

Readin' 'n Writin'.................................................................................................................147

Working with Resources..............................................................................................151

The Resource Lineup............................................................................................................151

String Theory........................................................................................................................152

Plain Strings..................................................................................................................152

String Formats..............................................................................................................153

Styled Text.....................................................................................................................153

Styled Formats..............................................................................................................154

vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Got the Picture?...................................................................................................................158

XML: The Resource Way.....................................................................................................160

Miscellaneous Values...........................................................................................................163

Dimensions...................................................................................................................163

Colors............................................................................................................................164

Arrays............................................................................................................................165

Different Strokes for Different Folks..................................................................................166

Managing and Accessing Local Databases...................................................................171

A Quick SQLite Primer........................................................................................................172

Start at the Beginning..........................................................................................................173

Setting the Table..................................................................................................................174

Makin' Data..........................................................................................................................174

What Goes Around, Comes Around...................................................................................176

Raw Queries..................................................................................................................176

Regular Queries............................................................................................................177

Building with Builders.................................................................................................177

Using Cursors...............................................................................................................179

Change for the Sake of Change...................................................................................179

Making Your Own Cursors..........................................................................................180

Data, Data, Everywhere.......................................................................................................180

Leveraging Java Libraries............................................................................................183

The Outer Limits..................................................................................................................183

Ants and Jars........................................................................................................................184

Communicating via the Internet................................................................................187

REST and Relaxation............................................................................................................187

HTTP Operations via Apache Commons...................................................................188

Parsing Responses........................................................................................................190

Stuff To Consider.........................................................................................................192

Email over Java.....................................................................................................................193

Creating Intent Filters................................................................................................199

What's Your Intent?............................................................................................................200

Pieces of Intents..........................................................................................................200

Stock Options...............................................................................................................201

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Intent Routing.............................................................................................................202

Stating Your Intent(ions)....................................................................................................203

Narrow Receivers.................................................................................................................205

Launching Activities and Sub-Activities.....................................................................207

Peers and Subs.....................................................................................................................208

Start 'Em Up........................................................................................................................208

Make an Intent............................................................................................................209

Make the Call...............................................................................................................209

Finding Available Actions via Introspection...............................................................215

Pick 'Em................................................................................................................................216

Adaptable Adapters.............................................................................................................220

Would You Like to See the Menu?.....................................................................................223

Asking Around.....................................................................................................................225

Using a Content Provider...........................................................................................229

Pieces of Me.........................................................................................................................229

Getting a Handle.................................................................................................................230

Makin' Queries.....................................................................................................................231

Adapting to the Circumstances..........................................................................................233

Doing It By Hand.................................................................................................................235

Position.........................................................................................................................235

Getting Properties.......................................................................................................236

Setting Properties........................................................................................................237

Give and Take......................................................................................................................238

Beware of the BLOB!...........................................................................................................239

Building a Content Provider.......................................................................................241

First, Some Dissection.........................................................................................................241

Next, Some Typing..............................................................................................................242

Step #1: Create a Provider Class..........................................................................................243

ContentProvider..........................................................................................................243

DatabaseContentProvider...........................................................................................252

Step #2: Supply a Uri...........................................................................................................252

Step #3: Declare the Properties..........................................................................................252

Step #4: Update the Manifest.............................................................................................253

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Notify-On-Change Support................................................................................................254

Requesting and Requiring Permissions.....................................................................257

Mother, May I?....................................................................................................................258

Halt! Who Goes There?.......................................................................................................259

Enforcing Permissions via the Manifest....................................................................260

Enforcing Permissions Elsewhere...............................................................................261

May I See Your Documents?...............................................................................................262

Creating a Service........................................................................................................263

Getting Buzzed....................................................................................................................264

Service with Class................................................................................................................264

When IPC Attacks!..............................................................................................................266

Write the AIDL............................................................................................................267

Implement the Interface.............................................................................................268

Manifest Destiny.................................................................................................................270

Where's the Remote?...........................................................................................................271

Invoking a Service.......................................................................................................273

Bound for Success...............................................................................................................274

Request for Service..............................................................................................................276

Prometheus Unbound.........................................................................................................276

Manual Transmission..........................................................................................................276

Alerting Users Via Notifications.................................................................................279

Types of Pestering...............................................................................................................279

Hardware Notifications..............................................................................................280

Icons..............................................................................................................................281

Letting Your Presence Be Felt.............................................................................................281

Accessing Location-Based Services.............................................................................287

Location Providers: They Know Where You're Hiding....................................................288

Finding Yourself..................................................................................................................288

On the Move........................................................................................................................292

Are We There Yet? Are We There Yet? Are We There Yet?............................................292

Testing...Testing..................................................................................................................296

Mapping with MapView and MapActivity..................................................................299

The Bare Bones....................................................................................................................299

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Exercising Your Control.......................................................................................................301

Zoom.............................................................................................................................301

Center...........................................................................................................................302

Reticle...........................................................................................................................303

Traffic and Terrain...............................................................................................................303

Follow You, Follow Me........................................................................................................305

Layers Upon Layers.............................................................................................................307

Overlay Classes............................................................................................................308

Drawing the Overlay...................................................................................................308

Handling Screen Taps..................................................................................................310

Playing Media..............................................................................................................313

Get Your Media On..............................................................................................................314

Making Noise........................................................................................................................315

Moving Pictures....................................................................................................................321

Handling Telephone Calls..........................................................................................325

No, No, No – Not That IPhone...........................................................................................326

What's Our Status?..............................................................................................................326

You Make the Call!..............................................................................................................326

Searching with SearchManager...................................................................................333

Hunting Season....................................................................................................................333

Search Yourself.....................................................................................................................335

Craft the Search Activity.............................................................................................336

Update the Manifest....................................................................................................340

Try It Out.....................................................................................................................342

The TourIt Sample Application..................................................................................347

Installing TourIt..................................................................................................................347

Demo Location Provider.............................................................................................347

SD Card Image with Sample Tour..............................................................................348

Running TourIt....................................................................................................................349

Main Activity................................................................................................................350

Configuration Activity.................................................................................................352

Cue Sheet Activity.......................................................................................................354

Map Activity.................................................................................................................355

x

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Tour Update Activity...................................................................................................357

Help Activity................................................................................................................358

TourIt's Manifest.................................................................................................................359

TourIt's Content..................................................................................................................360

Data Storage.................................................................................................................361

Content Provider..........................................................................................................361

Model Classes...............................................................................................................361

TourIt's Activities................................................................................................................362

TourListActivity...........................................................................................................362

TourViewActivity.........................................................................................................363

TourMapActivity..........................................................................................................367

TourEditActivity..........................................................................................................367

HelpActivity.................................................................................................................367

ConfigActivity..............................................................................................................368

xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Welcome to the Warescription!

We  hope  you  enjoy  this  ebook  and  its  updates  –  keep  tabs  on  the 
Warescription feed off the CommonsWare site to learn when new editions 
of this book, or other books in your Warescription, are available.

All  editions of  CommonsWare titles,  print and ebook,  follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both 
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form 
for  Warescription  subscribers  only.  Releases  ending  in  .9  are  "release 
candidates"  for  the  next  major  release,  lacking  perhaps  an  index  but 
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber 
and is tagged with the subscribers name. We ask that you not distribute 
these books. If you work for a firm and wish to have several employees have 
access,  enterprise  Warescriptions  are  available.  Just  contact  us  at 
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released 
under a Creative Commons license – more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g., 
source code) for each of our titles. Just visit the Web page for the book you 
are interested in and follow the links.

Some notes for Kindle users:

xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

mailto:enterprise@commonsware.com


• You may wish to drop your font size to level 2 for easier reading

• Source code listings are incorporated as graphics so as to retain the 
monospace font, though this means the source code listings do not 
honor changes in Kindle font size

xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Preface

Welcome to the Book!

Thanks!

Thanks  for  your  interest  in  developing  applications  for  Android! 
Increasingly,  people  will  access  Internet-based  services  using  so-called 
"non-traditional" means, such as mobile devices. The more we do in that 
space now, the more that people will help invest in that space to make it 
easier to build more powerful mobile applications in the future. Android is 
new – at the time of this writing, there are no shipping Android-powered 
devices – but it likely will rapidly grow in importance due to the size and 
scope of the Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you 
find it useful and at least occasionally entertaining.

Prerequisites

If  you are interested in programming for Android, you will need at least 
basic understanding of  how to program in Java. Android programming is 
done using Java syntax, plus a class library that resembles a subset of the 
Java  SE  library  (plus  Android-specific  extensions).  If  you  have  not 
programmed  in  Java  before,  you  probably  should  quick  learn  how that 
works before attempting to dive into programming for Android.

xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The book  does  not  cover in  any detail  how to download  or install  the 
Android development tools, either the Eclipse IDE flavor or the standalone 
flavor. The  Android Web site covers this quite nicely. The material in the 
book  should  be  relevant  whether  you  use  the  IDE  or  not.  You  should 
download,  install,  and test out the Android development tools from the 
Android Web site before trying any of the examples listed in this book.

Some chapters may reference material in previous chapters, though usually 
with a link back to the preceding section of relevance.

Warescription

This book will be published both in print and in digital (ebook) form. The 
ebook  versions  of  all  CommonsWare  titles  are  available  via  an  annual 
subscription – the Warescription.

The Warescription entitles you,  for the duration of  your subscription,  to 
ebook forms of  all CommonsWare titles, not just the one you are reading. 
Presently, CommonsWare offers PDF and Kindle; other ebook formats will 
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both 
those  mirroring  printed  editions  and  in-between  updates  that  are  only 
available in ebook form. That way, your ebooks are never out of  date for 
long, and you can take advantage of  new material as it is made available 
instead of having to wait for a whole new print edition. For example, when 
new releases  of  the Android  SDK are made available,  this  book will  be 
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only 
online material, both short articles and not-yet-published new titles.

Also, if  you own a print copy of  a CommonsWare book, and it is in good 
clean condition with no marks or stickers, you can exchange that copy for a 
discount off the Warescription price.

If  you are interested in a Warescription, visit the Warescription section of 
the CommonsWare Web site.

xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/warescription.html
http://code.google.com/android/index.html


Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem, and we'll give you a coupon 
for a six-month Warescription as a bounty for helping us deliver a better 
product.  You can use that coupon to get a new Warescription, renew an 
existing Warescription, or give the coupon to a friend, colleague, or some 
random person you meet on the subway.

By "concrete" problem, we mean things like:

• Typographical errors

• Sample  applications  that  do  not  work  as  advertised,  in  the 
environment described in the book

• Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page 
on the CommonsWare Web site; most known problems will be listed there.

We appreciate hearing about "softer" issues as well, such as:

• Places  where  you  think  we  are  in  error,  but  where  we  feel  our 
interpretation is reasonable

• Places where you think we could add sample applications, or expand 
upon the existing material

• Samples that do not work due to "shifting sands" of the underlying 
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty 
consideration, should be sent to bounty@commonsware.com.

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

mailto:bounty@commonsware.com


Source Code License

The source code samples shown in this  book are available for download 
from the CommonsWare Web site. All of the Android projects are licensed 
under the Apache 2.0 License, in case you have the desire to reuse any of it.

Creative Commons and the Four-to-Free 
(42F) Guarantee

Each  CommonsWare  book  edition  will  be  available  for  use  under  the 
Creative Commons Attribution-Noncommercial-Share Alike 3.0 license as of 
the fourth anniversary of its publication date, or when 4,000 copies of the 
edition have been sold, whichever comes first. That means that, once four 
years  have  elapsed  (perhaps  sooner!),  you  can  use  this  prose  for  non-
commercial purposes. That is our Four-to-Free Guarantee to our readers and 
the  broader  community.  For  the  purposes  of  this  guarantee,  new 
Warescriptions and renewals will be counted as sales of this edition, starting 
from the time the edition is published.

This  edition  of  this  book  will  be  available  under  the  aforementioned 
Creative  Commons  license  on  July  1,  2012.  Of  course,  watch  the 
CommonsWare Web site, as this edition might be relicensed sooner based 
on sales.

For more details  on the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each 
four years from the publication of  that edition or based on sales of  that 
specific edition. Releasing one edition under the Creative Commons license 
does not automatically release all editions under that license.

xviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html


PART I – Core Concepts

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 1

The Big Picture

Android devices, by and large, will be mobile phones. While the Android 
technology is being discussed for use in other areas (e.g.,  car dashboard 
"PCs"), for the most part, you can think of Android as being used on phones.

For developers, this has benefits and drawbacks.

On the plus side, circa 2008, Android-style smartphones are sexy. Offering 
Internet services over mobile devices dates back to the mid-1990's and the 
Handheld Device Markup Language (HDML). However, only in recent years 
have phones capable of Internet access taken off. Now, thanks to trends like 
text messaging and to products like Apple's iPhone, phones that can serve as 
Internet  access  devices  are  rapidly  gaining  popularity.  So,  working  on 
Android applications gives you experience with an interesting technology 
(Android)  in  a  fast-moving  market  segment  (Internet-enabled  phones), 
which is always a good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the 
pain of phones simply being small in all sorts of dimensions:

• Screens are small (you won't get comments like, "is that a 24-inch 
LCD in your pocket, or...?")

• Keyboards, if they exist, are small

1

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The Big Picture

• Pointing devices, if they exist, are annoying (as anyone who has lost 
their stylus will tell you) or inexact (large fingers and "multi-touch" 
LCDs are not a good mix)

• CPU speed and memory are tight compared to desktops and servers 
you may be used to

• You  can  have  any  programming  language  and  development 
framework you want, so long as it was what the device manufacturer 
chose and burned into the phone's silicon

• And so on

Moreover, applications running on a phone have to deal with the fact that 
they're on a phone.

People with mobile phones tend to get very irritated when those phones 
don't work, which is why the "can you hear me now?" ad campaign from 
Verizon Wireless has been popular for the past few years. Similarly, those 
same people will get irritated at you if your program "breaks" their phone:

• ...by tying up the CPU such that calls can't be received

• ...by not working properly with the rest of the phone's OS, such that 
your application doesn't quietly fade to the background when a call 
comes in or needs to be placed

• ...by  crashing  the  phone's  operating  system,  such  as  by  leaking 
memory like a sieve

Hence,  developing  programs  for a  phone is  a  different  experience  than 
developing desktop applications, Web sites, or back-end server processes. 
You wind up with different-looking tools,  different-behaving frameworks, 
and "different than you're used to" limitations on what you can do with your 
program.

What Android tries to do is meet you halfway:

• You get a commonly-used programming language (Java) with some 
commonly used libraries (e.g., some Apache Commons APIs), with 
support for tools you may be used to (Eclipse)

2

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The Big Picture

• You  get  a  fairly  rigid  and  uncommon  framework  in  which  your 
programs need to run so they can be "good citizens" on the phone 
and not interfere with other programs or the operation of the phone 
itself

As you might expect, much of this book deals with that framework and how 
you write programs that work within its confines and take advantage of its 
capabilities.

What Androids Are Made Of

When  you  write  a  desktop  application,  you  are  "master  of  your  own 
domain". You launch your main window and any child windows – like dialog 
boxes – that are needed. From your standpoint,  you are your own world, 
leveraging features supported by the operating system, but largely ignorant 
of  any other program that may be running on the computer at the same 
time. If you do interact with other programs, it is typically through an API, 
such as using JDBC (or frameworks atop it) to communicate with MySQL or 
another database.

Android has similar concepts, but packaged differently, and structured to 
make phones more crash-resistant.

Activities

The building block of the user interface is the activity. You can think of an 
activity as being the Android analogue for the window or dialog in a desktop 
application.

While it is possible for activities to not have a user interface, most likely your 
"headless"  code  will  be  packaged  in  the  form  of  content  providers  or 
services, described below.

3

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The Big Picture

Content Providers

Content providers provide a level of abstraction for any data stored on the 
device that is accessible by multiple applications. The Android development 
model  encourages  you  to  make  your  own  data  available  to  other 
applications, as well as your own – building a content provider lets you do 
that, while maintaining complete control over how your data gets accessed.

Intents

Intents  are  system  messages,  running  around  the  inside  of  the  device, 
notifying applications of various events, from hardware state changes (e.g., 
an SD card was inserted), to incoming data (e.g., an SMS message arrived), 
to application events  (e.g.,  your activity was launched from the device's 
main menu). Not only can you respond to intents, but you can create your 
own, to launch other activities, or to let you know when specific situations 
arise (e.g., raise such-and-so intent when the user gets within 100 meters of 
this-and-such location).

Services

Activities, content providers, and intent receivers are all short-lived and can 
be shut down at any time. Services, on the other hand, are designed to keep 
running, if needed, independent of any activity. You might use a service for 
checking for updates to an RSS feed,  or to play back music even if  the 
controlling activity is no longer operating.

4

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The Big Picture

Stuff At Your Disposal

Storage

You can package data files with your application,  for things that do not 
change, such as icons or help files. You also can carve out a small bit of space 
on  the  device  itself,  for  databases  or  files  containing  user-entered  or 
retrieved data needed by your application. And, if  the user supplies bulk 
storage, like an SD card, you can read and write files on there as needed.

Network

Android  devices  will  generally  be  Internet-ready,  through  one 
communications medium or another. You can take advantage of the Internet 
access at any level you wish, from raw Java sockets all the way up to a built-in 
WebKit-based Web browser widget you can embed in your application.

Multimedia

Android devices have the ability to play back and record audio and video. 
While the specifics may vary from device to device, you can query the device 
to  learn  its  capabilities  and  then  take  advantage  of  the  multimedia 
capabilities as you see fit, whether that is to play back music, take pictures 
with the camera, or use the microphone for audio note-taking.

GPS

Android devices will frequently have access to location providers, such as 
GPS, that can tell your applications where the device is on the face of the 
Earth. In turn,  you can display maps or otherwise take advantage of  the 
location data, such as tracking a device's movements if the device has been 
stolen.

5

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The Big Picture

Phone Services

And, of course, Android devices are typically phones, allowing your software 
to initiate calls, send and receive SMS messages, and everything else you 
expect from a modern bit of telephony technology.

6

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 2

Project Structure

The Android  build  system is  organized  around  a specific  directory  tree 
structure for your Android project, much like any other Java project. The 
specifics,  though,  are  fairly  unique  to  Android  and  what  it  all  does  to 
prepare the actual application that will run on the device or emulator. Here's 
a quick primer on the project structure, to help you make sense of  it all, 
particularly for the sample code referenced in this book.

Root Contents

When you create a new Android project (e.g., via activityCreator.py), you 
get five key items in the project's root directory:

• AndroidManifest.xml, which is an XML file describing the application 
being built and what components – activities,  services,  etc.  –  are 
being supplied by that application

• build.xml, which is an Ant script for compiling the application and 
installing it on the device

• bin/, which holds the application once it is compiled

• src/, which holds the Java source code for the application

• res/, which holds "resources", such as icons, GUI layouts, and the 
like, that get packaged with the compiled Java in the application

• assets/,  which hold other static files you wish packaged with the 
application for deployment onto the device

7

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://ant.apache.org/


Project Structure

The Sweat Off Your Brow

When you created the project (e.g.,  via  activityCreator.py),  you supplied 
the fully-qualified class name of the "main" activity for the application (e.g., 
com.commonsware.android.SomeDemo).  You  will  then  find  that  your project's 
src/ tree already has the namespace directory tree in place,  plus a stub 
Activity subclass representing your main activity (e.g., src/com/commonsware/
android/SomeDemo.java). You are welcome to modify this file and add others 
to the src/ tree as needed to implement your application.

The first time you compile the project (e.g.,  via  ant),  out in the "main" 
activity's namespace directory, the Android build chain will create  R.java. 
This contains a number of constants tied to the various resources you placed 
out in the res/ directory tree. You should not modify R.java yourself, letting 
the Android tools handle it for you. You will see throughout many of  the 
samples where we reference things in  R.java (e.g.,  referring to a layout's 
identifier via R.layout.main).

And Now, The Rest of the Story

You will  also find that your project has a  res/ directory tree.  This holds 
"resources"  –  static  files  that  are  packaged  along  with  your application, 
either in their original form or, occasionally, in a preprocessed form. Some 
of the subdirectories you will find or create under res/ include:

• res/drawable/ for images (PNG, JPEG, etc.)

• res/layout/ for XML-based UI layout specifications

• res/raw/ for  general-purpose  files  (e.g,.  a  CSV  file  of  account 
information)

• res/values/ for strings, dimensions, and the like

• res/xml/ for other general-purpose XML files you wish to ship

We will cover all of these, and more, in later chapters of this book.

8

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Project Structure

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the 
bin/ directory under your project root. Specifically:

• bin/classes/ holds the compiled Java classes

• bin/classes.dex holds the executable created from those compiled 
Java classes

• bin/yourapp.apk is the actual Android application (where yourapp is 
the name of your application)

The .apk file is a ZIP archive containing the .dex file, the compiled edition of 
your resources (resources.arsc), any un-compiled resources (such as what 
you put in res/raw/) and the AndroidManifest.xml file.

9

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 3

Inside the Manifest

The  foundation  for  any  Android  application  is  the  manifest  file: 
AndroidManifest.xml in the root of your project. Here is where you declare 
what all is inside your application – the activities, the services, and so on. 
You also indicate how these pieces attach themselves to the overall Android 
system; for example, you indicate which activity (or activities) should appear 
on the device's main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated 
for you. For a simple application, offering a single activity and nothing else, 
the auto-generated manifest will probably work out fine, or perhaps require 
a few minor modifications. On the other end of the spectrum, the manifest 
file for the Android API demo suite is over 1,000 lines long. Your production 
Android applications will probably fall somewhere in the middle.

Most of  the interesting  bits of  the manifest will  be described in greater 
detail in the chapters on their associated Android features. For example, the 
service element will be described in greater detail in the chapter on creating 
services. For now, we just need to understand what the role of the manifest 
is and its general overall construction.

In The Beginning, There Was the Root, And It 
Was Good

The root of all manifest files is, not surprisingly, a manifest element:

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Inside the Manifest

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
  package="com.commonsware.android.search">
...
</manifest>

Note the namespace declaration.  Curiously,  the generated manifests only 
apply  it  on  the  attributes,  not  the  elements  (e.g.,  it's  manifest,  not 
android:manifest). However, that pattern works, so unless Android changes, 
stick with their pattern.

The  biggest  piece  of  information  you  need  to  supply  on  the  manifest 
element is the package attribute (also curiously not-namespaced). Here, you 
can provide the name of the Java package that will be considered the "base" 
of your application. Then, everywhere else in the manifest file that needs a 
class  name,  you  can  just  substitute  a  leading  dot  as  shorthand  for  the 
package.  For  example,  if  you  needed  to  refer  to 
com.commonsware.android.Snicklefritz in  this  manifest  shown  above,  you 
could just use .Snicklefritz, since com.commonsware.android is defined as the 
application's package.

Permissions, Instrumentations, and Applica-
tions (Oh, My!)

Underneath the manifest element, you will find:

• uses-permission elements,  to  indicate  what  permissions  your 
application will need in order to function properly – see the chapter 
on permissions for more details

• permission elements,  to  declare  permissions  that  activities  or 
services might require other applications hold in order to use your 
application's data or logic – again, more details are forthcoming in 
the chapter on permissions

• instrumentation elements, to indicate code that should be invoked 
on key system events, such as starting up activities, for the purposes 
of logging or monitoring

• an application element, defining the guts of the application that the 
manifest describes

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Inside the Manifest

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
  package="com.commonsware.android">
  <uses-permission
    android:name="android.permission.ACCESS_LOCATION" />
  <uses-permission
    android:name="android.permission.ACCESS_GPS" /> 
  <uses-permission
    android:name="android.permission.ACCESS_ASSISTED_GPS" /> 
  <uses-permission
    android:name="android.permission.ACCESS_CELL_ID" /> 
  <application>
...
  </application>
</manifest>

In the preceding  example,  the manifest has  uses-permission elements to 
indicate some device capabilities the application will need – in this case, 
permissions to allow the application to determine its current location. And, 
there is the application element, whose contents will describe the activities, 
services, and whatnot that make up the bulk of the application itself.

Your Application Does Something, Right?

The  real  meat  of  the  manifest  file  are  the  children  of  the  application 
element.

By default, when you create a new Android project, you get a single activity 
element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
    package="com.commonsware.android.skeleton">
    <application>
        <activity android:name=".Now" android:label="Now">
            <intent-filter>
                <action android:name="android.intent.action.MAIN" />
                <category android:name="android.intent.category.LAUNCHER" />
            </intent-filter>
        </activity>
    </application>
</manifest>

This element supplies android:name for the class implementing the activity, 
android:label for  the  display  name  of  the  activity,  and  (frequently)  an 
intent-filter child element describing under what conditions this activity 

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Inside the Manifest

will be displayed. The stock activity element sets up your activity to appear 
in the launcher, so users can choose to run it. As we'll see later in this book, 
you can have several activities in one project, if you so choose.

You may also have one or more receiver elements, indicating non-activities 
that should be triggered under certain conditions, such as when an SMS 
message comes in. These are called intent receivers and are described mid-
way through the book.

You may have one or more provider elements, indicating content providers – 
components that supply data to your activities and, with your permission, 
other activities in other applications on the device. These wrap up databases 
or other data stores into a single API that any application can use. Later, 
we'll see how to create content providers and how to use content providers 
that you or others create.

Finally, you may have one or more service elements, describing services – 
long-running pieces of  code that can operate independent of  any activity. 
The quintessential example is the MP3 player, where you want the music to 
keep playing even if the user pops open other activities and the MP3 player's 
user interface is "misplaced". Two chapters late in the book cover how to 
create and use services.

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



PART II – Activities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 4

Creating a Skeleton Application

Every programming language or environment book starts off with the ever-
popular "Hello, World!" demonstration: just enough of a program to prove 
you can build things, not so much that you cannot understand what is going 
on. However, the typical "Hello, World!" program has no interactivity (e.g., 
just dumps the words to a console), and so is really boring.

This chapter demonstrates a simple project, but one using Advanced Push-
Button  Technology™  and  the  current  time,  to  show  you  how  a  simple 
Android activity works.

Begin at the Beginning

To work with anything in Android, you need a project. With ordinary Java, if 
you wanted, you could just write a program as a single file, compile it with 
javac, and run it with java, without any other support structures. Android is 
more complex, but to help keep it manageable, Google has supplied tools to 
help create the project. If  you are using an Android-enabled IDE, such as 
Eclipse with the Android plugin, you can create a project inside of the IDE 
(e.g.,  select  File  >  New  >  Project,  then  choose  Android  >  Android 
Project).

If  you  are  using  tools  that  are  not  Android-enabled,  you  can  use  the 
activityCreator.py script,  found  in  the  tools/ directory  in  your  SDK 
installation. Just pass  activityCreator.py the package name of the activity 

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Skeleton Application

you want to create and a  --out switch indicating  where the project files 
should be generated. For example:

./activityCreator.py --out /path/to/my/project/dir \
com.commonsware.android.Now

You will wind up with a handful of  pre-generated files, as described in a 
previous chapter.

For the purposes of the samples shown in this book, you can download their 
project  directories  in  a  ZIP  file  on  the  CommonsWare  Web site.  These 
projects are ready for use; you do not need to run  activityCreator.py on 
those unpacked samples.

The Activity

Your  project's  src/ directory  contains  the  standard  Java-style  tree  of 
directories based upon the Java package you chose when you created the 
project  (e.g.,  com.commonsware.android results  in 
src/com/commonsware/android/).  Inside the innermost directory you should 
find  a pre-generated  source file named  Now.java,  which where your first 
activity will go.

Open Now.java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
  Button btn;

  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);

    btn = new Button(this);
    btn.setOnClickListener(this);

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Skeleton Application

    updateTime();
    setContentView(btn);
  }

  public void onClick(View view) {
    updateTime();
  }

  private void updateTime() {
    btn.setText(new Date().toString());
  }
}

Or, if you download the source files off the Web site, you can just use the Now 
project directly.

Dissecting the Activity

Let's examine this piece by piece:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when 
creating the project. And, like any other Java project, you need to import any 
classes you reference. Most of the Android-specific classes are in the android 
package.

Remember that not every Java SE class is available to Android programs! 
Visit the Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
  Button btn;

Activities are public classes, inheriting from the android.Activity base class. 
In this case, the activity holds a button (btn). Since, for simplicity, we want 

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/reference/packages.html


Creating a Skeleton Application

to trap all  button clicks  just within the activity  itself,  we also have the 
activity class implement OnClickListener.

@Override
public void onCreate(Bundle icicle) {
  super.onCreate(icicle);

  btn = new Button(this);
  btn.setOnClickListener(this);
  updateTime();
  setContentView(btn);
}

The  onCreate() method is invoked when the activity is started.  The first 
thing you should do is chain upward to the superclass, so the stock Android 
activity initialization can be done.

In  our  implementation,  we  then  create  the  button  instance  (new 
Button(this)), tell it to send all button clicks to the activity instance itself 
(via setOnClickListener()), call a private updateTime() method (see below), 
and  then  set  the  activity's  content  view  to  be  the  button  itself  (via 
setContentView()).

We  will  discuss  that  magical  Bundle  icicle in  a  later  chapter.  For  the 
moment,  consider  it  an  opaque  handle  that  all  activities  receive  upon 
creation.

public void onClick(View view) {
  updateTime();
}

In  Swing,  a  JButton click  raises  an  ActionEvent,  which  is  passed  to  the 
ActionListener configured for the button. In Android, a button click causes 
onClick() to be invoked in the OnClickListener instance configured for the 
button. The listener is provided the view that triggered the click (in this 
case, the button). All we do here is call that private updateTime() method:

private void updateTime() {
  btn.setText(new Date().toString());
}

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Skeleton Application

When  we open  the  activity  (onCreate())  or  when the  button  is  clicked 
(onClick()),  we  update  the  button's  label  to  be  the  current  time  via 
setText(), which functions much the same as the JButton equivalent.

Building and Running the Activity

To build the activity, either use your IDE's built-in Android packaging tool, 
or run ant in the base directory of your project. Then, to run the activity:

• Launch the emulator (e.g.,  run  tools/emulator from your Android 
SDK installation)

• Install  the  package  (e.g.,  run  tools/adb  install 

/path/to/this/example/bin/Now.apk from  your  Android  SDK 
installation)

• View the list of installed applications in the emulator and find the 
"Now" application

Figure 1. The Android application "launcher"

• Open that application

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Skeleton Application

You should see an activity screen akin to:

Figure 2. The Now demonstration activity

Clicking the button – in other words, pretty much anywhere on the phone's 
screen – will update the time shown in the button's label.

Note that the label is centered horizontally and vertically, as those are the 
default styles applied to button captions. We can control that formatting, 
which will be covered in a later chapter.

After you are done gazing at the awesomeness of  Advanced Push-Button 
Technology™, you can click the back button on the emulator to return to the 
launcher.

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 5

Using XML-Based Layouts

While it is technically possible to create and attach widgets to our activity 
purely through Java code, the way we did in the preceding chapter, the more 
common  approach  is  to  use  an  XML-based  layout  file.  Dynamic 
instantiation of widgets is reserved for more complicated scenarios, where 
the widgets are not known at compile-time (e.g., populating a column of 
radio buttons based on data retrieved off the Internet).

With that in mind, it's time to break out the XML and learn out to lay out 
Android activity views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of  widgets' 
relationships to each other – and to containers – encoded in XML format. 
Specifically, Android considers XML-based layouts to be resources, and as 
such layout files are stored in the res/layout directory inside your Android 
project.

Each XML file contains a tree of elements specifying a layout of widgets and 
containers that make up one View. The attributes of the XML elements are 
properties, describing how a widget should look or how a container should 
behave.  For  example,  if  a  Button element  has  an  attribute  value  of 
android:textStyle = "bold", that means that the text appearing on the face 
of the button should be rendered in a boldface font style.

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using XML-Based Layouts

Android's SDK ships with a tool (aapt)  which uses the layouts.  This tool 
should be automatically invoked by your Android tool chain (e.g., Eclipse, 
Ant's build.xml). Of particular importance to you as a developer is that aapt 
generates the R.java source file within your project, allowing you to access 
layouts and widgets within those layouts directly from your Java code, as will 
be demonstrated .

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through Java 
code. For example, you could use setTypeface() to have a button render its 
text in bold,  instead  of  using  a property in an XML layout.  Since XML 
layouts are yet another file for you to keep track of, we need good reasons for 
using such files.

Perhaps  the biggest reason is  to assist  in  the creation of  tools  for view 
definition,  such as  a GUI  builder in  an IDE like Eclipse or a dedicated 
Android  GUI  designer  like  DroidDraw.  Such  GUI  builders  could,  in 
principle, generate Java code instead of  XML. The challenge is re-reading 
the definition in to support edits – that is far simpler if  the data is in a 
structured format like XML than in a programming language.  Moreover, 
keeping the generated bits separated out from hand-written code makes it 
less  likely  that  somebody's  custom-crafted  source  will  get  clobbered  by 
accident when the generated bits get re-generated. XML forms a nice middle 
ground between something that is easy for tool-writers to use and easy for 
programmers to work with by hand as needed.

Also,  XML as a GUI  definition format is  becoming more commonplace. 
Microsoft's  XAML,  Adobe's  Flex,  and  Mozilla's  XUL all  take  a  similar 
approach to that of  Android:  put layout details  in an XML file and put 
programming smarts in source files (e.g.,  Javascript for XUL). Many less-
well-known GUI frameworks, such as ZK, also use XML for view definition. 
While "following the herd" is not necessarily the best policy, it does have the 
advantage of  helping to ease the transition into Android from any other 
XML-centered view description language.

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.zkoss.org/
http://www.mozilla.org/projects/xul/
http://www.adobe.com/products/flex/
http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://droiddraw.org/


Using XML-Based Layouts

OK, So What Does It Look Like?

Here is the Button from the previous chapter's sample application, converted 
into an XML layout file:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
    android:id="@+id/button"
    android:text=""
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"/>

The  class  name of  the  widget  –  Button –  forms  the  name of  the  XML 
element. Since  Button is an Android-supplied widget, we can just use the 
bare  class  name.  If  you  create  your  own  widgets  as  subclasses  of 
android.view.View, you would need to provide a full package declaration as 
well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

xmlns:android="http://schemas.android.com/apk/res/android"

All  other  elements  will  be  children  of  the  root  and  will  inherit  that 
namespace declaration.

Because we want to reference this button from our Java code, we need to give 
it an identifier via the  android:id attribute. We will cover this concept in 
greater detail .

The remaining attributes are properties of this Button instance:

• android:text indicates the initial text to be displayed on the button 
face (in this case, an empty string)

• android:layout_width and android:layout_height tell Android to have 
the button's width and height fill the "parent", in this case the entire 
screen – these attributes will be covered in greater detail in a later 
chapter

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using XML-Based Layouts

Since this single widget is the only content in our activity's view, we only 
need  this  single  element.  Complex  views  will  require  a  whole  tree  of 
elements,  representing  the  widgets  and  containers  that  control  their 
positioning. All the remaining chapters of this book will use the XML layout 
form whenever practical,  so there are dozens of  other examples of  more 
complex layouts for you to peruse.

What's With the @ Signs?

Many widgets and containers only need to appear in the XML layout file and 
do not need to be referenced in your Java code. For example, a static label 
(TextView) frequently only needs to be in the layout file to indicate where it 
should appear. These sorts of elements in the XML file do not need to have 
the android:id attribute to give them a name.

Anything  you  do want  to  use  in  your  Java  source,  though,  needs  an 
android:id.

The convention is to use @+id/... as the id value, where the ... represents 
your locally-unique name for the widget in question.  In the XML layout 
example in the preceding section, @+id/button is the identifier for the Button 
widget.

Android  provides  a  few  special  android:id values,  of  the  form 
@android:id/... – we will see some of these in various chapters of this book.

And We Attach These to the Java...How?

Given that you have painstakingly set up the widgets and containers for your 
view in an XML layout file named snicklefritz.xml stored in res/layout, all 
you need is one statement in your activity's onCreate() callback to use that 
layout:

This is the same setLayoutView() we used earlier, passing it an instance of a 
View subclass (in that case, a  Button). The Android-built  View, constructed 

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using XML-Based Layouts

from our layout,  is accessed from that code-generated  R class.  All  of  the 
layouts are accessible under R.layout, keyed by the base name of the layout 
file – snicklefritz.xml results in R.layout.snicklefritz.

To access our identified widgets, use findViewById(), passing it the numeric 
identifier of the widget in question. That numeric identifier was generated 
by Android in the R class as R.id.something (where something is the specific 
widget you are seeking). Those widgets are simply subclasses of  View, just 
like the Button instance we created in the previous chapter.

The Rest of the Story

In the original  Now demo, the button's face would show the current time, 
which would reflect when the button was last pushed (or when the activity 
was first shown, if the button had not yet been pushed).

Most of that logic still works, even in this revised demo (NowRedux). However, 
rather than instantiating the Button in our activity's onCreate() callback, we 
can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
  implements View.OnClickListener {
  Button btn;

  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    
    setContentView(R.layout.main);

    btn=(Button)findViewById(R.id.button);
    btn.setOnClickListener(this);
    updateTime();
  }

  public void onClick(View view) {

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using XML-Based Layouts

    updateTime();
  }

  private void updateTime() {
    btn.setText(new Date().toString());
  }
}

The first difference is that rather than setting the content view to be a view 
we  created  in  Java  code,  we  set  it  to  reference  the  XML  layout 
(setContentView(R.layout.main)).  The  R.java source  file  will  be  updated 
when we rebuild this project to include a reference to our layout file (stored 
as main.xml in our project's res/layout directory).

The other difference is that we need to get our hands on our Button instance, 
for which we use the findViewById() call. Since we identified our button as 
@+id/button,  we can reference the button's identifier as  R.id.button.  Now, 
with the Button instance in hand, we can set the callback and set the label as 
needed.

The results look the same as with the original Now demo:

Figure 3. The NowRedux sample activity

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 6

Employing Basic Widgets

Every  GUI  toolkit  has  some  basic  widgets:  fields,  labels,  buttons,  etc. 
Android's toolkit is no different in scope, and the basic widgets will provide 
a good introduction as to how widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a TextView. Like in 
most GUI  toolkits,  labels  are  bits  of  text not  editable directly by users. 
Typically, they are used to identify adjacent widgets (e.g., a "Name:" label 
before a field where one fills in a name).

In  Java,  you  can  create  a  label  by  creating  a  TextView instance.  More 
commonly, though, you will create labels in XML layout files by adding a 
TextView element to the layout,  with an  android:text property to set the 
value of the label itself. If you need to swap labels based on certain criteria, 
such as internationalization, you may wish to use a resource reference in the 
XML instead, as will be described later in this book.

TextView has numerous other properties of relevance for labels, such as:

• android:typeface to  set  the  typeface  to  use  for  the  label  (e.g., 
monospace)

• android:textStyle to indicate that the typeface should be made bold 
(bold), italic (italic), or bold and italic (bold_italic)

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

• android:textColor to set the color of  the label's  text,  in RGB hex 
format (e.g., #FF0000 for red)

For example, in the Label project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
  android:layout_width="fill_parent" 
  android:layout_height="wrap_content" 
  android:text="You were expecting something profound?"
  />

Just  that  layout alone,  with  the stub Java  source provided  by  Android's 
project builder (e.g., activityCreator), gives you:

Figure 4. The LabelDemo sample application

Button, Button, Who's Got the Button?

We've  already  seen  the  use  of  the  Button widget  in  the  previous two 
chapters.  As it  turns out,  Button is  a subclass of  TextView,  so everything 
discussed in the preceding section in terms of  formatting the face of  the 
button still holds.

30

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

Fleeting Images

Android  has  two widgets  to  help  you  embed  images  in  your  activities: 
ImageView and  ImageButton.  As  the names  suggest,  they  are image-based 
analogues to TextView and Button, respectively.

Each widget takes an  android:src attribute (in an XML layout) to specify 
what picture to use. These usually reference a drawable resource, described 
in greater detail  in the chapter on  resources.  You can also set the image 
content based on a Uri from a content provider via setImageURI().

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, 
for responding to clicks and whatnot.

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third "anchor" of  most GUI 
toolkits. In Android, they are implemented via the EditView widget, which is 
a subclass of the TextView used for labels.

Along  with  the  standard  TextView properties  (e.g.,  android:textStyle), 
EditView has many others that will be useful for you in constructing fields, 
including:

• android:autoText,  to control  if  the field should provide automatic 
spelling assistance

• android:capitalize,  to  control  if  the  field  should  automatically 
capitalize the first letter of entered text (e.g., first name, city)

• android:digits, to configure the field to accept only certain digits

• android:singleLine, to control if the field is for single-line input or 
multiple-line input (e.g., does <Enter> move you to the next widget 
or add a newline?)

Beyond those, you can configure fields to use specialized input methods, 
such  as  android:numeric for  numeric-only  input,  android:password for 

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

shrouded password input,  and  android:phoneNumber for entering in phone 
numbers. If you want to create your own input method scheme (e.g., postal 
codes,  Social  Security  numbers),  you  need  to  create  your  own 
implementation of the InputMethod interface, then configure the field to use 
it via android:inputMethod. You can see an example of this in the appendix 
discussing the TourIt sample application.

For example, from the Field project, here is an XML layout file showing an 
EditView:

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
  android:id="@+id/field"
  android:layout_width="fill_parent" 
  android:layout_height="fill_parent"
  android:singleLine="false"
  />

Note that android:singleLine is false, so users will be able to enter in several 
lines of text.

For this project, the FieldDemo.java file populates the input field with some 
prose:

package com.commonsware.android.basic;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    
    EditText fld=(EditText)findViewById(R.id.field);
    fld.setText("Licensed under the Apache License, Version 2.0 " +
            "(the \"License\"); you may not use this file " +
            "except in compliance with the License. You may " +
            "obtain a copy of the License at " +
            "http://www.apache.org/licenses/LICENSE-2.0");
  }
}

32

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

The result, once built and installed into the emulator, is:

Figure 5. The FieldDemo sample application

NOTE: Android's emulator only allows one application in the launcher per 
unique  Java  package.  Since  all  the  demos  in  this  chapter  share  the 
com.commonsware.android.basic package,  if  you  have  the  LabelDemo 
application installed,  you will  not see the FieldDemo application in the 
launcher. To remove the LabelDemo application – or any application – use 
adb shell "rm /data/app/...",  where  ... is the name of  the application's 
APK  file  (e.g.,  LabelDemo.apk).  Then,  reinstall  the  formerly-hidden 
application, and it will show up in the launcher.

Another flavor of  field  is  one that offers auto-completion,  to help users 
supply a value without typing in the whole text. That is provided in Android 
as the AutoCompleteTextView widget, discussed in greater detail  later in this 
book.

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

Just Another Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the 
checkbox toggles between those states to indicate a choice (e.g., "Add rush 
delivery to my order").

In Android, there is a CheckBox widget to meet this need. It has TextView as 
an ancestor,  so you can use  TextView properties like  android:textColor to 
format the widget.

Within Java, you can invoke:

• isChecked() to determine if the checkbox has been checked

• setChecked() to force the checkbox into a checked  or unchecked 
state

• toggle() to toggle the checkbox as if the user checked it

Also,  you  can  register  a  listener  object  (in  this  case,  an  instance  of 
OnCheckedChangeListener)  to  be  notified  when the  state  of  the  checkbox 
changes.

For example, from the CheckBox project, here is a simple checkbox layout:

<?xml version="1.0" encoding="utf-8"?>
<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
    android:id="@+id/check"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:text="This checkbox is: unchecked" />

The corresponding CheckBoxDemo.java retrieves and configures the behavior 
of the checkbox:

public class CheckBoxDemo extends Activity
  implements CompoundButton.OnCheckedChangeListener {
  CheckBox cb;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

    setContentView(R.layout.main);
    
    cb=(CheckBox)findViewById(R.id.check);
    cb.setOnCheckedChangeListener(this);
  }
  
  public void onCheckedChanged(CompoundButton buttonView,
                                 boolean isChecked) {
    if (isChecked) {
      cb.setText("This checkbox is: checked");
    }
    else {
      cb.setText("This checkbox is: unchecked");
    }
  }
}

Note that the activity serves as its own listener for checkbox state changes 
since  it  implements  the  OnCheckedChangeListener interface  (via 
cb.setOnCheckedChangeListener(this)).  The  callback  for  the  listener  is 
onCheckedChanged(),  which receives the checkbox whose state has changed 
and what the new state is. In this case, we update the text of the checkbox to 
reflect what the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown 
below:

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

Figure 6. The CheckBoxDemo sample application, with the checkbox unchecked

Figure 7. The same application, now with the checkbox checked

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android's 
radio buttons are two-state, like checkboxes, but can be grouped such that 
only one radio button in the group can be checked at any time.

Like  CheckBox,  RadioButton inherits  from  CompoundButton,  which  in  turn 
inherits from TextView. Hence, all the standard TextView properties for font 
face, style, color, etc. are available for controlling the look of radio buttons. 
Similarly, you can call  isChecked() on a  RadioButton to see if  it is selected, 
toggle() to select it, and so on, like you can with a CheckBox.

Most  times,  you  will  want  to  put  your  RadioButton widgets  inside  of  a 
RadioGroup.  The  RadioGroup indicates a set of  radio buttons whose state is 
tied, meaning only one button out of the group can be selected at any time. 
If you assign an android:id to your RadioGroup in your XML layout, you can 
access the group from your Java code and invoke:

• check() to  check  a  specific  radio  button  via  its  ID  (e.g., 
group.check(R.id.rb1))

• clearCheck() to clear all  radio buttons,  so none in the group are 
checked

• getCheckedRadioButtonId() to  get  the ID  of  the currently-checked 
radio button (or -1 if none are checked)

For  example,  from the  RadioButton sample  application,  here  is  an  XML 
layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
    <RadioButton android:id="@+id/radio1"
      android:layout_width="wrap_content"
      android:layout_height="wrap_content"
      android:text="Rock" />

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

    <RadioButton android:id="@+id/radio2"
      android:layout_width="wrap_content"
      android:layout_height="wrap_content"
      android:text="Scissors" />

    <RadioButton android:id="@+id/radio3"
      android:layout_width="wrap_content"
      android:layout_height="wrap_content"
      android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you 
get:

Figure 8. The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked 
at the outset. To pre-set one of the radio buttons to be checked, use either 
setChecked() on the  RadioButton or  check() on the  RadioGroup from within 
your onCreate() callback in your activity.

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

It's Quite a View

All widgets, including the ones shown above, extend View, and as such give 
all widgets an array of useful properties and methods beyond those already 
described.

Useful Properties

Some of the properties on View most likely to be used include:

• Controls the focus sequence:

• android:nextFocusDown

• android:nextFocusLeft

• android:nextFocusRight

• android:nextFocusUp

• android:visibility,  which controls whether the widget is  initially 
visible

• android:background,  which  typically  provides  an  RGB  color  value 
(e.g., #00FF00 for green) to serve as the background for the widget

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if 
it is enabled via isEnabled(). One common use pattern for this is to disable 
some widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via  requestFocus() and see if  it is focused via 
isFocused().  You  might  use  this  in  concert  with  disabling  widgets  as 
mentioned  above,  to ensure the proper widget  has  the focus once your 
disabling operation is complete.

To  help  navigate  the  tree  of  widgets  and  containers  that  make  up  an 
activity's overall view, you can use:

• getParent() to find the parent widget or container

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Basic Widgets

• getParentOfType() to search upwards in the tree to find a container of 
a certain class (e.g., find the RadioGroup for a RadioButton)

• findViewById() to find a child widget with a certain ID

• getRootView() to get the root of the tree (e.g., what you provided to 
the activity via setContentView())

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 7

Working with Containers

Containers pour a collection of widgets (and possibly child containers) into 
specific layouts you like. If you want a form with labels on the left and fields 
on the right, you will need a container. If you want OK and Cancel buttons 
to be beneath the rest of the form, next to one another, and flush to right 
side  of  the  screen,  you  will  need  a  container.  Just  from  a  pure  XML 
perspective, if you have multiple widgets (beyond RadioButton widgets in a 
RadioGroup), you will need a container just to have a root element to place 
the widgets inside.

Most  GUI  toolkits  have  some notion  of  layout  management,  frequently 
organized  into  containers.  In  Java/Swing,  for  example,  you  have  layout 
managers  like  BoxLayout and containers  that  use them (e.g.,  Box).  Some 
toolkits stick strictly to the box model, such as XUL and Flex, figuring that 
any desired layout can be achieved through the right combination of nested 
boxes.

Android, through LinearLayout, also offers a "box" model, but in addition 
supports  a  range  of  containers  providing  different  layout  rules.  In  this 
chapter, we will look at three commonly-used containers: LinearLayout (the 
box model), RelativeLayout (a rule-based model), and TableLayout (the grid 
model),  along  with  ScrollView,  a  container  designed  to  assist  with 
implementing scrolling  containers.  In the  next chapter,  we will  examine 
some more esoteric containers.

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

Thinking Linearly

As noted above,  LinearLayout is a box model – widgets or child containers 
are lined up in a column or row, one after the next. This works similar to 
FlowLayout in Java/Swing, vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you 
can use LinearLayout in much the same way, eschewing some of the other 
containers. Getting the visual representation you want is mostly a matter of 
identifying where boxes should nest and what properties those boxes should 
have, such as alignment vis a vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have five main areas of control besides the 
container's contents: the orientation, the fill model, the weight, the gravity, 
and the padding.

Orientation

Orientation  indicates  whether  the  LinearLayout represents  a  row  or  a 
column.  Just  add  the  android:orientation property  to  your  LinearLayout 
element in your XML layout, setting the value to be horizontal for a row or 
vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on 
the LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let's imagine a row of widgets, such as a pair of radio buttons. These widgets 
have a "natural" size based on their text. Their combined sizes probably do 
not exactly match the width of  the Android device's screen – particularly 
since screens come in various sizes. We then have the issue of what to do 
with the remaining space.

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

All  widgets  inside  a  LinearLayout must  supply  android:layout_width and 
android:layout_height properties  to  help  address  this  issue.  These 
properties' values have three flavors:

• You can provide a specific dimension, such as 125px to indicate the 
widget should take up exactly 125 pixels

• You can provide wrap_content, which means the widget should fill up 
its natural space, unless that is too big, in which case Android can 
use word-wrap as needed to make it fit

• You can provide fill_parent, which means the widget should fill up 
all available space in its enclosing container, after all other widgets 
are taken care of

The latter two flavors are the most common, as they are independent of 
screen size, allowing Android to adjust your view to fit the available space.

Weight

But, what happens if we have two widgets that should split the available free 
space? For example, suppose we have two multi-line fields in a column, and 
we want them to take up the remaining space in the column after all other 
widgets have been allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or 
android:layout_height (for  columns)  to  fill_parent,  you  must  also  set 
android:layout_weight. This property indicates what proportion of the free 
space should go to that widget. If  you set  android:layout_weight to be the 
same value for a pair of widgets (e.g.,  1), the free space will be split evenly 
between them. If you set it to be 1 for one widget and 2 for another widget, 
the second widget will use up twice the free space that the first widget does. 
And so on.

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

Gravity

By default,  everything is left-  and top-aligned. So, if  you create a row of 
widgets via a horizontal LinearLayout, the row will start flush on the left side 
of the screen.

If  that  is  not  what  you  want,  you  need  to  specify  a  gravity.  Using 
android:layout_gravity on a widget (or calling  setGravity() at runtime on 
the widget's Java object), you can tell the widget and its container how to 
align it vis a vis the screen.

For a column of widgets, common gravity values are left, center_horizontal, 
and right for left-aligned, centered, and right-aligned widgets respectively.

For a row of widgets, the default is for them to be aligned so their texts are 
aligned on the baseline (the invisible line that letters seem to "sit on"), 
though you may wish to specify a gravity of  center_vertical to center the 
widgets along the row's vertical midpoint.

Padding

By default,  widgets are tightly packed next to each other.  If  you want to 
increase  the  whitespace  between  widgets,  you  will  want  to  use  the 
android:padding property  (or  by  calling  setPadding() at  runtime  on  the 
widget's Java object).

The padding specifies how much space there is between the boundaries of 
the widget's "cell" and the actual widget contents. Padding is analogous to 
the margins  on  a  word  processing  document –  the page size  might  be 
8.5"x11", but 1" margins would leave the actual text to reside within a 6.5"x9" 
area.

44

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

Figure 9. The relationship between a widget, its cell, and the padding values

The android:padding property allows you to set the same padding on all four 
sides of  the widget, with the widget's contents itself  centered within that 
padded-out area. If  you want the padding to differ on different sides, use 
android:paddingLeft,  android:paddingRight,  android:paddingTop,  and 
android:paddingBottom.

The value of the padding is a dimension, such as 5px for 5 pixels' worth of 
padding.

Example

Let's look at an example (Linear)  that shows  LinearLayout properties set 
both in the XML layout file and at runtime.

Here is the layout:

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <RadioGroup android:id="@+id/orientation"
    android:orientation="horizontal"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:padding="5px">
    <RadioButton
      android:id="@+id/horizontal"
      android:text="horizontal" />
    <RadioButton
      android:id="@+id/vertical"
      android:text="vertical" />
  </RadioGroup>
  <RadioGroup android:id="@+id/gravity"
    android:orientation="vertical"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:padding="5px">
    <RadioButton
      android:id="@+id/left"
      android:text="left" />
    <RadioButton
      android:id="@+id/center"
      android:text="center" />
    <RadioButton
      android:id="@+id/right"
      android:text="right" />
  </RadioGroup>
</LinearLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup is 
a subclass of  LinearLayout, so our example demonstrates nested boxes as if 
they were all LinearLayout containers.

The top  RadioGroup sets up a row (android:orientation = "horizontal") of 
RadioButton widgets.  The  RadioGroup has  5px of  padding  on  all  sides, 
separating it from the other RadioGroup. The width and height are both set to 
wrap_content, so the radio buttons will only take up the space that they need.

The bottom  RadioGroup is a column (android:orientation = "vertical") of 
three RadioButton widgets. Again, we have 5px of padding on all sides and a 
"natural"  height  (android:layout_height  =  "wrap_content").  However,  we 

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

have set  android:layout_width to be  fill_parent,  meaning the column of 
radio buttons "claims" the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java 
code:

package com.commonsware.android.containers;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextWatcher;
import android.widget.LinearLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
  implements RadioGroup.OnCheckedChangeListener {
  RadioGroup orientation;
  RadioGroup gravity;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    
    orientation=(RadioGroup)findViewById(R.id.orientation);
    orientation.setOnCheckedChangeListener(this);
    gravity=(RadioGroup)findViewById(R.id.gravity);
    gravity.setOnCheckedChangeListener(this);
  }
  
  public void onCheckedChanged(RadioGroup group, int checkedId) {
    if (group==orientation) {
      if (checkedId==R.id.horizontal) {
        orientation.setOrientation(LinearLayout.HORIZONTAL);
      }
      else {
        orientation.setOrientation(LinearLayout.VERTICAL);
      }
    }
    else if (group==gravity) {
      if (checkedId==R.id.left) {
        gravity.setGravity(0x03);    // left
      }
      else if (checkedId==R.id.center) {
        gravity.setGravity(0x01);    // center_horizontal
      }
      else if (checkedId==R.id.right) {
        gravity.setGravity(0x05);    // right
      }
    }

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

  }
}

In  onCreate(),  we look  up our two  RadioGroup containers  and  register  a 
listener on each, so we are notified when the radio buttons change state 
(setOnCheckedChangeListener(this)).  Since  the  activity  implements 
OnCheckedChangeListener, the activity itself is the listener.

In  onCheckedChanged() (the  callback  for  the  listener),  we  see  which 
RadioGroup had a state change. If it was the orientation group, we adjust the 
orientation based on the user's selection.  If  it was the gravity group,  we 
adjust the gravity based on the user's selection.

Here is the result when it is first launched inside the emulator:

Figure 10. The LinearLayoutDemo sample application, as initially launched

If  we toggle on the "vertical"  radio button,  the top  RadioGroup adjusts to 
match:

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

Figure 11. The same application, with the vertical radio button selected

If  we toggle the "center"  or "right"  radio buttons,  the bottom  RadioGroup 
adjusts to match:

Figure 12. The same application, with the vertical and center radio buttons 
selected

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

Figure 13. The same application, with the vertical and right radio buttons 
selected

All Things Are Relative

RelativeLayout,  as  the name suggests,  lays out widgets based upon their 
relationship to other widgets in the container and the parent container. You 
can place Widget X below and to the left of Widget Y, or have Widget Z's 
bottom edge align with the bottom of the container, and so on.

This is reminiscent of James Elliot's RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an 
XML layout file, plus ways to indicate the relative positions of those widgets.

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html


Working with Containers

Positions Relative to Container

The easiest relations to set up are tying a widget's position to that of  its 
container:

• android:layout_alignParentTop says  the  widget's  top  should  align 
with the top of the container

• android:layout_alignParentBottom says the widget's  bottom should 
align with the bottom of the container

• android:layout_alignParentLeft says  the  widget's  left  side  should 
align with the left side of the container

• android:layout_alignParentRight says the widget's right side should 
align with the right side of the container

• android:layout_centerHorizontal says  the  widget  should  be 
positioned horizontally at the center of the container

• android:layout_centerVertical says the widget should be positioned 
vertically at the center of the container

• android:layout_centerInParent says the widget should be positioned 
both horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

Note that the padding of the widget is taken into account when performing 
these various alignments. The alignments are based on the widget's overall 
cell (combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativeLayout take as a value the 
identity of a widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will 
need to address, of the form @+id/...

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

2. Reference other widgets using the same identifier value without the 
plus sign (@id/...)

For example, if Widget A is identified as @+id/widget_a, Widget B can refer 
to Widget A in one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of  a widget vis a vis other 
widgets:

• android:layout_above indicates  that  the  widget  should  be  placed 
above the widget referenced in the property

• android:layout_below indicates  that  the  widget  should  be  placed 
below the widget referenced in the property

• android:layout_toLeft indicates that the widget should be placed to 
the left of the widget referenced in the property

• android:layout_toRight indicates that the widget should be placed to 
the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one 
widget's alignment relative to another:

• android:layout_alignTop indicates that the widget's  top should be 
aligned with the top of the widget referenced in the property

• android:layout_alignBottom indicates  that  the  widget's  bottom 
should be aligned with the bottom of the widget referenced in the 
property

• android:layout_alignLeft indicates that the widget's left should be 
aligned with the left of the widget referenced in the property

• android:layout_alignRight indicates that the widget's right should be 
aligned with the right of the widget referenced in the property

• android:layout_alignBaseline indicates that the baselines of the two 
widgets should be aligned

52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

The last one is useful for aligning labels and fields so that the text appears 
"natural".  Since  fields  have  a  box  around  them  and  labels  do  not, 
android:layout_alignTop would align the top of the field's box with the top of 
the label, which will cause the text of the label to be higher on-screen than 
the text entered into the field.

So, if  we want Widget B to be positioned to the right of Widget A, in the 
XML element for Widget B, we need to include  android:layout_toRight = 
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

What makes this even more complicated is the order of evaluation. Android 
makes a single pass through your XML layout and computes the size and 
position of each widget in sequence. This has a few ramifications:

• You cannot reference a widget that has not been defined in the file 
yet

• You  must  be  careful  that  any  uses  of  fill_parent in 
android:layout_width or android:layout_height do not "eat up" all the 
space before subsequent widgets have been defined

Example

With all that in mind, let's examine a typical "form" with a field, a label, plus 
a pair of buttons labeled "OK" and "Cancel".

Here is the XML layout, pulled from the Relative sample project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:layout_width="fill_parent"
  android:layout_height="wrap_content"
  android:padding="5px">
  <TextView android:id="@+id/label"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:text="URL:"

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

    android:paddingTop="5px"/>
  <EditText
    android:id="@+id/entry"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:layout_toRight="@id/label"
    android:layout_alignBaseline="@id/label"/>
  <Button
    android:id="@+id/ok"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:layout_below="@id/entry"
    android:layout_alignRight="@id/entry"
    android:text="OK" />
  <Button
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:layout_toLeft="@id/ok"
    android:layout_alignTop="@id/ok"
    android:text="Cancel" />

</RelativeLayout>

First, we open up the RelativeLayout. In this case, we want to use the full 
width of  the screen (android:layout_width = "fill_parent"), only as much 
height as we need (android:layout_height = "wrap_content"), and have a 5-
pixel  pad  between  the  boundaries  of  the  container  and  its  contents 
(android:padding = "5px").

Next,  we define the label, which is fairly basic,  except for its own 5-pixel 
padding (android:padding = "5px"). More on that in a moment.

After that, we add in the field. We want the field to be to the right of the 
label, have their texts aligned along the baseline, and for the field to take up 
the rest of this "row" in the layout. Those are handled by three properties:

• android:layout_toRight = "@id/label"

• android:layout_alignBaseline = "@id/label"

• android:layout_alignBaseline = "@id/label"

If we were to skip the 5-pixel padding on the label, we would find that the 
top of the field is clipped off. That's because of the 5-pixel padding on the 
container  itself.  The  android:layout_alignBaseline  =  "@id/label" simply 
aligns the baselines of the label and field. The label, by default, has its top 

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

aligned with the top of  the parent. But the label is shorter than the field 
because  of  the  field's  box.  Since  the  field  is  dependent  on  the  label's 
position,  and the label's position is already defined (because it appeared 
first in the XML), the field winds up being too high and has the top of its 
box clipped off by the container's padding.

You may find yourself running into these sorts of problems as you try to get 
your RelativeLayout to behave the way you want it to.

The solution to this conundrum, used in the XML layout shown above, is to 
give the label 5 pixels' of padding on the top. This pushes the label down far 
enough that the field will not get clipped.

Here are some "solutions" that do not work:

• You cannot use android:layout_alignParentTop on the field, because 
you cannot have two properties that both attempt to set the vertical 
position  of  the  field.  In  this  case,  android:layout_alignParentTop 
conflicts with the later android:layout_alignBaseline = "@id/label" 
property, and the last one in wins. So, you either have the top aligned 
properly or the baselines aligned properly, but not both.

• You cannot define the field first, then put the label to the left of the 
field,  as  the  android:layout_width  =  "fill_parent" "eats  up"  the 
width of the "row", leaving no room for the label, so the label does 
not appear

Going back to the example,  the OK button is  set to be below the field 
(android:layout_below = "@id/entry") and have its right side align with the 
right  side  of  the  field  (android:layout_alignRight  =  "@id/entry").  The 
Cancel  button  is  set  to  be  to  the  left  of  the  OK  button 
(android:layout_toLeft = "@id/ok") and have its top aligned with the OK 
button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

Figure 14. The RelativeLayoutDemo sample application

Tabula Rasa

If  you  like  HTML  tables,  spreadsheet  grids,  and  the  like,  you  will  like 
Android's  TableLayout – it allows you to position your widgets in a grid to 
your specifications. You control the number of  rows and columns, which 
columns might shrink or stretch to accommodate their contents, and so on.

TableLayout works in conjunction with  TableRow.  TableLayout controls the 
overall behavior of the container, with the widgets themselves poured into 
one or more TableRow containers, one per row in the grid.

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and 
columns, plus how to handle widgets that live outside of rows.

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a 
TableRow inside the overall TableLayout. You, therefore, control directly how 
many rows appear in the table.

The  number  of  columns  are  determined  by  Android;  you  control  the 
number of columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if 
you have three rows, one with two widgets, one with three widgets, and one 
with four widgets, there will be at least four columns.

However,  a widget can take up more than one column by including the 
android:layout_span property, indicating the number of columns the widget 
spans. This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
  <TextView android:text="URL:" />
  <EditText
    android:id="@+id/entry"
    android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily,  widgets are put into the first available column.  In the above 
fragment, the label would go in the first column (column 0, as columns are 
counted starting from 0), and the field would go into a spanned set of three 
columns (columns  1 through  3).  However,  you  can put a  widget  into a 
different column via the  android:layout_column property,  specifying the  0-
based column the widget belongs to:

<TableRow>
  <Button
    android:id="@+id/cancel"
    android:layout_column="2"
    android:text="Cancel" />
  <Button android:id="@+id/ok" android:text="OK" />
</TableRow>

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

In the preceding XML layout fragment, the Cancel button goes in the third 
column  (column  2).  The  OK  button  then  goes  into  the  next  available 
column, which is the fourth column.

Non-Row Children of TableLayout

Normally,  TableLayout contains  only  TableRow elements  as  immediate 
children. However, it is possible to put other widgets in between rows. For 
those  widgets,  TableLayout behaves  a  bit  like  LinearLayout with  vertical 
orientation. The widgets automatically have their width set to fill_parent, 
so they will fill the same space that the longest row does.

One  pattern  for  this  is  to  use  a  plain  View as  a  divider  (e.g.,  <View 
android:layout_height = "2px" android:background = "#0000FF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the "natural" size of the 
widest  widget  in  that  column  (taking  spanned  columns  into  account). 
Sometimes, though, that does not work out very well, and you need more 
control over column behavior.

You can place an  android:stretchColumns property on the  TableLayout. The 
value should  be a  single column number (again,  0-based)  or a  comma-
delimited list of column numbers. Those columns will be stretched to take 
up any available space yet on the row. This helps if your content is narrower 
than the available space.

Conversely,  you  can  place  a  android:shrinkColumns property  on  the 
TableLayout.  Again,  this should be a single column number or a comma-
delimited list of column numbers. The columns listed in this property will 
try to word-wrap their contents to reduce the effective width of the column – 
by default, widgets are not word-wrapped. This helps if  you have columns 
with potentially wordy content that might cause some columns to be pushed 
off the right side of the screen.

58

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

You  can  also  leverage  an  android:collapseColumns property  on  the 
TableLayout,  again  with  a  column  number  or  comma-delimited  list  of 
column numbers. These columns will start out "collapsed", meaning they 
will be part of the table information but will be invisible. Programmatically, 
you can collapse and un-collapse columns by calling  setColumnCollapsed() 
on the  TableLayout.  You  might use this  to allow users  to control  which 
columns are of importance to them and should be shown versus which ones 
are less important and can be hidden.

You  can  also  control  stretching  and  shrinking  at  runtime  via 
setColumnStretchable() and setColumnShrinkable().

Example

The  XML  layout  fragments  shown  above,  when  combined,  give  us  a 
TableLayout rendition of the "form" we created for RelativeLayout, with the 
addition  of  a  divider  line  between  the  label/field  and  the  two buttons 
(found in the Table demo):

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  android:stretchColumns="1">
  <TableRow>
    <TextView
        android:text="URL:" />
    <EditText android:id="@+id/entry"
      android:layout_span="3"/>
  </TableRow>
  <View
    android:layout_height="2px"
    android:background="#0000FF" />
  <TableRow>
    <Button android:id="@+id/cancel"
      android:layout_column="2"
      android:text="Cancel" />
    <Button android:id="@+id/ok"
      android:text="OK" />
  </TableRow>
</TableLayout>

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

When compiled against the generated Java code and run on the emulator, 
we get:

Figure 15. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small,  which requires developers to use some 
tricks to present a lot of  information in the limited available space. One 
trick for doing this is to use scrolling,  so only part of  the information is 
visible at one time, the rest available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents.  You can 
take a layout that might be too big for some screens, wrap it in a ScrollView, 
and still use your existing layout logic. It just so happens that the user can 
only see part of your layout at one time, the rest available via scrolling.

For example, here is a ScrollView used in an XML layout file (from the Scroll 
demo):

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:layout_width="fill_parent"
  android:layout_height="wrap_content">
  <TableLayout
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:stretchColumns="0">
    <TableRow>
      <View
        android:layout_height="80px"
        android:background="#000000"/>
      <TextView android:text="#000000"
        android:paddingLeft="4px"
        android:layout_gravity="center_vertical" />
    </TableRow>
    <TableRow>
      <View
        android:layout_height="80px"
        android:background="#440000" />
      <TextView android:text="#440000"
        android:paddingLeft="4px"
        android:layout_gravity="center_vertical" />
    </TableRow>
    <TableRow>
      <View
        android:layout_height="80px"
        android:background="#884400" />
      <TextView android:text="#884400"
        android:paddingLeft="4px"
        android:layout_gravity="center_vertical" />
    </TableRow>
    <TableRow>
      <View
        android:layout_height="80px"
        android:background="#aa8844" />
      <TextView android:text="#aa8844"
        android:paddingLeft="4px"
        android:layout_gravity="center_vertical" />
    </TableRow>
    <TableRow>
      <View
        android:layout_height="80px"
        android:background="#ffaa88" />
      <TextView android:text="#ffaa88"
        android:paddingLeft="4px"
        android:layout_gravity="center_vertical" />
    </TableRow>
    <TableRow>
      <View
        android:layout_height="80px"
        android:background="#ffffaa" />
      <TextView android:text="#ffffaa"
        android:paddingLeft="4px"

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

        android:layout_gravity="center_vertical" />
    </TableRow>
    <TableRow>
      <View
        android:layout_height="80px"
        android:background="#ffffff" />
      <TextView android:text="#ffffff"
        android:paddingLeft="4px"
        android:layout_gravity="center_vertical" />
    </TableRow>
  </TableLayout>
</ScrollView>

Without the ScrollView, the table would take up at least 560 pixels (7 rows at 
80 pixels each, based on the View declarations). There may be some devices 
with screens capable of showing that much information, but many will be 
smaller. The ScrollView lets us keep the table as-is, but only present part of 
it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

Figure 16. The ScrollViewDemo sample application

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Containers

Notice how only four rows and part of the fifth are visible. By pressing the 
up/down buttons on the directional pad, you can scroll up and down to see 
the remaining rows.

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 8

Using Selection Widgets

Back  in  the  chapter  on  basic  widgets,  you  saw  how  fields  could  have 
constraints placed upon them to limit possible input, such as numeric-only 
or phone-number-only. These sorts of  constraints help users "get it right" 
when entering information, particularly on a mobile device with cramped 
keyboards.

Of course, the ultimate in constrained input is to select a choice from a set 
of  items,  such as the radio buttons seen earlier.  Classic UI  toolkits have 
listboxes, comboboxes, drop-down lists, and the like for that very purpose. 
Android has many of  the same sorts of  widgets, plus others of  particular 
interest for mobile devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining what choices 
are available in these widgets. Specifically, Android offers a framework of 
data adapters that provide a common interface to selection lists ranging 
from  static  arrays  to  database  contents.  Selection  views  –  widgets  for 
presenting lists of  choices – are handed an adapter to supply the actual 
choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate 
APIs.  More  specifically,  in  Android's  case,  adapters  provide  a  common 
interface to the data model behind a selection-style widget, such as a listbox. 

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

This  use  of  Java  interfaces  is  fairly  common  (e.g.,  Java/Swing's  model 
adapters for JTable), and Java is far from the only environment offering this 
sort of abstraction (e.g., Flex's XML data-binding framework accepts XML 
inlined as static data or retrieved from the Internet).

Android's  adapters are responsible for providing the roster of  data for a 
selection widget plus converting individual elements of  data into specific 
views to be displayed inside the selection widget.  The latter facet of  the 
adapter system may sound a little odd, but in reality it is not that different 
from other GUI toolkits'  ways of  overriding default display behavior.  For 
example, in Java/Swing, if you want a JList-backed listbox to actually be a 
checklist (where individual rows are a checkbox plus label, and clicks adjust 
the state of the checkbox), you inevitably wind up calling setCellRenderer() 
to supply your own ListCellRenderer, which in turn converts strings for the 
list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter – all you need to do is wrap one of 
these around a Java array or java.util.List instance, and you have a fully-
functioning adapter:

String[] items={"this", "is", "a",
                "really", "silly", "list"};
new ArrayAdapter<String>(this,
  android.R.layout.simple_list_item_1, items);

The ArrayAdapter constructor takes three parameters:

• The Context to use (typically this will be your activity instance)

• The resource ID of a view to use (such as a built-in system resource 
ID, as shown above)

• The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list 
and  wrap each of  those strings  in  the view designated  by the supplied 
resource.  android.R.layout.simple_list_item_1 simply  turns  those  strings 

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

into TextView objects. Those TextView widgets, in turn, will be shown the list 
or spinner or whatever widget uses this ArrayAdapter.

You can subclass  ArrayAdapter and override  getView() to "roll  your own" 
views:

public View getView(int position, View convertView,
                     ViewGroup parent) {
  if (convertView==null) {
    convertView=new TextView(this);
  }

  convertView.setText(buildStringFor(position));

  return(convertView);
}

Here, getView() receives three parameters:

• The index of the item in the array to show in the view

• An existing view to update with the data for this position (if  one 
already  existed,  such  as  from  scrolling  –  if  null,  you  need  to 
instantiate your own)

• The widget that will contain this view, if needed for instantiating the 
view

In the example shown above, the adapter still returns a TextView, but uses a 
different behavior for determining  the string  that goes in the view.  The 
TourIt sample application demonstrates using a more complicated custom 
view for a list adapter.

Other Key Adapters

Here are some other adapters in Android that you will likely use, each of 
which will be covered in greater detail later in this book:

• CursorAdapter converts a  Cursor,  typically from a content provider, 
into something that can be displayed in a selection view

• SimpleAdapter converts data found in XML resources

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

• ActivityAdapter and  ActivityIconAdapter provide  you  with  the 
names or icons of  activities that can be invoked upon a particular 
intent

Lists of Naughty and Nice

The classic listbox widget in Android is known as ListView. Include one of 
these in  your layout,  invoke  setAdapter() to supply your data and  child 
views, and attach a listener via setOnItemSelectedListener() to find out when 
the selection has changed. With that, you have a fully-functioning listbox.

However,  if  your  activity  is  dominated  by  a  single  list,  you  might  well 
consider creating your activity as a subclass of ListActivity, rather than the 
regular Activity base class. If your main view is just the list, you do not even 
need to supply a layout –  ListActivity will  construct a full-screen list for 
you. If you do want to customize the layout, you can, so long as you identify 
your  ListView as  @android:id/list,  so  ListActivity knows which widget is 
the main list for the activity.

For example, here is a layout pulled from the List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent" 
  android:layout_height="fill_parent" >
  <TextView
    android:id="@+id/selection"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"/>
  <ListView
    android:id="@android:id/list"
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent"
    android:drawSelectorOnTop="false"
    />
</LinearLayout>

It is just a list with a label on top to show the current selection.

68

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

The Java code to configure the list and connect the list with the label is:

public class ListViewDemo extends ListActivity {
  TextView selection;
  String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
          "consectetuer", "adipiscing", "elit", "morbi", "vel",
          "ligula", "vitae", "arcu", "aliquet", "mollis",
          "etiam", "vel", "erat", "placerat", "ante",
          "porttitor", "sodales", "pellentesque", "augue", "purus"};
  
  /** Called with the activity is first created. */
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    setListAdapter(new ArrayAdapter<String>(this,
                       android.R.layout.simple_list_item_1,
                       items));
    selection=(TextView)findViewById(R.id.selection);
  }
  
  public void onListItemClick(ListView parent, View v, int position,
                               long id) {
   selection.setText(items[position]);
  }
}

With ListActivity, you can set the list adapter via setListAdapter() – in this 
case, providing an ArrayAdapter wrapping an array of nonsense strings. To 
find  out when the list selection changes,  override  onListItemClick() and 
take appropriate steps based on the supplied child view and position (in this 
case, updating the label with the text for that position).

The results?

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

Figure 17. The ListViewDemo sample application

Spin Control

In Android,  the  Spinner is  the equivalent of  the drop-down selector you 
might find in other toolkits (e.g., JComboBox in Java/Swing). Pressing the left 
and right buttons on the D-pad iterates over children. Pressing the center 
button on the D-pad displays, by default, a small list (akin to a  ListView) 
appears to show a few items at a time, instead of  the one-item-at-a-time 
perspective the unexpanded Spinner itself provides.

As  with  ListView,  you  provide  the  adapter for  data  and  child  views  via 
setAdapter() and  hook  in  a  listener  object  for  selections  via 
setOnItemSelectedListener().

If  you  want  to  tailor  the  view  used  when  displaying  the  drop-down 
perspective, you need to configure the adapter, not the Spinner widget. Use 
the setDropDownViewResource() method to supply the resource ID of the view 
to use.

70

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

For example, culled from the Spinner sample project, here is an XML layout 
for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <TextView
    android:id="@+id/selection"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    />
  <Spinner android:id="@+id/spinner"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:drawSelectorOnTop="true"
  />
</LinearLayout>

This is the same view as shown in the previous section, just with a Spinner 
instead  of  a  ListView.  The  Spinner property  android:drawSelectorOnTop 
controls whether the arrows are drawn on the selector button on the right 
side of the Spinner UI.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity
  implements AdapterView.OnItemSelectedListener {
  TextView selection;
  String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
          "consectetuer", "adipiscing", "elit", "morbi", "vel",
          "ligula", "vitae", "arcu", "aliquet", "mollis",
          "etiam", "vel", "erat", "placerat", "ante",
          "porttitor", "sodales", "pellentesque", "augue", "purus"};
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    selection=(TextView)findViewById(R.id.selection);
    
    Spinner spin=(Spinner)findViewById(R.id.spinner);
    spin.setOnItemSelectedListener(this);
    
    ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
                             android.R.layout.simple_list_item_1,

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

                             items);
    
    aa.setDropDownViewResource(
      android.R.layout.simple_spinner_dropdown_item);
    spin.setAdapter(aa);
  }
  
  public void onItemSelected(AdapterView parent, View v,
                               int position, long id) {
    selection.setText(items[position]);
  }
  
  public void onNothingSelected(AdapterView parent) {
    selection.setText("");
  }
}

Here,  we  attach  the  activity  itself  as  the  selection  listener 
(spin.setOnItemSelectedListener(this)).  This  works  because  the  activity 
implements the OnItemSelectedListener interface. We configure the adapter 
not only with the list of fake words, but also with a specific resource to use 
for  the  drop-down  view  (via  aa.setDropDownViewResource()).  Finally,  we 
implement the callbacks required by  OnItemSelectedListener to adjust the 
selection label based on user input.

What we get is:

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

Figure 18. The SpinnerDemo sample application, as initially launched

Figure 19. The same application, with the spinner drop-down list displayed

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

Grid Your Lions (Or Something Like That...)

As the name suggests, GridView gives you a two-dimensional grid of items to 
choose from. You have moderate control over the number and size of the 
columns;  the  number  of  rows  is  dynamically  determined  based  on  the 
number of items the supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of 
columns and their sizes:

• android:numColumns spells out how many columns there are, or, if you 
supply a value of  auto_fit,  Android  will  compute the number of 
columns based on available space and the properties listed below.

• android:verticalSpacing and  its  counterpart 
android:horizontalSpacing indicate how many pixels of  whitespace 
there should be between items in the grid.

• android:columnWidth indicates how many pixels wide each column 
should be.

• android:stretchMode indicates,  for  grids  with  auto_fit for 
android:numColumns, what should happen for any available space not 
taken up by columns or spacing – this should be columnWidth to have 
the columns take up available  space or  spacingWidth to have the 
whitespace  between  columns  absorb  extra  space.  For  example, 
suppose  the  screen  is  320  pixels  wide,  and  we  have 
android:columnWidth set to 100 and android:horizontalSpacing set to 
5. Three columns would use 310 pixels (three columns of 100 pixels 
and two whitespaces of  5 pixels).  With  android:stretchMode set to 
columnWidth, the three columns will each expand by 3-4 pixels to use 
up  the  remaining  10  pixels.  With  android:stretchMode set  to 
spacingWidth,  the  two whitespaces  will  each  grow by  5  pixels  to 
consume the remaining 10 pixels.

Note  that  the  properties  android:verticalSpacing, 
android:horizontalSpacing,  and  android:columnWidth all  take  a  simple 
number pixels, not a dimension, at the time of this writing.

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

Otherwise, the GridView works much like any other selection widget – use 
setAdapter() to  provide  the  data  and  child  views,  invoke 
setOnItemSelectedListener() to register a selection listener, etc.

For example, here is a XML layout from the Grid sample project, showing a 
GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <TextView
    android:id="@+id/selection"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    />
  <GridView
    android:id="@+id/grid"
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent"
    android:verticalSpacing="35"
    android:horizontalSpacing="5"
    android:numColumns="auto_fit"
    android:columnWidth="100"
    android:stretchMode="columnWidth"
    android:gravity="center"
    />
</LinearLayout>

For this grid, we take up the entire screen except for what our selection label 
requires.  The  number  of  columns  is  computed  by  Android 
(android:numColumns  =  "auto_fit")  based  on  5-pixel  horizontal  spacing 
(android:horizontalSpacing = "5"), 100-pixel columns (android:columnWidth 
=  "100"),  with  the  columns  absorbing  any  "slop"  width  left  over 
(android:stretchMode = "columnWidth").

The Java code to configure the GridView is:

public class GridDemo extends Activity
  implements AdapterView.OnItemSelectedListener {
  TextView selection;
  String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
          "consectetuer", "adipiscing", "elit", "morbi", "vel",

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

          "ligula", "vitae", "arcu", "aliquet", "mollis",
          "etiam", "vel", "erat", "placerat", "ante",
          "porttitor", "sodales", "pellentesque", "augue", "purus"};
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    selection=(TextView)findViewById(R.id.selection);
    
    GridView g=(GridView) findViewById(R.id.grid);
    g.setAdapter(new FunnyLookingAdapter(this,
                       android.R.layout.simple_list_item_1,
                       items));
    g.setOnItemSelectedListener(this);
  }
  
  public void onItemSelected(AdapterView parent, View v,
                             int position, long id) {
    selection.setText(items[position]);
  }
  
  public void onNothingSelected(AdapterView parent) {
    selection.setText("");
  }
  
  private class FunnyLookingAdapter extends ArrayAdapter {
    Context ctxt;
    
    FunnyLookingAdapter(Context ctxt, int resource,
                       String[] items) {
      super(ctxt, resource, items);
      
      this.ctxt=ctxt;
    }
    
    public View getView(int position, View convertView,
                         ViewGroup parent) {
      TextView label=(TextView)convertView;
      
      if (convertView==null) {
        convertView=new TextView(ctxt);
        label=(TextView)convertView;
      }
      
      label.setText(items[position]);
      
      return(convertView);
    }
  }
}

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

For the grid cells, rather than using auto-generated  TextView widgets as in 
the previous sections, we create our own views, by subclassing ArrayAdapter 
and overriding getView(). In this case, we wrap the funny-looking strings in 
our  own  TextView widgets,  just  to  be  different.  If  getView() receives  a 
TextView, we just reset its text; otherwise, we create a new TextView instance 
and populate it.

With  the  35-pixel  vertical  spacing  from  the  XML  layout 
(android:verticalSpacing = "35"), the grid overflows the boundaries of the 
emulator's screen:

Figure 20. The GridDemo sample application, as initially launched

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

Figure 21. The same application, scrolled to the bottom of the grid

Fields: Now With 35% Less Typing!

The AutoCompleteTextView is sort of a hybrid between the EditView (field) and 
the Spinner. With auto-completion, as the user types, the text is treated as a 
prefix  filter,  comparing  the  entered  text  as  a  prefix  against  a  list  of 
candidates.  Matches are shown in a selection list that,  like with  Spinner, 
folds  down from the field.  The user can  either type out an  entry  (e.g., 
something not in the list) or choose an entry from the list to be the value of 
the field.

AutoCompleteTextView subclasses  EditView,  so  you  can  configure  all  the 
standard look-and-feel aspects, such as font face and color.

In  addition,  AutoCompleteTextView has  a  android:completionThreshold 
property, to indicate the minimum number of characters a user must enter 
before the list filtering begins.

You  can  give  AutoCompleteTextView an  adapter  containing  the  list  of 
candidate  values  via  setAdapter().  However,  since  the  user  could  type 

78

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

something not in the list,  AutoCompleteTextView does not support selection 
listeners.  Instead,  you  can register a  TextWatcher,  like you  can  with  any 
EditView,  to be notified  when the text  changes.  These events  will  occur 
either because of  manual typing or from a selection from the drop-down 
list.

Below  we  have  a  familiar-looking  XML  layout,  this  time  containing  an 
AutoCompleteTextView (pulled from the AutoComplete sample application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <TextView
    android:id="@+id/selection"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    />
  <AutoCompleteTextView android:id="@+id/edit"
      android:layout_width="fill_parent"
      android:layout_height="wrap_content"
      android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is:

public class AutoCompleteDemo extends Activity
  implements TextWatcher {
  TextView selection;
  AutoCompleteTextView edit;
  String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
          "consectetuer", "adipiscing", "elit", "morbi", "vel",
          "ligula", "vitae", "arcu", "aliquet", "mollis",
          "etiam", "vel", "erat", "placerat", "ante",
          "porttitor", "sodales", "pellentesque", "augue", "purus"};

  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    selection=(TextView)findViewById(R.id.selection);
    edit=(AutoCompleteTextView)findViewById(R.id.edit);
    edit.addTextChangedListener(this);
    
    edit.setAdapter(new ArrayAdapter<String>(this,

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

                         android.R.layout.simple_list_item_1,
                         items));
  }
  
  public void onTextChanged(CharSequence s, int start, int before,
                             int count) {
    selection.setText(edit.getText());
  }
  
  public void beforeTextChanged(CharSequence s, int start,
                                 int count, int after) {
    // needed for interface, but not used
  }
}

This time, our activity implements TextWatcher, which means our callbacks 
are  onTextChanged() and  beforeTextChanged().  In  this  case,  we  are  only 
interested in the former, and we update the selection label to match the 
AutoCompleteTextView's current contents.

Here we have the results:

Figure 22. The AutoCompleteDemo sample application, as initially launched

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

Figure 23. The same application, after a few matching letters were entered, 
showing the auto-complete drop-down

Figure 24. The same application, after the auto-complete value was selected

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Selection Widgets

Galleries, Give Or Take The Art

The  Gallery widget is  not one ordinarily found in GUI toolkits.  It is,  in 
effect, a horizontally-laid-out listbox. One choice follows the next across the 
horizontal  plane,  with  the  currently-selected  item  highlighted.  On  an 
Android device, one rotates through the options through the left and right 
D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space while still 
showing multiple choices at one time (assuming they are short enough). 
Compared to the Spinner, the Gallery always shows more than one choice at 
a time.

The quintessential example use for the Gallery is image preview – given a 
collection of photos or icons, the Gallery lets people preview the pictures in 
the process of choosing one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML 
layout, you have a few properties at your disposal:

• android:spacing controls the number of pixels between entries in the 
list

• android:spinnerSelector controls what is used to indicate a selection 
–  this  can either be a  reference to a  Drawable (see the  resources 
chapter) or an RGB value in #AARRGGBB or similar notation

• android:drawSelectorOnTop indicates if the selection bar (or Drawable) 
should be drawn before (false) or after (true) drawing the selected 
child – if you choose true, be sure that your selector has sufficient 
transparency to show the child through the selector, otherwise users 
will not be able to read the selection

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 9

Employing Fancy Widgets and 
Containers

The widgets and containers covered to date are not only found in many GUI 
toolkits (in one form or fashion), but also are widely used in building GUI 
applications,  whether  Web-based,  desktop,  or  mobile.  The  widgets  and 
containers in this chapter are a little less widely used, though you will likely 
find many to be quite useful.

Pick and Choose

With limited-input devices like phones, having widgets and dialogs that are 
aware of  the type of  stuff  somebody is  supposed to be entering  is  very 
helpful. It minimizes keystrokes and screen taps, plus reduces the chance of 
making  some sort of  error (e.g.,  entering  a letter someplace where only 
numbers are expected).

As  shown previously,  EditView has  content-aware flavors  for entering  in 
numbers, phone numbers, etc. Android also supports widgets (DatePicker, 
TimePicker)  and  dialogs  (DatePickerDialog,  TimePickerDialog)  for  helping 
users enter dates and times.

The DatePicker and  DatePickerDialog allow you to set the starting date for 
the selection, in the form of a year, month, and day of month value. Note 
that the month runs from 0 for January through 11 for December. You can 

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

also choose the day on which a week "begins" – the traditional US calendar 
has weeks beginning on a Sunday (SUNDAY). Most importantly, each let you 
provide a callback object (OnDateSetListener) where you are informed of a 
new date selected by the user. It is up to you to store that date someplace, 
particularly if you are using the dialog, since there is no other way for you to 
get at the chosen date later on.

Similarly, TimePicker and TimePickerDialog let you:

• set the initial time the user can adjust, in the form of  an hour (0 
through 23) and a minute (0 through 59)

• indicate if the selection should be in 12-hour mode with an AM/PM 
toggle, or in 24-hour mode (what in the US is thought of as "military 
time" and in the rest of the world is thought of as "the way times are 
supposed to be")

• provide a callback object (OnTimeSetListener) to be notified of when 
the user has chosen a new time, which is supplied to you in the form 
of an hour and minute

For  example,  from  the  Chrono sample  project,  here's  a  trivial  layout 
containing a label and two buttons – the buttons will  pop up the dialog 
flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
  xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <TextView android:id="@+id/dateAndTime"  
    android:layout_width="fill_parent" 
    android:layout_height="wrap_content"
    />
  <Button android:id="@+id/dateBtn"  
    android:layout_width="fill_parent" 
    android:layout_height="wrap_content" 
    android:text="Set the Date"
    />
  <Button android:id="@+id/timeBtn"  
    android:layout_width="fill_parent" 
    android:layout_height="wrap_content" 
    android:text="Set the Time"

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

    />
</LinearLayout>

The more interesting stuff comes in the Java source:

public class ChronoDemo extends Activity {
  DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
  TextView dateAndTimeLabel;
  Calendar dateAndTime=Calendar.getInstance();
  DatePicker.OnDateSetListener d=new DatePicker.OnDateSetListener() {
    public void dateSet(DatePicker view, int year, int monthOfYear,
                int dayOfMonth) {
      dateAndTime.set(Calendar.YEAR, year);
      dateAndTime.set(Calendar.MONTH, monthOfYear);
      dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
      updateLabel();
    }
  };  
  TimePicker.OnTimeSetListener t=new TimePicker.OnTimeSetListener() {
    public void timeSet(TimePicker view, int hourOfDay,
                         int minute) {
      dateAndTime.set(Calendar.HOUR, hourOfDay);
      dateAndTime.set(Calendar.MINUTE, minute);
      updateLabel();
    }
  };  
      
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    
    Button btn=(Button)findViewById(R.id.dateBtn);
    
    btn.setOnClickListener(new View.OnClickListener() {
      public void onClick(View v) {
        new DatePickerDialog(ChronoDemo.this,
            d,
            dateAndTime.get(Calendar.YEAR),
            dateAndTime.get(Calendar.MONTH),
            dateAndTime.get(Calendar.DAY_OF_MONTH),
                    Calendar.SUNDAY).show();
      }
    });
    
    btn=(Button)findViewById(R.id.timeBtn);
    
    btn.setOnClickListener(new View.OnClickListener() {
      public void onClick(View v) {
        new TimePickerDialog(ChronoDemo.this,
                    t, "Set the time",
                    dateAndTime.get(Calendar.HOUR),
                    dateAndTime.get(Calendar.MINUTE),

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

                    true).show();
      }
    });
    
    dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);
    
    updateLabel();
  }
  
  private void updateLabel() {
    dateAndTimeLabel.setText(fmtDateAndTime
                             .format(dateAndTime.getTime()));
  }
}

The "model" for this activity is just a Calendar instance, initially set to be the 
current date and time. We pour it into the view via a DateFormat formatter. In 
the updateLabel() method, we take the current Calendar, format it, and put it 
in the TextView.

Each button is given a OnClickListener callback object. When the button is 
clicked, either a DatePickerDialog or a TimePickerDialog is shown. In the case 
of the DatePickerDialog, we give it a OnDateSetListener callback that updates 
the Calendar with the new date (year, month, day of month). We also give 
the dialog the last-selected date, getting the values out of the Calendar. In 
the case of  the  TimePickerDialog,  it  gets  a  OnTimeSetListener callback  to 
update the time portion of the Calendar, the last-selected time, and a true 
indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like this:

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

Figure 25. The ChronoDemo sample application, as initially launched

Figure 26. The same application, showing the date picker dialog

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

Figure 27. The same application, showing the time picker dialog

Time Keeps Flowing Like a River

If you want to display the time, rather than have users enter the time, you 
may  wish  to  use  the  DigitalClock or  AnalogClock widgets.  These  are 
extremely easy to use, as they automatically update with the passage of time. 
All you need to do it put them in your layout and let them do their thing.

For example, from the  Clocks sample application,  here is an XML layout 
containing both DigitalClock and AnalogClock:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <AnalogClock android:id="@+id/analog"
    android:layout_width="fill_parent" 
    android:layout_height="wrap_content"
    android:layout_centerHorizontal="true"
    android:layout_alignParentTop="true"
    />
  <DigitalClock android:id="@+id/digital"

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

    android:layout_width="wrap_content" 
    android:layout_height="wrap_content"
    android:layout_centerHorizontal="true"
    android:layout_below="@id/analog"
    />
</RelativeLayout>

Without any Java code other than the generated stub,  we can build  this 
project and get the following activity:

Figure 28. The ClocksDemo sample application

Making Progress

If you need to be doing something for a long period of time, you owe it to 
your users to do two things:

• Use a background thread, which will be covered in a later chapter

• Keep them apprised of  your progress, lest they think your activity 
has wandered away and will never come back

The typical approach to keeping users informed of progress is some form of 
progress bar or "throbber" (think the animated graphic towards the upper-

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

right corner of  many Web browsers).  Android supports this through the 
ProgressBar widget.

A  ProgressBar  keeps  track  of  progress,  defined  as  an  integer,  with  0 
indicating no progress has been made. You can define the maximum end of 
the range – what value indicates progress is complete – via the android:max 
property. By default, a  ProgressBar starts with a progress of  0, though you 
can start from some other position via the android:progress property.

If  you  prefer  your  progress  bar  to  be  indeterminate,  use  the 
android:indeterminate property, setting it to true. You probably should also 
set  the  android:indeterminateBehavior property  to  either  repeat (to  loop 
endlessly until stopped in Java code) or  cycle to reverse course and head 
back to 0.

In your Java code, you can either positively set the amount of progress that 
has  been  made  (via  setProgress())  or  increment  the  progress  from  its 
current amount (via  incrementProgressBy()).  You can find out how much 
progress has been made via getProgress().

Since the  ProgressBar is tied closely to the use of  threads – a background 
thread doing work, updating the UI thread with new progress information – 
we will hold off demonstrating the use of ProgressBar to a later chapter.

Putting It On My Tab

The general  Android philosophy is  to keep activities short and sweet.  If 
there is  more information than can reasonably fit  on one screen,  albeit 
perhaps with scrolling, then it perhaps belongs in another activity kicked off 
via an Intent, as will be described later in this book. However, that can be 
complicated to set up. Moreover,  sometimes there legitimately is a lot of 
information  that  needs  to  be  collected  to  be  processed  as  an  atomic 
operation.

In a traditional UI, you might use tabs to accomplish this end, such as a 
JTabbedPane in Java/Swing. In Android, you now have an option of using a 

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

TabHost container in much the same way – a portion of your activity's screen 
is taken up with tabs which, when clicked, swap out part of the view and 
replace it with something else. For example, you might have an activity with 
a tab for entering a location and a second tab for showing a map of  that 
location.

Some GUI toolkits refer to "tabs" as being just the things a user clicks on to 
toggle from one view to another. Some toolkits refer to "tabs" as being the 
combination  of  the  clickable  button-ish  element  and  the  content  that 
appears  when  that  tab  is  chosen.  Android  treats  the  tab  buttons  and 
contents as discrete entities,  so we will  call  them "tab buttons"  and "tab 
contents" in this section.

The Pieces

There are a few widgets and containers you need to use in order to set up a 
tabbed portion of a view:

• TabHost is  the overarching  container for the tab buttons and tab 
contents

• TabWidget implements the row of  tab buttons,  which contain text 
labels and optionally contain icons

• FrameLayout is the container for the tab contents; each tab content is 
a child of the FrameLayout

This is similar to the approach that Mozilla's XUL takes. In XUL's case, the 
tabbox element  corresponds  to  Android's  TabHost,  the  tabs element 
corresponds to TabWidget, and tabpanels corresponds to the FrameLayout.

The Idiosyncrasies

There are a few rules to follow,  at least in this  milestone edition of  the 
Android toolkit, in order to make these three work together:

• You must give the TabWidget an android:id of @android:id/tabs

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

• You must set aside some padding  in  the  FrameLayout for the tab 
buttons (more on this below)

• If  you wish to use the  TabActivity,  you must give the  TabHost an 
android:id of @android:id/tabhost

TabActivity, like  ListActivity, wraps a common UI pattern (activity made 
up  entirely  of  tabs)  into  a  pattern-aware  activity  subclass.  You  do  not 
necessarily have to use TabActivity – a plain activity can use tabs as well.

With respect to the  FrameLayout padding  issue,  for whatever reason,  the 
TabWidget does  not  seem  to  allocate  its  own  space  inside  the  TabHost 
container.  In  other  words,  no  matter  what  you  specify  for 
android:layout_height for  the  TabWidget,  the  FrameLayout ignores  it  and 
draws at the top of the overall  TabHost. Your tab contents obscure your tab 
buttons. Hence, you need to leave enough padding (via android:paddingTop) 
in  FrameLayout to "shove"  the actual  tab contents down beneath the tab 
buttons.  This is likely a bug, so this behavior may well  change in future 
versions of the toolkit.

In addition, the TabWidget seems to always draw itself with room for icons, 
even if you do not supply icons. Hence, for this version of the toolkit, you 
need to supply at least 62 pixels of padding, perhaps more depending on the 
icons you supply.

For example, here is a layout definition for a tabbed activity, from Tab:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent">
  <TabHost android:id="@+id/tabhost"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent">
    <TabWidget android:id="@android:id/tabs"
      android:layout_width="fill_parent"
      android:layout_height="wrap_content"
    />
    <FrameLayout android:id="@android:id/tabcontent"
      android:layout_width="fill_parent"
      android:layout_height="fill_parent"

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

      android:paddingTop="62px">
      <AnalogClock android:id="@+id/tab1"
        android:layout_width="fill_parent" 
        android:layout_height="fill_parent"
        android:layout_centerHorizontal="true"
      />
      <Button android:id="@+id/tab2"
        android:layout_width="fill_parent"
        android:layout_height="fill_parent"
        android:text="A semi-random button"
      />
    </FrameLayout>
  </TabHost>
</LinearLayout>

Note  that  the  TabWidget and  FrameLayout are  immediate  children  of  the 
TabHost,  and the  FrameLayout itself  has  children representing  the various 
tabs.  In  this  case,  there are two tabs:  a clock  and  a  button.  In  a more 
complicated scenario, the tabs are probably some form of  container (e.g., 
LinearLayout) with their own contents.

Wiring It Together

The Java code needs to tell the TabHost what views represent the tab contents 
and what the tab buttons should look like. This is all wrapped up in TabSpec 
objects. You get a TabSpec instance from the host via newTabSpec(), fill it out, 
then add it to the host in the proper sequence.

The two key methods on TabSpec are:

• setContent(),  where you indicate what goes in the tab content for 
this tab, typically the android:id of the view you want shown when 
this tab is selected

• setIndicator(),  where you provide the caption for the tab button 
and, in some flavors of this method, supply a Drawable to represent 
the icon for the tab

Note that tab "indicators" can actually be views in their own right, if  you 
need more control than a simple label and optional icon.

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

Also note that you must call setup() on the TabHost before configuring any 
of these TabSpec objects. The call to setup() is not needed if you are using 
the TabActivity base class for your activity.

For  example,  here  is  the  Java  code  to  wire  together  the  tabs  from the 
preceding layout example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);

    TabHost tabs=(TabHost)findViewById(R.id.tabhost);
    
    tabs.setup();
    
    TabHost.TabSpec spec=tabs.newTabSpec("tag1");
    
    spec.setContent(R.id.tab1);
    spec.setIndicator("Clock");
    tabs.addTab(spec);
    
    spec=tabs.newTabSpec("tag2");
    spec.setContent(R.id.tab2);
    spec.setIndicator("Button");
    tabs.addTab(spec);
    
    tabs.setCurrentTab(0);
  }
}

We find our  TabHost via the familiar  findViewById() method, then have it 
setup(). After that, we get a TabSpec via newTabSpec(), supplying a tag whose 
purpose is unknown at this time. Given the spec, you call setContent() and 
setIndicator(), then call addTab() back on the TabHost to register the tab as 
available for use. Finally, you can choose which tab is the one to show via 
setCurrentTab(), providing the 0-based index of the tab.

The result?

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

Figure 29. The TabDemo sample application, showing the first tab

Figure 30. The same application, showing the second tab

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Employing Fancy Widgets and Containers

Other Containers of Note

Android offers  AbsoluteLayout,  where the contents are laid  out based on 
specific coordinate positions. You tell AbsoluteLayout where to place a child 
in precise X,Y coordinates, and Android puts it there, no questions asked. 
On the plus side, this gives you precise positioning. On the minus side, it 
means your views will only look "right" on screens of a certain dimension, or 
it requires you to write a bunch of code to adjust the coordinates based on 
screen size. Since Android screens might run the gamut of sizes, plus have 
new  sizes  crop  up  periodically,  using  AbsoluteLayout could  get  quite 
annoying.

Android also has a new flavor of list, the ExpandableListView. This provides a 
simplified tree representation, supporting two levels of depth: groups and 
children.  Groups contain children;  children are "leaves"  of  the tree.  This 
requires a new set of adapters, since the ListAdapter family does not provide 
any sort of group information for the items in the list. This view feels like it 
is a work-in-progress and so is not covered here, but should appear in a 
future edition of this book.

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 10

Applying Menus

Like applications for the desktop and some mobile operating systems, such 
as  PalmOS  and  Windows  Mobile,  Android  supports  activities  with 
"application" menus. Some Android phones will have a dedicated menu key 
for popping up the menu; others will offer alternate means for triggering the 
menu to appear.

Also,  as with many GUI  toolkits,  you can create "context menus".  On a 
traditional  GUI,  this  might be triggered  by the right-mouse button.  On 
mobile devices,  context menus typically appear when the user "taps-and-
holds" over a particular widget.  For example,  if  a  TextView had a context 
menu, and the device was designed for finger-based touch input, you could 
push the TextView with your finger, hold it for a second or two, and a pop-up 
menu will appear for the user to choose from.

Where Android differs from most other GUI toolkits is in terms of  menu 
construction. While you can add items to the menu, you do not have full 
control over the menu's contents, nor the timing of when the menu is built. 
Part of  the menu is system-defined, and that portion is managed by the 
Android framework itself.

Flavors of Menu

Android  considers  the two types of  menu described  above as being the 
"options  menu"  and  "context  menu".  The options  menu is  triggered  by 

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Applying Menus

pressing the hardware "Menu" button on the device, while the context menu 
is raised by a tap-and-hold on the widget sporting the menu.

In addition,  the options menu operates  in  one of  two modes:  icon and 
expanded. When the user first presses the "Menu" button, the icon mode 
will  appear,  showing  up to the first  five  menu choices  as  large,  finger-
friendly buttons in a grid at the bottom of the screen. If the menu has more 
than five choices, a sixth button will appear, labeled "More" – clicking that 
option will  bring  up the expanded mode,  showing  all  available choices. 
Notably, the selection bar will not be on the first menu choice, but rather 
the sixth, figuring that the user probably wants something lower down on 
the menu, since they passed on the first five choices already. The menu is 
scrollable, so the user can get to any of the menu choices.

Menus of Options

Rather than building your activity's options menu during  onCreate(),  the 
way  you  wire  up  the  rest  of  your  UI,  you  instead  need  to  implement 
onCreateOptionsMenu(). This callback receives an instance of Menu.

The  first  thing  you  should  do  is  chain  upward  to  the  superclass 
(super.onCreateOptionsMenu(menu)),  so the Android  framework can add in 
any menu choices it feels are necessary. Then, you can go about adding your 
own options, described below.

If you will need to adjust the menu during your activity's use (e.g., disable a 
now-invalid menu choice), just hold onto the Menu instance you receive in 
onCreateOptionsMenu().

Given that you have received a  Menu object via  onCreateOptionsMenu(),  you 
add menu choices by calling add(). There are many flavors of this method, 
but all require the following parameters:

• A group identifier (int), which should be 0 unless you are creating a 
specific  grouped  set  of  menu  choices  for  use  with 
setGroupCheckable() (see below)

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Applying Menus

• A choice identifier (also an int), for use in identifying this choice in 
the onOptionsItemSelected() callback when a menu choice is chosen

You must also provide an icon (by its resource ID) or the text of the menu 
choice (as a String or by its resource ID) – these provide the "face" of the 
menu choice. Some flavors of add() also allow you to supply a Runnable to be 
called when the menu choice is chosen.

If you provide a Runnable, your choice identifier (second parameter) can be 0. 
Otherwise, you should make your choice identifiers be an increment over 
FIRST (e.g.,  FIRST+1), so you do not collide with any Android system menu 
choices put on the same menu.

The add() family of methods all return an instance of  Menu.Item, where you 
can adjust any of the menu item settings you have already set (e.g., the text 
of the menu choice). You can also set the shortcuts for the menu choice – 
single-character mnemonics that choose that menu choice when the menu 
is visible. Android supports both an alphabetic (or "qwerty") set of shortcuts 
and  a  numeric  set  of  shortcuts.  These  are  set  individually  by  calling 
setAlphabeticShortcut() and setNumericShortcut() respectively. The menu is 
placed  into  alphabetic  shortcut  mode by  calling  setQwertyMode() on  the 
menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu 
features, such as:

• Calling setItemCheckable() with a choice identifier, to control if the 
menu choice has a two-state checkbox alongside the title, where the 
checkbox  value  gets  toggled  when  the  user  chooses  that  menu 
choice

• Calling  setGroupCheckable() with a group identifier, to turn a set of 
menu  choices  into  ones  with  a  mutual-exclusion  radio  button 
between them, so one out of the group can be in the "checked" state 
at any time

You can also call:

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Applying Menus

• addSeparator() to add a separator line between already-defined and 
upcoming menu choices

• addIntentOptions() to  populate  the  menu  with  menu  choices 
corresponding  to  the  available  activities  for  an  intent  (see  the 
chapter on launching activities)

Finally, you can create fly-out sub-menus by calling addSubMenu(), supplying 
the same parameters as addMenu() except the Runnable callback. Android will 
eventually call  onCreatePanelMenu(), passing it the choice identifier of your 
sub-menu,  along  with  another  Menu instance representing  the sub-menu 
itself.  As  with  onCreateOptionsMenu(),  you  should  chain  upward  to  the 
superclass, then add menu choices to the sub-menu. One limitation is that 
you cannot indefinitely nest sub-menus – a menu can have a sub-menu, but 
a sub-menu cannot itself have a sub-sub-menu.

NOTE: Separators and sub-menus only work when the options menu is in 
"expanded" mode, not when it is in "icon" mode. You should only use these 
features if you have a really long menu, and then only starting with the sixth 
menu choice.

If  the user makes a menu choice,  and that choice came with a  Runnable 
instance attached, your  Runnable will be invoked. Otherwise, your activity 
will be notified via the onOptionsItemSelected() callback that a menu choice 
was  selected.  You  are  given  the  Menu.Item object  corresponding  to  the 
selected  menu choice.  A typical  pattern is  to  switch() on the menu ID 
(item.getId())  and  take  appropriate  behavior.  Note  that 
onOptionsItemSelected() is  used  regardless  of  whether the  chosen  menu 
item was in the base menu or in a submenu.

Menus in Context

By and  large,  context  menus use the same guts  as  option menus  –  the 
ContextMenu class extends the regular Menu class, offering only the means to 
set a "header" or caption for the popup menu via setHeader(). The two main 
differences are how you populate the menu and how you are informed of 
menu choices.

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Applying Menus

Since context menus are per-widget,  rather than per-activity,  there is no 
callback in the  Activity to populate the context menu the way there is 
onCreateOptionsMenu() to populate the options menu. Instead, each widget 
itself  is  told  when to populate the context menu.  To save you the total 
headache of  subclassing  a bunch of  widgets just to set up your context 
menus,  though,  Android  offers  a  setOnPopulateContextMenuListener() 
method  on  all  widgets.  This  takes  an  instance  of  the 
OnPopulateContextMenuListener callback interface.  Your implementation of 
that  interface  –  specifically,  your  implementation  of 
onPopulateContextMenu() – is where you set up the contents of  the context 
menu.

The onPopulateContextMenu() method gets the ContextMenu itself, the View the 
context menu is associated with, and an opaque Object representing "extra 
information"  about the menu being  built.  If  the context  menu is  for  a 
selection widget that inherits from AdapterView, this object is supposed to be 
an instance of  ContextMenuInfo,  which tells you which item in the list the 
user did the tap-and-hold over, in case you want to customize the context 
menu based on that information. For example, you could toggle a checkable 
menu choice based upon the current state of the item. Note that you only 
get this "extra information" when the menu is built, not when a choice is 
made.

It is also important to note that onPopulateContextMenu() gets called for each 
time the context menu is requested. Unlike the options menu (which is only 
built once per activity), context menus are discarded once they are used or 
dismissed. Hence, you do not want to hold onto the supplied  ContextMenu 
object;  just rely on getting  the chance to rebuild  the menu to suit your 
activity's needs on an on-demand basis based on user actions.

To  find  out  when  a  context  menu  choice  was  chosen,  implement 
onContextItemSelected() on the activity. Note that you only get the Menu.Item 
instance that was chosen in this callback. As a result, if your activity has two 
or more context menus, you may want to ensure they have unique menu 
item identifiers  for all  their choices,  so you  can tell  them apart  in  this 
callback.  Otherwise,  this  callback  behaves  the  same  as 
onOptionsItemSelected() as is described above.

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Applying Menus

Taking a Peek

In  the  sample  project  Menus,  you  will  find  an  amended  version  of  the 
ListView sample  (List)  with  an  associated  menu.  Since  the  menus  are 
defined in Java code, the XML layout need not change and is not reprinted 
here.

However, the Java code has a few new behaviors:

public class MenuDemo extends ListActivity {
  TextView selection;
  String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
          "consectetuer", "adipiscing", "elit", "morbi", "vel",
          "ligula", "vitae", "arcu", "aliquet", "mollis",
          "etiam", "vel", "erat", "placerat", "ante",
          "porttitor", "sodales", "pellentesque", "augue", "purus"};
  public static final int EIGHT_ID = Menu.FIRST+1;
  public static final int SIXTEEN_ID = Menu.FIRST+2;
  public static final int TWENTY_FOUR_ID = Menu.FIRST+3;
  public static final int TWO_ID = Menu.FIRST+4;

  @Override
  public void onCreate(Bundle icicle) {
  super.onCreate(icicle);
  setContentView(R.layout.main);
    setListAdapter(new ArrayAdapter<String>(this,
                android.R.layout.simple_list_item_1, items));
    selection=(TextView)findViewById(R.id.selection);
    
    getListView()
      .setOnPopulateContextMenuListener(new View.OnPopulateContextMenuListener() 
{
      public void onPopulateContextMenu(ContextMenu menu,
                                        View v,
                                        Object menuInfo) {
        populateMenu(menu);
        menu.setHeader("Divider Height");
      }
    });
  }
  
  public void onListItemClick(ListView parent, View v,
                               int position, long id) {
   selection.setText(items[position]);
  }
  
  @Override
  public boolean onCreateOptionsMenu(Menu menu) {
    populateMenu(menu);

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Applying Menus

    return(super.onCreateOptionsMenu(menu));
  }

  @Override
  public boolean onOptionsItemSelected(Menu.Item item) {
    applyMenuChoice(item);

    return(applyMenuChoice(item) ||
            super.onOptionsItemSelected(item));
  }

  @Override
  public boolean onContextItemSelected(Menu.Item item) {

    return(applyMenuChoice(item) ||
            super.onContextItemSelected(item));
  }
  
  private void populateMenu(Menu menu) {
    menu.add(0, TWO_ID, "2 Pixels");
    menu.add(0, EIGHT_ID, "8 Pixels");
    menu.add(0, SIXTEEN_ID, "16 Pixels");
    menu.add(0, TWENTY_FOUR_ID, "24 Pixels");
  }
  
  private boolean applyMenuChoice(Menu.Item item) {
    switch (item.getId()) {
      case EIGHT_ID:
        getListView().setDividerHeight(8);
        return(true);
    
      case SIXTEEN_ID:
        getListView().setDividerHeight(16);
        return(true);
    
      case TWENTY_FOUR_ID:
        getListView().setDividerHeight(24);
        return(true);
    
      case TWO_ID:
        getListView().setDividerHeight(2);
        return(true);
    }

    return(false);
  }
}

In  onCreate(),  we register a  OnPopulateContextMenuListener object with the 
list  widget,  so  it  will  get  a  context  menu,  which  we  fill  in  via  our 
populateMenu() private  method.  We  also  set  the  header  of  the  menu 
(menu.setHeader("Divider Height")).

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Applying Menus

We also implement the onCreateOptionsMenu() callback, indicating that our 
activity also has an options menu. Once again, we delegate to populateMenu() 
to fill in the menu.

Our  implementations  of  onOptionsItemSelected() (for  options  menu 
selections) and onContextItemSelected() (for context menu selections) both 
delegate to a private  applyMenuChoice() method, plus chaining upwards to 
the superclass if none of our menu choices was the one selected by the user.

In populateMenu(), we add four menu choices, each with a unique identifier. 
Being lazy, we eschew the icons.

In applyMenuChoice(), we see if any of our menu choices were chosen; if so, 
we set the list's background color to be the user-selected hue.

Initially, the activity looks the same in the emulator as it did for ListDemo:

Figure 31. The MenuDemo sample application, as initially launched

But, if you press the Menu button, you will get our options menu:

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Applying Menus

Figure 32. The same application, showing the options menu

Choosing a height (say, 16 pixels) then changes the divider height of the list 
to something garish:

Figure 33. The same application, made ugly

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Applying Menus

You can trigger the context menu by doing a tap-and-hold on any item in 
the list:

Figure 34. The same application, showing a context menu

Once again, choosing an option sets the divider height.

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 11

Embedding the WebKit Browser

Other GUI  toolkits  let you use HTML for presenting  information,  from 
limited  HTML  renderers  (e.g.,  Java/Swing,  wxWidgets)  to  embedding 
Internet Explorer into .NET applications. Android is much the same, in that 
you can embed the built-in Web browser as a widget in your own activities, 
for  displaying  HTML  or  full-fledged  browsing.  The  Android  browser  is 
based on WebKit, the same engine that powers Apple's Safari Web browser.

The Android browser is sufficiently complex that it gets its own Java package 
(android.webkit), though using the  WebView widget itself  can be simple or 
powerful, based upon your requirements.

A Browser, Writ Small

For simple stuff, WebView is not significantly different than any other widget 
in Android – pop it into a layout, tell it what URL to navigate to via Java 
code, and you're done.

For example (Browser1), here is a simple layout with a WebView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <WebView android:id="@+id/webkit"

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Embedding the WebKit Browser

    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
  />
</LinearLayout>

As with any other widget, you need to tell it how it should fill up the space 
in the layout (in this case, it fills all remaining space).

The Java code is equally simple:

package com.commonsware.android.webkit;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemo1 extends Activity {
  WebView browser;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    browser=(WebView)findViewById(R.id.webkit);
    
    browser.loadUrl("http://commonsware.com");
  }
}

The  only  bit  unusual  with  this  edition  of  onCreate() is  that  we invoke 
loadUrl() on the WebView widget, to tell it to load a Web page (in this case, 
the home page of some random firm).

The resulting activity looks like a Web browser, just with hidden scrollbars:

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Embedding the WebKit Browser

Figure 35. The Browser1 sample application

As with  the regular Android  browser,  you  can pan around  the page by 
dragging it, while the directional pad moves you around all the focusable 
elements on the page.

What is missing is all the extra accouterments that make up a Web browser, 
such as a navigational toolbar.

Loading It Up

There are two main ways to get content into the WebView. One, shown above, 
is to provide the browser with a URL and have the browser display that page 
via loadUrl(). The browser will access the Internet through whatever means 
are  available  to  that  specific  device  at  the  present  time  (WiFi,  cellular 
network, Bluetooth-tethered phone, well-trained tiny carrier pigeons, etc.).

The alternative is to use  loadData().  Here,  you supply the HTML for the 
browser to view. You might use this to:

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Embedding the WebKit Browser

• display a manual that was installed as a file with your application 
package

• display snippets of HTML you retrieved as part of other processing, 
such as the description of an entry in an Atom feed

• generate a whole user interface using HTML, instead of  using the 
Android widget set

There are two flavors of  loadData(). The simpler one allows you to provide 
the content, the MIME type, and the encoding, all as strings. Typically, your 
MIME type will be text/html and your encoding will be UTF-8 for ordinary 
HTML.

For example, if you replace the loadUrl() invocation in the previous example 
with the following:

browser.loadData("<html><body>Hello, world!</body></html>",
                  "text/html", "UTF-8");

You get:

Figure 36. The Browser2 sample application

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Embedding the WebKit Browser

This is also available as a fully-buildable sample, as Browser2.

Navigating the Waters

As was mentioned above, there is no navigation toolbar with the  WebView 
widget. This allows you to use it in places where such a toolbar would be 
pointless and a waste of screen real estate. That being said, if you want to 
offer navigational capabilities, you can, but you have to supply the UI.

WebView offers ways to perform garden-variety browser navigation, including:

• reload() to refresh the currently-viewed Web page

• goBack() to go back one step in the browser history, and canGoBack() 
to determine if there is any history to go back to

• goForward() to  go  forward  one  step  in  the  browser  history,  and 
canGoForward() to determine if there is any history to go forward to

• goBackOrForward() to  go  backwards  or  forwards  in  the  browser 
history,  where negative numbers represent a count of  steps to go 
backwards, and positive numbers represent how many steps to go 
forwards

• canGoBackOrForward() to  see  if  the  browser  can  go  backwards  or 
forwards  the  stated  number  of  steps  (following  the  same 
positive/negative convention as goBackOrForward())

• clearCache() to clear the browser resource cache and clearHistory() 
to clear the browsing history

Entertaining the Client

Particularly if you are going to use the WebView as a local user interface (vs. 
browsing the Web), you will want to be able to get control at key times, 
particularly when users click on links. You will want to make sure those links 
are handled  properly,  either by loading  your own content back into the 
WebView,  by submitting  an  Intent to Android  to open the URL in  a full 
browser, or by some other means (see the chapter on launching activities).

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Embedding the WebKit Browser

Your hook into  WebView activity is via  setWebViewClient(),  which takes an 
instance of  a  WebViewClient implementation as a parameter.  The supplied 
callback object will be notified of  a wide range of  activities, ranging from 
when parts of  a page have been retrieved (onPageStarted(),  etc.)  to when 
you, as the host application, need to handle certain user- or circumstance-
initiated events, such as:

• onTooManyRedirects()

• onReceivedHttpAuthRequest()

• etc.

A common hook will be shouldOverrideUrlLoading(), where your callback is 
passed a URL (plus the WebView itself) and you return true if you will handle 
the request or  false if  you want default handling (e.g.,  actually fetch the 
Web page referenced by the URL). In the case of a feed reader application, 
for example, you will probably not have a full browser with navigation built 
into your reader, so if  the user clicks a URL, you probably want to use an 
Intent to ask Android to load that page in a full browser. But, if  you have 
inserted a "fake" URL into the HTML, representing a link to some activity-
provided content, you can update the WebView yourself.

For example, let's amend the first browser example to be a browser-based 
equivalent of our original example: an application that, upon a click, shows 
the current time.

From Browser3, here is the revised Java:

package com.commonsware.android.webkit;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;
import android.webkit.WebViewClient;
import java.util.Date;

public class BrowserDemo3 extends Activity {
  WebView browser;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);

112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Embedding the WebKit Browser

    browser=(WebView)findViewById(R.id.webkit);
    
    loadTime();
    browser.setWebViewClient(new Callback());
  }
  
  void loadTime() {
    String page="<html><body><a href=\"/clock\">"
            +new Date().toString()
            +"</a></body></html>";
            
    browser.loadData(page, "text/html", "UTF-8");
  }

  private class Callback extends WebViewClient {
    public boolean shouldOverrideUrlLoading(WebView view, String url) {
      loadTime();
      
      return(true);
    }
  }
}

Here, we load a simple Web page into the browser (loadTime()) that consists 
of the current time, made into a hyperlink to the /clock URL. We also attach 
an instance of  a  WebViewClient subclass, providing our implementation of 
shouldOverrideUrlLoading(). In this case, no matter what the URL, we want 
to just reload the WebView via loadTime().

Running this activity gives us:

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Embedding the WebKit Browser

Figure 37. The Browser3 sample application

Selecting the link and clicking the D-pad center button will "click" the link, 
causing us to rebuild the page with the new time.

Settings, Preferences, and Options (Oh, My!)

With your favorite desktop Web browser, you have some sort of "settings" or 
"preferences" or "options" window. Between that and the toolbar controls, 
you can tweak and twiddle the behavior of  your browser,  from preferred 
fonts to the behavior of Javascript.

Similarly, you can adjust the settings of your WebView widget as you see fit, via 
the  WebSettings instance returned from calling the widget's  getSettings() 
method.

There are lots of  options on  WebSettings to play with. Most appear fairly 
esoteric (e.g., setFantasyFontFamily()). However, here are some that you may 
find more useful:

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Embedding the WebKit Browser

• Control the font sizing via setDefaultFontSize() (to use a point size) 
or  setTextSize() (to  use  constants  indicating  relative  sizes  like 
LARGER and SMALLEST)

• Control Javascript via setJavaScriptEnabled() (to disable it outright) 
and  setJavaScriptCanOpenWindowsAutomatically() (to merely stop it 
from opening pop-up windows)

• Control  Web site  rendering  via  setUseDesktopUserAgent() –  false 
means  the  WebView gives  the  Web  site  a  user-agent  string  that 
indicates it is a mobile browser, while  true results in a user-agent 
string that suggests it is a desktop browser

The  settings  you  change  are  not  persistent,  so  you  should  store  them 
somewhere (such as via the Android preferences engine) if you are allowing 
your users to determine the settings, versus hard-wiring the settings in your 
application.

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 12

Showing Pop-Up Messages

Sometimes, your activity (or other piece of Android code) will need to speak 
up.

Not every interaction with Android users will be neat, tidy, and containable 
in activities composed of views. Errors will crop up. Background tasks may 
take way longer than expected. Something asynchronous may occur, such as 
an  incoming  message.  In  these  and  other  cases,  you  may  need  to 
communicate  with  the  user  outside  the  bounds  of  the  traditional  user 
interface.

Of course, this is nothing new. Error messages in the form of dialog boxes 
have been around for a very long time. More subtle indicators also exist, 
from task tray icons to bouncing dock icons to a vibrating cell phone.

Android has quite a few systems for letting you alert your users outside the 
bounds of  an  Activity-based  UI.  One,  notifications,  is  tied  heavily  into 
intents  and  services  and,  as  such,  is  covered  in  a  later  chapter.  In  this 
chapter,  you will  see two means of  raising  pop-up messages:  toasts  and 
alerts.

Raising Toasts

A Toast is a transient message, meaning that it displays and disappears on 
its own without user interaction. Moreover, it does not take focus away from 

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Showing Pop-Up Messages

the currently-active  Activity, so if  the user is busy writing the next Great 
American Programming Guide, they will not have keystrokes be "eaten" by 
the message.

Since a  Toast is  transient,  you have no way of  knowing if  the user even 
notices it. You get no acknowledgment from them, nor does the message 
stick around for a long time to pester the user. Hence, the Toast is mostly for 
advisory messages,  such as indicating a long-running background task is 
completed, the battery has dropped to a low-but-not-too-low level, etc.

Making a Toast is fairly easy. The Toast class offers a static makeText() that 
accepts a  String (or string resource ID) and returns a  Toast instance. The 
makeText() method  also  needs  the  Activity (or  other  Context)  plus  a 
duration.  The duration  is  expressed  in  the  form of  the  LENGTH_SHORT or 
LENGTH_LONG constants to indicate, on a relative basis, how long the message 
should remain visible.

If you would prefer your Toast be made out of some other View, rather that 
be a boring old piece of  text,  simply create a new  Toast instance via the 
constructor (which takes a Context), then call setView() to supply it with the 
view to use and setDuration() to set the duration.

Once your Toast is configured, call its show() method, and the message will 
be displayed.

Alert! Alert!

If you would prefer something in the more classic dialog box style, what you 
want is an AlertDialog. As with any other modal dialog box, an AlertDialog 
pops up, grabs the focus, and stays there until closed by the user. You might 
use this for a critical error, a validation message that cannot be effectively 
displayed in the base activity UI, or something else where you are sure that 
the user needs to see the message and needs to see it now.

The simplest way to construct an  AlertDialog is to use the  Builder class. 
Following  in  true  builder  style,  Builder offers  a  series  of  methods  to 

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Showing Pop-Up Messages

configure  an  AlertDialog,  each  method  returning  the  Builder for  easy 
chaining. At the end, you call show() on the builder to display the dialog box.

Commonly-used configuration methods on Builder include:

• setMessage() if  you want the "body"  of  the dialog  to be a simple 
textual message, from either a supplied  String or a supplied string 
resource ID

• setTitle() and setIcon(), to configure the text and/or icon to appear 
in the title bar of the dialog box

• setPositiveButton(), setNeutralButton(), and setNegativeButton(), to 
indicate which button(s)  should appear across the bottom of  the 
dialog,  where  they  should  be  positioned  (left,  center,  or  right, 
respectively), what their captions should be, and what logic should 
be  invoked  when  the  button  is  clicked  (besides  dismissing  the 
dialog).

If  you need to configure the  AlertDialog beyond what the builder allows, 
instead of calling show(), call  create() to get the partially-built AlertDialog 
instance,  configure it the rest of  the way,  then call  one of  the flavors of 
show() on the AlertDialog itself.

Once show() is called, the dialog box will appear and await user input.

Checking Them Out

To see how these work in practice, take a peek at  Message, containing the 
following layout...:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent" 
  android:layout_height="fill_parent" >
  <Button
    android:id="@+id/alert"
    android:text="Raise an alert"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"/>

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Showing Pop-Up Messages

  <Button
    android:id="@+id/toast"
    android:text="Make a toast"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"/>
</LinearLayout>

...and Java code:

public class MessageDemo extends Activity implements View.OnClickListener {
  Button alert;
  Button toast;

  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    
    setContentView(R.layout.main);
    
    alert=(Button)findViewById(R.id.alert);
    alert.setOnClickListener(this);
    toast=(Button)findViewById(R.id.toast);
    toast.setOnClickListener(this);
  }
  
  public void onClick(View view) {
    if (view==alert) {
      new AlertDialog.Builder(this)
        .setTitle("MessageDemo")
        .setMessage("eek!")
        .setNeutralButton("Close", new DialogInterface.OnClickListener() {
          public void onClick(DialogInterface dlg, int sumthin) {
            // do nothing – it will close on its own
          }
        })
        .show();
    }
    else {
      Toast
        .makeText(this, "<clink, clink>", Toast.LENGTH_SHORT)
        .show();
    }
  }
}

The layout is unremarkable – just a pair of buttons to trigger the alert and 
the toast.

When you click the alert button, we use a builder (new Builder(this)) to set 
the  title  (setTitle("MessageDemo")),  message  (setMessage("eek!")),  and 

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Showing Pop-Up Messages

"neutral  button"  (setNeutralButton("Close",  new  OnClickListener()  ...) 
before showing the dialog. When the button is clicked, the OnClickListener 
callback does nothing – the mere fact the button was pressed causes the 
dialog  to be dismissed.  However,  you could  update information in  your 
activity based upon the user action, particularly if you have multiple buttons 
for the user to choose from. The result is a typical dialog box:

Figure 38. The MessageDemo sample application, after clicking the "Raise an 
alert" button

When you click the toast button, the Toast class makes us a text-based toast 
(makeText(this, "<clink, clink>", LENGTH_SHORT)),  which we then  show(). 
The result is a short-lived, non-interrupting message:

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Showing Pop-Up Messages

Figure 39. The same application, after clicking the "Make a toast" button

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 13

Dealing with Threads

Ideally, you want your activities to be downright snappy, so your users don't 
feel that your application is sluggish. Responding to user input quickly (e.g., 
200ms) is a fine goal.  At minimum, though, you need to make sure you 
respond within 5 seconds, lest the ActivityManager decide to play the role of 
the Grim Reaper and kill off your activity as being non-responsive.

Of  course,  your  activity  might  have  real  work  to  do,  which  takes  non-
negligible amounts of time. There are two ways of dealing with this:

1. Do  expensive  operations  in  a  background  service,  relying  on 
notifications to prompt users to go back to your activity

2. Do expensive work in a background thread

Android provides a veritable cornucopia of  means to set up background 
threads yet allow them to safely interact with the UI on the UI thread. These 
include  Handler objects,  posting  Runnable objects  to  the  View,  and  using 
UIThreadUtilities.

Getting Through the Handlers

The most flexible means of making an Android-friendly background thread 
is to create an instance of  a  Handler subclass. You only need one  Handler 
object per activity, and you do not need to manually register it or anything – 

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Dealing with Threads

merely creating  the instance is  sufficient to register it  with the Android 
threading subsystem.

Your background thread can communicate with the Handler, which will do 
all of its work on the activity UI thread. This is important, as UI changes, 
such as updating widgets, should only occur on the activity UI thread.

You have two options for communicating with the  Handler:  messages and 
Runnable objects.

Messages

To send a Message to a Handler, first invoke obtainMessage() to get the Message 
object out of the pool. There are a few flavors of  obtainMessage(), allowing 
you to just create empty  Message objects, or ones populated with message 
identifiers and arguments. The more complicated your  Handler processing 
needs to be, the more likely it is you will need to put data into the Message to 
help the Handler distinguish different events.

Then, you send the Message to the Handler via its message queue, using one 
of the sendMessage...() family of methods:

• sendMessage() puts the message on the queue immediately

• sendMessageAtFrontOfQueue() puts  the  message  on  the  queue 
immediately, and moreover puts it at the front of the message queue 
(versus the back, as is the default), so your message takes priority 
over all others

• sendMessageAtTime() puts the message on the queue at the stated 
time, expressed in the form of milliseconds based on system uptime 
(SystemClock.uptimeMillis())

• sendMessageDelayed() puts the message on the queue after a delay, 
expressed in milliseconds

To  process  these  messages,  your  Handler needs  to  implement 
handleMessage(), which will be called with each message that appears on the 

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Dealing with Threads

message queue. There, the handler can update the UI as needed. However, it 
should still do that work quickly, as other UI work is suspended until the 
Handler is done.

For example, let's create a ProgressBar and update it via a Handler. Here is the 
layout from Handler:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <ProgressBar android:id="@+id/progress"
    style="?android:attr/progressBarStyleHorizontal"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:max="100" />
</LinearLayout>

The ProgressBar, in addition to setting the width and height as normal, also 
employs two other properties of note:

• style, which will be covered in greater detail in some future edition 
of  this  book.  For  now,  suffice  it  to  say  that  it  indicates  this 
ProgressBar should  be  drawn  as  the  traditional  horizontal  bar 
showing the amount of work that has been completed.

• android:max, which indicates the maximum value for the ProgressBar 
(i.e.,  at  what  value  is  the  work  "done"  and  the  progress  bar 
completed). A value of 100 means the ProgressBar works on a simple 
percentage system.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.widget.ProgressBar;

public class HandlerDemo extends Activity {
  ProgressBar bar;

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Dealing with Threads

  Handler handler=new Handler() {
    @Override
    public void handleMessage(Message msg) {
      bar.incrementProgressBy(5);
    }
  };
  boolean isRunning=false;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    bar=(ProgressBar)findViewById(R.id.progress);
  }
  
  public void onStart() {
    super.onStart();
    bar.setProgress(0);
    
    Thread background=new Thread(new Runnable() {
      public void run() {
        try {
          for (int i=0;i<20 && isRunning;i++) {
            Thread.sleep(1000);
            handler.sendMessage(handler.obtainMessage());
          }
        }
        catch (Throwable t) {
          // just end the background thread
        }
      }
    });
    
    isRunning=true;
    background.start();
  }
  
  public void onStop() {
    super.onStop();
    isRunning=false;
  }
}

As part of constructing the Activity, we create an instance of  Handler, with 
our implementation of handleMessage(). Basically, for any message received, 
we update the ProgressBar by 5 points, then exit the message handler.

In  onStart(), we set up a background thread. In a real system, this thread 
would do something meaningful.  Here,  we just sleep one second,  post a 
Message to the Handler, and repeat for a total of 20 passes.

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Dealing with Threads

Note that we then leave onStart(). This is crucial. The onStart() method is 
invoked  on  the  activity  UI  thread,  so  it  can  update  widgets  and  such. 
However, that means we need to get out of onStart(), both to let the Handler 
get its work done, and also so Android does not think our activity is stuck.

The resulting activity is simply a horizontal progress bar:

Figure 40. The HandlerDemo sample application

Runnables

If you would rather not fuss with Message objects, you can also pass Runnable 
objects to the Handler, which will run those Runnable objects on the activity 
UI thread.  Handler offers a set of  post...() methods for passing  Runnable 
objects in for eventual processing.

Running In Place

Just as Handler supports post() and postDelayed() to add Runnable objects to 
the event queue,  you can use those same methods on  View.  This lightly 

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Dealing with Threads

simplifies your code, in that you can then skip the Handler object. However, 
you lose a bit of flexibility, and the Handler has been around longer in the 
Android toolkit and may be more tested.

Utilities (And I Don't Mean Water Works)

Yet another option is to use the UIThreadUtilities helper class, which offers 
a set of static methods to assist in working with the UI thread.

First, it offers isUIThread(), which will tell you if you are presently executing 
on the UI thread of the supplied View. In the Handler sample shown above, 
this method would be superfluous – you pretty much can always tell  by 
"eyeballing" the code whether it will be executing on the UI thread or not. 
But, if you package some of your code in a JAR for others to reuse, you might 
not know whether your code is being executed on the UI thread or from a 
background thread.  Therefore,  for safety,  you can invoke  isUIThread() to 
find out and take appropriate action if you are not on the UI thread.

Such  "appropriate  action"  might  be  to  use  runOnUIThread().  This  works 
similar to the  post() methods on  Handler and  View, in that it queues up a 
Runnable to run on the UI thread...if you are not on the UI thread right now. 
If you already are on the UI thread, it invokes the Runnable immediately. To 
identify the proper UI thread, you must supply an Activity, Dialog, or View.

And Now, The Caveats

Background threads, while eminently possible using the Android  Handler 
system, are not all happiness and warm puppies. Background threads not 
only add complexity,  but they have real-world costs in terms of  available 
memory, CPU, and battery life.

To that end, there are a wide range of scenarios you need to account for with 
your background thread, including:

• The possibility that users will interact with your activity's UI while 
the  background  thread  is  chugging  along.  If  the  work  that  the 

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Dealing with Threads

background thread is  doing is  altered  or invalidated  by the user 
input, you will need to communicate this to the background thread. 
Android includes many classes in the java.util.concurrent package 
that will help you communicate safely with your background thread.

• The possibility that the activity will be killed off while background 
work is going on. For example, after starting your activity, the user 
might have a call come in, followed by a text message, followed by a 
need to look up a contact...all of which might be sufficient to kick 
your activity out of memory. The next chapter will cover the various 
events Android will take your activity through; hook the proper ones 
and be sure to shut down your background thread cleanly when you 
have the chance.

• The possibility that your user will get irritated if you chew up a lot of 
CPU time and battery life without giving any payback.  Tactically, 
this  means  using  ProgressBar or other means of  letting  the user 
know that something is happening. Strategically, this means you still 
need to be efficient at what you do – background threads are no 
panacea for sluggish or pointless code.

• The possibility that you will encounter an error during background 
processing.  For example,  if  you are gathering information off  the 
Internet, the device might lose connectivity. Alerting the user of the 
problem  via  a  Notification and  shutting  down  the  background 
thread may be your best option.

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 14

Handling Activity Lifecycle 
Events

While this may sound like a broken record...please remember that Android 
devices,  by  and  large,  are  phones.  As  such,  some  activities  are  more 
important that others – taking a call is probably more important to users 
than is playing Sudoku. And, since it is a phone, it probably has less RAM 
than does your current desktop or notebook.

As  a  result,  your activity  may find  itself  being  killed  off  because other 
activities are going on and the system needs your activity's memory. Think 
of it as the Android equivalent of the "circle of life" – your activity dies so 
others may live, and so on. You cannot assume that your activity will run 
until you think it is complete, or even until the user thinks it is complete.

This is one example – perhaps the most important example – of  how an 
activity's lifecycle will affect your own application logic. This chapter covers 
the various states and callbacks that make up an activity's lifecycle and how 
you can hook into them appropriately.

Schroedinger's Activity

An activity, generally speaking, is in one of four states at any point in time:

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Handling Activity Lifecycle Events

• Active: the activity was started by the user, is running, and is in the 
foreground. This is what you're used to thinking of in terms of your 
activity's operation.

• Paused:  the activity  was  started  by  the  user,  is  running,  and  is 
visible,  but a notification or something  is  overlaying  part  of  the 
screen. During this time, the user can see your activity but may not 
be able to interact with it. For example, if a call comes in, the user 
will get the opportunity to take the call or ignore it.

• Stopped: the activity was started by the user, is running, but it is 
hidden by other activities that have been launched or switched to. 
Your application will not be able to present anything meaningful to 
the user directly, only by way of a Notification.

• Dead: either the activity was never started (e.g., just after a phone 
reset) or the activity was terminated, perhaps due to lack of available 
memory.

Life, Death, and Your Activity

Android will call into your activity as the activity transitions between the 
four states listed above. Some transitions may result in multiple calls to your 
activity, and sometimes Android will kill your application without calling it. 
This whole area is rather murky and probably subject to change, so pay close 
attention to the official Android documentation as well as this section when 
deciding which events to pay attention to and which you can safely ignore.

Note  that  for  all  of  these,  you  should  chain  upward  and  invoke  the 
superclass' edition of the method, or Android may raise an exception.

onCreate() and onCompleteThaw()

We have been implementing onCreate() in all of our Activity subclasses in 
all the examples. This will get called in two situations:

1. When  the  activity  is  first  started  (e.g.,  since  a  system  restart), 
onCreate() will be invoked with a null parameter.

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Handling Activity Lifecycle Events

2. If  the  activity  had  been  running,  had  onFreeze() invoked,  then 
sometime later was killed off,  onCreate() will  be invoked with the 
Bundle from  onFreeze() as a parameter.  Dealing with freezing and 
restoring state is covered later in this chapter.

Here is where you initialize your user interface and set up anything that 
needs to be done once, regardless of how the activity gets used.

If the activity is being restored from a frozen state (second scenario above), 
then onCompleteThaw() is also called, and is passed the same Bundle as was 
the preceding onCreate(). If you want, you can isolate your un-freezing logic 
here.

onStart(), onRestart(), and onResume()

These are invoked as your activity is brought to the foreground and made 
available to the user.  The Android  documentation is  contradictory as to 
under what circumstances and in what order these are called. It is fairly safe 
to say that:

• onResume() will  be  called  more  commonly  than  the  others,  and 
should  be called  if  the activity  was paused  (onPause())  and  then 
brought back to the foreground relatively quickly. In fact, onResume() 
should be called just before the activity is brought to the foreground 
in all circumstances.

• onStart() may be called if the activity was stopped (onStop()) then 
started up again without the process being terminated

Generally speaking, in these methods you will wish to do things that only 
make sense when a user is looking at your activity, particularly things that 
might have changed since the last time your activity was looked at.  For 
example, if you are polling a service for changes to some information (e.g., 
new entries for a feed), onResume() is a fine time to both refresh the current 
view and, if  applicable, kick off  a background thread to update the view 
(e.g., via a Handler).

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Handling Activity Lifecycle Events

onPause(), onFreeze(), onStop(), and onDestroy()

The onFreeze() event is triggered if Android thinks that it may have to kill 
off your activity in the not-too-distant future. You are passed a Bundle object, 
which works similar to a Map, where you can persist the current state of your 
UI (e.g., field values, checkbox states). That Bundle will be re-supplied to you 
in  onCreate() and  onCompleteThaw() if,  indeed, your activity was killed off. 
However, it is possible that onFreeze() will be called several times without 
your activity actually being killed off, so do not assume that just because 
your onFreeze() handler is called that "the end is near".

Anything  that  steals  your  user  away  from  your  activity  –  mostly,  the 
activation of  another activity – will result in your  onPause() being called. 
Here, you should undo anything you did in  onResume(),  such as stopping 
background threads, releasing any exclusive-access resources you may have 
acquired (e.g., camera), and the like.

Once onPause() is called, Android reserves the right to kill off your activity's 
process at any point. Hence, you should not be relying upon receiving any 
further events.

The  onStop() event  is  the  counterpart  to  onRestart().  However,  since  it 
might not get called, it is unclear what specifically you might want to do in 
this method.

Similarly,  onDestroy() may or may not be called before your process ends. 
However, there is no question that, after onDestroy(), your process is ending, 
and so the next line of code of yours that will be invoked for this activity will 
be onCreate().

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



PART III – Data Stores, Network 
Services, and APIs

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 15

Using Preferences

Android has many different ways for you to store data for long-term use by 
your activity. The simplest to use is the preferences system.

Android allows activities and applications to keep preferences, in the form 
of key/value pairs (akin to a Map), that will hang around between invocations 
of an activity. As the name suggests, the primary purpose is for you to store 
user-specified configuration details, such as the last feed the user looked at 
in your feed reader, or what sort order to use by default on a list, or whatever. 
Of course, you can store in the preferences whatever you like, so long as it is 
keyed by a String and has a primitive value (boolean, String, etc.)

Preferences can either be for a single activity or shared among all activities 
in  an  application.  Eventually,  preferences  might  be  shareable  across 
applications, but that is not supported as of the time of this writing.

Getting What You Want

To get access to the preferences, you have two APIs to choose from:

1. getPreferences() from  within  your  Activity,  to  access  activity-
specific preferences

2. getSharedPreferences() from  within  your  Activity (or  other 
application Context), to access application-level preferences

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Preferences

Both  take  a  security  mode  parameter  –  for  now,  pass  in  0.  The 
getSharedPreferences() method also takes a name of a set of preferences – 
getPreferences() effectively calls  getSharedPreferences() with the activity's 
class name as the preference set name.

Both of those methods return an instance of SharedPreferences, which offers 
a series of  getters to access named preferences, returning a suitably-typed 
result (e.g.,  getBoolean() to return a boolean preference). The getters also 
take a default value, which is returned if there is no preference set under the 
specified key.

Stating Your Preference

Given the appropriate SharedPreferences object, you can use edit() to get an 
"editor" for the preferences. This object has a set of setters that mirror the 
getters on the parent SharedPreferences object. It also has:

• remove() to get rid of a single named preference

• clear() to get rid of all preferences

• commit() to persist your changes made via the editor

The last one is important – if you modify preferences via the editor and fail 
to commit() the changes, those changes will evaporate once the editor goes 
out of scope.

Conversely, since the preferences object supports live changes, if one part of 
your application (say, an activity) modifies shared preferences, another part 
of  your application (say,  a service)  will  have access to the changed value 
immediately.

A Preference For Action

To  demonstrate  preferences,  we  need  an  activity  that  gives  the  user 
something to input (so we can persist it as a preference)...and that we know 
will go through a likely activity lifecycle event for us to persist the change.

138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Preferences

The first criterion is easy: just use a checkbox. In fact, this example (Prefs) is 
based off of our earlier checkbox demo:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent">
  <CheckBox android:id="@+id/check"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:text="This checkbox is: unchecked" />
  <Button android:id="@+id/close"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:text="Close" />
</LinearLayout>

Here, we have a row of  two widgets: our checkbox, and a button labeled 
"Close".

The Java is a bit more involved:

package com.commonsware.android.prefs;

import android.app.Activity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.CompoundButton;

public class PrefsDemo extends Activity
  implements CompoundButton.OnCheckedChangeListener {
  CheckBox cb;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    
    cb=(CheckBox)findViewById(R.id.check);
    cb.setOnCheckedChangeListener(this);
    
    Button btn=(Button)findViewById(R.id.close);
    
    btn.setOnClickListener(new Button.OnClickListener() {
      public void onClick(View v) {
        finish();
      }

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Preferences

    });
  }
  
  public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
    if (isChecked) {
      cb.setText("This checkbox is: checked");
    }
    else {
      cb.setText("This checkbox is: unchecked");
    }
  }
  
  public void onResume() {
    super.onResume();
    
    SharedPreferences settings=getPreferences(0);
    
    cb.setChecked(settings.getBoolean("cb_checked", false));    
  }
  
  public void onPause() {
    super.onPause();
    
    SharedPreferences settings=getPreferences(0);
    SharedPreferences.Editor editor=settings.edit();
    
    editor.putBoolean("cb_checked", cb.isChecked());
    editor.commit();
  }
}

In  onCreate(), we do the same setup as before, tying our activity in as the 
OnCheckedChangeListener for  the  checkbox.  We  also  tie  an  anonymous 
OnClickListener to the button,  which calls  finish() on the activity.  This 
proactively closes the activity, causing Android to go through the full chain 
of onPause(), onStop(), and onDestroy() as it closes out the activity. This way, 
we  can  be  sure  that,  for  our  test,  we  get  a  likely  spot  to  persist  the 
preferences.

Unlike in the original example, we also hook into onResume() and onPause(). 
In onResume(), we access the activity's preferences and retrieve a cb_checked 
boolean preference, and set the checkbox to that value. By default, if  the 
preference is not found, it will be set to false. Conversely, in onPause(), we 
get  the  activity's  preferences,  store  the  cb_checked preference  as  the 
checkbox's current state, and commit the change.

140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Preferences

When we first launch the activity, the checkbox is unchecked:

Figure 41. The PrefsDemo sample application, as initially launched

If  you check the checkbox, then click the Close button, then re-open the 
activity, you will see that it opens with the checkbox already checked:

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using Preferences

Figure 42. The same application, after checking the checkbox

Notice that the label  for the checkbox is also correct,  in that it says the 
checkbox  is  checked.  This  means  that  our  onCheckedChanged() 
implementation is being called, even though we are manually setting the 
checkbox state via setChecked().

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 16

Accessing Files

While  Android  offers  structured  storage,  via  preferences and  databases, 
sometimes a simple file will suffice. Android offers two models for accessing 
files:  one for files  pre-packaged with  your application,  and one for files 
created on-device by your application.

You And The Horse You Rode In On

Let's  suppose  you  have  some  static  data  you  want  to  ship  with  the 
application, such as a list of  words for a spell-checker. The easiest way to 
deploy that is to put the file in the res/raw directory, so it gets put in the 
Android application .apk file as part of the packaging process.

To access this file,  you need to get yourself  a  Resources object.  From an 
activity, that is as simple as calling getResources(). A Resources object offers 
openRawResource() to get an InputStream on the file you specify. Rather than a 
path, openRawResource() expects an integer identifier for the file as packaged. 
This works just like accessing widgets via findViewById() – if you put a file 
named  words.xml in  res/raw,  the  identifier  is  accessible  in  Java  as 
R.raw.words.

Since you can only get an InputStream, you have no means of modifying this 
file. Hence, it is really only useful for static reference data. Moreover, since it 
is unchanging until the user installs an updated version of your application 
package, either the reference data has to be valid for the foreseeable future, 

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Files

or you will need to provide some means of updating the data. The simplest 
way to handle that is to use the reference data to bootstrap some other 
modifiable form of storage (e.g., a database), but this makes for two copies 
of the data in storage. An alternative is to keep the reference data as-is but 
keep modifications in a file or database, and merge them together when you 
need a complete picture of the information. For example, if your application 
ships a file of URLs, you could have a second file that tracks URLs added by 
the user or reference URLs that were deleted by the user.

In  the  Static sample  project,  you  will  find  a  reworking  of  the  listbox 
example from earlier, this time using a static XML file instead of a hardwired 
array in Java. The layout is the same:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent" 
  android:layout_height="fill_parent" >
  <TextView
    android:id="@+id/selection"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
  />
  <ListView
    android:id="@android:id/list"
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent"
    android:drawSelectorOnTop="false"
  />
</LinearLayout>

In addition to that XML file, you also need an XML file with the words to 
show in the list:

<words>
  <word value="lorem" />
  <word value="ipsum" />
  <word value="dolor" />
  <word value="sit" />
  <word value="amet" />
  <word value="consectetuer" />
  <word value="adipiscing" />
  <word value="elit" />
  <word value="morbi" />
  <word value="vel" />
  <word value="ligula" />

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Files

  <word value="vitae" />
  <word value="arcu" />
  <word value="aliquet" />
  <word value="mollis" />
  <word value="etiam" />
  <word value="vel" />
  <word value="erat" />
  <word value="placerat" />
  <word value="ante" />
  <word value="porttitor" />
  <word value="sodales" />
  <word value="pellentesque" />
  <word value="augue" />
  <word value="purus" />
</words>

While this XML structure is not exactly a model of space efficiency, it will 
suffice for a demo.

The Java code now must read in that XML file, parse out the words, and put 
them someplace for the list to pick up:

public class StaticFileDemo extends ListActivity {
  TextView selection;
  ArrayList items=new ArrayList();
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    selection=(TextView)findViewById(R.id.selection);
    
    try {
      InputStream in=getResources().openRawResource(R.raw.words);
      DocumentBuilder builder=DocumentBuilderFactory
                               .newInstance()
                               .newDocumentBuilder();
      Document doc=builder.parse(in, null);
      NodeList words=doc.getElementsByTagName("word");
      
      for (int i=0;i<words.getLength();i++) {
        items.add(((Element)words.item(i)).getAttribute("value"));
      }
      
      in.close();
    }
    catch (Throwable t) {
      showAlert("Exception!", 0, t.toString(), "Cancel", true);
    }
    
    setListAdapter(new ArrayAdapter<String>(this,

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Files

                                 android.R.layout.simple_list_item_1,
                                 items));
  }
  
  public void onListItemClick(ListView parent, View v, int position,
                  long id) {
    selection.setText(items.get(position).toString());
  }
}

The differences mostly lie within onCreate(). We get an InputStream for the 
XML file (getResources().openRawResource(R.raw.words)), then use the built-
in XML parsing logic to parse the file into a DOM  Document, pick out the 
word elements, then pour the value attributes into an ArrayList for use by 
the ArrayAdapter.

The resulting activity looks the same as before, since the list of words is the 
same, just relocated:

Figure 43. The StaticFileDemo sample application

Of course, there are even easier ways to have XML files available to you as 
pre-packaged files – using an XML resource. That is covered in the next 
chapter. However, while this example used XML, the file could just as easily 

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Files

have been a simple one-word-per-line list,  or in some other format not 
handled natively by the Android resource system.

Readin' 'n Writin'

Reading  and  writing  your  own,  application-specific  data  files  is  nearly 
identical to what you might do in a desktop Java application. The key is to 
use openFileInput() and openFileOutput() on your Activity or other Context 
to  get  an  InputStream and  OutputStream,  respectively.  From  that  point 
forward, it is not much different than regular Java I/O logic:

• Wrap those streams as needed, such as using an InputStreamReader or 
OutputStreamWriter for text-based I/O

• Read or write the data

• Use close() to release the stream when done

Relative  paths  (i.e.,  those  without  leading  slashes)  are  local  to  the 
application.  If  two  applications  both  try  reading  a  notes.txt file  via 
openFileInput(), they will each access their own edition of  the file. If  you 
need to have one file accessible from many places,  you probably want to 
create a content provider, as will be described an upcoming chapter.

Below you will see the layout for the world's most trivial text editor, pulled 
from the ReadWrite sample application:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:layout_width="fill_parent" 
  android:layout_height="fill_parent"
  android:orientation="vertical">
  <Button android:id="@+id/close"
    android:layout_width="wrap_content" 
    android:layout_height="wrap_content"
    android:text="Close" />
  <EditText
    android:id="@+id/editor"
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent"
    android:singleLine="false"
    />
</LinearLayout>

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Files

All we have here is a large text-editing widget, with a "Close" button above it.

The Java is only slightly more complicated:

package com.commonsware.android.files;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

public class ReadWriteFileDemo extends Activity {
  EditText editor;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    editor=(EditText)findViewById(R.id.editor);
    
    Button btn=(Button)findViewById(R.id.close);
    
    btn.setOnClickListener(new Button.OnClickListener() {
      public void onClick(View v) {
        finish();
      }
    });
  }
  
  public void onResume() {
    super.onResume();
    
    try {
      InputStream in=openFileInput("notes.txt");
      
      if (in!=null) {
        BufferedReader reader=new BufferedReader(new InputStreamReader(in));
        String str;
        StringBuffer buf=new StringBuffer();
        
        while ((str = reader.readLine()) != null) {
          buf.append(str+"\n");
        }
        
        in.close();

148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Files

        editor.setText(buf.toString());
      }
    }
    catch (java.io.FileNotFoundException e) {
      // that's OK, we probably haven't created it yet
    }
    catch (Throwable t) {
      showAlert("Exception!", 0, t.toString(), "Cancel", true);
    }
  }
  
  public void onPause() {
    super.onPause();
    
    try {
      OutputStreamWriter out=new OutputStreamWriter(openFileOutput("notes.txt", 
0));
      
      out.write(editor.getText().toString());
      out.close();    
    }
    catch (Throwable t) {
      showAlert("Exception!", 0, t.toString(), "Cancel", true);
    }
  }
}

First, we wire up the button to close out our activity when clicked by using 
setOnClickListener() to invoke finish() on the activity.

Next, we hook into onResume(), so we get control when our editor is coming 
back  to  life,  from  a  fresh  launch  or  after  having  been  frozen.  We use 
openFileInput() to read in  notes.txt and pour the contents into the text 
editor. If the file is not found, we assume this is the first time the activity 
was run (or the file was deleted by other means), and we just leave the editor 
empty.

Finally, we hook into onPause(), so we get control as our activity gets hidden 
by other user activity or is closed, such as via our "Close" button. Here, we 
use openFileOutput() to open notes.txt, into which we pour the contents of 
the text editor.

The net result is that we have a persistent notepad: whatever is typed in will 
remain until deleted, surviving our activity being closed, the phone being 
turned off, or similar situations. Of course, it doesn't look like much:

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Files

Figure 44. The ReadWriteFileDemo sample application, as initially launched

Figure 45. The same application, after entering some text

150

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 17

Working with Resources

Resources are static bits of information held outside the Java source code. 
You have seen one type of resource – the layout – frequently in the examples 
in this book. There are many other types of  resource, such as images and 
strings, that you can take advantage of in your Android applications.

The Resource Lineup

Resources  are  stored  as  files  under  the  res/ directory  in  your  Android 
project layout. With the exception of raw resources (res/raw/), all the other 
types  of  resources  are  parsed  for you,  either by the Android  packaging 
system or by the Android system on the device or emulator. So, for example, 
when you lay out an activity's UI via a layout resource (res/layout/), you do 
not have to parse the layout XML yourself – Android handles that for you.

In addition to layout resources (first seen in an earlier chapter)  and raw 
resources (introduced in another earlier chapter),  there are several  other 
types of resource available to you, including:

• Animations (res/anim/),  designed for short clips as part of  a user 
interface,  such as an animation suggesting  the turning of  a page 
when a button is clicked

• Images (res/drawable), for putting static icons or other pictures in a 
user interface

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

• Strings,  colors,  arrays,  and dimensions (res/values/),  to both give 
these sorts of constants symbolic names and to keep them separate 
from  the  rest  of  the  code  (e.g.,  for  internationalization  and 
localization)

• XML (res/xml/), for static XML files containing your own data and 
structure

String Theory

Keeping your labels and other bits of text outside the main source code of 
your application is generally considered to be a very good idea. In particular, 
it helps with internationalization (I18N) and localization (L10N),  covered 
later in this chapter. Even if  you are not going to translate your strings to 
other languages, it is easier to make corrections if all the strings are in one 
spot instead of scattered throughout your source code.

Android supports regular externalized strings, along with "string formats", 
where the string has placeholders for dynamically-inserted information. On 
top of that, Android supports simple text formatting, called "styled text", so 
you can make your words be bold or italic intermingled with normal text.

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values 
directory (typically named  res/values/strings.xml),  with a  resources root 
element, and one child string element for each string you wish to encode as 
a resource. The string element takes a name attribute, which is the unique 
name for this string, and a single text element containing the text of  the 
string:

<resources>
  <string name="quick">The quick brown fox...</string>
  <string name="laughs">He who laughs last...</string>
</resources>

The  only  tricky  part  is  if  the  string  value  contains  a  quote  (")  or  an 
apostrophe (').  In those cases,  you will  want to escape those values,  by 

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

preceding them with a backslash (e.g., These are the times that try men\'s 
souls). Or, if it is just an apostrophe, you could enclose the value in quotes 
(e.g., "These are the times that try men's souls.").

You can then reference this string from a layout file (as @string/..., where 
the ellipsis is the unique name – e.g.,  @string/laughs). Or you can get the 
string from your Java code by calling getString() with the resource ID of the 
string resource, that being the unique name prefixed with  R.string. (e.g., 
getString(R.string.quick)).

String Formats

As with other implementations of the Java language, Android's Dalvik VM 
supports string formats. Here, the string contains placeholders representing 
data to be replaced at runtime by variable information (e.g.,  My name is 
%1$s). Plain strings stored as resources can be used as string formats:

String strFormat=getString(R.string.my_name);
String strResult=String.format(strFormat, "Tim");
((TextView)findViewById(R.layout.some_label))
  .setText(strResult);

Styled Text

If  you  want  really  rich  text,  you  should  have  raw  resources  containing 
HTML, then pour those into a  WebKit widget.  However,  for light HTML 
formatting, using <b>, <i>, and <u>, you can just use a string resource:

<resources>
  <string name="b">This has <b>bold</b> in it.</string>
  <string name="i">Whereas this has <i>italics</i>!</string>
</resources>

You can access these the same as with plain strings, with the exception that 
the result of the getString() call is really a Spanned:

((TextView)findViewById(R.layout.another_label))
            .setText(getString(R.string.laughs));

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

Styled Formats

Where styled text gets tricky is with styled string formats, as String.format() 
works on String objects, not Spanned objects with formatting instructions. If 
you really want to have styled string formats, here is the workaround:

1. Entity-escape the angle brackets in the string resource (e.g., this is 
&lt;b&gt;%1$s&lt;/b&gt;)

2. Retrieve the string resource as normal, though it will not be styled at 
this point (e.g., getString(R.string.funky_format))

3. Generate the format results, being sure to escape any string values 
you substitute in, in case they contain angle brackets or ampersands

String.format(getString(R.string.funky_format),
              TextUtils.htmlEncode(strName));

4. Convert  the  entity-escaped  HTML  into  a  Spanned object  via 
Html.fromHtml()

someTextView.setText(Html
                     .fromHtml(resultFromStringFormat));

To see this in action, let's look at the Strings demo. Here is the layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="horizontal"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    >
    <Button android:id="@+id/format"
      android:layout_width="wrap_content" 
      android:layout_height="wrap_content"
      android:text="@string/btn_name"
      />
    <EditText android:id="@+id/name"
      android:layout_width="fill_parent" 
      android:layout_height="wrap_content" 
      />
  </LinearLayout>
  <TextView android:id="@+id/result"

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    />
</LinearLayout>

As you can see, it is just a button,  a field,  and a label.  The intent is for 
somebody to enter their name in the field, then click the button to cause the 
label to be updated with a formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name), 
so we need a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>
  <string name="app_name">StringsDemo</string>
  <string name="btn_name">Name:</string>
  <string name="funky_format">My name is &lt;b&gt;%1$s&lt;/b&gt;</string>
</resources>

The app_name resource is automatically created by the activityCreator script. 
The  btn_name string  is  the caption of  the  Button,  while our styled  string 
format is in funky_format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.resources;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class StringsDemo extends Activity {
  EditText name;
  TextView result;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    
    name=(EditText)findViewById(R.id.name);

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

    result=(TextView)findViewById(R.id.result);
    
    Button btn=(Button)findViewById(R.id.format);
    
    btn.setOnClickListener(new Button.OnClickListener() {
      public void onClick(View v) {
        applyFormat();
      }
    });
  }
  
  private void applyFormat() {
    String format=getString(R.string.funky_format);
    String simpleResult=String.format(format,
                     TextUtils.htmlEncode(name.getText().toString()));
    result.setText(Html.fromHtml(simpleResult));
  }
}

The string resource manipulation can be found in  applyFormat(), which is 
called when the button is clicked. First, we get our format via getString() – 
something we could have done at  onCreate() time for efficiency. Next, we 
format the value in the field using this format, getting a String back, since 
the  string  resource  is  in  entity-encoded  HTML.  Note  the  use  of 
TextUtils.htmlEncode() to  entity-encode  the  entered  name,  in  case 
somebody decides to use an ampersand or something. Finally, we convert 
the simple HTML into a styled text object via  Html.fromHtml() and update 
our label.

When the activity is first launched, we have an empty label:

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

Figure 46. The StringsDemo sample application, as initially launched

but if we fill in a name and click the button, we get:

Figure 47. The same application, after filling in some heroic figure's name

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

Got the Picture?

Android  supports  images  in  the  PNG,  JPEG,  and  GIF  formats.  GIF  is 
officially discouraged, however; PNG is the overall preferred format. Images 
can  be  used  anywhere  that  requires  a  Drawable,  such  as  the image and 
background of an ImageView.

Using images is simply a matter of putting your image files in res/drawable/ 
and then referencing them as a resource. Within layout files,  images are 
referenced as  @drawable/... where the ellipsis is the base name of  the file 
(e.g., for res/drawable/foo.png, the resource name is @drawable/foo). In Java, 
where you need an image resource ID, use R.drawable. plus the base name 
(e.g., R.drawable.foo).

If  you need a  Uri to an image resource, you can use one of  two different 
string formats for the path:

1. android.resource://com.example.app/...,  where  com.example.app is 
the  name  of  the  Java  package  used  by  your  application  in 
AndroidManifest.xml and  ... is  the  numeric  resource  ID  for  the 
resource in question (e.g., the value of R.drawable.foo)

2. android.resource://com.example.app/raw/...,  where  com.example.app 
is  the  name  of  the  Java  package  used  by  your  application  in 
AndroidManifest.xml and ... is the textual name of the raw resource 
(e.g., foo for res/drawable/foo.png)

Note that Android  ships  with  some image resources  built  in.  Those are 
addressed  in  Java with an  android.R.drawable prefix  to distinguish  them 
from application-specific resources (e.g., android.R.drawable.picture_frame).

So, let's update the previous example to use an icon for the button instead of 
the string resource. This can be found as Images. First, we slightly adjust the 
layout  file,  using  an  ImageButton and  referencing  a  drawable  named 
@drawable/icon:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

158

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="horizontal"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    >
    <ImageButton android:id="@+id/format"
      android:layout_width="wrap_content" 
      android:layout_height="wrap_content"
      android:src="@drawable/icon"
      />
    <EditText android:id="@+id/name"
      android:layout_width="fill_parent" 
      android:layout_height="wrap_content" 
      />
  </LinearLayout>
  <TextView android:id="@+id/result"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    />
</LinearLayout>

Next, we need to put an image file in res/drawable with a base name of icon. 
In this case, we use a 32x32 PNG file from the Nuvola icon set. Finally, we 
twiddle the Java source, replacing our Button with an ImageButton:

package com.commonsware.android.resources;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.Button;
import android.widget.ImageButton;
import android.widget.EditText;
import android.widget.TextView;

public class ImagesDemo extends Activity {
  EditText name;
  TextView result;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    
    name=(EditText)findViewById(R.id.name);
    result=(TextView)findViewById(R.id.result);

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/Nuvola


Working with Resources

    
    ImageButton btn=(ImageButton)findViewById(R.id.format);
    
    btn.setOnClickListener(new Button.OnClickListener() {
      public void onClick(View v) {
        applyFormat();
      }
    });
  }
  
  private void applyFormat() {
    String format=getString(R.string.funky_format);
    String simpleResult=String.format(format,
                    TextUtils.htmlEncode(name.getText().toString()));
    result.setText(Html.fromHtml(simpleResult));
  }

Now, our button has the desired icon:

Figure 48. The ImagesDemo sample application

XML: The Resource Way

In a  previous chapter, we showed how you can package XML files as raw 
resources and get access to them for parsing and usage. There is another way 
of packaging static XML with your application: the XML resource.

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

Simply put the XML file in res/xml/, and you can access it by getXml() on a 
Resources object, supplying it a resource ID of R.xml. plus the base name of 
your XML file. So, in an activity, with an XML file of  words.xml, you could 
call getResources().getXml(R.xml.words).

This  returns  an  instance  of  the  presently-undocumented  XmlPullParser, 
found in the org.xmlpull.v1 Java namespace. Documentation for this library 
can be found at at the parser's site as of this writing.

An XML pull parser is event-driven: you keep calling next() on the parser to 
get the next event, which could be START_TAG, END_TAG, END_DOCUMENT, etc. On 
a START_TAG event, you can access the tag's name and attributes; a single TEXT 
event represents the concatenation of all text nodes that are direct children 
of  this element. By looping, testing, and invoking per-element logic,  you 
parse the file.

To see this in action, let's rewrite the Java code for the Static sample project 
to use an XML resource. This new project,  XML, requires that you place the 
words.xml file from Static not in res/raw/, but in res/xml/. The layout stays 
the same, so all that needs replacing is the Java source:

package com.commonsware.android.resources;

import android.app.Activity;
import android.os.Bundle;
import android.app.ListActivity;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import java.io.InputStream;
import java.util.ArrayList;
import org.xmlpull.v1.XmlPullParser;
import org.xmlpull.v1.XmlPullParserException;

public class XMLResourceDemo extends ListActivity {
  TextView selection;
  ArrayList items=new ArrayList();
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.xmlpull.org/v1/doc/api/org/xmlpull/v1/package-summary.html


Working with Resources

    selection=(TextView)findViewById(R.id.selection);
    
    try {
      XmlPullParser xpp=getResources().getXml(R.xml.words);
      
      while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
        if (xpp.getEventType()==XmlPullParser.START_TAG) {
          if (xpp.getName().equals("word")) {
            items.add(xpp.getAttributeValue(0));
          }
        }
        
        xpp.next();
      }
    }
    catch (Throwable t) {
      showAlert("Exception!", 0, t.toString(), "Cancel", true);
    }
    
    setListAdapter(new ArrayAdapter<String>(this,
                           android.R.layout.simple_list_item_1,
                           items));
  }
  
  public void onListItemClick(ListView parent, View v, int position,
                  long id) {
    selection.setText(items.get(position).toString());
  }
}

Now, inside our try...catch block, we get our XmlPullParser and loop until 
the end of the document. If the current event is START_TAG and the name of 
the element is  word (xpp.getName().equals("word")),  then we get the one-
and-only attribute and  pop that  into our list  of  items for the selection 
widget. Since we're in complete control over the XML file, it is safe enough 
to assume there is exactly one attribute. But, if you were not as comfortable 
that the XML is properly defined, you might consider checking the attribute 
count  (getAttributeCount())  and  the  name  of  the  attribute 
(getAttributeName()) before blindly assuming the 0-index attribute is what 
you think it is.

The result looks the same as before, albeit with a different name in the title 
bar:

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

Figure 49. The XMLResourceDemo sample application

Miscellaneous Values

In  the  res/values/ directory,  you  can  place  one  (or  more)  XML  files 
describing  simple  resources:  dimensions,  colors,  and  arrays.  We  have 
already seen uses of  dimensions and colors in previous examples,  where 
they were passed as simple strings (e.g.,  "10px") as parameters to calls. You 
can, of course, set these up as Java static final objects and use their symbolic 
names...but this only works inside Java source, not in layout XML files. By 
putting these values in resource XML files,  you can reference them from 
both Java and layouts, plus have them centrally located for easy editing.

Resource XML files have a root element of  resources; everything else is a 
child of that root.

Dimensions

Dimensions are used in several places in Android to describe distances, such 
a widget's padding. While this book usually uses pixels (e.g.,  10px for ten 
pixels), there are several different units of measurement available to you:

163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

• in and  mm for inches  and  millimeters,  respectively,  based  on the 
actual size of the screen

• pt for points, which in publishing terms is 1/72nd of an inch (again, 
based on the actual physical size of the screen)

• dp and  sp for  device-independent  pixels  and  scale-independent 
pixels – one pixel equals one dp for a 160dpi resolution screen, with 
the ratio scaling  based  on the actual  screen pixel  density (scale-
independent pixels also take into account the user's preferred font 
size)

To encode a dimension as a resource,  add  a  dimen element,  with a  name 
attribute for your unique name for this  resource,  and a single child  text 
element representing the value:

<resources>
  <dimen name="thin">10px</dimen>
  <dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis is 
a placeholder for your unique name for the resource (e.g., thin and fat from 
the sample above). In Java, you reference dimension resources by the unique 
name prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

Colors

Colors in Android are hexadecimal RGB values, also optionally specifying an 
alpha  channel.  You  have  your  choice  of  single-character  hex  values  or 
double-character hex values, leaving you with four styles:

• #RGB

• #ARGB

• #RRGGBB

• #AARRGGBB

These work similarly to their counterparts in Cascading Style Sheets (CSS).

164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

You can, of course, put these RGB values as string literals in Java source or 
layout resources. If  you wish to turn them into resources, though, all you 
need to do is add color elements to the resources file, with a name attribute 
for your unique name for this color, and a single text element containing the 
RGB value itself:

<resources>
  <color name="yellow_orange">#FFD555</color>
  <color name="forest_green">#005500</color>
  <color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/..., replacing the ellipsis with 
your unique name for the color (e.g.,  burnt_umber). In Java, you reference 
color  resources  by  the  unique  name  prefixed  with  R.color. (e.g., 
Resources.getColor(R.dimen.forest_green)).

Arrays

Array resources are designed to hold lists of simple strings, such as a list of 
honorifics (Mr., Mrs., Ms., Dr., etc.).

In  the resource file,  you need  one  array element per array,  with  a  name 
attribute for the unique name you are giving the array. Then, add one or 
more child item elements, each of which having a single text element with 
the value for that entry in the array:

<resources>
  <array name="honorifics">
    <item>Dr.</item>
    <item>Mr.</item>
    <item>Mrs.</item>
    <item>Ms.</item>
  </array>
</resources>

From your Java code, you can then use Resources.getStringArray() to get a 
String[] of the items in the list. The parameter to getStringArray() is your 
unique  name  for  the  array,  prefixed  with  R.array. (e.g., 
Resources.getStringArray(R.array.honorifics)).

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

Different Strokes for Different Folks

One set of resources may not fit all situations where your application may be 
used.  One  obvious  area  comes  with  string  resources  and  dealing  with 
internationalization (I18N) and localization (L10N).  Putting strings all  in 
one language works fine – probably at least for the developer – but only 
covers one language.

That is not the only scenario where resources might need to differ, though. 
Here are others:

• Screen  orientation:  is  the  screen  in  a  portrait  orientation? 
Landscape? Is the screen square and, therefore, does not really have 
an orientation?

• Screen size: how many pixels does the screen have, so you can size 
your resources accordingly (e.g., large versus small icons)?

• Touchscreen:  does  the  device  have  a  touchscreen?  If  so,  is  the 
touchscreen set up to be used with a stylus or a finger?

• Keyboard: what keyboard does the user have (QWERTY, numeric, 
neither), either now or as an option?

• Other input: does the device have some other form of input, like a 
directional pad or click-wheel?

The way Android  presently  handles  this  is  by  having  multiple  resource 
directories, with the criteria for each embedded in their names.

Suppose,  for example,  you  want to support  strings  in  both English  and 
Spanish. Normally, for a single-language setup, you would put your strings 
in  a  file  named  res/values/strings.xml.  To  support  both  English  and 
Spanish,  you would  create two folders,  res/values-en and  res/values-es, 
where the value after the hyphen is the  ISO 639-1 two-letter code for the 
language you want. Your English-language strings would go in res/values-
en/strings.xml and the Spanish ones in res/values-es/strings.xml. Android 
will choose the proper file based on the user's device settings.

166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/ISO_639-1


Working with Resources

Seems easy, right?

Where things start to get complicated is when you need to use multiple 
disparate criteria for your resources. This may come most frequently with 
layouts, as you might want one layout for portrait and small screens, one 
layout  for larger screens in  landscape mode,  and  variations  of  each for 
finger-input versus other types of input (keyboard, stylus). This will allow 
you to make the best use of the available screen "real estate", without any 
coding changes to your activity using the layout.

Once you get into these sorts of situations, though, all sorts of rules come 
into play, such as:

• The  configuration  options  (e.g.,  -en)  have  a  particular  order  of 
precedence,  and they must appear in the directory name in that 
order.  The  Android  documentation outlines  the specific order in 
which these options can appear. For the purposes of this example, 
screen  orientation  must  precede  touchscreen  type,  which  must 
precede screen size.

• There can only be one value of each configuration option category 
per directory. You cannot, for example, consider portrait and square 
screens  to  be  the  same  –  each  will  require  its  own  named 
res/layout... folder.

• Options are case sensitive

So, for the scenario described above, in theory, we would need the following 
directories:

• res/layout-port-finger

• res/layout-square-finger

• res/layout-landscape-finger-640x480

• res/layout-port-notouch

• res/layout-square-notouch

• res/layout-landscape-notouch-640x480

• res/layout-port-stylus

• res/layout-square-stylus

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/devel/resources-i18n.html#AlternateResources


Working with Resources

• res/layout-landscape-stylus-640x480

Note that for some of  these,  the actual layout files will  be identical.  For 
example, we only care about finger layouts being different than the other 
two, but since we cannot combine those two, we would theoretically have to 
have separate directories with identical contents for notouch and stylus.

Also note that there is nothing preventing you from also having a directory 
with the unadorned base name (res/layout). In fact, this is probably a good 
idea,  in  case  future  editions  of  the  Android  runtime  introduce  other 
configuration options you did not consider – having a default layout might 
make the difference between your application working or failing on that new 
device.

Now,  we  can  "cheat"  a  bit,  by  decoding  the  rules  Android  uses  for 
determining  which,  among  a  set  of  candidates,  is  the  "right"  resource 
directory to use:

1. First up, Android tosses out ones that are specifically invalid. So, for 
example,  if  the screen size of  the device is  320x240,  the  640x480 
directories would be dropped as candidates, since they specifically 
call for some other size.

2. Next, Android counts the number of  matches for each folder, and 
only pays attention to those with the most matches.

3. Finally, Android goes in the order of precedence of the options – in 
other words, it goes from left to right in the directory name.

So we could skate by with only the following configurations:

• res/layout-landscape-finger-640x480

• res/layout-landscape-640x480

• res/layout-finger

• res/layout

If  the device is  in portrait or square mode,  or does not have a 640x480 
screen size, the first two candidates will be skipped, and the layout will be 
chosen  based  on  whether  the  device  supports  finger  input  or  not. 

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Working with Resources

Otherwise, one of the two landscape 640x480 layouts will be chosen, as they 
would be a "stronger" match than the others, with the final determination 
being on whether the device supports finger input or not.

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 18

Managing and Accessing Local 
Databases

SQLite is a very popular embedded database, as it combines a clean SQL 
interface with a very small memory footprint and decent speed. Moreover, it 
is  public  domain,  so everyone can use it.  Lots  of  firms  (Adobe,  Apple, 
Google, Sun, Symbian) and open source projects (Mozilla, PHP, Python) all 
ship products with SQLite.

For Android, SQLite is "baked into" the Android runtime, so every Android 
application can create SQLite databases. Since SQLite uses a SQL interface, 
it is fairly straightforward to use for people with experience in other SQL-
based databases. However, its native API is not JDBC, and JDBC might be 
too  much  overhead  for  a  memory-limited  device  like  a  phone,  anyway. 
Hence, Android programmers have a different API to learn – the good news 
being is that it is not that difficult.

This chapter will cover the basics of SQLite use in the context of working on 
Android. It by no means is a thorough coverage of SQLite as a whole. If you 
want to learn more about SQLite and how to use it in other environment 
than Android, a fine book is  The Definitive Guide to SQLite by Michael 
Owens.

Activities will typically access a database via a content provider or service. As 
such, this chapter does not have a full example. You will find a full example 

171

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.amazon.com/Definitive-Guide-SQLite/dp/1590596730
http://www.sqlite.org/


Managing and Accessing Local Databases

of  a content provider that accesses a database in the  Building a Content 
Provider chapter.

A Quick SQLite Primer

SQLite, as the name suggests, uses a dialect of SQL for queries (SELECT), data 
manipulation (INSERT,  et.  al.),  and data definition (CREATE TABLE,  et.  al.). 
SQLite has a few places where it deviates from the SQL-92 standard, no 
different than most SQL databases.  The good news is  that SQLite is  so 
space-efficient that the Android runtime can include all of SQLite, not some 
arbitrary subset to trim it down to size.

The  biggest  difference  from  other  SQL  databases  you  will  encounter  is 
probably the data typing. While you can specify the data types for columns 
in a CREATE TABLE statement, and while SQLite will use those as a hint, that is 
as far as it goes. You can put whatever data you want in whatever column you 
want.  Put a string in an  INTEGER column? Sure!  No problem! Vice versa? 
Works too! SQLite refers to this as "manifest typing", as described in the 
documentation:

In manifest typing, the datatype is a property of the value it-
self, not of the column in which the value is stored. SQLite  
thus allows the user to store any value of any datatype into  
any column regardless of the declared type of that column.

In addition, there are a handful of standard SQL features not supported in 
SQLite,  notably  FOREIGN KEY constraints,  nested transactions,  RIGHT OUTER 
JOIN and FULL OUTER JOIN, and some flavors of ALTER TABLE.

Beyond that,  though,  you get a full  SQL system, complete with triggers, 
transactions, and the like. Stock SQL statements, like  SELECT, work pretty 
much as you might expect.

If you are used to working with a major database, like Oracle, you may look 
upon SQLite as being a "toy" database. Please bear in mind that Oracle and 

172

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.sqlite.org/different.html


Managing and Accessing Local Databases

SQLite are meant to solve different problems,  and that you will  not  be 
seeing a full copy of Oracle on a phone any time real soon, in all likelihood.

Start at the Beginning

No databases are automatically supplied to you by Android. If you want to 
use SQLite, you have to create your own database, then populate it with your 
own tables, indexes, and data.

To  create  a  database,  your  Activity,  ContentProvider,  or  other  Context 
subclass can call createDatabase(), providing four parameters:

• The name of the database – any class in your application can access 
this  database  under  this  name  (though  nothing  outside  your 
application can access it)

• An integer version number for the database (see below)

• The security mode for accessing this database – for now, use 0

• An optional instance of a CursorFactory subclass that should be used 
in conjunction with this database, covered in greater detail in the 
section on querying the database, later in this chapter

The  version  number  is  for  your  own  bookkeeping.  When  somebody 
upgrades your application to a  new version,  if  your new version uses  a 
different database schema, you can compare the version you want to use 
with the version of the database that is already installed. That will help your 
application figure out what needs to be changed in the table structures. This 
is covered in greater detail in the chapter on creating a content provider.

The result  of  the  createDatabase() call  is  an instance of  SQLiteDatabase, 
which you can use for creating tables and the like, described later in this 
chapter.

You also get a SQLiteDatabase instance when you call openDatabase() to access 
a database you already created. This takes the name of  the database and, 
optionally, the CursorFactory used when querying the database.

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Managing and Accessing Local Databases

When you are done with the database (e.g., your activity is being closed), 
simply call close() on the SQLiteDatabase to release your connection. If you 
wish to get rid of  the database entirely, your  Activity,  ContentProvider, or 
other Context subclass can call deleteDatabase() with the database's name.

Setting the Table

For creating your tables and indexes, you will need to call execSQL() on your 
SQLiteDatabase, providing the DDL statement you wish to apply against the 
database. Barring a database error, this method returns nothing.

So, for example, you can:

db.execSQL("CREATE TABLE widgets "+
            "(ID INTEGER PRIMARY KEY AUTOINCREMENT, "+
            "name TEXT, inventory INTEGER)");
db.execSQL("CREATE INDEX widgetsByNameIdx "+
            "ON widgets (name)");

This will create a table, named widgets, with a primary key column named 
ID that is an auto-incremented integer (i.e., SQLite will assign the value for 
you when you insert rows), plus two data columns: name (text) and inventory 
(integer). SQLite will automatically create an index for you on your primary 
key column, so the second statement adds another index on the table, by 
name.

Most likely,  you will  create tables and indexes when you first create the 
database, or possibly when the database needs upgrading to accommodate a 
new release of  your application. If  you do not change your table schemas, 
you might never drop your tables or indexes, but if you do, just use execSQL() 
to invoke DROP INDEX and DROP TABLE statements as needed.

Makin' Data

Given that you have a database and one or more tables, you probably want to 
put some data in them and such. You have two major approaches for doing 
this.

174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Managing and Accessing Local Databases

You can always use execSQL(), just like you did for creating the tables. The 
execSQL() method works for any SQL that does not return results, so it can 
handle INSERT, UPDATE, DELETE, etc. just fine. So, for example:

db.execSQL("INSERT INTO widgets (name, inventory)"+
            "VALUES ('Sprocket', 5)");

Your alternative is to use the insert(),  update(), and  delete() methods on 
the SQLiteDatabase object. These are "builder" sorts of methods, in that the 
break  down  the  SQL  statements  into  discrete  chunks,  then  take  those 
chunks as parameters.

These methods make use of  ContentValues objects, which implement a Map-
esque interface, albeit one that has additional methods for working with 
SQLite types. For example, in addition to get() to retrieve a value by its key, 
you have getAsInteger(), getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column 
as the "null column hack", and a  ContentValues with the initial values you 
want put into this row. The "null column hack" is for the case where the 
ContentValues instance is empty – the column named as the "null column 
hack" will be explicitly assigned the value NULL in the SQL INSERT statement 
generated by insert().

The  update() method  takes  the  name  of  the  table,  a  ContentValues 
representing the columns and replacement values to use, an optional WHERE 
clause, and an optional list of  parameters to fill  into the  WHERE clause, to 
replace  any embedded  question  marks  (?).  Since  update() only  replaces 
columns  with  fixed  values,  versus  ones  computed  based  on  other 
information, you may need to use execSQL() to accomplish some ends.

The  WHERE clause  and  parameter  list  works  akin  to  the  positional  SQL 
parameters you may be used to from other SQL APIs. For example:

// replacements is a ContentValues instance
String[] parms=new String[] {"snicklefritz"};
db.update("widgets", replacements, "name=?", parms);

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Managing and Accessing Local Databases

The delete() method works akin to update(), taking the name of the table, 
the optional WHERE clause, and the corresponding parameters to fill into the 
WHERE clause.

What Goes Around, Comes Around

As with INSERT, UPDATE, and DELETE, you have two main options for retrieving 
data from a SQLite database using SELECT:

1. You can use rawQuery() to invoke a SELECT statement directly, or

2. You can use query() to build up a query from its component parts

Confounding matters further is the SQLiteQueryBuilder class and the issue of 
cursors and cursor factories. Let's take all of this one piece at a time.

Raw Queries

The simplest solution, at least in terms of the API, is rawQuery(). Simply call 
it  with  your  SQL  SELECT statement.  The  SELECT statement  can  include 
positional parameters; the array of  these forms your second parameter to 
rawQuery(). So, we wind up with:

String[] parms={"snicklefritz"};
Cursor result=
  db.rawQuery("SELECT ID,inventory FROM widgets WHERE name=?",
              parms);

If your queries are pretty much "baked into" your application, this is a very 
straightforward way to use them. However, it gets complicated if parts of the 
query are dynamic, beyond what positional parameters can really handle. 
For example, if  the set of  columns you need to retrieve is not known at 
compile  time,  puttering  around  concatenating  column  names  into  a 
comma-delimited list can be annoying...which is where query() comes in.

176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Managing and Accessing Local Databases

Regular Queries

The  query() method takes the discrete pieces of  a SELECT statement and 
builds  the  query  from  them.  The  pieces,  in  order  that  they  appear  as 
parameters to query(), are:

• The name of the table to query against

• The list of columns to retrieve

• The WHERE clause, optionally including positional parameters

• The list of values to substitute in for those positional parameters

• The GROUP BY clause, if any

• The ORDER BY clause, if any

These can be  null when they are not needed (except the table name,  of 
course). So, our previous snippet converts into:

String[] columns={"ID", "inventory"};
String[] parms={"snicklefritz"};
Cursor result=db.query("widgets", columns, "name=?",
                       parms, null, null, null);

Building with Builders

Yet another option is to use  SQLiteQueryBuilder, which offers much richer 
query-building options, particularly for nasty queries involving things like 
the  union  of  multiple  sub-query  results.  More  importantly,  the 
SQLiteQueryBuilder interface  dovetails  nicely  with  the  ContentProvider 
interface for executing queries. Hence, a common pattern for your content 
provider's  query() implementation is to create a  SQLiteQueryBuilder, fill in 
some defaults, then allow it to build up (and optionally execute) the full 
query combining the defaults with what is provided to the content provider 
on the query request.

For  example,  here  is  a  snippet  of  code  from  a  content  provider  using 
SQLiteQueryBuilder:

177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Managing and Accessing Local Databases

SQLiteQueryBuilder qb=new SQLiteQueryBuilder();

qb.setTables(getTableName());

if (isCollectionUri(url)) {
  qb.setProjectionMap(getDefaultProjection());
}
else {
  qb.appendWhere(getIdColumnName()+"=" + url.getPathSegments().get(1));
}

String orderBy;

if (TextUtils.isEmpty(sort)) {
  orderBy=getDefaultSortOrder();
} else {
  orderBy=sort;
}

Cursor c=qb.query(db, projection, selection, selectionArgs, null, null, 
orderBy);
c.setNotificationUri(getContext().getContentResolver(), url);

Content providers are explained in greater detail later in the book, so some 
of this you will have to take on faith until then. Here, we see:

• A SQLiteQueryBuilder is constructed

• It is told the table to use for the query (setTables(getTableName()))

• It  is  either  told  the  default  set  of  columns  to  return 
(setProjectionMap()), or is given a piece of a WHERE clause to identify a 
particular row in the table by an identifier extracted from the  Uri 
supplied to the query() call (appendWhere())

• Finally, it is told to execute the query, blending the pre-set values 
with those supplied on the call to query() (qb.query(db, projection, 
selection, selectionArgs, null, null, orderBy))

Instead  of  having  the  SQLiteQueryBuilder execute  the  query  directly,  we 
could have called buildQuery() to have it generate and return the SQL SELECT 
statement we needed, which we could then execute ourselves.

178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Managing and Accessing Local Databases

Using Cursors

No matter how you execute the query, you get a  Cursor back. This is the 
Android/SQLite edition of  the database cursor,  a concept used  in many 
database systems. With the cursor, you can:

• Find out how many rows are in the result set via count()

• Iterate over the rows via first(), next(), and isAfterLast()

• Find out the names of  the columns via  getColumnNames(),  convert 
those into column numbers via getColumnIndex(), and get values for 
the current row for a given column via methods like  getString(), 
getInt(), etc.

• Re-execute the query that created the cursor via requery()

• Release the cursor's resources via close()

For example, here we iterate over the widgets table entries from the previous 
snippets:

Cursor result=
  db.rawQuery("SELECT ID, name, inventory FROM widgets");

while (!result.isAfterLast()) {
int id=result.getInt(0);
String name=result.getString(1);
int inventory=result.getInt(2);

// do something useful with these

result.next();
}

result.close();

Change for the Sake of Change

For a simple  SELECT, and in some other situations, the cursor will support 
updates (supportUpdates()). This means not only can you read data using the 
cursor, but you can modify the data and commit those changes back to the 
database. You do this by:

179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Managing and Accessing Local Databases

• Updating  values  for  particular  columns  in  the  current  row  via 
methods like updateInt() and updateString(), or deleting the current 
row via deleteRow()

• Committing those changes back to the database via commitUpdates()

• Invoking requery() to refresh the cursor based on the results of your 
changes, if you want to continue using the cursor

And, of course, you should close() the cursor when done.

Making Your Own Cursors

There may be circumstances in which you want to use your own  Cursor 
subclass,  rather than the stock implementation provided by Android.  In 
those  cases,  you  can  use  flavors  of  query() and  rawQuery() that  take  a 
CursorFactory instance as a parameter. The factory, as one might expect, is 
responsible for creating new cursors via its newCursor() implementation.

Finding and implementing a valid use for this facility is left as an exercise for 
the reader. Suffice it to say that you should not need to create your own 
cursor classes much, if at all, in ordinary Android development.

Data, Data, Everywhere

If you are used to developing for other databases, you are also probably used 
to having tools to inspect and manipulate the contents of  the database, 
beyond merely the database's API. With Android's emulator, you have two 
main options for this.

First, the emulator bundles in the  sqlite3 console program and makes it 
available from the adb shell command. Once you are in the emulator's shell, 
just  execute  sqlite3,  providing  it  the  path  to  your  database  file.  Your 
database file can be found at:

/data/data/your.app.package/databases/your-db-name.db

180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Managing and Accessing Local Databases

Here  your.app.package is  the  Java  package  for  your  application  (e.g., 
com.commonsware.android) and your-db-name is the name of your database, as 
supplied to createDatabase().

The  sqlite3 program works,  and if  you are used to poking around your 
tables using a console interface, you are welcome to use it.  If  you prefer 
something a little bit friendlier, you can always copy the SQLite database off 
the device onto your development machine, then use a SQLite-aware client 
program to putter around. Note, though, that you are working off a copy of 
the database; if  you want your changes to go back to the device, you will 
need to transfer the database back over.

To get the database off the device, you can use the adb pull command (or 
the equivalent in your IDE), which takes the path to the on-device database 
and the local destination as parameters. To store a modified database on the 
device, use adb push, which takes the local path to the database and the on-
device destination as parameters.

One of the most-accessible SQLite clients is the SQLite Manager extension 
for Firefox, as it works across all platforms.

Figure 50. the SQLite Manager Firefox extension

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

https://addons.mozilla.org/en-US/firefox/addon/5817


Managing and Accessing Local Databases

You can find dozens of others on the SQLite Web site.

182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.sqlite.org/


CHAPTER 19

Leveraging Java Libraries

Java has as many, if not more, third-party libraries than any other modern 
programming  language.  Here,  "third-party  libraries"  refer  to  the 
innumerable  JARs  that  you  can  include  in  a  server  or  desktop  Java 
application – the things that the Java SDKs themselves do not provide.

In the case of Android, the Dalvik VM at its heart is not precisely Java, and 
what it provides in its SDK is not precisely the same as any traditional Java 
SDK.  That  being  said,  many  Java  third-party  libraries  still  provide 
capabilities that Android lacks natively and therefore may be of use to you 
in your project, for the ones you can get working with Android's flavor of 
Java.

This chapter explains what it will take for you to leverage such libraries and 
the limitations on Android's support for arbitrary third-party code.

The Outer Limits

Not all available Java code, of course, will work well with Android. There are 
a number of factors to consider, including:

• Expected Platform APIs: Does the code assume a newer JVM than 
the one Android is based on? Or, does the code assume the existence 
of  Java  APIs  that  ship with  J2SE  but not  with  Android,  such as 
Swing?

183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Leveraging Java Libraries

• Size: Existing Java code designed for use on desktops or servers need 
not worry too much about on-disk size, or, to some extent, even in-
RAM size. Android, of  course, is short on both. Using third-party 
Java code, particularly when pre-packaged as JARs, may balloon the 
size of your application.

• Performance: Does the Java code effectively assume a much more 
powerful CPU than what you may find on many Android devices? 
Just because a desktop can run it without issue doesn't mean your 
average mobile phone will handle it well.

• Interface: Does the Java code assume a console interface? Or is it a 
pure API that you can wrap your own interface around?

One trick for addressing some of these concerns is to use open source Java 
code, and actually work with the code to make it more Android-friendly. For 
example,  if  you're  only  using  10%  of  the  third-party  library,  maybe it's 
worthwhile to recompile the subset of the project to be only what you need, 
or at  least  removing  the unnecessary classes  from the JAR.  The former 
approach is safer,  in that you get compiler help to make sure you're not 
discarding some essential piece of code, though it may be more tedious to 
do.

Ants and Jars

You have two choices for integrating third-party code into your project: use 
source code, or use pre-packaged JARs.

If you choose to use their source code, all you need to do is copy it into your 
own source tree (under  src/ in your project),  so it can sit alongside your 
existing code, then let the compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have 
the source code, you will need to teach your build chain how to use the JAR. 
If you are using an IDE, that's a matter of telling it to reference the JAR. If, 
on the other hand,  you are not using  an IDE and are relying  upon the 
build.xml Ant script, you will need to make some changes. Here's a pattern 
that works:

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Leveraging Java Libraries

1. Copy the third-party JAR(s) into a  lib/ directory you add to your 
project, as a peer of src/, bin/, etc.

2. Add a  classpath element to the  javac task in the  compile target of 
your build.xml script, pointing it to your new lib/ directory

3. Add new  arg elements to your  exec task in the  dex target of  the 
build.xml script, pointing it to the specific JARs to translate to Dalvik 
instructions and package

For example, here are the two aforementioned Ant tasks from the build.xml 
for MailBuzz, a project we will examine in greater detail in the chapters on 
services:

<!-- Compile this project's .java files into .class files. -->
<target name="compile" depends="dirs, resource-src, aidl">
  <javac encoding="ascii" target="1.5" debug="true" extdirs=""
      srcdir="."
      destdir="${outdir-classes}"
      bootclasspath="${android-jar}">
    <classpath>
      <fileset dir="lib">
        <include name="**/*.jar"/>
      </fileset>
    </classpath>
  </javac>
</target>

<!-- Convert this project's .class files into .dex files. -->
<target name="dex" depends="compile">
  <exec executable="${dx}" failonerror="true">
    <arg value="-JXmx384M" />
    <arg value="--dex" />
    <arg value="--output=${basedir}/${intermediate-dex}" />
    <arg value="--locals=full" />
    <arg value="--positions=lines" />
    <arg path="${basedir}/${outdir-classes}" />
    <arg path="${basedir}/lib/activation-1.1.jar"/>
    <arg path="${basedir}/lib/mail-1.4.jar"/>
  </exec>
</target>

MailBuzz, as the name suggests, deals with email. To accomplish that end, 
MailBuzz  leverages  the  JavaMail  APIs  and  needs  two  JavaMail  JARs: 
mail-1.4.jar and  activation-1.1.jar.  With  both  of  those  in  the  lib/ 
directory, the classpath tells javac to link against those JARs, so any JavaMail 
references in the MailBuzz code can be correctly resolved. Then, those JARs 

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Leveraging Java Libraries

are listed, along with the MailBuzz compiled classes, in the task that invokes 
the dex tool to convert the Java code into Dalvik VM instructions. Without 
this step, even though your code may compile, it won't find the JavaMail 
classes at runtime and will fail with an exception.

As noted above,  using  JARs can make your project portly –  MailBuzz is 
about 250KB thanks to the JavaMail classes.

Of course, it is entirely possible that JavaMail would require features in Java 
that  the  Dalvik  VM  simply  doesn't  offer.  This  wouldn't  necessarily  be 
discovered at compile time, though, so your testing will need to ensure that 
you exercise all relevant uses of the third-party API, so you know that it will 
run without incident.

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 20

Communicating via the Internet

The expectation is that most, if  not all, Android devices will have built-in 
Internet access. That could be WiFi, cellular data services (EDGE, 3G, etc.), 
or possibly something else entirely.  Regardless,  most people – or at least 
those with a data plan or WiFi access – will be able to get to the Internet 
from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of ways 
to make use of this Internet access. Some offer high-level access, such as the 
integrated WebKit browser component we saw in an earlier chapter. If you 
want, you can drop all the way down to using raw sockets. Or, in between, 
you can leverage APIs – both on-device and from 3rd-party JARs – that give 
you access to specific protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the WebKit 
component and Internet-access APIs,  as busy coders should be trying to 
reuse existing components versus rolling  one's  own on-the-wire protocol 
wherever possible.

REST and Relaxation

Android does not have built-in SOAP or XML-RPC client APIs. However, it 
does have the Apache Jakarta Commons HttpClient library baked in. You 
can either layer a SOAP/XML-RPC layer atop this library, or use it "straight" 
for accessing REST-style Web services. For the purposes of this book, "REST-

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Communicating via the Internet

style Web services" is defined as "simple HTTP requests for ordinary URLs 
over the full range of  HTTP verbs, with formatted payloads (XML, JSON, 
etc.) as responses".

More  expansive  tutorials,  FAQs,  and  HOWTOs  can  be  found  at  the 
HttpClient  Web  site.  Here,  we'll  cover  the  basics,  while  checking  the 
weather.

HTTP Operations via Apache Commons

The first step to using HttpClient is, not surprisingly, to create an HttpClient 
object. The client object handles all HTTP requests upon your behalf.

Those requests  are bundled  up into  HttpMethod instances,  with  different 
HttpMethod subclasses for each different HTTP verb (e.g., GetMethod for HTTP 
GET requests). You create an HttpMethod subclass instance, fill in the URL to 
retrieve and other configuration data (e.g., form values if you are doing an 
HTTP  POST via  PostMethod), then pass the method to the client to actually 
make the HTTP request.

The request will, at minimum, give you an HTTP response code (e.g., 200 for 
OK) and various HTTP headers (e.g.,  Set-Cookie). In many cases, you will 
also be given the body of the response, which you can obtain as a byte array, 
a String, or an InputStream for later processing.

When you are done with the request, close the InputStream (if that's how you 
got the response body),  then invoke  releaseConnection() on the method 
object, to drop the HTTP connection.

For example, let's take a look at the Weather sample project. This implements 
an activity that retrieves weather data for your current location from the 
National Weather Service (NOTE: this probably only works in the US). That 
data is converted into an HTML page, which is poured into a WebKit widget 
for display. Rebuilding this demo using a ListView is left as an exercise for 
the reader.  Also,  since this  sample is  relatively  long,  we will  only show 

188

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://hc.apache.org/httpclient-3.x/


Communicating via the Internet

relevant pieces of the Java code here in this chapter, though you can always 
download the full source from the CommonsWare Web site.

We retrieve the National Weather Service data every time the activity pops 
back to the foreground by implementing onResume() in the activity:

@Override
public void onResume() {
  super.onResume();

  Location loc=getLocation();
  String url=String.format(format, loc.getLatitude(), loc.getLongitude());
  GetMethod method=new GetMethod(url);

  try {
    int statusCode=client.executeMethod(method);

    if (statusCode!=HttpStatus.SC_OK) {
      Toast
       .makeText(this,
             "Request failed: "+method.getStatusLine(),
              2000)
        .show();
    }
    else {
      buildForecasts(method.getResponseBodyAsStream());
      browser.loadData(generatePage(), "text/html", "UTF-8");
    }
  }
  catch (Throwable t) {
    Toast
      .makeText(this, "Request failed: "+t.toString(), 2000)
      .show();
  }
  finally {
    method.releaseConnection();
  }
}

First, we retrieve our location using a private getLocation() method, which 
uses Android's built-in location services – more on this in a later chapter. 
For now,  all  you need to know is that  Location sports  getLatitude() and 
getLongitude() methods  that  return  the  latitude  and  longitude  of  the 
device's position, respectively.

We hold the URL to the National Weather Service XML in a string resource, 
and pour in the latitude and longitude at runtime. Given our  HttpClient 

189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/


Communicating via the Internet

instance  created  in  onCreate(),  we  populate  a  GetMethod with  that 
customized URL, then execute that method. If we get 200 as the result code, 
we build the forecast HTML page (see below) and pour that into the WebKit 
widget. If  we get some other response back, or if  the HttpClient blows up 
with  an  exception,  we  provide  that  error  as  a  Toast,  before  eventually 
releasing our HTTP connection for this request.

Parsing Responses

The response you get will be formatted using some system – HTML, XML, 
JSON, whatever. It is up to you, of course, to pick out what information you 
need and do something useful with it. In the case of  the  WeatherDemo, we 
need to extract the forecast time,  temperature,  and icon (indicating  sky 
conditions and precipitation) and generate an HTML page from it.

Android includes:

• Three XML parsers: the traditional W3C DOM (org.w3c.dom), a SAX 
parser  (org.xml.sax),  and  the  XML  pull  parser  discussed  in  the 
chapter on resources

• A JSON parser (org.json)

You are also welcome to use third-party Java code, where possible, to handle 
other formats, such as a dedicated RSS/Atom parser for a feed reader. The 
use of third-party Java code is discussed in a separate chapter.

For  WeatherDemo,  we  use  the  W3C  DOM  parser  in  our  buildForecasts() 
method:

void buildForecasts(InputStream in) throws Exception {
  DocumentBuilder builder=DocumentBuilderFactory
                           .newInstance()
                           .newDocumentBuilder();
  Document doc=builder.parse(in, null);
  NodeList times=doc.getElementsByTagName("start-valid-time");

  for (int i=0;i<times.getLength();i++) {
    Element time=(Element)times.item(i);
    Forecast forecast=new Forecast();

190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Communicating via the Internet

    forecasts.add(forecast);
    forecast.setTime(time.getFirstChild().getNodeValue());
  }

  NodeList temps=doc.getElementsByTagName("value");

  for (int i=0;i<temps.getLength();i++) {
    Element temp=(Element)temps.item(i);
    Forecast forecast=forecasts.get(i);

    forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
  }

  NodeList icons=doc.getElementsByTagName("icon-link");

  for (int i=0;i<icons.getLength();i++) {
    Element icon=(Element)icons.item(i);
    Forecast forecast=forecasts.get(i);

    forecast.setIcon(icon.getFirstChild().getNodeValue());
  }

  in.close();
}

The National Weather Service XML format is...curiously structured, relying 
heavily on sequential position in lists versus the more object-oriented style 
you find in formats like RSS or Atom. That being said, we can take a few 
liberties and simplify the parsing somewhat, taking advantage of  the fact 
that the elements we want (start-valid-time for the forecast time, value for 
the temperature, and icon-link for the icon URL) are all unique within the 
document.

The HTML comes in as an InputStream and is fed into the DOM parser. From 
there,  we scan  for the  start-valid-time elements  and  populate  a  set  of 
Forecast models using  those start times.  Then,  we find the temperature 
value elements and icon-link URLs and fill those in to the Forecast objects.

In turn, the generatePage() method creates a rudimentary HTML table with 
the forecasts:

String generatePage() {
  StringBuffer bufResult=new StringBuffer("<html><body><table>");

  bufResult.append("<tr><th width=\"50%\">Time</th>"+
                    "<th>Temperature</th><th>Forecast</th></tr>");

191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Communicating via the Internet

  for (Forecast forecast : forecasts) {
    bufResult.append("<tr><td align=\"center\">");
    bufResult.append(forecast.getTime());
    bufResult.append("</td><td align=\"center\">");
    bufResult.append(forecast.getTemp());
    bufResult.append("</td><td><img src=\"");
    bufResult.append(forecast.getIcon());
    bufResult.append("\"></td></tr>");
  }

  bufResult.append("</table></body></html>");

  return(bufResult.toString());
}

The result looks like this:

Figure 51. The WeatherDemo sample application

Stuff To Consider

If you need to use SSL, bear in mind that the default HttpClient setup does 
not include SSL support. Mostly, this is because you need to decide how to 
handle SSL certificate presentation – do you blindly accept all certificates, 
even self-signed or expired ones? Or do you want to ask the user if  they 

192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Communicating via the Internet

really want to use some strange certificates? The HttpClient Web site has 
instructions for adding SSL support with various certificate policies to your 
project.

Similarly, HttpClient, by default, is designed for single-threaded use. If you 
will be using HttpClient from a service or some other place where multiple 
threads might be an issue,  you can readily set up HttpClient to support 
multiple threads – again, the HttpClient Web site has the instructions.

Email over Java

Android has no built-in facility to sending or receiving emails. This doesn't 
preclude you from doing so yourself, but you will need to either roll your 
own SMTP, POP3, or IMAP client code, or use one from a third-party, like 
JavaMail. As described in the chapter on integrating third-party Java code, 
there are caveats  to going  this  route,  such as  bloating  the size of  your 
application.  Eventually,  "lean  and  mean"  editions  of  these  libraries  will 
spring  up,  focused  on  Android-style  deployments.  And,  eventually, 
Android-style  devices  will  expand  their  storage,  memory,  and  CPU 
capacities.

In the meantime, though, we can still use APIs like JavaMail, so long as we 
live with the limitations.

Case  in  point  is  the  MailBuzz project,  first  mentioned  in  the  preceding 
chapter.  This application combines an activity and a service, designed to 
monitor an email account for new messages. This isn't a full email client, but 
it is a feature you might find in full email client, and it shows off integrating 
JavaMail nicely, plus the use of services. In this chapter, though, we'll focus 
on the JavaMail side, for accessing POP3 and IMAP on your Android device. 
This is not meant to be a thorough JavaMail tutorial, of course.

For the purposes of MailBuzz, what we want is to connect to a mail server, 
grab the messages, extract the Message-Id headers, and hold onto the IDs. 
Every time we check for new messages, we see if the last set of message IDs 
is missing any from the just-retreived set of  IDs – if  so,  we have a new 

193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://hc.apache.org/httpclient-3.x/threading.html
http://hc.apache.org/httpclient-3.x/sslguide.html


Communicating via the Internet

message and can pop up a "new mail!"  Notification. While we could use 
JavaMail's MessageCountListener to more directly detect new messages, that 
assumes a constant Internet connection, and that's far from assured with a 
mobile  device.  While  this  implementation  is  decidedly  more  clunky,  it 
should handle a greater range of real-world situations.

The IMAP and POP3 logic is encapsulated in the MailClient class:

package com.commonsware.android.service;

import java.security.Security;
import javax.mail.Folder;
import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Store;

public class MailClient {
  public static String[] getPOP3MessageIds(String server, String user,
                       String pw)
    throws MessagingException {
    return(getMessageIds("pop3", server, user, pw));
  }
  
  public static String[] getIMAPMessageIds(String server, String user,
                       String pw)
    throws MessagingException {
    return(getMessageIds("imap", server, user, pw));
  }  
  
  private static String[] getMessageIds(String type, String server,
                     String user, String pw)
    throws MessagingException {
    String[] result=null;
    
    Session session=Session.getDefaultInstance(System.getProperties());
    Store store=session.getStore(type);
    
    store.connect(server, user, pw);
    
    try {
      Folder folder=store.getFolder("INBOX");
      
      folder.open(Folder.READ_ONLY);

      try {
        Message[] msgs=folder.getMessages();
        
        result=new String[msgs.length];
        
        for (int i=0;i<msgs.length;i++) {

194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Communicating via the Internet

          String[] headers=msgs[i].getHeader("Message-Id");
          
          if (headers==null) {
            result[i]=null;
          }
          else {
            result[i]=headers[0];
          }
        }
      }
      finally {
        folder.close(false);
      }
    }
    finally {
      store.close();
    }
    
    return(result);
  }
}

JavaMail  does  a nice job of  abstracting  out the differences  between the 
protocols,  so  while  the  public  APIs  are  getPOP3MessageIds() and 
getIMAPMessageIds(),  the guts are contained in a common  getMessageIds() 
static  method,  which takes  the type (POP3  or IMAP),  server,  user,  and 
password as parameters.

The JavaMail pattern is:

1. Get a Session

2. Get a Store of the specific type and connect to the server

3. Get  access  to  the  proper  mail  Folder,  typically  INBOX for  new 
messages

4. Open the Folder for read operations

5. Get the messages in the folder

6. Iterate  over  the  messages  and  get  the  Message-Id header,  if  any, 
pouring the results into a String[] which is returned to the overall 
caller

7. Close  the  folder  and  store  on  the  way  back  out,  or  in  case  an 
exception is raised

195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Communicating via the Internet

This code, combined with the hooks to the JavaMail JARs described in the 
preceding chapter, gives MailBuzz access to the message IDs of the messages 
in the inbox of the user-supplied mail account.

196

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



PART IV – Intents

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 21

Creating Intent Filters

Up to now, the focus of this book has been on activities opened directly by 
the user from the device's launcher. This, of course, is the most obvious case 
for getting your activity up and visible to the user. And, in many cases it is 
the primary way the user will start using your application.

However, remember that the Android system is based upon lots of loosely-
coupled  components.  What you might accomplish in a desktop GUI  via 
dialog  boxes,  child  windows,  and  the  like  are  mostly  supposed  to  be 
independent activities. While one activity will be "special", in that it shows 
up in the launcher, the other activities all need to be reached...somehow.

The "how" is via intents.

An intent is basically a message that you pass to Android saying, "Yo! I want 
to do...er...something! Yeah!" How specific the "something" is depends on 
the situation – sometimes you know exactly what you want to do (e.g., open 
up one of your other activities), and sometimes you don't.

In the abstract, Android is all about intents and receivers of those intents. 
So, now that we are well-versed in creating activities, let's dive into intents, 
so we can create more complex applications while simultaneously being 
"good Android citizens".

199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating Intent Filters

What's Your Intent?

When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol  – 
HTTP – he set up a system of verbs plus addresses in the form of URLs. The 
address indicated a resource, such as a Web page, graphic, or server-side 
program. The verb indicated what should be done: GET to retrieve it, POST 
to send form data to it for processing, etc.

Intents are similar, in that they represent an action plus context. There are 
more actions and more components to the context with Android intents 
than there are with HTTP verbs and resources, but the concept is still the 
same.

Just as a Web browser knows how to process  a verb+URL pair,  Android 
knows how to find activities or other application logic that will handle a 
given intent.

Pieces of Intents

The two most important pieces of an intent are the action and what Android 
refers to as the "data". These are almost exactly analogous to HTTP verbs 
and  URLs  –  the  action  is  the  verb,  and  the  "data"  is  a  Uri,  such  as 
content://contacts/people/1 representing  a  contact  in  the  contacts 
database. Actions are constants, such as  VIEW_ACTION (to bring up a viewer 
for  the  resource),  EDIT_ACTION (to  edit  the  resource),  or  PICK_ACTION (to 
choose  an  available  item given  a  Uri representing  a  collection,  such  as 
content://contacts/people).

If you were to create an intent combining VIEW_ACTION with a content Uri of 
content://contacts/people/1,  and  pass  that  intent  to  Android,  Android 
would know to find and open an activity capable of viewing that resource.

There are other criteria you can place inside an intent (represented as an 
Intent object), besides the action and "data" Uri, such as:

200

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating Intent Filters

• A category.  Your "main"  activity will  be in the  LAUNCHER category, 
indicating it should show up on the launcher menu. Other activities 
will probably be in the DEFAULT or ALTERNATIVE categories.

• A MIME type, indicating the type of  resource you want to operate 
on, if you don't know a collection Uri.

• A  component,  which  is  to  say,  the  class  of  the  activity  that  is 
supposed to receive this intent. Using components this way obviates 
the need for the other properties of  the intent.  However,  it does 
make  the  intent  more  fragile,  as  it  assumes  specific 
implementations.

• "Extras",  which is a  Bundle of  other information you want to pass 
along to the receiver with the intent, that the receiver might want to 
take advantage of. What pieces of information a given receiver can 
use is up to the receiver and (hopefully) is well-documented.

Stock Options

Some of the actions defined as part of Android for launching activities are:

• ANSWER_ACTION

• CALL_ACTION

• DELETE_ACTION

• DIAL_ACTION

• EDIT_ACTION

• FACTORY_TEST_ACTION

• GET_CONTENT_ACTION

• INSERT_ACTION

• MAIN_ACTION

• PICK_ACTION

• PICK_ACTIVITY_ACTION

• RUN_ACTION

• SEARCH_ACTION

• SENDTO_ACTION

• SEND_ACTION

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating Intent Filters

• SYNC_ACTION

• VIEW_ACTION

• WEB_SEARCH_ACTION

The main ones you will use are MAIN_ACTION for the main entry point of your 
application,  VIEW_ACTION and  EDIT_ACTION for viewing and editing content, 
and  PICK_ACTION to allow other applications to select an item from your 
content.

Note that there are also some actions specifically for "broadcast" intents – 
intents that can be picked up by many activities or listeners, not just one. 
Similarly,  there  are  many  other  intent  actions  not  aimed  at  starting 
activities,  such as  MEDIA_MOUNTED_ACTION,  indicating that a media card has 
been mounted in the system.

Similarly, here are the standard available categories (with DEFAULT_CATEGORY 
and LAUNCHER_CATEGORY being the ones you will use most):

• ALTERNATIVE_CATEGORY

• BROWSABLE_CATEGORY

• DEFAULT_CATEGORY

• GADGET_CATEGORY

• HOME_CATEGORY

• LAUNCHER_CATEGORY

• PREFERENCE_CATEGORY

• SELECTED_ALTERNATIVE_CATEGORY

• TAB_CATEGORY

• TEST_CATEGORY

Intent Routing

As noted above, if you specify the target component in your intent, Android 
has no doubt where the intent is supposed to be routed to – it will launch 
the  named  activity.  This  might  be  OK  if  the  target  intent  is  in  your 
application. It definitely is not recommended for sending intents to other 

202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating Intent Filters

applications. Component names, by and large, are considered private to the 
application and are subject to change. Content  Uri templates and MIME 
types are the preferred ways of  identifying services you wish third-party 
code to supply.

If you do not specify the target component, then Android has to figure out 
what activities (or other intent receivers) are eligible to receive the intent. 
Note the use of the plural "activities", as a broadly-written intent might well 
resolve to several activities. That is the...ummm...intent (pardon the pun), as 
you will  see later in this chapter.  This routing approach is referred to as 
implicit routing.

Basically, there are three rules, all of which must be true for a given activity 
to be eligible for a given intent:

1. The activity must support the specified action

2. The activity must support the stated MIME type (if supplied)

3. The activity must support all of the categories named in the intent

The upshot is that you want to make your intents specific enough to find the 
right receiver(s), and no more specific than that.

This will become clearer as we work through some examples later in this 
chapter.

Stating Your Intent(ions)

All Android components that wish to be notified via intents must declare 
intent filters, so Android knows which intents should go to that component. 
To  do  this,  you  need  to  add  intent-filter elements  to  your 
AndroidManifest.xml file.

All  of  the  example  projects  have  intent  filters  defined,  courtesy  of  the 
Android  application-building  script  (activityCreator.py or  the  IDE 
equivalent). They look something like this:

203

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating Intent Filters

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
  package="com.commonsware.android.prefs">
  <application>
    <activity android:name=".PrefsDemo" android:label="PrefsDemo">
      <intent-filter>
        <action android:name="android.intent.action.MAIN" />
        <category android:name="android.intent.category.LAUNCHER" />
      </intent-filter>
    </activity>
  </application>
</manifest>

Note the intent-filter element under the activity element. Here, we declare 
that this activity:

• Is the main activity for this application

• It is in the LAUNCHER category, meaning it gets an icon in the Android 
main menu

Because this activity is the main one for the application, Android knows this 
is the component it should launch when somebody chooses the application 
from the main menu.

The intent filter also has a label (android:label = "PrefsDemo"). In this case, 
this controls the name associated with the application's icon in the main 
menu.

You are welcome to have more than one action or more than one category in 
your  intent  filters.  That  indicates  that  the  associated  component  (e.g., 
activity) handles multiple different sorts of intents.

More  than likely,  you  will  also want to have your secondary (non-MAIN) 
activities specify the MIME type of data they work on. Then, if an intent is 
targeted  for  that  MIME  type  –  either  directly,  or  indirectly  by  the  Uri 
referencing something of that type – Android will know that the component 
handles such data.

For example, you could have an activity declared like this:

204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating Intent Filters

<activity android:name=".TourViewActivity">
    <intent-filter>
        <action android:name="android.intent.action.VIEW" />
        <category android:name="android.intent.category.DEFAULT" />
        <data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
    </intent-filter>
</activity>

This  activity  will  get  launched  by  an  intent  requesting  to  view  a  Uri 
representing  a  vnd.android.cursor.item/vnd.commonsware.tour piece  of 
content.  That  intent  could  come  from  another  activity  in  the  same 
application (e.g.,  the MAIN activity for this application) or from another 
activity in another Android application that happens to know a Uri that this 
activity handles.

Narrow Receivers

In the examples shown above, the intent filters were set up on activities. 
Sometimes, tying intents to activities is not exactly what we want:

• Some system events might cause us to want to trigger something in a 
service rather than an activity

• Some events might need to launch different activities in different 
circumstances, where the criteria are not solely based on the intent 
itself, but some other state (e.g., if we get intent X and the database 
has a Y, then launch activity M; if  the database does not have a Y, 
then launch activity N)

For  these  cases,  Android  offers  the  intent  receiver,  defined  as  a  class 
implementing the  IntentReceiver interface. Intent receivers are disposable 
objects designed to receive intents – particularly broadcast intents – and 
take action, typically involving launching other intents to trigger logic in an 
activity, service, or other component.

The  IntentReceiver interface  has  only  one  method:  onReceiveIntent(). 
Intent receivers implement that method, where they do whatever it is they 
wish to do upon an incoming intent. To declare an intent receiver, add an 
receiver element to your AndroidManifest.xml file:

205

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating Intent Filters

<receiver android:name=".MyIntentReceiverClassName" />

An  intent  receiver  is  only  alive  for  as  long  as  it  takes  to  process 
onReceiveIntent() – as soon as that method returns, the receiver instance is 
subject to garbage collection and will  not be reused.  This  means intent 
receivers  are  somewhat  limited  in  what  they  can  do,  mostly  to  avoid 
anything that involves any sort of callback. For example, they cannot bind to 
a service, and they cannot open a dialog box.

The exception is if the IntentReceiver is implemented on some longer-lived 
component, such as an activity or service – in that case, the intent receiver 
lives as long as its "host" does (e.g., until the activity is frozen). However, in 
this  case,  you cannot declare the intent receiver via  AndroidManifest.xml. 
Instead,  you  need  to call  registerIntent() on your  Activity's  onResume() 
callback to declare interest in an intent, then call  unregisterIntent() from 
your Activity's onPause() when you no longer need those intents.

You can see an example of an intent receiver in action in the TourIt sample 
application.

206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 22

Launching Activities and Sub-
Activities

As discussed previously, the theory behind the Android UI architecture is 
that developers should decompose their application into distinct activities, 
each implemented  as  an  Activity,  each reachable via  intents,  with  one 
"main"  activity  being  the  one  launched  by  the  Android  launcher.  For 
example,  a  calendar  application  could  have  activities  for  viewing  the 
calendar, viewing a single event, editing an event (including adding a new 
one), and so forth.

This, of course, implies that one of your activities has the means to start up 
another activity. For example, if somebody clicks on an event from the view-
calendar activity, you might want to show the view-event activity for that 
event. This means that, somehow, you need to be able to cause the view-
event activity to launch and show a specific event (the one the user clicked 
upon).

This can be further broken down into two scenarios:

1. You know what activity you want to launch, probably because it is 
another activity in your own application

2. You have a content Uri to...something, and you want your users to be 
able to do...something with it, but you do not know up front what 
the options are

207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Launching Activities and Sub-Activities

This chapter covers the first scenario; the next chapter handles the second.

Peers and Subs

One key question you need to answer when you decide to launch an activity 
is: does your activity need to know when the launched activity ends?

For  example,  suppose  you  want  to  spawn  an  activity  to  collect 
authentication information for some Web service you are connecting to – 
maybe you need to authenticate with  OpenID in order to use an  OAuth 
service.  In  this  case,  your  main  activity  will  need  to  know  when  the 
authentication is complete so it can start to use the Web service.

On the other hand, imagine an email application in Android. When the user 
elects to view an attachment, neither you nor the user necessarily expect the 
main activity to know when the user is done viewing that attachment.

In  the first  scenario,  the launched  activity  is  clearly  subordinate  to the 
launching activity. In that case, you probably want to launch the child as a 
sub-activity,  which  means  your activity  will  be  notified  when the  child 
activity is complete.

In the second scenario, the launched activity is more a peer of your activity, 
so you probably want to launch the “child” just as a regular activity. Your 
activity will not be informed when the “child” is done, but, then again, your 
activity really doesn't need to know.

Start 'Em Up

The two pieces for starting an activity are an intent and your choice of how 
to start it up.

208

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://oauth.net/
http://openid.net/


Launching Activities and Sub-Activities

Make an Intent

As discussed in a previous chapter, intents encapsulate a request, made to 
Android, for some activity or other intent receiver to do something.

If  the activity you intend to launch is one of  your own, you may find it 
simplest to create an explicit intent,  naming the component you wish to 
launch. For example, from within your activity, you could create an intent 
like this:

new Intent(this, HelpActivity.class);

This  would  stipulate  that  you  wanted  to  launch  the  HelpActivity.  This 
activity would need to be named in your  AndroidManifest.xml file, though 
not  necessarily  with  any intent  filter,  since you  are trying  to request  it 
directly.

Or, you could put together an intent for some Uri, requesting a particular 
action:

Uri uri=Uri.parse("geo:"+lat.toString()+
                    ","+lon.toString());
Intent i=new Intent(Intent.VIEW_ACTION, uri);

Here, given that we have the latitude and longitude of some position (lat 
and  lon,  respectively) of  type  Double,  we construct a  geo scheme  Uri and 
create an intent requesting to view this Uri (VIEW_ACTION).

Make the Call

Once you have your intent, you need to pass it to Android and get the child 
activity to launch. You have four choices:

1. The simplest option is to call startActivity() with the intent – this 
will cause Android to find the best-match activity or intent receiver 
and  pass  the intent  to  it  for  handling.  Your activity  will  not  be 
informed when the “child” activity is complete.

209

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Launching Activities and Sub-Activities

2. You can call startSubActivity(), passing it the intent and a number 
(unique to the calling activity).  Android will  find the best-match 
handler and pass the intent over to it. However, your activity will be 
notified  when  the  child  activity  is  complete  via  the 
onActivityResult() callback (see below).

3. You can call  broadcastIntent(). In this case, Android will pass the 
intent  to  all  registered  activities  and  intent  receivers  that  could 
possibly want this intent, not just the best match.

4. You can call  broadcastIntentSerialized().  Here,  Android will  pass 
the intent to all  candidate activities and intent receivers one at a 
time  –  if  any  one  “consumes”  the  intent,  the  rest  of  the  the 
candidates are not notified.

Most  of  the  time,  you  will  wind  up  using  startActivity() or 
startSubActivity() –  broadcast  intents  are  more  typically  raised  by  the 
Android system itself.

With  startSubActivity(),  as  noted,  you  can  implement  the 
onActivityResult() callback  to  be  notified  when  the  child  activity  has 
completed its work. The callback receives the unique number supplied to 
startSubActivity(), so you can determine which child activity is the one that 
has completed. You also get:

• A result code, from the child activity calling  setResult(). Typically 
this  is  RESULT_OK or  RESULT_CANCELLED,  though you can create your 
own return codes (pick a number starting with RESULT_FIRST_USER)

• An optional  String containing some result data, possibly a URL to 
some  internal  or  external  resource  –  for  example,  a  PICK_ACTION 
intent typically returns the selected bit of content via this data string

• An optional  Bundle containing additional  information beyond the 
result code and data string

To demonstrate launching a peer activity, take a peek at the Launch sample 
application.  The XML layout is  fairly straightforward:  two fields  for the 
latitude and longitude, plus a button:

210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Launching Activities and Sub-Activities

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <TableLayout
    android:layout_width="fill_parent" 
    android:layout_height="wrap_content"
    android:stretchColumns="1,2"
  >
    <TableRow>
      <TextView
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content"
        android:paddingLeft="2dip"
        android:paddingRight="4dip"
        android:text="Location:"
      />
      <EditText android:id="@+id/lat"
        android:layout_width="fill_parent" 
        android:layout_height="wrap_content"
        android:cursorVisible="true"
        android:editable="true"
        android:singleLine="true"
        android:layout_weight="1"
      />
      <EditText android:id="@+id/lon"
        android:layout_width="fill_parent" 
        android:layout_height="wrap_content"
        android:cursorVisible="true"
        android:editable="true"
        android:singleLine="true"
        android:layout_weight="1"
      />
    </TableRow>
  </TableLayout>
  <Button android:id="@+id/map"
    android:layout_width="fill_parent" 
    android:layout_height="wrap_content"
    android:text="Show Me!"
  />
</LinearLayout>

The button's OnClickListener simply takes the latitude and longitude, pours 
them into a geo scheme Uri, then starts the activity.

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Launching Activities and Sub-Activities

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class LaunchDemo extends Activity {
  private EditText lat;
  private EditText lon;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    
    Button btn=(Button)findViewById(R.id.map);
    lat=(EditText)findViewById(R.id.lat);
    lon=(EditText)findViewById(R.id.lon);
    
    btn.setOnClickListener(new View.OnClickListener() {
      public void onClick(View view) {
        String _lat=lat.getText().toString();
        String _lon=lon.getText().toString();
        Uri uri=Uri.parse("geo:"+_lat+","+_lon);
        
        startActivity(new Intent(Intent.VIEW_ACTION, uri));
      }
    });
  }
}

The activity is not much to look at:

212

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Launching Activities and Sub-Activities

Figure 52. The LaunchDemo sample application, as initially launched

If you fill in a location (e.g., 40.71167 latitude and -74.01333 longitude) and 
click the button, the resulting map is more interesting. Note that this is the 
built-in Android map activity – we did not create our own activity to display 
this map.

213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Launching Activities and Sub-Activities

Figure 53. The map launched by Launch Demo, showing the region known as 
"Ground Zero" in New York City

In  a  later  chapter,  you  will  see  how you  can  create maps  in  your own 
activities, in case you need greater control over how the map is displayed.

214

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 23

Finding Available Actions via 
Introspection

Sometimes, you know just what you want to do, such as display one of your 
other activities.

Sometimes, you have a pretty good idea of what you want to do, such as view 
the content represented by a Uri, or have the user pick a piece of content of 
some MIME type.

Sometimes, you're lost. All you have is a content Uri, and you don't really 
know what you can do with it.

For example, suppose you were creating a common tagging subsystem for 
Android,  where users could tag pieces of  content – contacts,  Web URLs, 
geographic locations, etc. Your subsystem would hold onto the  Uri of  the 
content plus the associated tags, so other subsystems could, say, ask for all 
pieces of content referencing some tag.

That's  all  well  and  good.  However,  you  probably  need  some  sort  of 
maintenance activity, where users could view all their tags and the pieces of 
content so tagged. This might even serve as a quasi-bookmark service for 
items on their phone. The problem is, the user is going to expect to be able 
to do useful things with the content they find in your subsystem, such as 
dial a contact or show a map for a location.

215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

The problem is, you have absolutely no idea what is all possible with any 
given content  Uri.  You probably can view any of  them, but can you edit 
them? Can you dial them? Since new applications with new types of content 
could be added by any user at any time, you can't even assume you know all 
possible combinations just by looking at the stock applications shipped on 
all Android devices.

Fortunately, the Android developers thought of this.

Android offers various means by which you can present to your users a set of 
likely activities to spawn for a given content Uri...even if you have no idea 
what that content Uri really represents. This chapter explores some of these 
Uri action introspection tools.

Pick 'Em

Sometimes, you know your content Uri represents a collection of some type, 
such as  content://contacts/people representing the list of  contacts in the 
stock Android contacts list. In this case, you can let the user pick a contact 
that your activity can then use (e.g., tag it, dial it).

To do this, you need to create an intent for the PICK_ACTIVITY_ACTION on the 
target Uri, then start a sub activity (via startSubActivity()) to allow the user 
to pick a piece of content of the specified type. If your onActivityResult() 
callback for this request gets a RESULT_OK result code, your data string can be 
parsed into a Uri representing the chosen piece of content.

For example, take a look at  Pick in the sample applications. This activity 
gives you a field for a collection  Uri (with  content://contacts/people pre-
filled in for your convenience), plus a really big “Gimme!” button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <EditText android:id="@+id/type"

216

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

    android:layout_width="fill_parent" 
    android:layout_height="wrap_content"
    android:cursorVisible="true"
    android:editable="true"
    android:singleLine="true"
    android:text="content://contacts/people"
  />
  <Button
    android:id="@+id/pick"
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent"
    android:text="Gimme!"
    android:layout_weight="1"
  />
</LinearLayout>

Upon being  clicked,  the button creates  the  PICK_ACTIVITY_ACTION on the 
user-supplied  collection  Uri and starts  the sub-activity.  When that  sub-
activity  completes  with  RESULT_OK,  the  VIEW_ACTION is  invoked  on  the 
resulting content Uri.

package com.commonsware.android.introspection;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class PickDemo extends Activity {
  static final int PICK_REQUEST = 1337;
  private EditText type;

  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
    type=(EditText)findViewById(R.id.type);
    
    Button btn=(Button)findViewById(R.id.pick);
    
    btn.setOnClickListener(new View.OnClickListener() {
      public void onClick(View view) {
        Intent i=new Intent(Intent.PICK_ACTION,
                    Uri.parse(type.getText().toString()));

        startSubActivity(i, PICK_REQUEST);
      }

217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

    });
  }

  protected void onActivityResult(int requestCode, int resultCode,
                    String data, Bundle extras) {
    if (requestCode==PICK_REQUEST) {
      if (resultCode==RESULT_OK) {
        startActivity(new Intent(Intent.VIEW_ACTION,
                     Uri.parse(data)));
      }
    }
  }
}

The result: the user chooses a collection, picks a piece of content, and views 
it.

Figure 54. The PickDemo sample application, as initially launched

218

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

Figure 55. The same application, after clicking the "Gimme!" button, showing 
the list of available people

Figure 56. A view of a contact, launched by PickDemo after choosing one of the 
people from the pick list

219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

One flaw in this application is  that it may not have permission to view 
whatever content collection the user entered.  For the sample,  we had to 
specifically  request  permission  to  read  the  user's  contacts,  via  a  uses-
permission  element  in  AndroidManifest.xml.  We'll  cover  more  about 
requesting (and requiring) permissions later in this book.

Adaptable Adapters

One way to present your users with available actions to take on a piece of 
content  is  to  use  ActivityAdapter or  ActivityIconAdapter.  These  are 
ListAdapter subclasses,  meaning  they  supply  child  views  to  selection 
widgets like ListView and Spinner. In this case, they supply a list of available 
actions to take on the content – and for  ActivityIconAdapter,  it includes 
both a name (e.g., “Edit Contact”) and an icon associated with the action.

Once a user has chosen an action – for example, by clicking on a list item – 
you can get the intent that combines the chosen action with the content Uri 
of the piece of content. That intent can be directly passed to startActivity() 
to take the user to the activity they requested.

All without you having to know anything about what the content is.

One confusing facet of ActivityAdapter and ActivityIconAdapter is that they 
take an Intent, not a Uri, on their constructor. This means you need to wrap 
the Uri for the content in an otherwise-empty Intent in order to satisfy the 
constructor's request:

Intent i=new Intent();
i.setData(Uri.parse(data));
ListAdapter adapter=new ActivityAdapter(this, i);

So, let's embellish the previous example – copied into Adapter – to give the 
user some choices for what to do with the picked piece of content, rather 
than always just viewing it as before.

The layout now adds a ListView, to show the available actions:

220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  >
  <EditText android:id="@+id/type"
    android:layout_width="fill_parent" 
    android:layout_height="wrap_content"
    android:cursorVisible="true"
    android:editable="true"
    android:singleLine="true"
    android:text="content://contacts/people"
  />
  <Button
    android:id="@+id/pick"
    android:layout_width="fill_parent" 
    android:layout_height="wrap_content"
    android:text="Gimme!"
  />
  <ListView
    android:id="@android:id/list"
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent"
    android:drawSelectorOnTop="false"
    android:layout_weight="1"
  />
</LinearLayout>

The resulting UI now shows the available actions:

221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

Figure 57. The ActivityAdapterDemo sample application, as initially launched

Figure 58. The same application, after clicking "Gimme!" and choosing a person

Note that, at the time of this writing, Android does not filter the available 
actions to only be the ones that are possible from the activity – it shows 
them all. Hence, the user is given action options that may not be allowed 

222

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

due to insufficient permissions. If you run the supplied sample code without 
modifications, you will be able to view a chosen contact, but not edit them, 
for example.

Would You Like to See the Menu?

Another way to give the user ways to take actions on a piece of  content, 
without you knowing what actions are possible, is to inject a set of menu 
choices  into  the  options  menu  via  addIntentOptions().  This  method, 
available on Menu, takes an Intent and other parameters and fills in a set of 
menu choices on the Menu instance, each representing one possible action. 
Choosing one of those menu choices spawns the associated activity.

The canonical example of using addIntentOptions() illustrates another flavor 
of having a piece of content and not knowing the actions that can be taken. 
In the previous example,  showing  ActivityAdapter,  the content was from 
some other Android application, and we know nothing about it. It is also 
possible,  though,  that we know full  well  what the content is –  it's ours. 
However, Android applications are perfectly capable of adding new actions 
to existing content types, so even though you wrote your application and 
know what you expect to be done with your content, there may be other 
options you are unaware of that are available to users.

For example, imagine the tagging subsystem mentioned in the introduction 
to this chapter. It would be very annoying to users if, every time they wanted 
to tag a piece of content, they had to go to a separate tagging tool, then turn 
around and pick the content they just had been working on (if that is even 
technically possible)  before associating  tags with it.  Instead,  they would 
probably prefer a menu choice in the content's own “home” activity where 
they can indicate they want to tag it,  which leads them to the set-a-tag 
activity and tells that activity what content should get tagged.

To accomplish this,  the tagging subsystem should set up an intent filter, 
supporting any piece of content, with their own action (e.g., TAG_ACTION) and 
a  category  of  ALTERNATE_CATEGORY.  The category  ALTERNATE_CATEGORY is  the 

223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

convention  for  one  application  adding  actions  to  another  application's 
content.

If you want to write activities that are aware of possible add-ons like tagging, 
you should use  addIntentOptions() to add those add-ons'  actions to your 
options menu, such as the following:

Intent intent = new Intent(null, myContentUri);

intent.addCategory(Intent.ALTERNATIVE_CATEGORY);
menu.addIntentOptions(Menu.ALTERNATIVE, 0,
                     new ComponentName(this,
                                       MyActivity.class),
                     null, intent, 0, null);

Here, myContentUri is the content Uri of whatever is being viewed by the user 
in this activity,  MyActivity is the name of the activity class, and menu is the 
menu being modified.

In this  case,  the  Intent we are using  to pick  actions from requires  that 
appropriate intent receivers support the ALTERNATIVE_CATEGORY. Then, we add 
the  options  to  the  menu  with  addIntentOptions() and  the  following 
parameters:

• The sort position for this  set of  menu choices,  typically set to  0 
(appear in the order added to the menu) or ALTERNATIVE (appear after 
other menu choices)

• A unique number for this set of  menu choices, or  0 if  you do not 
need a number

• A ComponentName instance representing the activity that is populating 
its menu – this is used to filter out the activity's own actions, so the 
activity can handle its own actions as it sees fit

• An array of  Intent instances that are the “specific” matches – any 
actions matching those intents are shown first in the menu before 
any other possible actions

• The Intent for which you want the available actions

224

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Finding Available Actions via Introspection

• A set of  flags.  The only one of  likely relevance is  represented  as 
MATCH_DEFAULT_ONLY,  which  means  matching  actions  must  also 
implement the  DEFAULT_CATEGORY category. If  you do not need this, 
use a value of 0 for the flags.

• An array of Menu.Item, which will hold the menu items matching the 
array of Intent instances supplied as the “specifics”, or null if you do 
not need those items (or are not using “specifics”)

Asking Around

Both  the  ActivityAdapter family  and  addIntentOptions() use 
queryIntentActivityOptions() for  the  “heavy  lifting”  of  finding  possible 
actions.  The  queryIntentActivityOptions() method  is  implemented  on 
PackageManager, which is available to your activity via getPackageManager().

The  queryIntentActivityOptions() method  takes  some  of  the  same 
parameters as does addIntentOptions(), notably the caller ComponentName, the 
“specifics”  array  of  Intent instances,  the  overall  Intent representing  the 
actions you are seeking,  and the set of  flags.  It returns a  List of  Intent 
instances matching the stated criteria, with the “specifics” ones first.

If  you would like to offer alternative actions to users, but by means other 
than  the  ActivityAdapter and  addIntentOptions() means,  you  could  call 
queryIntentActivityOptions(),  get the  Intent instances,  then use them to 
populate some other user interface (e.g., a toolbar).

225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



PART V – Content Providers and 
Services

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 24

Using a Content Provider

Any  Uri in Android that begins with the  content:// scheme represents a 
resource  served  up  by  a  content  provider.  Content  providers  offer  data 
encapsulation using  Uri instances as handles – you neither know nor care 
where the data represented by the Uri comes from, so long as it is available 
to you when needed. The data could be stored in a SQLite database, or in 
flat  files,  or  retrieved  off  a  device,  or  be  stored  on  some far-off  server 
accessed over the Internet.

Given a  Uri,  you can perform basic CRUD (create,  read,  update,  delete) 
operations  using  a  content  provider.  Uri instances  can  represent  either 
collections or individual pieces of content. Given a collection Uri, you can 
create new pieces of  content via insert operations. Given an instance  Uri, 
you can read data represented by the  Uri, update that data, or delete the 
instance outright.

Android lets you use existing content providers, plus create your own. This 
chapter covers using content providers; the  next chapter will explain how 
you can serve up your own data using the content provider framework.

Pieces of Me

The simplified model of the construction of a content Uri is the scheme, the 
namespace of data, and, optionally, the instance identifier, all separated by 

229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

slashes  in  URL-style  notation.  The  scheme  of  a  content  Uri  is  always 
content://.

So, a content Uri of content://tours/5 represents the tours instance with an 
identifier of 5.

The combination of the scheme and the namespace is known as the “base 
Uri” of a content provider, or a set of data supported by a content provider. 
In the example above, content://tours is the base Uri for a content provider 
that serves up information about “tours” (in this case, bicycle tours from the 
TourIt sample application).

The  base  Uri can  be  more  complicated.  For  example,  the  base  Uri for 
contacts is content://contacts/people, as the contacts content provider may 
serve up other data using other base Uri values.

The base  Uri represents a collection of  instances. The base  Uri combined 
with an instance identifier (e.g., 5) represents a single instance.

Most of the Android APIs expect these to be Uri objects, though in common 
discussion, it is simpler to think of them as strings. The Uri.parse() static 
method creates a Uri out of the string representation.

Getting a Handle

So, where do these Uri instances come from?

The most popular starting point, if you know the type of data you want to 
work with, is to get the base Uri from the content provider itself in code. For 
example,  android.provider.CONTENT_URI is  the  base  Uri for  contacts 
represented as people – this maps to content://contacts/people. If you just 
need the collection, this Uri works as-is; if you need an instance and know 
its identifier, you can call addId() on the Uri to inject it, so you have a Uri for 
the instance.

230

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

You might also get Uri instances handed to you from other sources. In the 
preceding chapter,  we saw how you got  Uri handles for contacts via sub-
activities responding to PICK_ACTION intents. In this case, the Uri is truly an 
opaque handle...unless you decide to pick it apart using the various getters 
on the Uri class.

You  can also hard-wire literal  String objects  and  convert  them into  Uri 
instances via Uri.parse(). For example, in the preceding chapter, the sample 
code used  an  EditView with  content://contacts/people pre-filled  in.  This 
isn't an ideal solution, as the base Uri values could conceivably change over 
time.

Makin' Queries

Given a base  Uri,  you can run a query to return data out of  the content 
provider related to that Uri. This has much of the feel of SQL: you specify 
the  “columns”  to  return,  the  constraints  to  determine  which  “rows”  to 
return, a sort order, etc. The difference is that this request is being made of a 
content provider, not directly of some database (e.g., SQLite).

The nexus of  this is the  managedQuery() method available to your activity. 
This method takes five parameters:

1. The base Uri of the content provider to query, or the instance Uri of a 
specific object to query

2. An array of properties of instances from that content provider that 
you want returned by the query

3. A constraint statement, functioning like a SQL WHERE clause

4. An optional  set of  parameters to bind into the constraint clause, 
replacing any ? that appear there

5. An optional sort statement, functioning like a SQL ORDER BY clause

This method returns a Cursor object, which you can use to retrieve the data 
returned by the query.

231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

“Properties” is to content providers as columns are to databases. In other 
words, each instance (row) returned by a query consists of a set of properties 
(columns), each representing some piece of data.

This will hopefully make more sense given an example.

Our content provider examples come from the TourIt sample application, as 
described in Appendix A. Specifically, the following code fragment is from 
the TourViewActivity, which shows the cue sheet for a selected bicycle tour:

try {
  if (c==null) {
    c=managedQuery(getIntent().getData(), Tour.PROJECTION, null, null, null);
  }
  else {
    c.requery();
  }

  c.first();
  tour=new Tour(getIntent().getData(), c);

  int sel=getSelectedItemPosition();

  setListAdapter(new RouteAdapter(tour, this));
  setSelection(sel);
  setTitle("TourIt! - "+tour.getTitle());
}
catch (Throwable t) {
  android.util.Log.e("TourIt", "Exception creating tour", t);
}

In the call to managedQuery(), we provide:

• The  Uri passed  into  the  activity  by  the  caller 
(getIntent().getData()), in this case representing a specific bicycle 
tour,  provided  to  TourViewActivity from  the  invoking  activity 
(TourListActivity)

• A list of properties to retrieve, supplied to us by our Tour model class 
(PROJECTION)

• Three null values, indicating that we do not need a constraint clause 
(the  Uri represents the instance we need), nor parameters for the 
constraint, nor a sort order (we should only get one entry back)

232

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

The  biggest  “magic”  here  is  the  list  of  properties.  The  lineup  of  what 
properties are possible for a given content provider should be provided by 
the documentation (or source code) for the content provider itself. In this 
case,  we delegate to the  Tour model  class the responsibility of  telling us 
which properties it needs to fully represent the object:

class Tour {
  public static final String[] PROJECTION = new String[] {
      Provider.Tours.ID, Provider.Tours.TITLE,
      Provider.Tours.DESCRIPTION,
      Provider.Tours.CREATED_DATE,
      Provider.Tours.MODIFIED_DATE,
      Provider.Tours.ROUTE};

The projection is simply an array of strings, listing properties exposed by the 
tour content provider (Provider). The tour content provider, in turn, simply 
provides values for these symbolic names:

public static final String TITLE="title";
public static final String DESCRIPTION="desc";
public static final String CREATED_DATE="created";
public static final String MODIFIED_DATE="modified";
public static final String ROUTE="route";

So, when the TourViewActivity invokes the query and gets the Cursor, it has 
the data necessary to create the corresponding  Tour model,  via data it is 
retrieving from the tour content provider.

Adapting to the Circumstances

Now that we have a Cursor via managedQuery(), we have access to the query 
results and can do whatever we want with them. You might, for example, 
manually extract data from the Cursor to populate widgets or other objects – 
TourViewActivity does  this  by populating  a  Tour model  object  out  of  its 
Cursor.

However, if the goal of the query was to return a list from which the user 
should  choose  an  item,  you  probably  should  consider  using 
SimpleCursorAdapter. This class bridges between the Cursor and a selection 
widget,  such  as  a  ListView or  Spinner.  Pour  the  Cursor into  a 

233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

SimpleCursorAdapter,  hand the adapter off  to the widget, and you're set – 
your widget will show the available options.

For  example,  here  is  a  fragment  of  the  onCreate() method  from 
TourListActivity, which gives the user a list of tours to choose from:

toursCursor = managedQuery(getIntent().getData(), PROJECTION, null, null, null);

list=(ListView)findViewById(android.R.id.list);
list.setOnItemClickListener(this);

ListAdapter adapter = new SimpleCursorAdapter(this,
    R.layout.tourlist_item, toursCursor,
    new String[] {Provider.Tours.TITLE},
    new int[] {android.R.id.text1});
list.setAdapter(adapter);

After executing the managedQuery() and getting the Cursor, TourListActivity 
creates a SimpleCursorAdapter with the following parameters:

• The activity (or other Context) creating the adapter; in this case, the 
TourListActivity itself

• The identifier for a layout to be used for rendering the list entries 
(R.layout.tourlist_item)

• The cursor (toursCursor)

• The properties to pull out of the cursor and use for configuring the 
list entry View instances (TITLE)

• The corresponding identifiers of  TextView widgets in the list entry 
layout that those properties should go into (android.R.id.text1)

After that, we put the adapter into the ListView, and we get:

234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

Figure 59. TourListActivity, showing a list of tours

If  you need more control over the views than you can reasonably achieve 
with the stock view construction logic,  subclass  SimpleCursorAdapter and 
override  getView() to  create  your  own  widgets  to  go  into  the  list,  as 
demonstrated earlier in this book.

Doing It By Hand

Of course, you can always do it the “hard way” – pulling data out of  the 
Cursor by hand. The Cursor interface is similar in concept to other database 
access APIs offering cursors as objects, though, as always, the devil is in the 
details.

Position

Cursor instances have a built-in notion of position, akin to the Java Iterator 
interface. To get to the various rows, you can use:

• first() to move to the first row in the result set or last() to move to 
the last row in the result set

235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

• next() to move to the next row and determine if there is yet another 
row to process (next() returns true if it points to another row after 
moving, false otherwise)

• prev() to move to the previous row, as the opposite to next()

• moveTo() to move to a specific index, or move() to move to a relative 
position plus or minus from your current position

• position() to return your current index

• a whole host of  condition methods, including  isFirst(),  isLast(), 
isBeforeFirst(), and isAfterLast()

Getting Properties

Once you have the Cursor positioned at a row of interest, you have a variety 
of  methods to retrieve properties from that row,  with different methods 
supporting  different  types  (getString(),  getInt(),  getFloat(),  etc.).  Each 
method takes the zero-based index of the property you want to retrieve.

If you want to see if a given property has a value, you can use isNull() to test 
it for null-ness.

So, as an example, let's examine how the Tour model class accesses its Cursor. 
The underlying assumption of the Tour is that it is provided a Cursor with 
only  one  row,  and  that  Cursor will  remain  pointed  to  that  row for the 
lifespan of the Tour instance. If this were a public interface, this approach 
would be scary, as Cursor objects are mutable. But, since the Tour model is 
used only within a fairly small application, the assumptions regarding the 
Tour's Cursor are probably safe.

That being said, here are some cursor-wrapping accessors from Tour:

String getTitle() {
  return(c.getString(1));
}

void setTitle(String title) {
  c.updateString(1, title);
}

236

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

Rather than copying properties into local fields, the Tour simply holds onto 
the Cursor. Hence, getTitle() retrieves the property value at index 1, and so 
forth.  The  exception  is  the  route  (waypoints  and  directions),  which  is 
represented in the database as a path to a file in JSON format – for this, the 
Tour parses the JSON and populates Waypoint and Direction model objects.

Setting Properties

Cursor instances not only let you read data, but change it as well. Simply use 
the setters (e.g., putString(), putInt()), supplying the index of the property 
to alter and the new value for that property.

Initially, those changes are just in the Cursor itself. To commit those changes 
to the content provider, you need to call commitUpdates(), which packages up 
the change(s) to your row(s).

At this point, though, your Cursor is stale – the content provider might alter 
the  data  you  supplied  to  fit  some  content-specific  conventions  (e.g., 
rounding of  floats, truncating strings). If  you are going to continue using 
the Cursor, you should call requery() on the Cursor to re-execute the original 
query and thereby “refresh” the Cursor's rendition of the data.

So, to recap, the flow is:

• Call setters to make changes

• Call commitUpdates() to persist the changes

• Call requery() to refresh the Cursor if you will continue using it

You do not necessarily need a Cursor to make changes, though. You can also 
call  update() on  a  ContentResolver (usually  obtained  by  an  activity  via 
getContentResolver()). This works akin to a SQL UPDATE statement and takes 
four parameters:

• A Uri representing the collection (or instance) you wish to update

• A  ContentValues (Map-like  collection)  instance  representing  the 
properties you wish to change

237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

• A  constraint  statement,  functioning  like  a  SQL  WHERE clause,  to 
determine which rows should be updated

• An optional  set of  parameters to bind into the constraint clause, 
replacing any ? that appear there

As with a SQL UPDATE statement, update() could affect zero to several rows, 
as determined by the constraint statement and parameters.

Give and Take

Of course, content providers would be astonishingly weak if  you couldn't 
add  or remove data from them,  only update what is  there.  Fortunately, 
content providers offer these abilities as well.

To insert data into a content provider, you have two options available on the 
ContentProvider interface (available through  getContentProvider() to your 
activity):

1. Use  insert() with  a  collection  Uri and  a  ContentValues structure 
describing the initial set of data to put in the row

2. Use bulkInsert() with a collection Uri and an array of ContentValues 
structures to populate several rows at once

The insert() method returns a Uri for you to use for future operations on 
that new object. The  bulkInsert() method returns the number of  created 
rows; you would need to do a query to get back at the data you just inserted.

For example, here is a snippet of code from TourEditActivity to insert a new 
tour into the content provider:

if (tour==null) {
  ContentValues values=new ContentValues();

  values.put(Provider.Tours.TITLE, tour.getTitle());

  Uri url=getContentResolver().insert(Provider.Tours.CONTENT_URI, values);

  c=managedQuery(url, Tour.PROJECTION, null, null);

238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

  c.first();

  try {
    tour=new Tour(url, c);
  }
  catch (Throwable t) {
    android.util.Log.e("TourIt", "Exception creating tour", t);
    Toast.makeText(this, R.string.save_failed, 2000).show();
    return;
  }
}

In this case, all we do is populate the title. Since we get a Uri back, we can 
turn around and get a Cursor on that Uri (via managedQuery(uri, PROJECTION, 
null, null)) and reuse our existing update logic to add in any additional 
data beyond the title itself.

To delete one or more rows from the content provider,  use the  delete() 
method on ContentResolver. This works akin to a SQL DELETE statement and 
takes three parameters:

1. A Uri representing the collection (or instance) you wish to update

2. A  constraint  statement,  functioning  like  a  SQL  WHERE clause,  to 
determine which rows should be updated

3. An optional  set of  parameters to bind into the constraint clause, 
replacing any ? that appear there

Beware of the BLOB!

Binary large objects – BLOBs – are supported in many databases, including 
SQLite.  However,  the Android  model  is  more aimed at supporting  such 
hunks of data via their own separate content Uri values. A content provider, 
therefore, does not provide direct access to binary data, like photos, via a 
Cursor. Rather, a property in the content provider will give you the content 
Uri for  that  particular  BLOB.  You  can  use  getInputStream() and 
getOutputStream() on your ContentProvider to read and write the binary data.

Quite possibly, the rationale is to minimize unnecessary data copying. For 
example, the primary use of a photo in Android is to display it to the user. 

239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Using a Content Provider

The ImageView widget can do just that, via a content Uri to a JPEG. By storing 
the photo in a manner that has its own Uri, you do not need to copy data out 
of the content provider into some temporary holding area just to be able to 
display  it  –  just  use  the  Uri.  The  expectation,  presumably,  is  that  few 
Android applications will do much more than upload binary data and use 
widgets or built-in activities to display that data.

240

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 25

Building a Content Provider

Building a content provider is probably the most complicated and tedious 
task  in  all  of  Android  development.  There are many requirements  of  a 
content  provider,  in  terms  of  methods  to  implement  and  public  data 
members to supply. And, until you try using it, you have no great way of 
telling if  you did any of  it correctly (versus, say, building an activity and 
getting validation errors from the resource compiler).

That being said, building a content provider is of huge importance if your 
application  wishes  to make data  available  to other applications.  If  your 
application is  keeping its  data solely to itself,  you may be able to avoid 
creating  a  content  provider,  just  accessing  the  data  directly  from  your 
activities.  But,  if  you want your data to possibly be used by others – for 
example, you are building a feed reader and you want other programs to be 
able to access the feeds you are downloading and caching – then a content 
provider is right for you.

First, Some Dissection

As was discussed in the previous chapter, the content  Uri is the linchpin 
behind  accessing  data inside a  content provider.  When using  a  content 
provider, all you really need to know is the provider's base Uri; from there 
you can run queries as needed, or construct a Uri to a specific instance if you 
know the instance identifier.

241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

When building a content provider, though, you need to know a bit more 
about the innards of the content Uri.

A content Uri has two to four pieces, depending on situation:

• It always has a scheme (content://), indicating it is a content  Uri 
instead of a Uri to a Web resource (http://).

• It always has an authority, which is the first path segment after the 
scheme.  The authority is  a unique string  identifying  the content 
provider that handles the content associated with this Uri.

• It may have a data type path, which is the list of path segments after 
the authority and before the instance identifier (if  any).  The data 
type path can be empty, if  the content provider only handles one 
type of content. It can be a single path segment (foo) or a chain of 
path  segments  (foo/bar/goo)  as  needed  to  handle  whatever  data 
access scenarios the content provider requires.

• It may have an instance identifier, which is an integer identifying a 
specific  piece  of  content.  A  content  Uri without  an  instance 
identifier  refers  to  the  collection  of  content  represented  by  the 
authority (and, where provided, the data path).

For example, a content Uri could be as simple as  content://sekrits, which 
would refer to the collection of content held by whatever content provider 
was tied to the sekrits authority (e.g.,  SecretsProvider). Or, it could be as 
complex as  content://sekrits/card/pin/17, which would refer to a piece of 
content (identified as 17) managed by the sekrits content provider that is of 
the data type card/pin.

Next, Some Typing

Next, you need to come up with some MIME types corresponding with the 
content your content provider will provide.

Android uses both the content Uri and the MIME type as ways to identify 
content on the device. A collection content  Uri – or, more accurately, the 
combination authority and data type path – should map to a pair of MIME 

242

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

types. One MIME type will represent the collection; the other will represent 
an  instance.  These map to the  Uri patterns  above for no-identifier  and 
identifier,  respectively.  As you saw earlier in this  book,  you can fill  in a 
MIME type into an  Intent to route the  Intent to the proper activity (e.g., 
PICK_ACTION on a collection MIME type to call up a selection activity to pick 
an instance out of that collection).

The collection MIME type should be of the form vnd.X.cursor.dir/Y, where 
X is the name of your firm, organization, or project, and Y is a dot-delimited 
type  name.  So,  for  example,  you  might  use 
vnd.tlagency.cursor.dir/sekrits.card.pin as  the  MIME  type  for  your 
collection of secrets.

The instance MIME type should be of the form vnd.X.cursor.item/Y, usually 
for the same values of  X and  Y as you used for the collection MIME type 
(though that is not strictly required).

Step #1: Create a Provider Class

Just as an activity and intent receiver are both Java classes, so is a content 
provider. So, the big step in creating a content provider is crafting its Java 
class,  choosing  as  a  base  class  either  ContentProvider or 
DatabaseContentProvider.  Not  surprisingly,  DatabaseContentProvider offers 
some extra hooks to help with content providers using SQLite databases for 
storage, whereas ContentProvider is more general-purpose.

Here's how you extend these base classes to make up your content provider.

ContentProvider

If  you  implement a  subclass  of  ContentProvider,  you  are  responsible  for 
implementing six methods that, when combined, perform the services that 
a content provider is supposed to offer to activities wishing to create, read, 
update, or delete content.

243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

onCreate()

As with an activity, the main entry point to a content provider is onCreate(). 
Here,  you can do whatever initialization you want.  In particular,  here is 
where you should lazy-initialize your data store. For example, if you plan on 
storing your data in such-and-so directory on an SD card, with an XML file 
serving as a "table of contents", you should check and see if that directory 
and XML file are there and, if not, create them so the rest of your content 
provider knows they are out there and available for use.

Similarly, if  you have rewritten your content provider sufficiently to cause 
the data store to shift structure, you should check to see what structure you 
have now and adjust it if what you have is out of date. You don't write your 
own "installer" program and so have no great way of determining if, when 
onCreate() is called, if this is the first time ever for the content provider, the 
first time for a new release of a content provider that was upgraded in-place, 
or if this is just a normal startup.

If  your content provider uses SQLite for storage,  and you are not using 
DatabaseContentProvider,  you  can  detect  to  see  if  your  tables  exist  by 
querying on the sqlite_master table. This is useful for lazy-creating a table 
your content provider will need.

For example, here is the  onCreate() method for  Provider,  from the TourIt 
sample application:

@Override
public boolean onCreate() {
  db=(new DatabaseHelper()).openDatabase(getContext(), getDbName(), null, 
getDbVersion());

  return (db == null) ? false : true;
}

While  that  doesn't  seem  all  that  special,  the  "magic"  is  in  the  private 
DatabaseHelper object:

private class DatabaseHelper extends SQLiteOpenHelper {
  @Override

244

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

  public void onCreate(SQLiteDatabase db) {
    Cursor c=db.rawQuery("SELECT name FROM sqlite_master WHERE type='table' AND 
name='tours'", null);

    try {
      if (c.count()==0) {
        db.execSQL("CREATE TABLE tours (_id INTEGER PRIMARY KEY AUTOINCREMENT, 
title TEXT, desc TEXT DEFAULT '', created INTEGER, modified INTEGER, route TEXT 
DEFAULT '{}');");

        File sdcard=new File("/sdcard/tourit");

        if (sdcard.exists()) {
          for (File f : sdcard.listFiles()) {
            if (f.isDirectory()) {
              File tour=new File(f, "tour.js");

              if (tour.exists()) {
                long now=System.currentTimeMillis();
                ContentValues map=new ContentValues();

                map.put("title", f.getName());
                map.put("created", now);
                map.put("modified", now);
                map.put("route", tour.getPath());

                db.insert("tours", null, map);
              }
            }
          }
        }
      }
    }
    finally {
      c.close();
    }
  }

  @Override
  public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
    android.util.Log.w("TourIt", "Upgrading database, which will destroy all old 
data");
    db.execSQL("DROP TABLE IF EXISTS tours");
    onCreate(db);
  }
}

First, we query sqlite_master to see if our table is there – if it is, we're done. 
Otherwise, we execute some SQL to create the table, then scan the SD card 
to see if we can find any tours that need to be loaded. Those are poured into 
the table via insert() calls.

245

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

The method behind this madness is covered in greater detail in Appendix A, 
where we cover TourIt in more detail.

query()

As one might expect, the  query() method is where your content provider 
gets details on a query some activity wants to perform. It is up to you to 
actually process said query.

The query method gets, as parameters:

• A Uri representing the collection or instance being queried

• A  String[] representing  the  list  of  properties  that  should  be 
returned

• A  String representing  what  amounts  to  a  SQL  WHERE clause, 
constraining which instances should  be considered  for the query 
results

• A  String[] representing  values  to  "pour  into"  the  WHERE clause, 
replacing any ? found there

• A String representing what amounts to a SQL ORDER BY clause

You are responsible for interpreting these parameters however they make 
sense and returning a Cursor that can be used to iterate over and access the 
data.

As you can imagine,  these parameters are aimed towards people using a 
SQLite  database  for  storage.  You  are  welcome to  ignore  some of  these 
parameters (e.g.,  you elect not to try to roll  your own SQL  WHERE clause 
parser), but you need to document that fact so activities only attempt to 
query you by instance Uri and not using parameters you elect not to handle.

For  SQLite-backed  storage  providers,  however,  the  query() method 
implementation should be largely boilerplate. Use a  SQLiteQueryBuilder to 
convert  the  various  parameters  into  a  single  SQL  statement,  then  use 

246

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

query() on the builder to actually invoke the query and give you a  Cursor 
back. The Cursor is what your query() method then returns.

For example, here is query() from Provider:

@Override
public Cursor query(Uri url, String[] projection, String selection,
                     String[] selectionArgs, String sort) {
  SQLiteQueryBuilder qb=new SQLiteQueryBuilder();

  qb.setTables(getTableName());

  if (isCollectionUri(url)) {
    qb.setProjectionMap(getDefaultProjection());
  }
  else {
    qb.appendWhere(getIdColumnName()+"=" + url.getPathSegments().get(1));
  }

  String orderBy;

  if (TextUtils.isEmpty(sort)) {
    orderBy=getDefaultSortOrder();
  } else {
    orderBy=sort;
  }

  Cursor c=qb.query(db, projection, selection, selectionArgs, null, null, 
orderBy);
  c.setNotificationUri(getContext().getContentResolver(), url);
  return c;
}

We create a SQLiteQueryBuilder and pour the query details into the builder. 
Note that the query could be based around either a collection or an instance 
Uri – in the latter case, we need to add the instance ID to the query. When 
done,  we use the  query() method on the builder to get a  Cursor for the 
results.

insert()

Your insert()  method will  receive a  Uri representing the collection and a 
ContentValues structure with the initial data for the new instance. You are 
responsible for creating the new instance, filling in the supplied data, and 
returning a Uri to the new instance.

247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

If this is a SQLite-backed content provider, once again, the implementation 
is mostly boilerplate: validate that all required values were supplied by the 
activity, merge your own notion of default values with the supplied data, and 
call insert() on the database to actually create the instance.

For example, here is insert() from Provider:

@Override
public Uri insert(Uri url, ContentValues initialValues) {
  long rowID;
  ContentValues values;

  if (initialValues!=null) {
    values=new ContentValues(initialValues);
  } else {
    values=new ContentValues();
  }

  if (!isCollectionUri(url)) {
    throw new IllegalArgumentException("Unknown URL " + url);
  }

  for (String colName : getRequiredColumns()) {
    if (values.containsKey(colName) == false) {
      throw new IllegalArgumentException("Missing column: "+colName);
    }
  }

  populateDefaultValues(values);

  rowID=db.insert(getTableName(), getNullColumnHack(), values);
  if (rowID > 0) {
    Uri uri=ContentUris.withAppendedId(getContentUri(), rowID);
    getContext().getContentResolver().notifyChange(uri, null);
    return uri;
  }

  throw new SQLException("Failed to insert row into " + url);
}

The pattern is the same as before: use the provider particulars plus the data 
to be inserted to actually do the insertion. Of note:

• You can only insert  into a collection  Uri,  so we validate that  by 
calling isCollectionUri()

248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

• The  provider  also  knows  what  columns  are  required 
(getRequiredColumns()),  so  we iterate  over those and  confirm our 
supplied values cover the requirements

• The  provider is  also responsible  for  filling  in  any  default  values 
(populateDefaultValues()) for columns not supplied in the insert() 
call and not automatically handled by the SQLite table definition

update()

Your update() method gets the Uri of the instance or collection to change, a 
ContentValues structure with the new values to apply,  a String for a SQL 
WHERE clause, and a String[] with parameters to use to replace ? found in the 
WHERE clause. Your responsibility is to identify the instance(s) to be modified 
(based on the Uri and  WHERE clause), then replace those instances' current 
property values with the ones supplied.

This will be annoying, unless you're using SQLite for storage. Then, you can 
pretty much pass all the parameters you received to the update() call to the 
database, though the update() call will vary slightly depending on whether 
you are updating one instance or several.

For example, here is update() from Provider:

@Override
public int update(Uri url, ContentValues values, String where, String[] 
whereArgs) {
  int count;

  if (isCollectionUri(url)) {
    count=db.update(getTableName(), values, where, whereArgs);
  }
  else {
    String segment=url.getPathSegments().get(1);
    count=db
        .update(getTableName(), values, getIdColumnName()+"="
            + segment
            + (!TextUtils.isEmpty(where) ? " AND (" + where
                + ')' : ""), whereArgs);
  }

  getContext().getContentResolver().notifyChange(url, null);

249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

  return count;
}

In this case, updates can either be to a specific instance or applied across the 
entire collection,  so we check the  Uri (isCollectionUri())  and,  if  it is an 
update for the collection,  just perform the update.  If  we are updating a 
single instance,  we need to add a constraint to the  WHERE clause to only 
update for the requested row.

delete()

As  with  update(),  delete() receives  a  Uri representing  the  instance  or 
collection to work with and a WHERE clause and parameters. If the activity is 
deleting a single instance, the  Uri should represent that instance and the 
WHERE clause may be null. But, the activity might be requesting to delete an 
open-ended set of instances, using the WHERE clause to constrain which ones 
to delete.

As with update(), though, this is simple if you are using SQLite for database 
storage (sense a theme?). You can let it handle the idiosyncrasies of parsing 
and applying the  WHERE clause – all you have to do is call  delete() on the 
database.

For example, here is delete() from Provider:

@Override
public int delete(Uri url, String where, String[] whereArgs) {
  int count;
  long rowId=0;

  if (isCollectionUri(url)) {
    count=db.delete(getTableName(), where, whereArgs);
  }
  else {
    String segment=url.getPathSegments().get(1);
    rowId=Long.parseLong(segment);
    count=db
        .delete(getTableName(), getIdColumnName()+"="
            + segment
            + (!TextUtils.isEmpty(where) ? " AND (" + where
                + ')' : ""), whereArgs);
  }

250

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

  getContext().getContentResolver().notifyChange(url, null);
  return count;
}

This is almost a clone of  the  update() implementation described above – 
either delete a subset of the entire collection or delete a single instance (if it 
also satisfies the supplied WHERE clause).

getType()

The last method you need to implement is getType(). This takes a Uri and 
returns  the  MIME  type  associated  with  that  Uri.  The  Uri could  be  a 
collection or an instance  Uri;  you need to determine which was provided 
and return the corresponding MIME type.

For example, here is getType() from Provider:

@Override
public String getType(Uri url) {
  if (isCollectionUri(url)) {
    return(getCollectionType());
  }

  return(getSingleType());
}

As you can see, most of  the logic delegates to private  getCollectionType() 
and getSingleType() methods:

private String getCollectionType() {
  return("vnd.android.cursor.dir/vnd.commonsware.tour");
}

private String getSingleType() {
  return("vnd.android.cursor.item/vnd.commonsware.tour");
}

251

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

DatabaseContentProvider

If you want to use DatabaseContentProvider as a base class, here is what you 
need to do:

• You still need getType() as described in the preceding section

• You may elect to override onCreate() for your own initialization, but 
be sure to chain upward to the superclass (super.onCreate())

• You may elect to override upgradeDatabases() to rebuild your tables if 
your database schema has changed

• You  need  to  implement  queryInternal(),  insertInternal(), 
updateInternal(), and deleteInternal() much as described above for 
query(), insert(), update(), and delete() respectively

Step #2: Supply a Uri

You also need to add a public static member...somewhere, containing the 
Uri for each collection your content provider supports. Typically,  this is a 
public static final Uri put on the content provider class itself:

public static final Uri CONTENT_URI=
  Uri.parse("content://com.commonsware.android.tourit.Provider/tours");

You may wish to use the same namespace for the content Uri that you use 
for your Java classes, to reduce the chance of collision with others.

Step #3: Declare the Properties

Remember those properties you referenced when you were using a content 
provider, in the previous chapter? Well, you need to have those too for your 
own content provider.

Specifically,  you want a public static class implementing  BaseColumns that 
contains your property names, such as this example from Provider:

252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

public static final class Tours implements BaseColumns {
  public static final Uri CONTENT_URI
      =Uri.parse("content://com.commonsware.android.tourit.Provider/tours");
  public static final String DEFAULT_SORT_ORDER="title";
  public static final String ID="_id";
  public static final String TITLE="title";
  public static final String DESCRIPTION="desc";
  public static final String CREATED_DATE="created";
  public static final String MODIFIED_DATE="modified";
  public static final String ROUTE="route";
}

If  you are using SQLite as a data store, the values for the property name 
constants should be the corresponding column name in the table, so you 
can just pass the projection (array of properties) to SQLite on a query(), or 
pass the ContentValues on an insert() or update().

Note that nothing in here stipulates the types of the properties. They could 
be strings, integers, or whatever. The biggest limitation is what a Cursor can 
provide access to via its property getters. The fact that there is nothing in 
code that enforces type safety means you should document the property 
types well, so people attempting to use your content provider know what 
they can expect.

Step #4: Update the Manifest

The glue tying  the content provider implementation to the rest of  your 
application resides in your AndroidManifest.xml file. Simply add a <provider> 
element as a child of the <application> element:

<provider
  android:name=".Provider"
  android:authorities="com.commonsware.android.tourit.Provider" />

The android:name property is the name of the content provider class, with a 
leading dot to indicate it is in the stock namespace for this application's 
classes (just like you use with activities).

The  android:authorities property should be a semicolon-delimited list of 
the authority values supported by the content provider. Recall, from earlier 

253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

in this chapter, that each content Uri is made up of a scheme, authority, data 
type path,  and instance identifier.  Each authority from each  CONTENT_URI 
value should be included in the android:authorities list.

Now,  when  Android  encounters  a  content  Uri,  it  can  sift  through  the 
providers registered through manifests to find a matching authority. That 
tells Android which application and class implements the content provider, 
and from there Android can bridge between the calling activity and the 
content provider being called.

Notify-On-Change Support

An optional feature your content provider to its clients is notify-on-change 
support. This means that your content provider will let clients know if the 
data for a given content Uri changes.

For example, suppose you have created a content provider that retrieves RSS 
and Atom feeds from the Internet based on the user's feed subscriptions (via 
OPML,  perhaps).  The  content  provider  offers  read-only  access  to  the 
contents of the feeds, with an eye towards several applications on the phone 
using those feeds versus everyone implementing their own feed poll-fetch-
and-cache system. You have also implemented a service that will get updates 
to those feeds asynchronously,  updating  the underlying  data store.  Your 
content provider could alert applications using the feeds that such-and-so 
feed was updated, so applications using that specific feed can refresh and 
get the latest data.

On  the  content  provider  side,  to  do  this,  call  notifyChange() on  your 
ContentResolver instance  (available  in  your  content  provider  via 
getContext().getContentResolver()). This takes two parameters:  the  Uri of 
the piece of content that changed and the ContentObserver that initiated the 
change. In many cases, the latter will be null; a non-null value simply means 
that observer will not be notified of its own changes.

On  the  content  consumer  side,  an  activity  can  call 
registerContentObserver() on its ContentResolver (via getContentResolver()). 

254

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Building a Content Provider

This ties a ContentObserver instance to a supplied Uri – the observer will be 
notified whenever  notifyChange() is called for that specific  Uri. When the 
consumer is  done with the  Uri,  unregisterContentObserver() releases  the 
connection.

255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 26

Requesting and Requiring 
Permissions

In the late 1990's, a wave of viruses spread through the Internet, delivered 
via email, using contact information culled from Microsoft Outlook. A virus 
would simply email copies of itself to each of the Outlook contacts that had 
an email address. This was possible because, at the time, Outlook did not 
take any steps to protect data from programs using the Outlook API, since 
that API was designed for ordinary developers, not virus authors.

Nowadays, many applications that hold onto contact data secure that data 
by requiring that a user explicitly grant rights for other programs to access 
the contact information. Those rights could be granted on a case-by-case 
basis or a once at install time.

Android is no different, in that it requires permissions for applications to 
read  or  write  contact  data.  Android's  permission  system  is  useful  well 
beyond contact data, and for content providers and services beyond those 
supplied by the Android framework.

You,  as  an  Android  developer,  will  frequently  need  to  ensure  your 
applications have the appropriate permissions to do what you want to do 
with other applications' data. You may also elect to require permissions for 
other applications to use your data or services, if you make those available to 
other Android components.  This chapter covers how to accomplish both 
these ends.

257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Requesting and Requiring Permissions

Mother, May I?

Requesting the use of other applications' data or services requires the uses-
permission element  to  be  added  to  your  AndroidManifest.xml file.  Your 
manifest  may have  zero or more  uses-permission elements,  all  as  direct 
children of the root manifest element.

The uses-permission element takes a single attribute, android:name, which is 
the name of the permission your application requires:

<uses-permission
  android:name="android.permission.ACCESS_LOCATION" />

The stock system permissions all  begin with  android.permission and are 
listed in the documentation for Manifest.permission in the online Android 
documentation. Third-party applications may have their own permissions, 
which hopefully they have documented for you.

Permissions are confirmed at the time the application is installed – the user 
will be prompted to confirm it is OK for your application to do what the 
permission calls for. This prompt is not available in the current emulator, 
however.

If  you do not have the desired permission and try to do something that 
needs it,  you may get a  SecurityException informing  you of  the missing 
permission, but this is not a guarantee – failures may come in other forms, 
depending  on  if  something  else  is  catching  and  trying  to  handle  that 
exception.

To see the effects of permissions, go back to the Pick example project. If you 
look  at  the  AndroidManifest.xml file,  you  will  see  it  requests  the 
READ_CONTACTS permission.  This  is  what  allows  you  to  view  the  contact 
information.  Comment out the  uses-permission element in the manifest, 
recompile, and try out the new version in the emulator. You should get a 
SecurityException. NOTE: you may need to restart the emulator, if you were 
using the PickDemo before during this same emulator session.

258

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Requesting and Requiring Permissions

Figure 60. A security exception

Halt! Who Goes There?

The other side of the coin, of course, is to secure your own application. If 
your application is merely activities and intent receivers, security may be 
just an “outbound” thing, where you request permission to use resources of 
other applications.  If,  on  the  other hand,  you  put  content  providers  or 
services in your application, you will want to implement “inbound” security 
to control which applications can do what with the data.

Note that the issue here is  less  about whether other applications might 
“mess up” your data, but rather about privacy of the user's information or 
use  of  services  that  might  incur  expense.  That  is  where  the  stock 
permissions for built-in Android applications are focused – can you read or 
modify contacts, can you send SMS, etc. If your application does not store 
information that might be considered private – such as TourIt, which only 
stores bicycle tours – security is less an issue. If, on the other hand, your 
application  stores  private data,  such  as  medical  information,  security  is 
much more important.

259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Requesting and Requiring Permissions

The first  step to securing  your own application  using  permissions  is  to 
declare said permissions, once again in the AndroidManifest.xml file. In this 
case, instead of  uses-permission, you add permission elements. Once again, 
you can have zero or more permission elements, all as direct children of the 
root manifest element.

Declaring  a  permission  is  slightly  more  complicated  than  using  a 
permission. There are three pieces of information you need to supply:

1. The symbolic name of  the permission.  To keep your permissions 
from colliding with those from other applications, you should use 
your application's Java namespace as a prefix

2. A  label  for  the  permission:  something  short  that  would  be 
understandable by users

3. A description for the permission: something a wee bit longer that is 
understandable by your users

<permission
  android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
  android:label="@string/see_sekrits_label"
  android:description="@string/see_sekrits_description" />

This does not enforce the permission. Rather, it indicates that it is a possible 
permission; your application must still flag security violations as they occur.

Enforcing Permissions via the Manifest

There are two ways for your application to enforce permissions, dictating 
where and under what circumstances they are required. The easier one is to 
indicate in the manifest where permissions are required.

Activities, services, and intent receivers can all declare an attribute named 
android:permission,  whose  value  is  the  name  of  the  permission  that  is 
required to access those items:

<activity
  android:name=".SekritApp"
  android:label="Top Sekrit"

260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Requesting and Requiring Permissions

  android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
  <intent-filter>
    <action android:name="android.intent.action.MAIN" />
    <category
      android:name="android.intent.category.LAUNCHER" />
  </intent-filter>
</activity>

Only applications that have requested your indicated permission will  be 
able to access the secured component. In this case, “access” means:

• Activities cannot be started without the permission

• Services cannot be started, stopped, or bound to an activity without 
the permission

• Intent receivers ignore messages sent via  broadcastIntent() unless 
the sender has the permission

Content  providers  offer  two  distinct  attributes:  readPermission and 
writePermission:

<provider
  android:name=".SekritProvider"
  android:authorities="vnd.tla.sekrits.SekritProvider"
  android:readPermission="vnd.tla.sekrits.SEE_SEKRITS"
  android:writePermission="vnd.tla.sekrits.MOD_SEKRITS" />

In this case, readPermission controls access to querying the content provider, 
while writePermission controls access to insert, update, or delete data in the 
content provider.

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions.

Your  services  can  check  permissions  on  a  per-call  basis  via 
checkCallingPermission().  This  returns  PERMISSION_GRANTED or 
PERMISSION_DENIED depending on whether the caller has the permission you 
specified. For example, if your service implements separate read and write 

261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Requesting and Requiring Permissions

methods, you could get the effect of  readPermission and writePermission in 
code by checking those methods for the permissions you need from Java.

Also, you can include a permission when you call  broadcastIntent(). This 
means that eligible receivers must hold that permission; those without the 
permission are ineligible to receive it. For example, the Android subsystem 
presumably includes the RECEIVE_SMS permission when it broadcasts that an 
SMS message has arrived – this will restrict the receivers of that intent to be 
only those authorized to receive SMS messages.

May I See Your Documents?

There  is  no  automatic  discovery  of  permissions  at  compile  time;  all 
permission  failures  occur  at  runtime.  Hence,  it  is  important  that  you 
document the permissions required for your public APIs, including content 
providers,  services,  and  activities  intended  for  launching  from  other 
activities.  Otherwise, the programmers attempting to interface with your 
application will have to find out the permission rules by trial and error.

Furthermore,  you  should  expect  that  users  of  your  application  will  be 
prompted to confirm any permissions your application says it needs. Hence, 
you need to document for your users what they should expect, lest they get 
confused by the question posed by the phone and elect to not install or use 
your application.

262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 27

Creating a Service

As noted previously, Android services are for long-running processes that 
may need to keep running even when decoupled from any activity. Examples 
include playing music even if  the "player" activity gets garbage-collected, 
polling the Internet for RSS/Atom feed updates, and maintaining an online 
chat connection even if the chat client loses focus due to an incoming phone 
call.

Services are created when manually started (via an API call) or when some 
activity  tries  connecting  to the service  via  inter-process  communication 
(IPC). Services will  live until  no longer needed and if  RAM needs to be 
reclaimed.  Running  for  a  long  time  isn't  without  its  costs,  though,  so 
services need to be careful not to use too much CPU or keep radios active 
too much of the time, lest the service cause the device's battery to get used 
up too quickly.

This chapter covers how you can create your own services; the next chapter 
covers how you can use such services from your activities or other contexts. 
Both chapters will analyze the MailBuzz sample application (MailBuzz), with 
this  chapter  focusing  mostly  on  the  MailBuzzService implementation. 
MailBuzzService polls a supplied email account, either on-demand or on a 
stated interval, to see if new messages have arrived, at which it will post a 
Notification (as described in the chapter on notifications).

263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Service

Getting Buzzed

The MailBuzz application is an email monitoring application, combining an 
activity and a service. The activity allows you to specify an email account to 
monitor;  the  service  does  the  actual  monitoring.  When  new  messages 
arrive, the service notifies the user.

Providing  an  application  to actually  read  and  write  emails  is  left  as  an 
exercise for the reader.

Service with Class

Creating  a  service  implementation  shares  many  characteristics  with 
building  an  activity.  You  inherit  from  an  Android-supplied  base  class, 
override some lifecycle methods, and hook the service into the system via 
the manifest.

So, the first step in creating a service is to extend the Service class, in our 
case with our own MailBuzzService subclass.

Just  as  activities  have  onCreate(),  onResume(),  onPause() and  kin,  Service 
implementations can override three different lifecycle methods:

1. onCreate(),  which,  as  with  services,  is  called  when  the  service 
process is created

2. onStart(), which is called when a service is manually started by some 
other process, versus being implicitly started as the result of an IPC 
request (discussed more in the next chapter)

3. onDestroy() which is called as the service is being shut down

Common  startup  and  shutdown  logic  should  go  in  onCreate() and 
onDestroy(); onStart() is mostly if your service needs data passed into it (via 
the supplied Bundle) from the starting process and you don't wish to use IPC.

For example, here is the onCreate() method for MailBuzzService:

264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Service

@Override
public void onCreate() {
  super.onCreate();

  background=new Thread(new Runnable() {
    public void run() {
      try {
        String event=null;

        while (event!=SHUTDOWN) {
          event=queue.poll();

          if (event==POLL) {
            checkAccountImpl();
          }
          else if (event!=SHUTDOWN) {
            Thread.sleep(1000);
          }
        }
      }
      catch (Throwable t) {
        // just end the background thread
      }
    }
  });

  background.start();
  setupTimer();
}

First, we chain upward to the superclass, so Android can do any setup work 
it needs to have done. Next, we set up a background thread to monitor a 
ConcurrentLinkedQueue once every second, looking for new events. As we'll 
see,  the queue allows us to do the actual  polling for new messages in a 
separate  thread  than  those  used  for  either  the  periodic  timer  or  the 
incoming IPC method calls from the MailBuzz activity.

The onCreate() method wraps up by calling a private setupTimer() method:

private void setupTimer() {
  if (getPollState()) {
    SharedPreferences settings=getPrefs();
    int pollPeriod=settings.getInt("pollPeriod", 5)*60000;

    task=new TimerTask() {
      public void run() {
        checkAccount();
      }
    };

265

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Service

    timer.scheduleAtFixedRate(task, pollPeriod, pollPeriod);
  }
  else if (task!=null) {
    task.cancel();
    task=null;
  }
}

This checks to see if  we're supposed to be periodically checking for new 
messages or not. If we are, we set up a TimerTask to post a POLL message on 
our queue, and set up that task to be invoked based on an activity-supplied 
period,  expressed  in minutes.  If  we are not supposed to be periodically 
checking for message, we shut down the timer if it was already started. This 
may  seem  superfluous,  but  setupTimer() gets  called  not  only  from 
onCreate(), but when the periodic-check status changes.

The onDestroy() method is much simpler:

@Override
public void onDestroy() {
  super.onDestroy();

  timer.cancel();
  queue.add(SHUTDOWN);
}

Here, we just shut down the timer and background thread, in addition to 
chaining upward to the superclass for any Android internal bookkeeping 
that might be needed.

In addition to those lifecycle methods, though, your service also needs to 
implement onBind(). This method returns an IBinder, which is the linchpin 
behind the IPC mechanism. If you're creating a service class while reading 
this chapter, just have this method return null for now, and we'll fill in the 
full implementation in the next section.

When IPC Attacks!

Services will tend to offer inter-process communication (IPC) as a means of 
interacting  with  activities  or  other  Android  components.  Each  service 

266

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Service

declares what methods it is making available over IPC; those methods are 
then available for other components to call, with Android handling all the 
messy  details  involved  with  making  method  calls  across  component  or 
process boundaries.

The guts of this, from the standpoint of the developer, is expressed in AIDL: 
the  Android  Interface  Description  Language.  If  you  have  used  IPC 
mechanisms like COM, CORBA, or the like, you will recognize the notion of 
IDL. AIDL spells out the public IPC interface, and Android supplies tools to 
build the client and server side of that interface.

With that in mind, let's take a look at AIDL and IPC.

Write the AIDL

IDLs are frequently written in a "language-neutral"  syntax.  AIDL, on the 
other hand, looks a lot like a Java interface. For example, here is the AIDL for 
the MailBuzzService:

package com.commonsware.android.service;

// Declare the interface.
interface IBuzz {
  void checkNow();
  void enable(in boolean enabled);
  boolean isEnabled();
}

As with a Java interface, you declare a package at the top. As with a Java 
interface, the methods are wrapped in an interface declaration (interface 
IBuzz { ... }). And, as with a Java interface, you list the methods you are 
making available.

The differences, though, are critical.

First, not every Java type can be used as a parameter. Your choices are:

• Primitive values (int, float, double, boolean, etc.)

267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Service

• String and CharSequence

• List and Map (from java.util)

• Any other AIDL-defined interfaces

• Any Java classes that implement the  Parcelable interface, which is 
Android's flavor of serialization (see below)

In  the  case  of  the  latter  two  categories,  you  need  to  include  import 
statements referencing the names of  the classes or interfaces that you are 
using (e.g., import com.commonsware.android.ISomething). This is true even if 
these classes are in your own package – you have to import them anyway.

Next, parameters can be classified as in, out, or inout. Values that are out or 
inout can be changed by the service and those changes will be propagated 
back to the client. Primitives (e.g., int) can only be in; we included in for the 
AIDL for enable() just for illustration purposes.

Also, you cannot throw any exceptions. You will need to catch all exceptions 
in your code, deal with them, and return failure indications some other way 
(e.g., error code return values).

Name your AIDL files with the .aidl extension and place them in the proper 
directory based on the package name.

When you build your project, either via an IDE or via Ant, the aidl utility 
from the Android SDK will  translate your AIDL into a server stub and a 
client proxy.

Implement the Interface

Given the AIDL-created server stub, now you need to implement the service, 
either directly in the stub, or by routing the stub implementation to other 
methods you have already written.

The mechanics of this are fairly straightforward:

268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Service

• Create a private instance of  the AIDL-generated  .Stub class (e.g., 
IBuzz.Stub)

• Implement methods matching up with each of  the methods you 
placed in the AIDL

• Return  this  private  instance  from  your  onBind() method  in  the 
Service subclass

For example, here is the IBuzz.Stub instance:

private final IBuzz.Stub binder=new IBuzz.Stub() {
  public void checkNow() {
    checkAccount();
  }

  public void enable(boolean enabled) {
    enablePoll(enabled);
  }

  public boolean isEnabled() {
    return(getPollState());
  }
};

In this  case,  the stub calls  corresponding  methods on the service itself. 
Those methods are shown below:

private void checkAccount() {
  queue.add(POLL);
}

private void enablePoll(boolean enabled) {
  SharedPreferences settings=getPrefs();
  SharedPreferences.Editor editor=settings.edit();

  editor.putBoolean("enabled", enabled);
  editor.commit();
  setupTimer();
}

private boolean getPollState() {
  SharedPreferences settings=getPrefs();

  return(settings.getBoolean("enabled", false));
}

• checkAccount() pops  a  POLL message  on  our  queue,  so  our 
background thread can poll the mail server

269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Service

• enablePoll() updates our preferences so we know to start or stop 
polling when the service next runs, then calls setupTimer() to start or 
stop the polling

• getPollState() simply  returns  the  preference  updated  by 
enablePoll()

Note that AIDL IPC calls are synchronous, and so the caller is blocked until 
the IPC method returns. Hence, your services need to be quick about their 
work. If  checkAccount() were to directly check the mail server itself, instead 
of using the background queue, the activity calling checkAccount() would be 
frozen until the mail server responded. Since that takes a noticeable amount 
of  time,  putting  the  real  checkAccount() work  (checkAccountImpl())  in  a 
queue-based background thread provides for a cleaner user experience.

Manifest Destiny

Finally, you need to add the service to your AndroidManifest.xml file, for it to 
be recognized as an available service for use.  That is simply a matter of 
adding a  service element as a child of the application element, providing 
android:name to reference your service class.

For example, here is the AndroidManifest.xml file for MailBuzz:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
  package="com.commonsware.android.service">
  <application>
    <activity android:name=".MailBuzz" android:label="MailBuzz">
      <intent-filter>
        <action android:name="android.intent.action.MAIN" />
        <category android:name="android.intent.category.LAUNCHER" />
      </intent-filter>
    </activity>
    <service android:name=".MailBuzzService" />
  </application>
</manifest>

Since the service class is in the same Java namespace as everything else in 
this  application,  we  can  use  the  shorthand  dot-notation 
(".MailBuzzService") to reference our class.

270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Creating a Service

If you wish to require some permission of those who wish to start or bind to 
the service, add an android:permission attribute naming the permission you 
are mandating – see the chapter on permissions for more details.

Where's the Remote?

In Android, services can either be local or remote. Local services run in the 
same process as the launching activity;  remote services run in their own 
process. A detailed discussion of remote services will be added to a future 
edition of this book.

271

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 28

Invoking a Service

Services can be used by any application component that "hangs around" for 
a reasonable period of time. This includes activities, content providers, and 
other services. Notably, it does not include pure intent receivers (i.e., intent 
receivers  that  are  not  part  of  an  activity),  since  those  will  get  garbage 
collected immediately after each instance processes one incoming Intent.

To use a service, you need to get an instance of the AIDL interface for the 
service, then call methods on that interface as if it were a local object. When 
done,  you  can  release  the interface,  indicating  you  no longer need  the 
service.

In  this  chapter,  we will  look  at  the client  side of  the MailBuzz  sample 
application (MailBuzz). The MailBuzz activity provides fields for the account 
information (server type, server, etc.), a checkbox to toggle whether polling 
for new mail should go on, a button to push the account information to the 
service, and another button to check right now for new messages.

When run, the activity looks like this:

273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Invoking a Service

Figure 61. The MailBuzz service client

Bound for Success

To  use  a  service,  you  first  need  to  create  an  instance  of  your  own 
ServiceConnection class. ServiceConnection, as the name suggests, represents 
your connection to the service for the purposes of  making IPC calls.  For 
example,  here  is  the  ServiceConnection from  the  MailBuzz class  in  the 
MailBuzz project:

 private ServiceConnection svcConn=new ServiceConnection() {
    public void onServiceConnected(ComponentName className,
                    IBinder binder) {
      service=IBuzz.Stub.asInterface(binder);
      checkNowButton.setEnabled(true);
      setAccountButton.setEnabled(true);
      setEnabled.setEnabled(true);
      
      try {
        setEnabled.setChecked(service.isEnabled());
      }
      catch (DeadObjectException e) {
        svcConn.onServiceDisconnected(null);
      }
    }

274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Invoking a Service

    public void onServiceDisconnected(ComponentName className) {
      service=null;
      checkNowButton.setEnabled(false);
      setAccountButton.setEnabled(false);
      setEnabled.setEnabled(false);
    }
  };

Your ServiceConnection subclass needs to implement two methods:

1. onServiceConnected(), which is called once your activity is bound to 
the service

2. onServiceDisconnected(),  which  is  called  if  your  connection  ends 
normally, such as you unbinding your activity from the service

Each of those methods receives a ComponentName, which simply identifies the 
service you connected to. More importantly,  onServiceConnected() receives 
an  IBinder instance, which is your gateway to the IPC interface. You will 
want to convert the IBinder into an instance of your AIDL interface class, so 
you can use IPC as if you were calling regular methods on a regular Java class 
(IBuzz.Stub.asInterface(binder)).

To  actually  hook  your  activity  to  the  service,  call  bindService() on  the 
activity:

bindService(serviceIntent, svcConn, BIND_AUTO_CREATE);

The bindService() method takes three parameters:

1. An Intent representing the service you wish to invoke – for your own 
service,  it's  easiest  to  use an intent referencing  the service class 
directly (new Intent(this, MailBuzzService.class))

2. Your ServiceConnection instance

3. A set of flags – most times, you will want to pass in BIND_AUTO_CREATE, 
which will start up the service if it is not already running

After  your  bindService() call,  your  onServiceConnected() callback  in  the 
ServiceConnection will eventually be invoked, at which time your connection 
is ready for use.

275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Invoking a Service

Request for Service

Once your service interface object is ready (IBuzz.Stub.asInterface(binder)), 
you can start calling methods on it as you need to. In fact, if you disabled 
some widgets awaiting the connection, now is a fine time to re-enable them 
(see the above ServiceConnection implementation).

For example,  in  onServiceConnected(),  once we have the service interface 
object,  we call  isEnabled() to determine if  the "Enable polling" checkbox 
should be checked or not (via setChecked()).

However, you will want to trap DeadObjectException – if this is raised, your 
service  connection  terminated  unexpectedly.  In  this  case,  you  should 
unwind your use of the service, perhaps by calling onServiceDisconnected() 
manually, as shown above.

Prometheus Unbound

When you are done with the IPC interface, call unbindService(), passing in 
the  ServiceConnection.  Eventually,  your  connection's 
onServiceDisconnected() callback will be invoked, at which point you should 
null  out your interface object,  disable relevant widgets,  or otherwise flag 
yourself as no longer being able to use the service.

For example, in the MailBuzz implementation of  onServiceDisconnected() 
shown above,  we null  out  the  IBuzz service object  and  disable  the  two 
buttons and checkbox.

You can always reconnect to the service, via bindService(), if you need to use 
it again.

Manual Transmission

In  addition  to binding  to the  service  for  the purposes  of  IPC,  you  can 
manually start and stop the service. This is particularly useful in cases where 

276

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Invoking a Service

you want the service to keep running independently of  your activities – 
otherwise, once you unbind the service, your service could well be closed 
down.

To start a service, simply call startService(), providing two parameters:

1. The Intent specifying the service to start (again, the easiest way is 
probably to specify the service class, if its your own service)

2. A Bundle providing configuration data, which eventually gets passed 
to the service's onStart() method

Conversely, to stop the service, call  stopService() with the Intent you used 
in the corresponding startService() call.

For  example,  here  is  the  MailBuzz  code  behind  the  "Enable  polling" 
checkbox:

setEnabled=(CheckBox)findViewById(R.id.enabled);
setEnabled.setOnCheckedChangeListener(new 
CompoundButton.OnCheckedChangeListener() {
  public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
    try {
      if (isChecked) {
        startService(serviceIntent, new Bundle());
      }
      else {
        stopService(serviceIntent);
      }

      service.enable(isChecked);
    }
    catch (DeadObjectException e) {
      svcConn.onServiceDisconnected(null);
    }
  }
});

Not only do we call the service's enable() IPC method, but we also start and 
stop the service, based on the checkbox state. By starting the service, even if 
we later unbind from the service, the service will keep running and polling 
for new messages. Only when we both unbind from the service and stop the 
service will the service be fully shut down.

277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 29

Alerting Users Via Notifications

Pop-up  messages.  Tray  icons  and  their  associated  "bubble"  messages. 
Bouncing dock icons. You are no doubt used to programs trying to get your 
attention, sometimes for good reason.

Your phone also probably chirps at you for more than just incoming calls: 
low battery, alarm clocks, appointment notifications, incoming text message 
or email, etc.

Not surprisingly,  Android has a whole framework for dealing  with these 
sorts of things, collectively called "notifications".

Types of Pestering

A service, running in the background, needs a way to users know something 
of interest has occurred, such as when email has been received. Moreover, 
the service may need some way to steer the user to an activity where they 
can act upon the event – reading a received message, for example. For this, 
Android  supplies  status  bar  icons,  flashing  lights,  and  other  indicators 
collectively known as "notifications".

Your current phone may well have such icons, to indicate battery life, signal 
strength,  whether  Bluetooth  is  enabled,  and  the  like.  With  Android, 
applications can add their own status bar icons, with an eye towards having 
them appear only when needed (e.g., a message has arrived).

279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Alerting Users Via Notifications

In  Android,  you  can raise notifications via  the  NotificationManager.  The 
NotificationManager is a system service. To use it, you need to get the service 
object via getSystemService(NOTIFICATION_SERVICE) from your activity.

The  NotificationManager gives you two methods:  one to pester (notify()) 
and one to stop pestering (cancel()).

The  notify() method takes a  Notification,  which is a data structure that 
spells out what form your pestering should take. Here is what is at your 
disposal (bearing in mind that not all devices will necessarily support all of 
these):

Hardware Notifications

You can flash LEDs on the device by setting lights to true, also specifying 
the color (as an  #ARGB value in  ledARGB) and what pattern the light should 
blink in  (by providing  off/on durations in  milliseconds for the light  via 
ledOnMS and ledOffMS).

You can play a sound, using a Uri to a piece of content held, perhaps, by a 
ContentManager (sound). Think of this as a "ringtone" for your application.

You can vibrate the device,  controlled  via a  long[] indicating  the on/off 
patterns (in milliseconds) for the vibration (vibrate). You might do this by 
default,  or  you  might  make  it  an  option  the  user  can  choose  when 
circumstances require a more subtle notification than a ringtone.

You might also want to set insistent to true, indicating that the hardware 
notifications (e.g.,  vibration)  should  not be played  just once,  but rather 
should repeat until you cancel the notification.

280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Alerting Users Via Notifications

Icons

While  the  flashing  lights,  sounds,  and  vibrations  are  aimed  at  getting 
somebody to look at the device, icons are designed to take them the next 
step and tell them what's so important.

To set up an icon for a  Notification, you need to set statusBarIcon, where 
you provide the identifier of a Drawable resource representing the icon, and 
statusBarClickIntent, where you supply an Intent to be raised when the icon 
is  clicked.  You  should  be  sure the  Intent will  be  caught by something, 
perhaps your own application code, to take appropriate steps to let the user 
deal with the event triggering the notification.

You can also supply text blurbs to appear when the icon is put on the status 
bar (statusBarTickerText) and when the icon is selected but not yet clicked 
(statusBarBalloonText).

Letting Your Presence Be Felt

To  raise  a  Notification,  you  can  use  the  notify() method  on  the 
NotificationManager service  object,  where  you  specify  the  notification 
identifier  and  a  Notification object.  The  identifier  is  simply  a  number, 
unique within  your  application,  that  identifies  this  specific  notification 
(versus any others your application might be raising).

To cancel  a notification,  simply call  cancel() on the  NotificationManager 
service object, providing your identifier for the notification. You should do 
this when the notification icon is no longer needed (e.g., the user read the 
message and so there are no unread messages to alert the user about).

For example, the TourIt sample application uses notifications to alert riders 
that they are nearing waypoints on their chosen tour. How TourIt knows 
they  are  nearing  waypoints  is  through  the  location  services  offered  by 
Android, discussed later in this book. For the moment, assume that TourIt 
can find this out – here's how it notifies the users.

281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Alerting Users Via Notifications

When  a  waypoint  is  near,  TourIt  invokes  showNotification() on 
TourViewActivity:

private void showNotification() {
  NotificationManager nm = 
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);
  Notification notif = new Notification(
        TourViewActivity.this,
        R.drawable.wheel_16,
        "Waypoint nearby!",
        System.currentTimeMillis(),
        null, null, null,
        R.drawable.wheel_16,
        "TourIt!",
        null);

  // after a 100ms delay, vibrate for 250ms, pause for 100 ms and
  // then vibrate for 500ms.

  if (alertVibrate) {
    notif.vibrate = new long[] { 100, 250, 100, 500};
  }

  if (alertSound) {
    notif.sound=Uri.parse("android.resource://com.commonsware.tourit/"+R.raw.ale
rt);
  }

  notif.insistent=alertInsistent;

  nm.notify(R.string.go_button, notif);
}

This method:

• sets up the notification to show a wheel icon (16px high) and the 
message "Waypoint nearby!"

• sets up a vibration pattern, if the user chose (via the ConfigActivity) 
to be notified by vibration

• sets up the "waypoint-tone" to play, if the user chose to be notified 
by a sound

• configures the notification to be insistent, so the vibration or sound 
will keep playing

• displays the notification

282

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Alerting Users Via Notifications

Later on, when the waypoint is sufficiently distant, TourViewActivity cancels 
the notification:

private Handler handler=new Handler() {
  @Override
  public void handleMessage(Message msg) {
    long tmp=lastAlertSeen.get();

    if (tmp>-1L && System.currentTimeMillis()-tmp>2000) {
      NotificationManager 
nm=(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

      nm.cancel(R.string.go_button);
      lastAlertSeen.set(-1L);
    }
  }
};

283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



PART VI – Other Android Capabilities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 30

Accessing Location-Based 
Services

A popular feature on current-era mobile devices is GPS capability,  so the 
device can tell  you where you are at any point in time.  While the most 
popular use of GPS service is mapping and directions, there are other things 
you can do if  you know your location.  For example,  you might set up a 
dynamic chat application where the people you can chat with are based on 
physical  location,  so you're chatting with those you are nearest.  Or,  you 
could automatically "geotag" posts to Twitter or similar services.

GPS  is  not  the  only  way  a  mobile  device  can  identify  your  location. 
Alternatives include:

• The European equivalent to GPS, called Galileo, which is still under 
development at the time of this writing

• Cell tower triangulation, where your position is determined based 
on signal strength to nearby cell towers

• Proximity to public WiFi  "hotspots"  that have known geographic 
locations

Android devices may have one or more of these services available to them. 
You, as a developer, can ask the device for your location, plus details on what 
providers are available. There are even ways for you to simulate your location 
in the emulator, for use in testing your location-enabled applications.

287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Location-Based Services

Location Providers: They Know Where You're 
Hiding

Android devices can have access to several different means of determining 
your location. Some will  have better accuracy than others.  Some may be 
free, while others may have a cost associated with them. Some may be able 
to tell you more than just your current position, such as your elevation over 
sea level, or your current speed.

Android, therefore, has abstracted all this out into a set of LocationProvider 
objects. Your Android environment will have zero or more LocationProvider 
instances,  one for each distinct  locating  service that  is  available  on the 
device. Providers know not only your location, but their own characteristics, 
in terms of accuracy, cost, etc.

You,  as  a  developer,  will  use  a  LocationManager,  which  holds  the 
LocationProvider set, to figure out which LocationProvider is right for your 
particular circumstance. You will also need the ACCESS_POSITION permission 
in your application, or the various location APIs will fail due to a security 
violation. Depending on which location providers you wish to use, you may 
need other permissions as well, such as ACCESS_GPS,  ACCESS_ASSISTED_GPS, or 
ACCESS_CELL_ID.

Finding Yourself

The obvious thing to do with a location service is to figure out where you are 
right now.

To  do  that,  you  need  to  get  a  LocationManager –  call 
getSystemService(LOCATION_SERVICE) from your activity or service and cast it 
to be a LocationManager.

The  next  step  to  find  out  where  you  are  is  to  get  the  name  of  the 
LocationProvider you want to use. Here, you have two main options:

1. Ask the user to pick a provider

288

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Location-Based Services

2. Find the best-match provider based on a set of criteria

If  you  want  the  user  to  pick  a  provider,  calling  getProviders() on  the 
LocationManager will give you a List of providers, which you can then wrap in 
an ArrayAdapter and use for the selection widget of your choice. The catch is 
that LocationProvider does not have a useful toString() implementation, so 
you need to do a little extra work, either overriding ArrayAdapter to populate 
your views by hand, or wrapping each LocationProvider in your own object 
that  implements  toString() by  calling  the  provider's  getName() method. 
TourIt takes the latter approach in ConfigActivity:

@Override
public void onCreate(Bundle icicle) {
  super.onCreate(icicle);
  setContentView(R.layout.config);

  LocationManager 
mgr=(LocationManager)getSystemService(Context.LOCATION_SERVICE);

  for (LocationProvider p : mgr.getProviders()) {
    listWrappers.add(new ProviderWrapper(p));
  }

  ArrayAdapter<Waypoint> aa=new ArrayAdapter<Waypoint>(this,
                           R.layout.spinner,
                           (List)listWrappers);

  providers=(Spinner)findViewById(R.id.providers);
  aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
  providers.setAdapter(aa);
}

where ProviderWrapper is:

class ProviderWrapper {
  LocationProvider p;

  ProviderWrapper(LocationProvider p) {
    this.p=p;
  }

  public String toString() {
    return(p.getName());
  }
}

289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Location-Based Services

Or, you can create and populate a Criteria object, stating the particulars of 
what you want out of a LocationProvider, such as:

• setAltitudeRequired() to indicate if you need the current altitude or 
not

• setAccuracy() to set a minimum level of accuracy, in meters, for the 
position

• setCostAllowed() to control if the provider must be free or if it can 
incur a cost on behalf of the device user

Given  a  filled-in  Critieria object,  call  getBestProvider() on  your 
LocationManager, and Android will sift through the criteria and give you the 
best answer.  Note that not all  of  your criteria will  be met –  all  but the 
monetary cost criterion might be relaxed if nothing matches.

Once  you  know  the  name  of  the  LocationProvider,  you  can  call 
getCurrentLocation() to turn on the location provider and get an up-to-date 
fix,  or  you  can  call  getLastKnownPosition() to  find  out  where  you  were 
recently.  Note,  however,  that "recently"  might be fairly out of  date (e.g., 
phone was turned off). On the other hand, getLastKnownPosition() incurs no 
monetary or power cost, since the provider does not need to be activated to 
get the value.

These methods return a Location object, which can give you the latitude and 
longitude of the device in degrees as a Java double. If the particular location 
provider offers other data, you can get at that as well:

• For altitude, hasAltitude() will tell you if there is an altitude value, 
and getAltitude() will return the altitude in meters.

• For bearing (i.e., compass-style direction), hasBearing() will tell you 
if  there is  a bearing  available,  and  getBearing() will  return it  as 
degrees east of true north.

• For  speed,  hasSpeed() will  tell  you  if  the  speed  is  known  and 
getSpeed() will return the speed in meters per second.

290

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Location-Based Services

For example,  TourEditActivity allows users to click a button to fill  in the 
current location when editing waypoint – the theory being that the user is 
riding the tour and taking locations along the way to update the otherwise-
complete tour definition. The user's preferred location provider is stored in 
a  preference,  filled  in  by  the  ConfigActivity and  updated  in 
TourEditActivity's onResume():

@Override
public void onResume() {
  super.onResume();

  SharedPreferences prefs=getSharedPreferences(ConfigActivity.PREFS, 0);

  String providerName=prefs.getString(ConfigActivity.LOCATION_PROVIDER, null);

  if (providerName!=null) {
    for (LocationProvider p : myLocationManager.getProviders()) {
      if (p.getName().equals(providerName)) {
        provider=p;
        break;
      }
    }
  }

  if (provider==null) {
    Criteria crit=new Criteria();

    crit.setCostAllowed(true);
    crit.setSpeedRequired(false);
    crit.setBearingRequired(false);
    crit.setAltitudeRequired(false);

    provider=myLocationManager.getBestProvider(crit);
  }
}

Then, when the button is clicked, it gets a current fix and fills in the location 
in the appropriate fields:

Button btn=(Button)findViewById(R.id.fillin);

btn.setOnClickListener(new View.OnClickListener() {
  public void onClick(View view) {
    if (provider!=null) {
      Location loc=myLocationManager.getCurrentLocation(provider.getName());

      pt_lat.setText(new Double(loc.getLatitude()).toString());
      pt_long.setText(new Double(loc.getLongitude()).toString());
      pt_ele.setText(new Double(loc.getAltitude()).toString());

291

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Location-Based Services

    }
  }
});

On the Move

Now that you know where you are,  you next might want to know where 
you're going.

LocationManager sports a pair of  requestUpdates() methods, where you can 
register an  Intent to be fired periodically,  to keep you informed of  your 
current  position.  Both  flavors  of  requestUpdates() take  a  time  (in 
milliseconds)  and distance (in meters)  –  only if  the requested  time has 
elapsed  and the position has changed by the requested distance will  the 
Intent be  dispatched.  One  flavor  of  requestUpdates() takes  a 
LocationProvider, and you will only get updates based off  of that provider; 
the other flavor takes a Criteria and will use the best-match provider.

It is up to you to arrange for an activity or intent receiver to respond to the 
Intent you register with requestUpdates(). Otherwise, the updates will never 
be acted upon.

When you no longer need the updates, call removeUpdates() with the Intent 
you registered.

Are We There Yet? Are We There Yet? Are We 
There Yet?

Sometimes, you want to know not where you are now, or even when you 
move,  but  when  you  get  to  where  you're  going.  This  could  be  an  end 
destination, or it could be getting to the next step on a set of directions, so 
you can give the user the next turn. In TourIt, for example, it would be nice 
to know when a rider gets to a waypoint, so we can prompt them for the 
direction to go to get to the next waypoint on the tour.

292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Location-Based Services

To  accomplish  this,  LocationManager offers  addProximityAlert().  This 
registers an  Intent,  which will be fired off  when the device gets within a 
certain  distance  of  a  certain  location.  The  addProximityAlert() method 
takes, as parameters:

• The latitude and longitude of the position that you are interested in

• A radius, specifying how close you should be to that position for the 
Intent to be raised

• A duration for the registration, in milliseconds – after this period, 
the  registration  automatically  lapses.  A  value  of  -1 means  the 
registration  lasts  until  you  manually  remove  it  via 
removeProximityAlert().

• The Intent to be raised when the device is within the "target zone" 
expressed by the position and radius

Note that it is not guaranteed that you will  actually receive an  Intent,  if 
there is an interruption in location services, or if  the device is not in the 
target  zone during  the period  of  time the proximity  alert  is  active.  For 
example, if the position is off by a bit, and the radius is a little too tight, the 
device might only skirt the edge of the target zone, or go by so quickly that 
the device's location isn't sampled while in the target zone.

It is up to you to arrange for an activity or intent receiver to respond to the 
Intent you register with the proximity alert. What you then do when the 
Intent arrives is up to you: set up a notification (e.g., vibrate the device), log 
the information to a content provider,  post a message to a Web site, etc. 
Note that you will receive the Intent whenever the position is sampled and 
you are within the target zone – not just upon entering the zone. Hence, you 
will get the Intent several times, perhaps quite a few times depending on the 
size of the target zone and the speed of the device's movement.

In TourIt, when viewing the cue sheet for a tour (TourViewActivity), the user 
has a checkbox to enable alerts. When checked,  TourViewActivity sets up 
proximity alerts for all of the waypoints in the tour, plus sets up the activity 
itself as being an intent receiver for the intent for these alerts:

293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Location-Based Services

private void enableAlerts() {
  if (provider!=null) {
    registerReceiver(receiver, proximitylocationIntentFilter);

    for (Waypoint pt : tour.getRoute()) {
      Intent i=new Intent(PROXIMITY_ALERT);

      myLocationManager.addProximityAlert(pt.getLatitude(),
                       pt.getLongitude(),
                       100.0f,
                       43200000,
                       i); // 12 hours max

      proximityIntents.add(i);
    }
  }
}

The official Android documentation says:

The intent will have an extra added with key "entering" and a  
boolean value. If the value is true, the device is entering the  
proximity region; if false, it is exiting.

At the time of  this writing, that does not seem to work properly.  Hence, 
dealing with the incoming Intent stream is a bit tricky.

The  way  TourViewActivity (or,  more  accurately,  its  private 
ProximityIntentReceiver class)  handles it is,  when an alert  Intent is  first 
received,  it sets up a notification to alert the user that she is  nearing  a 
waypoint:

private void showNotification() {
  NotificationManager nm = 
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);
  Notification notif = new Notification(
        TourViewActivity.this,
        R.drawable.wheel_16,
        "Waypoint nearby!",
        System.currentTimeMillis(),
        null, null, null,
        R.drawable.wheel_16,
        "TourIt!",
        null);

294

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Location-Based Services

  // after a 100ms delay, vibrate for 250ms, pause for 100 ms and
  // then vibrate for 500ms.

  if (alertVibrate) {
    notif.vibrate = new long[] { 100, 250, 100, 500};
  }

  if (alertSound) {
    notif.sound=Uri.parse("android.resource://com.commonsware.tourit/"+R.raw.ale
rt);
  }

  notif.insistent=alertInsistent;

  nm.notify(R.string.go_button, notif);
}

For each Intent received, TourIt updates a timestamp of when the last Intent 
was received. It then uses a Handler to monitor for when the Intent stream 
stops – if it is stopped for two seconds or more, the notification is disabled 
and the mechanism is reset to await the next Intent stream:

private Handler handler=new Handler() {
  @Override
  public void handleMessage(Message msg) {
    long tmp=lastAlertSeen.get();

    if (tmp>-1L && System.currentTimeMillis()-tmp>2000) {
      NotificationManager 
nm=(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

      nm.cancel(R.string.go_button);
      lastAlertSeen.set(-1L);
    }
  }
};

Finally,  if  the  user  un-checks  the  alert  checkbox,  or  if  the  activity  is 
positively closed, all of the proximity alerts are unregistered:

private void disableAlerts() {
  if (provider!=null && proximityIntents.size()>0) {
    unregisterReceiver(receiver);

    for (Intent i : proximityIntents) {
      myLocationManager.removeProximityAlert(i);
    }

    proximityIntents.clear();

295

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Accessing Location-Based Services

  }
}

This is not a perfect system by any means. Ideally, the "entering" extra value 
would be set on the Intent, negating the need for the Handler. Better smarts 
are probably needed to handle other activity lifecycle events, as it is unclear 
what happens to registered proximity alerts if  the activity that registered 
them is killed off.

Testing...Testing...

The Android  emulator does  not  have the ability  to get  a  fix  from GPS, 
triangulate your position from cell towers, or identify your location by some 
nearby  WiFi  signal.  Instead,  it  has  abuilt-in  fake  GPS  provider,  set  to 
simulate your movement around a loop of  positions in the Silicon Valley 
area of California.

This, of course, is only nominally useful. Unless the other information you 
are tying location to happens to be in that area, you will need to simulate 
locations somewhere else.

The good news is that the fake GPS provider implemented by Android is 
actually part of  a larger system for emulating location providers. You can 
either implement a full  LocationProvider and tie it into the system, or you 
can create data files containing time offsets and positions, to simulate the 
movement of a device.

It is much simpler, though, to use TrackBuilder.

TrackBuilder is a sample application, posted to the anddev.org site. It uses 
Android's own mapping logic to present you with a map, upon which you 
can click to note locations along a track of  movement. TrackBuilder can 
then save the track, and you can move the data file into the proper spot for 
use  with  Android's  fake-GPS  provider.  The  track  you  recorded  is  then 
available for your testing use. Since the fake-GPS files require latitude and 

296

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.anddev.org/trackbuilder_for_mock_location_providers-t384.html


Accessing Location-Based Services

longitude positions to several  significant digits,  using TrackBuilder beats 
hand-writing those files in most situations.

Once you have the fake-GPS data file or custom LocationProvider in place, 
though, you need to have your application use that location source versus 
any other. This is made more complicated if you have several fake-GPS data 
files for different test scenarios. That is why it is probably a good idea to 
allow the user to configure the LocationProvider that your application uses, 
rather than merely relying upon Critieria-based selection – that way when 
you are testing, you can choose the right provider to match the test you are 
running. It could be you only offer a manually-configured LocationProvider 
when your application is in some sort of test mode, if  you do not want to 
expose that choice to actual users of your application.

297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 31

Mapping with MapView and 
MapActivity

One of Google's most popular services – after search, of course – is Google 
Maps,  where  you  can  find  everything  from the  nearest  pizza  parlor  to 
directions from New York City to San Francisco (only 2,905 miles!) to street 
views and satellite imagery.

Android,  not  surprisingly,  integrates  Google  Maps.  There  is  a  mapping 
activity  available  to users  straight off  the main Android  launcher.  More 
relevant to you, as a developer, are MapView and MapActivity, which allow you 
to integrate maps into your own applications.  Not only can you  display 
maps, control the zoom level, and allow people to pan around, but you can 
tie in Android's  location-based services to show where the device is and 
where it is going.

Fortunately, integrating basic mapping features into your Android project is 
fairly easy. However, there is a fair bit of power available to you, if you want 
to get fancy.

The Bare Bones

Far and away the simplest way to get a map into your application is to create 
your own subclass of  MapActivity. Like ListActivity, which wraps up some 
of  the  smarts  behind  having  an  activity  dominated  by  a  ListView, 

299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

MapActivity handles  some  of  the  nuances  of  setting  up  an  activity 
dominated by a MapView.

In your layout for the  MapActivity subclass,  you need to add an element 
named, at the time of this writing, com.google.android.maps.MapView. This is 
the "longhand" way to spell out the names of widget classes, by including 
the full package name along with the class name. This is necessary because 
MapView is not in the com.google.android.widget namespace. You can give the 
MapView widget whatever android:id attribute value you want, plus handle 
all the layout details to have it render properly alongside your other widgets.

For example, here is the layout for TourMapActivity, from the TourIt sample 
application:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent">
  <com.google.android.maps.MapView
    android:id="@+id/map"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"/>
  <LinearLayout
    android:orientation="horizontal"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:layout_alignParentBottom="true">
    <Spinner android:id="@+id/waypoints"
      android:layout_weight="1"
      android:layout_width="wrap_content"
      android:layout_height="wrap_content"
      android:drawSelectorOnTop="true"
      android:paddingTop="10dip"
      android:visibility="invisible"
      android:paddingBottom="10dip" />
    <ImageButton android:id="@+id/go"
      android:src="@drawable/go_to_point"
      android:layout_width="wrap_content"
      android:layout_height="wrap_content"
      android:gravity="center_vertical"
      android:layout_gravity="center_vertical"
      android:visibility="invisible"
      android:paddingTop="10dip"
      android:paddingBottom="10dip" />
  </LinearLayout>
</RelativeLayout>

300

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

That is pretty much all you need for starters, plus to subclass your activity 
from MapActivity. If you were to do nothing else, and built that project and 
tossed it in the emulator, you'd get a nice map of the world.

In theory, the user could pan around the map using the directional pad. 
However, that's not terribly useful when the user has the whole world in her 
hands.

Since a map of the world is not much good by itself, we need to add a few 
things...

Exercising Your Control

You can find your MapView widget by findViewById(), no different than any 
other widget.  The widget itself  then offers a  getMapController() method. 
Between the MapView and MapController, you have a fair bit of capability to 
determine what the map shows and how it behaves. Here are some likely 
features you will want to use:

Zoom

The map of the world you start with is rather broad. Usually, people looking 
at a map on a phone will be expecting something a bit narrower in scope, 
such as a few city blocks.

You can control  the zoom level  directly via the  zoomTo() method on the 
MapController. This takes an integer representing the level of zoom, where 1 
is the world view and 21 is the tightest zoom you can get. Each level is a 
doubling of the effective resolution: 1 has the equator measuring 256 pixels 
wide, while 21 has the equator measuring 268,435,456 pixels wide. Since the 
phone's  display  probably  doesn't  have  268,435,456  pixels  in  either 
dimension,  the user sees a small  map focused on one tiny corner of  the 
globe. A level of 16 will show you several city blocks in each dimension and 
is probably a reasonable starting point for you to experiment with.

301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

MapView offers  a  toggleEdgeZooming() method,  which  takes  a  boolean 
parameter indicating if this feature should be on or off. If it is enabled, then 
the user can drag her finger down the right edge of the map to change the 
zoom level  manually.  In  the  emulator,  use  your mouse  to  simulate  the 
dragging motion.

Figure 62. Map with zoom indicator

Center

Typically,  you will need to control what the map is showing, beyond the 
zoom level,  such as the user's current location,  or a location saved with 
some data in your activity. To change the map's position, call centerMapTo() 
on the MapController.

This takes a Point as a parameter. A Point represents a location, via latitude 
and longitude. The catch is that the Point stores latitude and longitude as 
integers representing the actual latitude and longitude multiplied by  1E6. 
This saves a bit of memory versus storing a float or double, and it probably 
speeds up some internal calculations Android needs to do to convert the 

302

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

Point into a map position. However, it does mean you have to remember to 
multiple the "real world" latitude and longitude by 1E6.

Reticle

The "reticle" is the small circle showing the center of the map. Just as you 
can set the map center, you can retrieve it by calling getMapCenter() on the 
MapView. This will return a  Point reflecting the position of  the reticle. The 
user, in turn, can use the reticle to "point" at a specific spot, perhaps using 
the option menu to signal to your activity that it wants some information 
about that point.

Particularly  if  you  will  be  implementing  overlays  (see  below),  you  will 
probably want to add the following statement to your onCreate() method, 
where map is your MapView:

map.setReticleDrawMode(
    MapView.ReticleDrawMode.DRAW_RETICLE_UNDER
);

This will ensure anything you draw on the map will not be obscured by the 
reticle itself.

Traffic and Terrain

Just as the Google Maps you use on your full-size computer can display 
satellite imagery and, for some areas, traffic information, so too can Android 
maps.

303

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

Figure 63. Map showing satellite view

MapView offers  toggleSatellite() and  toggleTraffic(), which, as the names 
suggest, toggle on and off these perspectives on the area being viewed. You 
can have  the user trigger these via  an options  menu or,  in  the case of 
TourMapActivity, via keypresses:

 @Override
  public boolean onKeyDown(int keyCode, KeyEvent event) {
    if (keyCode == KeyEvent.KEYCODE_S) {  // Switch on the satellite images
      map.toggleSatellite();
      return(true);
    }
    else if (keyCode == KeyEvent.KEYCODE_T) {  // Switch on traffic overlays
      map.toggleTraffic();
      return(true);
    }
    
    return(super.onKeyDown(keyCode, event));
  }

The third, default perspective is "street view", which can be turned on via 
toggleStreetView().  There  is  also  isSatellite(),  isTraffic(),  and 
isStreetView() to test to see which of these perspectives is visible.

304

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

Follow You, Follow Me

When you use a GPS navigation system, the "normal mode" is for the map to 
follow your position. It's as if you are standing still and the world is moving 
underneath your wheels (or feet, or flippers, or...).

Android  offers  a  similar  feature  via  setFollowMyLocation(),  available  on 
MapController. With this, the map should re-center itself as you move.

At  the  time  of  this  writing,  though,  there's  one  big  problem  with 
setFollowMyLocation() – it doesn't let you control which location provider to 
use. This is a serious limitation when working with the emulator,  as you 
have no great means of controlling which location provider is used by the 
map, and so you might find yourself viewing the map of where the location 
provider thinks it is, rather than what you are trying to test.

The  good  news  is  that  "rolling  your  own"  follow-me  logic  is  not  that 
difficult.

The first  step  is  figuring  out  which  location  provider you  want to  use, 
perhaps via an application preference. TourIt allows the user to choose a 
location  provider  via  the  ConfigActivity,  as  described  in  the  previous 
chapter.

Next,  you  need  to request  updates  from that  location  provider,  via  the 
requestUpdates() method on LocationManager. This method arranges for an 
Intent to be fired when the device moves a certain distance over a certain 
minimum period of time.

For example, here is onResume() from TourMapActivity:

@Override
public void onResume() {
  super.onResume();

  SharedPreferences prefs=getSharedPreferences(ConfigActivity.PREFS, 0);

  showMyLocation=prefs.getBoolean(ConfigActivity.SHOW_LOCATION, true);

305

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

  followMe=prefs.getBoolean(ConfigActivity.FOLLOW_ME, true);

  String providerName=prefs.getString(ConfigActivity.LOCATION_PROVIDER, null);

  if (providerName!=null) {
    for (LocationProvider p : myLocationManager.getProviders()) {
      if (p.getName().equals(providerName)) {
        provider=p;
        break;
      }
    }
  }

  if (provider==null) {
    Criteria crit=new Criteria();

    crit.setCostAllowed(true);
    crit.setSpeedRequired(false);
    crit.setBearingRequired(false);
    crit.setAltitudeRequired(false);

    provider=myLocationManager.getBestProvider(crit);
  }

  if (provider!=null) {
    registerReceiver(intentReceiver, myIntentFilter);
    myLocationManager.requestUpdates(provider, MINIMUM_TIME_BETWEEN_UPDATE,
                     MINIMUM_DISTANCECHANGE_FOR_UPDATE,
                     myIntent);
  }
}

We first find out what the chosen location provider is and whether or not 
the follow-me feature should be enabled. If  there is no specified location 
provider, we use a Criteria to find one. Then, we register our intent receiver 
(an instance of  the private  LocationIntentReceiver class)  using our intent 
filter:

new IntentFilter(LOCATION_CHANGED_ACTION);

Our  LocationIntentReceiver class  is  trivial,  simply  telling  the  activity  to 
update its view:

class LocationIntentReceiver extends IntentReceiver {
  @Override
  public void onReceiveIntent(Context context, Intent intent) {
    TourMapActivity.this.updateView();

306

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

  }
}

The updateView() method on TourMapActivity checks to see if  follow-me is 
enabled, and, if true, re-centers the map on the current position:

private void updateView() {
  if (provider!=null) {
    myLocation=myLocationManager.getCurrentLocation(provider.getName());

    if (followMe) {
      Double lat=TourMapActivity.this.myLocation.getLatitude() * 1E6;
      Double lng=TourMapActivity.this.myLocation.getLongitude() * 1E6;
      Point point=new Point(lat.intValue(), lng.intValue());

      mc.centerMapTo(point, false);
    }

    map.invalidate();
  }
}

By this mechanism, you can have your follow-me feature while offering more 
direct control over which location provider to use. It is eminently possible 
the Android API will be updated to "bake in" this type of capability, at which 
point the code shown here may become obsolete.

Layers Upon Layers

If you have ever used the full-size edition of Google Maps, you are probably 
used  to seeing  things  overlaid  atop the map itself,  such  as  "push-pins" 
indicating businesses near the location being searched. In map parlance – 
and, for that matter, in many serious graphic editors – the push-pins are on a 
separate  layer  than  the  map  itself,  and  what  you  are  seeing  is  the 
composition of the push-pin layer atop the map layer.

Android's mapping allows you to create layers as well, so you can mark up 
the maps as you need to based on user input and your application's purpose. 
For example, TourIt uses a layer to show where all the waypoints of the tour 
are, in sequence, plus your current location relative to those waypoints.

307

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

Overlay Classes

Any overlay you want to add to your map needs to be implemented as a 
subclass of Overlay. This does not have to be a public class; TourMapActivity 
has a private inner class  called  RouteOverlay to show the waypoints and 
current device position.

To  attach  an  overlay  class  to  your  map,  you  need  to  get  your  map's 
OverlayController and add the overlay to it:

map.createOverlayController().add(new RouteOverlay(this),
                                   true);

The first parameter is the Overlay instance, in this case a new RouteOverlay, 
attached to the activity. The second parameter is a boolean indicating if the 
overlay  should  be  activated.  You  can  define  overlays  and  activate  or 
deactivate them as needed, just as you toggle between regular and satellite 
views. In this case, since we want the overlay to be visible at all times, we use 
true to activate it immediately.

Drawing the Overlay

Overlay subclasses need to implement a draw() method to actually put their 
material onto their layer for superposition over the map surface. The draw() 
method takes three parameters:

1. A Canvas, used as the drawing surface

2. A  PixelCalculator,  to  help  you  convert  between  pixels  for  your 
drawing and real-world dimensions on the map

3. A boolean indicating whether this is the "shadow" call or not

The draw() method is called twice in succession: once with shadow = true, 
indicating that if your layer has any sort of 3D effect (e.g., shadows cast by 
push-pins),  you  should  draw  those,  and  once  with  shadow  =  false for 
drawing the "regular" part of the layer. While you should chain upward to 
the  superclass  (via  super.draw(canvas,  calculator,  shadow)),  the  default 

308

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

action for draw() is to do nothing. Hence, if you don't have a shadow, either 
ignore the parameter or only draw when shadow = false.

A  Canvas offers  a  range  of  drawing  methods,  such  as  drawCircle(), 
drawText(), and so on. The catch is that the Canvas is expecting to be told 
where to draw in terms of pixels in canvas-space. You, on the other hand, 
have  your  data  in  terms  of  positions  (latitude  and  longitude).  And,  of 
course, the user isn't viewing the whole world at once, so there's a question 
of which subset of things you want to draw actually appear on the Canvas.

Fortunately,  Android  encapsulates  much  of  those  problems  inside  the 
PixelCalculator. To draw things on the Canvas, you should:

1. Convert your latitude and longitude into a Point...as noted above, a 
Point uses a pair of  integers for the latitude and longitude, scaled 
upwards by a factor of 1E6

2. Allocate an int[2] array to hold the pixel conversion of your Point

3. Call  getPointXY() on the  PixelConverter,  supplying your  Point and 
int[2] array

4. Use the int[2] array as x/y coordinates for your draw...() methods 
on the Canvas

For example, here is the implementation of RouteOverlay's draw() method:

public void draw(Canvas canvas, PixelCalculator calculator,
          boolean shadow) {
  super.draw(canvas, calculator, shadow);

  if (showMyLocation() && TourMapActivity.this.myLocation!=null) {        
    Double lat=TourMapActivity.this.myLocation.getLatitude() * 1E6;
    Double lng=TourMapActivity.this.myLocation.getLongitude() * 1E6;
    Point point=new Point(lat.intValue(), lng.intValue());

    int[] myScreenCoords = new int[2];
    calculator.getPointXY(point, myScreenCoords);

    canvas.drawCircle(myScreenCoords[0], myScreenCoords[1], 5, paint3);
  }

  int i=0;

  for (Waypoint pt : tour.getRoute()) {

309

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

    i++;

    Point position=pt.getPosition();

    if (position!=null) {
      int[] screenCoords=new int[2];

      calculator.getPointXY(position, screenCoords);
      canvas.drawCircle(screenCoords[0], screenCoords[1], 12, paint1);
      canvas.drawText(Integer.toString(i), screenCoords[0] - 4,
              screenCoords[1] + 4, paint2);          
    }
  }
}

After  chaining  upward  to  the  superclass,  we  first  determine  if  we're 
supposed to be showing the device's position. If so, we build a Point, convert 
it to x/y coordinates, and draw a 5-pixel radius red circle at those coordinates 
(paint3 is defined up in onCreate() as being RGB red).

Then, for each waypoint in the tour, we do much the same thing: build a 
Point, convert it to x/y coordinates, draw a 12-pixel radius black circle, and 
write in the circle the waypoint number in white.

Handling Screen Taps

An  Overlay subclass can also implement  onTap(), to be notified when the 
user taps on the map, so the overlay can adjust what it draws. For example, 
in full-size Google Maps,  clicking on a push-pin pops up a bubble with 
information about the business at that pin's location. With onTap(), you can 
do much the same in Android.

The onTap() method receives three parameters:

1. A "device type",  indicating  what generated  the tap (touchscreen, 
trackball, etc.)

2. The  Point representing  the  real-world  location  where  the  user 
tapped the map

3. A  PixelCalculator to  help  you  convert  between  Point and  x/y 
coordinates, if needed

310

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Mapping with MapView and MapActivity

It is up to you to determine if  the supplied  Point represents something of 
interest and, if so, what to display.

In the case of RouteOverlay, onTap() looks like this:

@Override
public boolean onTap(com.google.android.maps.MapView.DeviceType deviceType,
            Point p, PixelCalculator calculator) {
  for (Waypoint pt : tour.getRoute()) {
    Point position=pt.getPosition();

    if (position!=null) {
      int[] screenCoords=new int[2];
      RectF rect=new RectF();

      calculator.getPointXY(position, screenCoords); 
      rect.set(-12,-12,12,12);
      rect.offset(screenCoords[0], screenCoords[1]);
      calculator.getPointXY(p, screenCoords);

      if (rect.contains(screenCoords[0], screenCoords[1])) {
        Toast.makeText(parent, pt.getTitle(), 2000).show();
      }
    }
  }

  return(super.onTap(deviceType, p, calculator));
}

We iterate over the waypoints and use the RectF helper class to construct a 
24x24 pixel square around each waypoint's on-screen representation. This 
square isn't drawn on screen; rather, it is used solely to determine if the tap 
(represented by the supplied  Point) occurred within that square. If  so, we 
consider the user to have tapped on that waypoint, and we show a Toast with 
the name of the waypoint (e.g., "Mosser St. @ Hamilton").

311

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 32

Playing Media

Pretty much every phone claiming to be a "smartphone" has the ability to at 
least play back music, if  not video. Even many more ordinary phones are 
full-fledged MP3 players, in addition to offering ringtones and whatnot.

Not surprisingly, Android aims to match the best of them.

Android has full capability to play back and record audio and video. This 
includes:

• Playback of audio, such as downloaded MP3 tracks

• Showing photos

• Playing back video clips

• Voice recording through the microphone

• Camera for still pictures or video clips

Exactly how robust these capabilities will be is heavily device-dependent. 
Mobile device cameras range from excellent to atrocious. Screen resolutions 
and  sizes  will  vary,  and  video playback  works  better  on  better  screens. 
Which codecs a device manufacturer will license (e.g., what types of video 
can it play?) and which Bluetooth profiles a device will support (e.g., A2DP 
for stereo?) will also have an impact on what results any given person will 
have with their phone.

313

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

You as a developer can integrate media playback and recording into your 
applications.  Recording  is  outside  the scope of  this  book,  in  large  part 
because the current emulator has recording limitations at this time. And, 
viewing pictures is mostly a matter of putting an ImageView widget into an 
activity. This chapter, therefore, focuses on playback of audio and video.

As with many advanced Android features, expect changes in future releases 
of their toolkit. For example, at the time of this writing, there is no built-in 
audio or video playback activity. Hence, you cannot just craft an Intent to, 
say, an MP3 URL, and hand it off  to Android with  VIEW_ACTION to initiate 
playback. Right now, you need to handle the playback yourself. It is probably 
safe to assume, though, that standard activities for this will be forthcoming, 
allowing you to "take the easy way out" if you want to play back media but 
do not need to control that playback much yourself.

Get Your Media On

In Android, you have five different places you can pull media clips from – 
one of these will hopefully fit your needs:

1. You  can  package  media  clips  as  raw  resources  (res/raw in  your 
project), so they are bundled with your application. The benefit is 
that you're guaranteed the clips will be there; the downside is that 
they cannot be replaced without upgrading the application.

2. You can package media clips as assets (assets/ in your project) and 
reference them via file:///android_asset/ URLs in a Uri. The benefit 
over raw resources is that this location works with APIs that expect 
Uri parameters instead of  resource IDs. The downside – assets are 
only replaceable when the application is upgraded – remains.

3. You  can  store  media  in  an  application-local  directory,  such  as 
content you download off the Internet. Your media may or may not 
be there, and your storage space isn't infinite, but you can replace 
the media as needed.

4. You can store media – or reference media that the user has stored 
herself – that is on an SD card. There is likely more storage space on 

314

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

the card than there is on the device, and you can replace the media 
as needed, but other applications have access to the SD card as well.

5. You can, in some cases, stream media off the Internet, bypassing any 
local storage

Internet streaming seems to be somewhat problematic in this release of the 
Android SDK.

Making Noise

The crux of playing back audio comes in the form of the MediaPlayer class. 
With it, you can feed it an audio clip, start/stop/pause playback, and get 
notified on key events, such as when the clip is ready to be played or is done 
playing.

You have three ways to set up a  MediaPlayer and tell it what audio clip to 
play:

1. If  the clip is a raw resource, use  MediaPlayer.create() and provide 
the resource ID of the clip

2. If  you  have  a  Uri to  the  clip,  use  the  Uri-flavored  version  of 
MediaPlayer.create()

3. If you have a string path to the clip, just create a MediaPlayer using 
the default constructor, then call  setDataSource() with the path to 
the clip

Next, you need to call prepare() or prepareAsync(). Both will set up the clip 
to be ready to play,  such as fetching the first few seconds off  the file or 
stream. The prepare() method is synchronous; as soon as it returns, the clip 
is ready to play. The prepareAsync() method is asynchronous – more on how 
to use this version later.

Once the clip is prepared, start() begins playback, pause() pauses playback 
(with start() picking up playback where pause() paused), and stop() ends 
playback.  One  caveat:  you  cannot  simply  call  start() again  on  the 
MediaPlayer once you have called stop() – that may be a bug or may be the 

315

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

intended MediaPlayer behavior. We'll cover a workaround a bit later in this 
section.

To see this in action, take a look at the AudioDemo sample project. The layout 
is pretty trivial, with three buttons and labels for play, pause, and stop:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="vertical"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    >
  <LinearLayout
    android:orientation="horizontal"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:padding="4px"
  >
    <ImageButton android:id="@+id/play"
      android:src="@drawable/play"
      android:layout_height="wrap_content"
      android:layout_width="wrap_content"
      android:paddingRight="4px"
      android:enabled="false"
    />
    <TextView
      android:text="Play"
      android:layout_width="fill_parent"
      android:layout_height="fill_parent"
      android:gravity="center_vertical"
      android:layout_gravity="center_vertical"
      android:textAppearance="?android:attr/textAppearanceLarge"
    />
  </LinearLayout>
  <LinearLayout
    android:orientation="horizontal"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:padding="4px"
  >
    <ImageButton android:id="@+id/pause"
      android:src="@drawable/pause"
      android:layout_height="wrap_content"
      android:layout_width="wrap_content"
      android:paddingRight="4px"
    />
    <TextView
      android:text="Pause"
      android:layout_width="fill_parent"
      android:layout_height="fill_parent"
      android:gravity="center_vertical"

316

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

      android:layout_gravity="center_vertical"
      android:textAppearance="?android:attr/textAppearanceLarge"
    />
  </LinearLayout>
  <LinearLayout
    android:orientation="horizontal"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    android:padding="4px"
  >
    <ImageButton android:id="@+id/stop"
      android:src="@drawable/stop"
      android:layout_height="wrap_content"
      android:layout_width="wrap_content"
      android:paddingRight="4px"
    />
    <TextView
      android:text="Stop"
      android:layout_width="fill_parent"
      android:layout_height="fill_parent"
      android:gravity="center_vertical"
      android:layout_gravity="center_vertical"
      android:textAppearance="?android:attr/textAppearanceLarge"
    />
  </LinearLayout>
</LinearLayout>

The Java, of course, is where things get interesting:

package com.commonsware.android.audio;

import android.app.Activity;
import android.content.Context;
import android.content.SharedPreferences;
import android.media.MediaPlayer;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.widget.ImageButton;
import android.widget.Toast;

public class AudioDemo extends Activity {
  private static final int CLOSE_ID = Menu.FIRST+2;
  
  private ImageButton play;
  private ImageButton pause;
  private ImageButton stop;
  private MediaPlayer mp;

  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);

317

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

    
    play=(ImageButton)findViewById(R.id.play);
    pause=(ImageButton)findViewById(R.id.pause);
    stop=(ImageButton)findViewById(R.id.stop);
    
    play.setOnClickListener(new View.OnClickListener() {
      public void onClick(View view) {
        mp.start();
        play.setEnabled(false);
        pause.setEnabled(true);
        stop.setEnabled(true);
      }
    });
    
    pause.setOnClickListener(new View.OnClickListener() {
      public void onClick(View view) {
        mp.pause();
        play.setEnabled(true);
        pause.setEnabled(false);
        stop.setEnabled(true);
      }
    });
    
    stop.setOnClickListener(new View.OnClickListener() {
      public void onClick(View view) {
        stop();
      }
    });
    
    try {
      mp=new MediaPlayer();
      mp.setOnPreparedListener(new MediaPlayer.OnPreparedListener() {
        public void onPrepared(MediaPlayer mp) {
          play.setEnabled(true);
        }
      });
      mp.setOnCompletionListener(new MediaPlayer.OnCompletionListener() {
        public void onCompletion(MediaPlayer mp) {
          stop();
        }
      });
      
      setup();
    }
    catch (Throwable t) {
      android.util.Log.e("AudioDemo", "Exception playing audio", t);
      Toast.makeText(this, "Ick!", 2000).show();
    }
    }
  
  @Override
  public boolean onCreateOptionsMenu(Menu menu) {
    menu.add(0, CLOSE_ID, "Close", R.drawable.eject)
        .setAlphabeticShortcut('c');

318

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

    return(super.onCreateOptionsMenu(menu));
  }

  @Override
  public boolean onOptionsItemSelected(Menu.Item item) {
    switch (item.getId()) {
      case CLOSE_ID:
        finish();
        return(true);
    }

    return(super.onOptionsItemSelected(item));
  }
  
  private void stop() {
    mp.reset();
    setup();
  }
  
  private void setup() {
    play.setEnabled(false);
    pause.setEnabled(false);
    stop.setEnabled(false);
    
    try {
      mp.setDataSource("/system/media/audio/ringtones/ringer.mp3");
    }
    catch (Throwable t) {
      android.util.Log.e("AudioDemo", "Exception playing audio", t);
      Toast.makeText(this, "Ick!", 2000).show();
    }
    
    mp.prepareAsync();
  }
}

During  the preparation phase,  we wire up the three buttons to shift  us 
between the other states, plus prep the  MediaPlayer (mp instance variable). 
Specifically:

• We use the empty constructor

• We hook it up to an OnPreparedListener via setOnPreparedListener() 
– this callback gets invoked when prepareAsync() is finished, and in 
our case it enables the play button

• We  hook  it  up  to  an  OnCompletionListener via 
setOnCompletionListener() – this callback gets invoked when the clip 

319

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

reaches the end, at which point we call stop(), just as if the user had 
clicked the Stop button

• We call a setup() method

Our  stop() method simply resets the  MediaPlayer and calls  setup().  The 
setup() method  –  called  during  initial  preparation  and  after the clip  is 
stopped – disables the buttons, sets the clip to be a built-in ringtone MP3, 
and calls prepareAsync().

So, the flow is:

1. We prep the MediaPlayer with the clip

2. We enable the play button

3. The user clicks the play button and listens to the clip

4. The user possibly pauses playback, then clicks play again to resume

5. The user possibly stops playback, at which time the media player is 
completely reset to its post-prep state

6. The clip possibly ends on its own, at which time the media player is 
also reset

The whole reset-and-reconfigure process is how you can get a  MediaPlayer 
back to being able to play again after you call stop().

The UI is nothing special, but we're more interested in the audio in this 
sample, anyway:

320

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

Figure 64. The AudioDemo sample application

Moving Pictures

Video clips get their own widget, the VideoView. Put it in a layout, feed it an 
MP4 video clip, and you get playback!

Right now, playback seems a bit rocky in the emulator, but that will likely 
clear itself up in future releases – VideoView was only made available in the 
SDK release prior to publication of this book.

Since VideoView is a widget, you can put it in a layout, such as this one from 
the VideoDemo sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="vertical"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    >
  <VideoView 
    android:id="@+id/video" 
      android:layout_width="320px"
      android:layout_height="240px"

321

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

    />
  <Button android:id="@+id/show"
    android:text="Show Controller!"
    android:layout_height="fill_parent"
    android:layout_width="fill_parent"
    android:paddingRight="4px"
    android:enabled="false"
  />
</LinearLayout>

In addition to the VideoView, we also put in a Button that, when pushed, will 
pop up the VideoView control panel, known as the MediaController. This, by 
default,  overlays  the  bottom  portion  of  the  VideoView and  shows  your 
current  position  in  the  video  clip,  plus  offers  pause,  rewind,  and  fast-
forward buttons:

package com.commonsware.android.video;

import android.app.Activity;
import android.graphics.PixelFormat;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.MediaController;
import android.widget.VideoView;

public class VideoDemo extends Activity {
  private VideoView video;
  private MediaController ctlr;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    getWindow().setFormat(PixelFormat.TRANSLUCENT);
    setContentView(R.layout.main);
  
    Button show=(Button)findViewById(R.id.show);
    
    show.setOnClickListener(new View.OnClickListener() {
      public void onClick(View view) {
        ctlr.show();
      }
    });
    
    video=(VideoView)findViewById(R.id.video);
    video.setVideoPath("/tmp/test.mp4");
    
    ctlr=new MediaController(this);
    ctlr.setMediaPlayer(video);
      video.setMediaController(ctlr);
      video.requestFocus();

322

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Playing Media

    }
}

The biggest trick  with  VideoView is  getting  a video clip onto the device. 
While  VideoView does support some streaming video, the requirements on 
the MP4 file are fairly stringent. If you want to be able to play a wider array 
of  video clips,  you need to have them on the device,  either in the local 
filesystem or on an SD card.

The crude VideoDemo class assumes there is an MP4 file in /tmp/test.mp4 on 
your emulator. To make this a reality:

1. Find a clip, such as Aaron Rosenberg's Documentaries and You from 
Duke  University's  Center  for  the  Study  of  the  Public  Domain's 
Moving Image Contest, which was used in the creation of this book

2. Use the adb push command (or the equivalent in your IDE) to copy 
the MP4 file into /tmp/test.mp4

Once there, the following Java code will give you a working video player:

Figure 65. The VideoDemo sample application, showing a Creative Commons-
licensed video clip

323

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.law.duke.edu/cspd/contest/finalists/


Playing Media

NOTE: the /tmp directory is cleaned out periodically on the emulator, and so 
you may need to re-push the file if you intend to run this sample over an 
extended period of time.

The button is set up to call show() on the MediaController, which displays the 
control panel. The clip will automatically start playing back – you do not 
need to call play() on the VideoView, though that method is available (as is 
pause() and stopPlayback(), in case you need your own control over playback 
in addition to the MediaController's control panel).

324

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 33

Handling Telephone Calls

Many, if  not most, Android devices will be phones. As such, not only will 
users be expecting to place and receive calls using Android,  but you will 
have the opportunity to help them place calls, if you wish.

Why might you want to?

• Maybe you are writing an Android interface to a sales management 
application (a la Salesforce.com) and you want to offer users the 
ability to call prospects with a single button click, and without them 
having to keep those contacts both in your application and in the 
phone's contacts application

• Maybe you  are  writing  a  social  networking  application,  and  the 
roster of  phone numbers that you can access shifts constantly,  so 
rather  than  try  to  "sync"  the  social  network  contacts  with  the 
phone's contact database,  you let people place calls directly from 
your application

• Maybe  you  are  creating  an  alternative  interface  to  the  existing 
contacts system, perhaps for users with reduced motor control (e.g., 
the elderly), sporting big buttons and the like to make it easier for 
them to place calls

Whatever the reason, Android has APIs to let you manipulate the phone just 
like any other piece of the Android system.

325

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Handling Telephone Calls

No, No, No – Not That IPhone...

To get at the phone API, you need to get an object implementing the IPhone 
interface from Android. Today, that works much like how you would access 
any other service's IPC interface, by calling IPhone.Stub.asInterface() with a 
suitable binder. The difference is in how you get that binder:

phone=IPhone.Stub.asInterface(svcMgr.getService("phone"));

What's Our Status?

Bear in mind that the phone capability might not always be on,  even if 
Android is running. The phone might have the phone radio turned off  in 
places where either it isn't allowed (airplanes, hospitals, etc.) or as a means 
of silencing the phone during meetings.

You can determine if the phone is ready for use by calling isRadioOn() on the 
IPhone interface. You can even call toggleRadioOnOff() to change the radio's 
status – though you really should make sure this is what the user wants, lest 
they accidentally toggle the phone on when they really shouldn't.

Of course, there's a more prosaic reason why you might not be able to use 
the phone – the user might already be on a call. The isOffhook() method – 
despite using the archaic "hook" terminology from a byegone era of phones 
– will tell if you if a call is in progress. Here, "off hook" means the phone is 
in use, so if isOffhook() returns true, you cannot place a call.

You Make the Call!

IPhone also offers three APIs related to call handling:

1. dial(),  which takes a phone number and puts it on the Android 
Dialer screen, awaiting user confirmation to dial that number

2. call(), which immediately places a call, given a phone number

3. endCall(), which terminates the current call

326

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Handling Telephone Calls

Generally speaking, you probably should use dial() over call(), so the user 
gets  confirmation  that  they're  actually  placing  a  call,  in  case they  mis-
clicked on something.  Or,  offer a configuration option,  allowing users to 
choose whether you wind up using dial() or call(). If you feel you want to 
use call(), make sure the user has confirmed they truly want a call, or you 
may wind up with a bunch of unhappy users.

For example, let's look at the Dialer sample application. Here's the crude-
but-effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="vertical"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    >
  <LinearLayout 
    android:orientation="horizontal"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    >
    <TextView  
      android:layout_width="wrap_content" 
      android:layout_height="wrap_content" 
      android:text="Number to dial:"
      />
    <EditText android:id="@+id/number"
      android:layout_width="fill_parent" 
      android:layout_height="wrap_content"
      android:cursorVisible="true"
      android:editable="true"
      android:singleLine="true"
    />
  </LinearLayout>
  <LinearLayout 
    android:orientation="horizontal"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
    >
    <Button android:id="@+id/dial"
      android:layout_width="fill_parent" 
      android:layout_height="fill_parent"
      android:layout_weight="1"
      android:text="Dial It!"
    />
    <Button android:id="@+id/call"
      android:layout_width="fill_parent" 
      android:layout_height="fill_parent"
      android:layout_weight="1"
      android:text="Call It!"

327

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Handling Telephone Calls

    />
  </LinearLayout>
</LinearLayout>

We have a labeled field for typing in a phone number,  plus buttons for 
dialing and calling said number.

The Java code wires up those buttons to dial() and call(), respectively, on 
the IPhone interface:

package com.commonsware.android.dialer;

import android.app.Activity;
import android.os.Bundle;
import android.os.DeadObjectException;
import android.os.IServiceManager;
import android.os.ServiceManagerNative;
import android.telephony.IPhone;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

public class DialerDemo extends Activity {
  IPhone phone=null;
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);
  
    IServiceManager svcMgr=ServiceManagerNative.getDefault();
  
    try {
      phone=IPhone.Stub.asInterface(svcMgr.getService("phone"));
    }
    catch (DeadObjectException e) {
      android.util.Log.e("DialerDemo", "Error in dial()", e);
      Toast.makeText(DialerDemo.this, e.toString(), 2000).show();
      finish();
    }
  
    final EditText number=(EditText)findViewById(R.id.number);
    Button dial=(Button)findViewById(R.id.dial);
  
    dial.setOnClickListener(new Button.OnClickListener() {
      public void onClick(View v) {
        try {
          if (phone!=null) {
            phone.dial(number.getText().toString());
          }

328

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Handling Telephone Calls

        }
        catch (DeadObjectException e) {
          android.util.Log.e("DialerDemo", "Error in dial()", e);
          Toast.makeText(DialerDemo.this, e.toString(), 2000).show();
        }
      }
    });
  
    Button call=(Button)findViewById(R.id.call);
    
    call.setOnClickListener(new Button.OnClickListener() {
      public void onClick(View v) {
        try {
          if (phone!=null) {
            phone.call(number.getText().toString());
          }
        }
        catch (DeadObjectException e) {
          android.util.Log.e("DialerDemo", "Error in dial()", e);
          Toast.makeText(DialerDemo.this, e.toString(), 2000).show();
        }
      }
    });
  }
}

Some notes about the code:

• We keep the IPhone – created near the top of onCreate() – around in 
an instance variable in the activity, so we don't keep having to create 
new IPhone instances on every button push

• Since  IPhone is, in effect, an interface to a service, we have to deal 
with  the  possible  DeadObjectException if  the  service  connection 
collapsed; here, we just log and display an error message

The activity's own UI is not that impressive:

329

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Handling Telephone Calls

Figure 66. The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing 
you the number you are about to dial:

Figure 67. The Android Dialer activity, as launched from DialerDemo

330

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Handling Telephone Calls

Or, if you click the call button, you are taken straight to a call:

Figure 68. The Android call activity, as launched from DialerDemo

331

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



CHAPTER 34

Searching with SearchManager

One of the firms behind the Open Handset Alliance – Google – has a teeny 
weeny Web search service, one you might have heard of in passing. Given 
that, it's not surprising that Android has some amount of  built-in search 
capabilities.

Specifically, Android has "baked in" the notion of searching not only on the 
device for data, but over the air to Internet sources of data.

Your  applications  can  participate  in  the  search  process,  by  triggering 
searches or perhaps by allowing your application's data to be searched.

Note that this is fairly new to the Android platform, and so some shifting in 
the APIs is likely. Stay tuned for updates to this chapter.

Hunting Season

If  your activity has an options menu,  then you automatically "inherit"  a 
hidden search menu choice. If the user clicks the menu button followed by 
the S key, it will display the search popup:

333

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

Figure 69. The Android search popup, showing a search for contacts

From here, you can toggle between applications by clicking the button on 
the left and enter in a search string. If  the application you are searching 
supports a live filtered search, like the built-in Contacts activity,  you can 
choose from an entry matching your search string as it appears below the 
search field:

334

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

Figure 70. A filtered search for contacts

Or, you can click the Go button and be taken to an activity that will process 
your search and show the results.

If your activity does not have an options menu, you will need to trigger this 
manually by some other user interface element, such as a button. That is 
simply a matter of calling onSearchRequested() in your activity (e.g., from the 
button's callback method).

If your activity does not need keyboard entry, you can have keystrokes pull 
up the search popup by calling  setDefaultKeyMode(SEARCH_DEFAULT_KEYS) in 
your activity  (e.g.,  in  onCreate()).  Note that  there  are other options  for 
setDefaultKeyMode(),  such  as  DIALER_DEFAULT_KEYS,  which  routes  number 
keypresses to a newly-launched Dialer activity.

Search Yourself

Over the long haul,  there will  be two flavors of  search available via the 
Android search system:

335

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

1. Query-style search, where the user's search string is passed to an 
activity  which  is  responsible  for  conducting  the  search  and 
displaying the results

2. Filter-style search,  where the user's  search string  is  passed  to an 
activity  on  every  keypress,  and  the  activity  is  responsible  for 
updating a displayed list of matches

Since the latter approach is  under heavy development right now by the 
Android team, let's focus on the first one.

Craft the Search Activity

The first thing you are going to want to do if you want to support query-style 
search in your application is to create a search activity. While it might be 
possible to have a single activity be both opened from the launcher and 
opened  from  a  search,  that  might  prove  somewhat  confusing  to  users. 
Certainly,  for the purposes of  learning the techniques,  having a separate 
activity is cleaner.

The search activity can have any look you want. In fact, other than watching 
for queries, a search activity looks, walks, and talks like any other activity in 
your system.

All the search activity needs to do differently is check the intents supplied to 
onCreate() (via getIntent()) and onNewIntent() to see if one is a search, and, 
if so, to do the search and display the results.

For example, let's look at the Lorem sample application. This starts off as a 
clone of the list-of-lorem-ipsum-words application that we first built back 
when showing off  the  ListView container, then later with XML resources. 
Now, we update it to support searching the list of words for ones containing 
the search string.

The main activity and the search activity both share a common layout: a 
ListView plus a TextView showing the selected entry:

336

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
  android:orientation="vertical"
  android:layout_width="fill_parent" 
  android:layout_height="fill_parent" >
  <TextView
    android:id="@+id/selection"
    android:layout_width="fill_parent"
    android:layout_height="wrap_content"
  />
  <ListView
    android:id="@android:id/list"
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent"
    android:drawSelectorOnTop="false"
  />
</LinearLayout>

In terms of Java code, most of the guts of the activities are poured into an 
abstract LoremBase class:

package com.commonsware.android.search;

import android.app.Activity;
import android.app.ListActivity;
import android.app.SearchManager;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;
import android.widget.ListView;
import android.widget.TextView;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import org.xmlpull.v1.XmlPullParser;
import org.xmlpull.v1.XmlPullParserException;

abstract public class LoremBase extends ListActivity {
  abstract ListAdapter makeMeAnAdapter(Intent intent);
  
  private static final int CLOSE_ID = Menu.FIRST+1;
  TextView selection;
  ArrayList<String> items=new ArrayList<String>();
  
  @Override
  public void onCreate(Bundle icicle) {
    super.onCreate(icicle);
    setContentView(R.layout.main);

337

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

    selection=(TextView)findViewById(R.id.selection);
    
    try {
      XmlPullParser xpp=getResources().getXml(R.xml.words);
      
      while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
        if (xpp.getEventType()==XmlPullParser.START_TAG) {
          if (xpp.getName().equals("word")) {
            items.add(xpp.getAttributeValue(0));
          }
        }
        
        xpp.next();
      }
    }
    catch (Throwable t) {
      showAlert("Exception!", 0, t.toString(), "Cancel", true);
    }
    
    onNewIntent(getIntent());
  }
  
  @Override
  public void onNewIntent(Intent intent) {
    ListAdapter adapter=makeMeAnAdapter(intent); 
    
    if (adapter==null) {
      finish();
    }
    else {
      setListAdapter(adapter);
    }
  }
  
  public void onListItemClick(ListView parent, View v, int position,
                  long id) {
    selection.setText(items.get(position).toString());
  }
    
  @Override
  public boolean onCreateOptionsMenu(Menu menu) {
    menu.add(0, CLOSE_ID, "Close", R.drawable.eject)
            .setAlphabeticShortcut('c');
  
    return(super.onCreateOptionsMenu(menu));
  }

  @Override
  public boolean onOptionsItemSelected(Menu.Item item) {
    switch (item.getId()) {
      case CLOSE_ID:
        finish();
        return(true);
    }

338

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

    return(super.onOptionsItemSelected(item));
  }
}

This activity takes care of everything related to showing a list of words, even 
loading the words out of the XML resource. What it does not do is come up 
with the  ListAdapter to put into the  ListView –  that is  delegated  to the 
subclasses.

The main activity –  LoremDemo – just uses a ListAdapter for the whole word 
list:

package com.commonsware.android.search;

import android.content.Intent;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;

public class LoremDemo extends LoremBase {
  @Override
  ListAdapter makeMeAnAdapter(Intent intent) {
    return(new ArrayAdapter<String>(this,
                     android.R.layout.simple_list_item_1,
                     items));
  }
}

The search activity, though, does things a bit differently.

First,  it  inspects  the  Intent supplied  to  the  abstract  makeMeAnAdpater() 
method. That Intent comes from either onCreate() or onNewIntent(). If the 
intent is a  SEARCH_ACTION,  then we know this is a search.  We can get the 
search query and, in the case of this silly demo, spin through the loaded list 
of words and find only those containing the search string. That list then gets 
wrapped in a ListAdapter and returned for display:

package com.commonsware.android.search;

import android.app.SearchManager;
import android.content.Intent;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;
import java.util.ArrayList;

339

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

import java.util.List;

public class LoremSearch extends LoremBase {
  @Override
  ListAdapter makeMeAnAdapter(Intent intent) {
    ListAdapter adapter=null; 
    
    if (intent.getAction().equals(Intent.SEARCH_ACTION)) {
      String query=intent.getStringExtra(SearchManager.QUERY);
      List<String> results=searchItems(query);
      
      adapter=new ArrayAdapter<String>(this,
                       android.R.layout.simple_list_item_1,
                       results);
      setTitle("LoremSearch for: "+query);
    }
    
    return(adapter);
  }
  
  private List<String> searchItems(String query) {
    List<String> results=new ArrayList<String>();
    
    for (String item : items) {
      if (item.indexOf(query)>-1) {
        results.add(item);
      }
    }
    
    return(results);
  }
}

Update the Manifest

While this  implements  search,  it  doesn't  tie  it  into the Android  search 
system.  That  requires  a  few  changes  to  the  auto-generated 
AndroidManifest.xml file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
  package="com.commonsware.android.search">
  <application>
    <activity android:name=".LoremDemo" android:label="LoremDemo">
      <intent-filter>
        <action android:name="android.intent.action.MAIN" />
        <category android:name="android.intent.category.LAUNCHER" />
      </intent-filter>
      <meta-data android:name="android.app.default_searchable"
            android:value=".LoremSearch" />
    </activity>

340

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

    <activity
      android:name=".LoremSearch"
      android:label="LoremSearch"
      android:launchMode="singleTop">
      <intent-filter>
        <action android:name="android.intent.action.SEARCH" />
        <category android:name="android.intent.category.DEFAULT" />
      </intent-filter>
      <meta-data android:name="android.app.searchable" 
            android:resource="@xml/searchable" />
    </activity>
  </application>
</manifest>

The changes that are needed are:

1. The  LoremDemo main  activity  gets  a  meta-data element,  with  an 
android:name of  android.app.default_searchable and a android:value 
of the search implementation class (.LoremSearch)

2. The  LoremSearch activity  gets  an  intent  filter  for 
android.intent.action.SEARCH, so search intents will be picked up

3. The  LoremSearch activity  is  set  to  have  android:launchMode  = 

"singleTop", which means at most one instance of this activity will 
be open at any time, so we don't wind up with a whole bunch of little 
search activities cluttering up the activity stack

4. The  LoremSearch activity  gets  a  meta-data element,  with  an 
android:name of  android.app.searchable and  a  android:value of  an 
XML resource containing more information about the search facility 
offered by this activity (@xml/searchable)

That XML resource provides two bits of information today:

1. What name should appear in the search domain button to the left of 
the search field, identifying to the user where she is searching

2. What hint text should appear in the search field, to give the user a 
clue as to what they should be typing in

341

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

Try It Out

Given all that, search is now available – Android knows your application is 
searchable,  what  search  domain  to  use  when  searching  from  the  main 
activity, and the activity knows how to do the search.

If  you pop up the search from the main activity (Menu+S), you will see the 
Lorem Ipsum search domain appear as your default area to search:

Figure 71. The Lorem sample application, showing the search popup

Typing in a letter or two, then clicking Go, will bring up the search activity 
and the subset of words containing what you typed, with your search query 
in the activity title bar:

342

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Searching with SearchManager

Figure 72. The results of searching for 'co' in the Lorem search sample

343

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



PART VII – Appendices

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



APPENDIX A

The TourIt Sample Application

In several chapters of this book, we used TourIt as a source of sample code 
for  features  ranging  from  content  providers  to  mapping  and  location 
services. This appendix discusses the application as a whole, so you can see 
all facets of it from front to back.

Installing TourIt

Installing  the  application  itself  is  straightforward:  with  the  emulator 
running, fire up ant install in the base of the TourIt project directory, and 
let Ant do the heavy lifting.

However, TourIt has two other requirements – a demo location provider and 
an SD card image – that are somewhat more complicated to install.

Demo Location Provider

As mentioned in the chapter on locations, Android has a built-in fake, or 
demo, location provider, that has the device moving through a loop around 
the Google campus in California. The author of this book does not live in 
Silicon Valley.  As such, he had no good way of  developing a bicycle tour 
matching  that  loop.  It  was  more  expedient  to  develop  another  demo 
location provider, this one handling a loop around the author's home base 
in  eastern  Pennsylvania,  with  the  tour  starting  at  the  Lehigh  Valley 
Velodrome.

347

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

This  means,  though,  that  you  will  probably  want  to  install  this  demo 
location provider yourself, so the TourIt application's tour lines up with a 
location provider.

In the project's location/velo/ directory, you will find three files:

• location, which holds the most-recent position of the device along 
this track

• properties,  which  describes  the  characteristics  of  this  location 
provider  (e.g.,  doesn't  support  altitude,  has  a  low  power 
requirement)

• track,  which is the actual  roster of  time offsets from the starting 
time and  the position  the device  is  in  at  that  point,  defined  as 
latitude and longitude

To install this location provider in your emulator, do the following:

1. Use adb shell to create a velo/ directory under /data/misc/location/ 
(e.g., adb shell "mkdir /data/misc/location/velo")

2. Use  adb  push to  push  each  of  those  three  files  into your  newly 
created directory

3. Restart your emulator

At this point, for TourIt and any other location-aware application on your 
emulator, you will be able to use both the built-in fake GPS data and this 
new "velo" set of fake GPS data.

SD Card Image with Sample Tour

Future editions of TourIt will support multimedia clips, once some standard 
players start shipping with the Android SDK (versus the player components 
described in an  earlier chapter). Hence, the long-term vision is for a tour 
and its associated media clips to reside on an SD card, either downloaded 
there off  the Internet,  or transferred there via USB cables,  Bluetooth,  or 
similar means.

348

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

For the purposes of  this early incarnation of  TourIt, you will need an SD 
card image you can use with the Android emulator and upload a tour there, 
before the TourIt application will be useful.

To create an SD card image, use the mksdcard tool supplied by the Android 
SDK. In this case, though, a small SD card image is supplied as sdcard.img in 
the TourIt project directory with the sample code for this book.

To use that card in the emulator, pass the -sdcard switch with a path to the 
image file:

emulator -sdcard path/to/sdcard.img

That will mount the card under /sdcard/ in the emulator's filesystem.

Running TourIt

Like  most  Android  applications,  TourIt  is  available  from  the  Android 
launcher:

Figure 73. The Android launcher, showing the TourIt main activity

349

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Clicking on that icon brings up the main TourIt activity.

Main Activity

The main activity provides two distinct screens:

1. A "home page" showing version information and some navigation 
buttons

2. A list of available tours loaded into the application

Figure 74. The TourIt "home page"

The three navigation buttons shown on the home page are duplicated in the 
options  menu,  along  with  a  Close  menu  choice  to  proactively  exit  the 
activity:

350

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Figure 75. The TourIt "home page" with option menu

If you click on the show-tours button, you will see a list of available tours. If 
your SD card image is mounted properly, TourIt should automatically find 
the sample tour when it lazy-creates its database, so you should see:

351

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Figure 76. The TourIt list of tours

Configuration Activity

However, before looking at a tour, it is a good idea to visit the configuration 
activity, so we can use the right sample location provider when drawing the 
map. If you choose the "configure" button or option menu choice, you will 
bring up that configuration activity:

352

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Figure 77. The TourIt configuration activity

As  mentioned,  the  most  important  setting  to  change  is  the  location 
provider,  using the supplied spinner.  If  you uploaded the mock provider 
described earlier in this appendix, the "velo" location provider should be 
listed – choose it.

Beyond that, you can configure:

• Whether TourIt starts with the "home page" or the list of tours when 
you click the icon from the launcher

• Whether your current location should be shown on the map, and if 
the map should scroll to follow your location as you move

• What should happen when you near a waypoint on a tour you are 
taking – play a sound, vibrate, or both, and whether it should do that 
once or continuously while you are near the waypoint

353

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Cue Sheet Activity

Of course, the interesting part of TourIt are the tours themselves. On the 
tours list, if  you choose the "LV Velodrome" tour, it will bring up the cue 
sheet:

Figure 78. A tour's cue sheet in TourIt

The  starting  point  is  the  first  entry,  called  a  "waypoint".  Subsequent 
waypoints are given based on a direction from the preceding waypoint – for 
example, from Hamilton Blvd. at Mosser, you will travel 0.7 miles and make 
a left at the stop sign to turn onto Weilers Rd.

If you choose one of the waypoints in the list, a panel will appear towards 
the bottom showing more details about that waypoint:

354

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Figure 79. The TourIt cue sheet with waypoint details

There are several bits of information that can appear in this panel. Use the 
left and right buttons on the D-pad to rotate between them, or check the 
"Animate  details"  checkbox  at  the  bottom  to  have  them  scroll  by 
automatically.

The other checkbox at the bottom, "Alert near waypoint", means you want 
the device to beep or buzz when you are near the waypoint. You would turn 
this on if you were actually taking the tour shown on this cue sheet, to help 
let you know you are nearing a place where you need to turn or stop.

Map Activity

The options menu from the cue sheet activity includes one to spawn a map 
showing your location and the location of the waypoints on the tour:

355

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Figure 80. The TourIt map view

Your  position  is  shown  by  the  red  dot  (if  you  enabled  that  in  the 
configuration). The waypoints are shown by numbered dots, starting with 1 
for  the  first  waypoint.  If  you  turned  on  the  follow-me  feature  in  the 
configuration, the map will shift to show your position no matter where you 
go on the map.

The options menu for this activity has a few distinctive choices:

356

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Figure 81. The TourIt map view, with options menu displayed

The "Show Picker" menu choice will bring up a spinner and button, allowing 
you to choose a waypoint and jump to that location. Note, however, if you 
are set with follow-me turned on, it will  then pop the map back to your 
current location.

The "Full Map" menu choice will launch the built-in Android map activity 
on your current location, to access mapping features not available in TourIt's 
own simplified map view.

Tour Update Activity

TourIt  does  not  allow you  to  define  new tours  from scratch  inside  the 
application,  mostly  because  there  would  be  a  fair  amount  of  typing 
involved, and that would be tedious on a phone. However, it does allow you 
to update the position information associated with waypoints.  In theory, 
you would use some external program to define a tour, upload it to TourIt, 
then take the tour and update the waypoints as you go, then publish the 
resulting updated tour.  There are a few pieces missing in this version of 
TourIt to make this a reality (e.g., easily adding and publishing tours), but 

357

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

the ability to update the location is provided. You can get to this via the 
Update menu choice from the cue sheet:

Figure 82. Updating a cue sheet within TourIt

Via the spinner,  you can choose a  waypoint.  Then,  you  can update the 
distance travelled along the course from the preceding waypoint to here, 
and click "Fill In My Location!" to update the latitude, longitude, and (in 
theory) elevation of your position. When done, choose Save from the option 
menu to save your changes back out to the tour for later reuse.

Help Activity

TourIt also provides a very limited amount of online help, to explain how to 
use  the  application.  Choosing  the  Help  option  menu  choice  from  any 
activity takes you to online help for that activity:

358

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Figure 83. A TourIt help page

TourIt's Manifest

TourIt has a somewhat more complicated AndroidManifest.xml file than the 
rest of the samples shown in this book:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
    package="com.commonsware.tourit">
  <uses-permission android:name="android.permission.ACCESS_LOCATION" />
  <uses-permission android:name="android.permission.ACCESS_GPS" /> 
  <uses-permission android:name="android.permission.ACCESS_ASSISTED_GPS" /> 
  <uses-permission android:name="android.permission.ACCESS_CELL_ID" /> 
    <application android:icon="@drawable/wheel">
        <provider android:name=".Provider"
                android:authorities="com.commonsware.android.tourit.Provider" />
        <activity android:name=".TourListActivity" android:label="TourIt!">
            <intent-filter>
                <action android:name="android.intent.action.MAIN" />
                <category android:name="android.intent.category.LAUNCHER" />
            </intent-filter>
        </activity>
        <activity android:name=".TourViewActivity">
            <intent-filter>
                <action android:name="android.intent.action.VIEW" />
                <category android:name="android.intent.category.DEFAULT" />
                <data 
android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />

359

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

            </intent-filter>
        </activity>
        <activity android:name=".TourEditActivity">
            <intent-filter>
                <action android:name="android.intent.action.EDIT" />
                <category android:name="android.intent.category.DEFAULT" />
                <data 
android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
            </intent-filter>
        </activity> 
        <activity android:name=".TourMapActivity">
        </activity>
        <activity android:name=".ConfigActivity" android:label="TourIt! - 
Configuration">
        </activity>
        <activity android:name=".HelpActivity" android:label="TourIt! - Help">
        </activity>
    </application>
</manifest>

Next, we wire in the content provider, supplying data about the available 
tours to our activities.

Finally, we describe all the available activities. One –  TourListActivity – is 
set  to  appear  in  the  application's  launch  menu.  Two  others  – 
TourViewActivity and  TourEditActivity –  are available to be launched by 
intents looking to manipulate data supplied by our content provider. The 
rest are simply listed without an intent filter, so they can only be accessed 
via their class names.

TourIt's Content

TourIt's content is comprised of tours. Tours are made up of waypoints and 
directions between them. Waypoints and directions each have discrete bits 
of data, such as the coordinates of waypoint and the distance to travel for a 
direction. Later, tours and their waypoints will also have multimedia clips, 
either to show off  features of  a given location,  or to help guide travelers 
through tricky directions.

360

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Data Storage

Given  that  TourIt  will  eventually  have multimedia  clips,  and  given  that 
Android's approach is to store such clips in the file system, and since clips 
could be big,  TourIt assumes the existence of  an SD card containing the 
tours. Right now, each tour gets its own directory on the card, containing a 
JSON data structure (tour.js) with the tour details (e.g., waypoints). Later, 
those directories will also hold the media clips associated with that tour.

There is also a SQLite database, with a tours table, to hold the master roster 
of  available tours.  This eliminates  the need to scan the SD card  just to 
populate the list of available tours. More importantly, it makes for a better 
sample application for this book.

Content Provider

The SQLite database is managed by an Android content provider, cunningly 
named Provider. Right now, it only deals with a single table – tours – which 
contains the roster of all available tours, loaded off the SD card. Eventually, 
the provider might be expanded to encompass other tables,  should that 
prove necessary.

Model Classes

Android applications tend not to map all that cleanly to the model-view-
controller  (MVC)  architecture  popular in  GUI  development.  An  activity 
tends to blend both elements of  the view (e.g., setting up and managing 
widgets) and controller (handling menu choices, button clicks, etc.). And 
some  Android  applications  use  the  "dumb  model"  approach,  putting 
business logic in the activity and using the content provider as just a data 
store.

TourIt's first step on the road to a cleaner MVC implementation are the 
model classes:  Tour,  Waypoint, and  Direction. The  Tour class knows how to 
read and write the JSON data structure and turn that into tour information, 
plus the Waypoints and  Directions that make up the guts of the tour itself. 

361

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

Over time,  more and more logic will  move into the models,  leaving the 
content provider still as a dumb store, but trying to make the activity more 
of a thin controller.

TourIt's Activities

TourIt breaks its user interface up into a series of activities, each covering a 
different facet of working with tours:

• TourListActivity is the home page plus the list of installed tours

• TourViewActivity shows the cue sheet for a selected tour

• TourMapActivity shows the waypoints for the tour, plus (optionally) 
your location

• TourEditActivity allows you to update location information for a 
tour, based on Android's reported location

• HelpActivity is the gateway to online help for using TourIt

• ConfigActivity allows you to set various options for customizing how 
TourIt works for you

This  section  isn't  going  to  go  through  these  activities  line-by-line,  but 
instead will highlight a few interesting bits that show off  various Android 
features.

TourListActivity

TourListActivity handles both the home page and the list of installed tours. 
To do this,  it uses  ViewFlipper – think of  it as the guts of  a  TabActivity, 
minus the tabs. Given a ViewFlipper and the appropriate means to get from 
view to view, this shows how you can build an arbitrarily complex activity 
instead of treating each individual activity as a separate construct.

In the layout (res/layout/main.xml),  we declare a  ViewFlipper.  Each child 
element  of  the  ViewFlipper represents  a  separate  "page"  to  be  flipped 

362

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

between. You flip between them via the child's 0-based index, as illustrated 
in showList(), which toggles the view to the list of available tours:

private void showList() {
  flipper.setDisplayedChild(0);
  setTitle("TourIt! - Tours");

  if (flipMenu!=null) {
    flipMenu.setTitle("Go Home");
    flipMenu.setIcon(R.drawable.home);
  }
}

The tour list itself is a simple ListView, backed by a SimpleCursorAdapter, in 
turn backed by the content provider. However, we do tailor the look of the 
individual  list  entries,  by  referencing  our  own  layout 
(res/layout/tourlist_item.xml):

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
    android:id="@android:id/text1"
    android:layout_width="fill_parent"
    android:layout_height="?android:attr/listPreferredItemHeight"
    android:textAppearance="?android:attr/textAppearanceLargeInverse"
    android:gravity="center_vertical"
    android:paddingLeft="5dip"
/>

TourViewActivity

At 500+ lines of code, TourViewActivity is far and away the most complicated 
class in all of TourIt. It handles displaying the cue sheet plus notifying users 
when they approach a waypoint. Here are a few of the interesting facets of 
this class, besides the location services documented in a previous chapter:

Custom List Contents

The individual items in the cue sheet – the waypoint title plus the direction 
of how to get there – is a trifle more complicated than the stock list formats 
supplied by Android. It's sufficiently complicated that even just providing a 
custom layout would not handle the need. So, TourViewActivity has a private 

363

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

class,  RouteAdapter,  that subclasses  ArrayAdapter and builds  the list item 
views as needed.

The problem is that there are several flavors of view that goes into the list:

• The typical direction plus waypoint title

• The first entry, which is just the starting waypoint with no direction

• Entries where the waypoint has a note (e.g., traffic alert) that calls 
for a two-line display

TourIt  makes a  simplifying  assumption:  the first  waypoint  has  no note. 
Given that, we have the three scenarios listed above (versus having a fourth, 
where the first entry is a two-line variant).

RouteAdapter#getFirstView() handles  the  first  entry,  inflating  a  layout 
(res/layout/tourview_std.xml) and populating it:

private View getFirstView(View convertView) {
  ViewInflate inflater=context.getViewInflate();
  View view=inflater.inflate(R.layout.tourview_std, null, null);
  TextView label=(TextView)view.findViewById(R.id.waypoint);

  label.setText(tour.getRoute().get(0).getTitle());

  return(view);
}

RouteAdapter#getStandardView() handles  the  typical  scenario,  including 
converting codes in the tour's JSON into resources to display turn arrows, 
signs, etc.:

private View getStandardView(Waypoint pt, boolean stripe, View convertView) {
  ViewInflate inflater=context.getViewInflate();
  View view=inflater.inflate(R.layout.tourview_std, null, null);
  TextView distance=(TextView)view.findViewById(R.id.distance);
  ImageView turn=(ImageView)view.findViewById(R.id.turn);
  ImageView marker=(ImageView)view.findViewById(R.id.marker);
  TextView waypoint=(TextView)view.findViewById(R.id.waypoint);

  distance.setText(distanceFormat.format(pt.getCumulativeDistance()));
  turn.setImageResource(getResourceForTurn(pt.getFromDirection().getTurn()));

  if (pt.getFromDirection().getMarker()!=null) {

364

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

    marker.setImageResource(getResourceForMarker(pt.getFromDirection().getMarker
()));
  }

  waypoint.setText(pt.getTitle());

  return(view);
}

Finally,  RouteAdapter#getTwoLineView() inflates  a  two-line  layout  and 
populates it as well:

private View getTwoLineView(Waypoint pt, boolean stripe, View convertView) {
  ViewInflate inflater=context.getViewInflate();
  View view=inflater.inflate(R.layout.tourview_2line, null, null);
  TextView distance=(TextView)view.findViewById(R.id.distance);
  ImageView turn=(ImageView)view.findViewById(R.id.turn);
  ImageView marker=(ImageView)view.findViewById(R.id.marker);
  TextView waypoint=(TextView)view.findViewById(R.id.waypoint);
  TextView hint=(TextView)view.findViewById(R.id.hint);

  distance.setText(distanceFormat.format(pt.getCumulativeDistance()));
  turn.setImageResource(getResourceForTurn(pt.getFromDirection().getTurn()));

  if (pt.getFromDirection().getMarker()!=null) {
    marker.setImageResource(getResourceForMarker(pt.getFromDirection().getMarker
()));
  }

  waypoint.setText(pt.getTitle());
  hint.setText(pt.getFromDirection().getHint());

  return(view);
}

Clearly, some refactoring is called for here to reduce code duplication. This 
is left as an exercise for the reader, or eventually for the author.

Details Panel

The details panel – the black panel that is displayed when you select an 
entry in the cue sheet – is a ViewFlipper. In the layout (res/layout/view.xml), 
it is set to be invisible (android:visibility = "invisible"), which is why it 
does not show up at first. Then, when you select an item, it is made visible 
again (detailsPanel.setVisibility(VISIBLE)) and is filled in with the details 
for that waypoint/direction pair, in the onItemSelected() method.

365

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

To  support  manually  flipping  the  pages  of  the  details  panel, 
TourViewActivity implements onKeyUp():

public boolean onKeyUp(int keyCode, KeyEvent event) {
  if (keyCode==KeyEvent.KEYCODE_DPAD_LEFT || 
keyCode==KeyEvent.KEYCODE_DPAD_RIGHT) {
    stopAnimation();

    if (keyCode==KeyEvent.KEYCODE_DPAD_LEFT) {
      detailsPanel.setInAnimation(AnimationUtils.loadAnimation(this,
                    R.anim.push_right_in));
      detailsPanel.setOutAnimation(AnimationUtils.loadAnimation(this,
                    R.anim.push_right_out));

      if (detailsPanel.getDisplayedChild()==0) {
        detailsPanel.setDisplayedChild(detailsPanel.getChildCount()-1);
      }
      else {
        detailsPanel.setDisplayedChild(detailsPanel.getDisplayedChild()-1);
      }
    }
    else {
      detailsPanel.setInAnimation(AnimationUtils.loadAnimation(this,
                    R.anim.push_left_in));
      detailsPanel.setOutAnimation(AnimationUtils.loadAnimation(this,
                    R.anim.push_left_out));
      detailsPanel.showNext();
    }
  }

  return(super.onKeyUp(keyCode, event));
}

Or, the checkbox can toggle automatic animation, courtesy of the flipping 
features built into ViewFlipper:

private void startAnimation() {
  detailsPanel.startFlipping();
  isFlipping=true;
}

private void stopAnimation() {
  detailsPanel.stopFlipping();
  isFlipping=false;
}

366

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

TourMapActivity

The  guts  of  TourMapActivity are  covered  extensively  in  the  chapter  on 
mapping services and are not repeated here for brevity.

TourEditActivity

By and large, TourEditActivity is just a form for the user to fill in waypoint 
details. Two things are interesting here.

First, for the distance traveled field, we use a custom FloatInputMethod class, 
that constrains input to be positive or negative floating-point numbers:

class FloatInputMethod extends NumberInputMethod {
  private static final String CHARS="0123456789-.";

  protected char[] getAcceptedChars() {
    return(CHARS.toCharArray());
  }
}

Also, when the "Fill In My Location!" button is clicked, we do just that – find 
the current location and fill in the latitude, longitude, and elevation fields 
accordingly, as is described in the chapter on location services.

HelpActivity

The HelpActivity is a thin shell around the WebKit browser. It loads static 
HTML out of the project's assets/ directory, which is referenced in code as 
file:///android_assets, as shown below:

@Override
public void onCreate(Bundle icicle) {
  super.onCreate(icicle);
  setContentView(R.layout.help);
  browser=(WebView)findViewById(R.id.browser);
  browser.setWebViewClient(new Callback());
  browser.getSettings().setDefaultFontSize(browser.getSettings().getDefaultFontS
ize()+4);

367

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



The TourIt Sample Application

  String page=getIntent().getStringExtra(PAGE);

  if (page==null) {
    browser.loadUrl("file:///android_asset/index.html");
  }
  else {
    browser.loadUrl("file:///android_asset/"+page+".html");
  }
}

By default, it will load the home page. If, however, the activity was started by 
another activity that passed in a specific page to view, it loads that page 
instead.

HelpActivity hooks into the WebKit browser to detect clicks on links. Since 
the only links in the help are to other help pages,  it simply loads in the 
requested page:

private class Callback extends WebViewClient {
  public boolean shouldOverrideUrlLoading(WebView view, String url) {
    view.loadUrl(url);

    return(true);
  }
}

ConfigActivity

The ConfigActivity class mostly loads data out of preferences, updates the 
layout's widgets to match,  then reverses the process when the activity is 
paused (e.g., when the user clicks Close from the options menu).

The most interesting thing here is the spinner of location providers – this is 
covered in detail in the chapter on location services.

368

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

Class

AbsoluteLayout.......................................................96

ActionEvent.............................................................20

ActionListener.........................................................20

Activity. .8, 68, 101, 117, 118, 126, 128, 132, 137, 147, 173, 
174, 206, 207

ActivityAdapter................................68, 220, 223, 225

ActivityIconAdapter........................................68, 220

ActivityManager.....................................................123

Adapter..................................................................220

AdapterView...........................................................101

AlertDialog.......................................................118, 119

AnalogClock............................................................88

ArrayAdapter.................66, 67, 69, 77, 146, 289, 364

ArrayList.................................................................146

AudioDemo............................................................316

AutoComplete.........................................................79

AutoCompleteTextView..............................33, 78-80

BaseColumns.........................................................252

Box............................................................................41

BoxLayout.................................................................41

Builder..............................................................118, 119

Bundle................................133, 134, 201, 210, 264, 277

Button...........................23, 25-28, 30, 31, 155, 159, 322

Calendar..................................................................86

Canvas............................................................308, 309

CharSequence.......................................................268

CheckBox......................................................34, 37, 39

Chrono.....................................................................84

Clocks......................................................................88

ComponentName...................................224, 225, 275

CompoundButton...................................................37

ConcurrentLinkedQueue......................................265

ConfigActivity.................282, 289, 291, 305, 362, 368

ContentManager...................................................280

ContentObserver...........................................254, 255

ContentProvider................173, 174, 177, 238, 239, 243

ContentResolver.....................................237, 239, 254

ContentValues..................175, 237, 238, 247, 249, 253

Context..........................66, 118, 137, 147, 173, 174, 234

369

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

ContextMenu...................................................100, 101

ContextMenuInfo...................................................101

Criteria...................................................290, 292, 306

Critieria..........................................................290, 297

Cursor....67, 179, 180, 231, 233-237, 239, 246, 247, 253

CursorAdapter.........................................................67

CursorFactory..................................................173, 180

DatabaseContentProvider.....................243, 244, 252

DatabaseHelper.....................................................244

DateFormat.............................................................86

DatePicker...............................................................83

DatePickerDialog..............................................83, 86

DeadObjectException...................................276, 329

Dialer......................................................................327

Dialog.....................................................................128

DigitalClock............................................................88

Direction.........................................................237, 361

Document..............................................................146

Double...................................................................209

Drawable..............................................82, 93, 158, 281

EditView.....................................31, 32, 78, 79, 83, 231

ExpandableListView...............................................96

Field.........................................................................32

FloatInputMethod.................................................367

FlowLayout..............................................................42

Folder......................................................................195

Forecast...................................................................191

FrameLayout.......................................................91-93

Gallery................................................................65, 82

GetMethod......................................................188, 190

Grid..........................................................................75

GridView......................................................74, 75, 82

Handler......................................123-128, 133, 295, 296

HelpActivity...................................209, 362, 367, 368

HttpClient.......................................................188-190

HttpMethod...........................................................188

IBinder...........................................................266, 275

ImageButton..............................................31, 158, 159

Images.....................................................................158

ImageView..........................................31, 158, 240, 314

InputMethod...........................................................32

InputStream...............................143, 146, 147, 188, 191

InputStreamReader................................................147

Intent......90, 111, 112, 220, 223-225, 243, 273, 275, 277, 
281, 292-295, 305, 314, 339

IntentReceiver...............................................205, 206

IPhone....................................................326, 328, 329

Iterator...................................................................235

JButton................................................................20, 21

JCheckBox...............................................................66

JComboBox..............................................................70

JLabel.......................................................................66

JList..........................................................................66

JTabbedPane...........................................................90

JTable.......................................................................66

Label........................................................................30

Launch....................................................................210

Linear.......................................................................45

LinearLayout...........................................41-46, 58, 93

List............................................68, 102, 225, 268, 289

ListActivity..........................................68, 69, 92, 299

370

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

ListAdapter..............................................96, 220, 339

ListCellRenderer.....................................................66

ListDemo................................................................104

ListView. . .68, 70, 71, 82, 102, 188, 220, 233, 234, 299, 
336, 339, 363

Location.........................................................189, 290

LocationIntentReceiver........................................306

LocationManager...................288-290, 292, 293, 305

LocationProvider...................288-290, 292, 296, 297

Lorem.....................................................................336

LoremBase..............................................................337

LoremDemo....................................................339, 341

LoremSearch..........................................................341

MailBuzz...........................185, 193, 263, 265, 273, 274

MailBuzzService....................................263, 264, 267

MailClient..............................................................194

Map............................................134, 137, 175, 237, 268

MapActivity....................................................299-301

MapController........................................301, 302, 305

MapView........................................................299-304

MediaController............................................322, 324

MediaPlayer......................................315, 316, 319, 320

Menu.........................................................98, 100, 223

Menu.Item.................................................99-101, 225

Menus.....................................................................102

Message..............................................119, 124, 126, 127

MessageCountListener..........................................194

MyActivity.............................................................224

Notification............................................263, 280, 281

NotificationManager.....................................280, 281

Now...............................................................19, 27, 28

NowRedux................................................................27

Object......................................................................101

OnCheckedChangeListener................34, 35, 48, 140

OnClickListener............................20, 86, 121, 140, 211

OnCompletionListener.........................................319

OnDateSetListener...........................................84, 86

OnItemSelectedListener.........................................72

OnPopulateContextMenuListener.................101, 103

OnPreparedListener..............................................319

OnTimeSetListener..........................................84, 86

OutputStream........................................................147

OutputStreamWriter.............................................147

Overlay...........................................................308, 310

OverlayController.................................................308

PackageManager....................................................225

Parcelable..............................................................268

Pick.................................................................216, 258

PickDemo..............................................................258

PixelCalculator................................................308-310

PixelConverter.......................................................309

Point..................................................302, 303, 309-311

PostMethod............................................................188

Prefs........................................................................139

ProgressBar........................................90, 125, 126, 129

Provider....................................233, 244, 247-252, 361

ProviderWrapper..................................................289

ProximityIntentReceiver.......................................294

RadioButton..................................................37-41, 46

RadioGroup..........................37, 38, 40, 41, 46, 48, 49

ReadWrite...............................................................147

371

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

RectF........................................................................311

Relative.....................................................................53

RelativeLayout.............................41, 50, 51, 54, 55, 59

Resources.........................................................143, 161

RouteAdapter........................................................364

RouteOverlay..........................................308, 309, 311

Runnable..............................99, 100, 123, 124, 127, 128

Scroll........................................................................60

ScrollView....................................................41, 60, 62

SecretsProvider......................................................242

SecurityException.................................................258

Service...........................................................264, 269

ServiceConnection.........................................274-276

Session....................................................................195

SharedPreferences..................................................138

SimpleAdapter........................................................67

SimpleCursorAdapter.............................233-235, 363

Spanned...........................................................153, 154

Spinner....................................70, 71, 78, 82, 220, 233

SQLiteDatabase...............................................173-175

SQLiteQueryBuilder........................176-178, 246, 247

Static................................................................144, 161

Store........................................................................195

String99, 118, 119, 137, 154, 156, 188, 210, 231, 246, 268

Strings.....................................................................154

Tab...........................................................................92

TabActivity.................................................92, 94, 362

TabHost..............................................................91-94

Table........................................................................59

TableLayout..................................................41, 56-59

TableRow............................................................56-58

TabSpec..............................................................93, 94

TabWidget..........................................................91-93

TextView.....26, 29-31, 34, 37, 67, 77, 86, 97, 234, 336

TextWatcher......................................................79, 80

TimePicker........................................................83, 84

TimePickerDialog.......................................83, 84, 86

TimerTask..............................................................266

Toast..............................................117, 118, 121, 190, 311

Tour...........................................232, 233, 236, 237, 361

TourEditActivity.....................238, 291, 360, 362, 367

TourIt.....................................................................300

TourListActivity..............................232, 234, 360, 362

TourMapActivity.....300, 304, 305, 307, 308, 362, 367

TourViewActivity. . .232, 233, 282, 283, 293, 294, 360, 
362, 363, 366

UIThreadUtilities............................................123, 128

Uri..........31, 158, 178, 200, 201, 203-205, 207, 209, 211, 
215-217,  220,  224,  229-232,  237-243,  246-252,  254, 
255, 280, 314, 315

VideoDemo............................................................323

VideoView.......................................................321-324

View..........23, 26, 27, 39, 58, 62, 101, 118, 123, 127, 128

ViewFlipper............................................362, 365, 366

Waypoint.........................................................237, 361

Weather..................................................................188

WeatherDemo.......................................................190

WebKit............................................................188, 190

WebSettings............................................................114

WebView..............................................107-109, 111-115

WebViewClient.................................................112, 113

XmlPullParser..................................................161, 162

372

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

Command

adb pull...................................................................181

adb push..................................................181, 323, 348

adb shell.........................................................180, 348

ant..........................................................................8, 9

ant install...............................................................347

dex...................................................................185, 186

sqlite3.....................................................................180

Constant

ACCESS_ASSISTED_GPS......................................288

ACCESS_CELL_ID.................................................288

ACCESS_GPS.........................................................288

ACCESS_POSITION.............................................288

ALTERNATE_CATEGORY....................................223

ALTERNATIVE...............................................201, 224

ALTERNATIVE_CATEGORY........................202, 224

ANSWER_ACTION...............................................201

BIND_AUTO_CREATE.........................................275

BROWSABLE_CATEGORY...................................202

CALL_ACTION......................................................201

CONTENT_URI.....................................................254

DEFAULT................................................................201

DEFAULT_CATEGORY..................................202, 225

DELETE....................................................175, 176, 239

DELETE_ACTION.................................................201

DIAL_ACTION.......................................................201

DIALER_DEFAULT_KEYS.....................................335

EDIT_ACTION...............................................200-202

END_DOCUMENT................................................161

END_TAG................................................................161

FACTORY_TEST_ACTION....................................201

FIRST.......................................................................99

GADGET_CATEGORY..........................................202

GET.........................................................................188

GET_CONTENT_ACTION....................................201

HOME_CATEGORY..............................................202

HORIZONTAL........................................................42

ID............................................................................174

INBOX....................................................................195

INSERT.....................................................172, 175, 176

INSERT_ACTION..................................................201

INTEGER................................................................172

LARGER...................................................................115

LAUNCHER...................................................201, 204

LAUNCHER_CATEGORY.....................................202

LENGTH_LONG.....................................................118

LENGTH_SHORT...................................................118

MAIN.....................................................................204

MAIN_ACTION.............................................201, 202

MATCH_DEFAULT_ONLY...................................225

MEDIA_MOUNTED_ACTION............................202

NULL.......................................................................175

ORDER BY..............................................................231

PERMISSION_DENIED.........................................261

PERMISSION_GRANTED.....................................261

PICK_ACTION.........................200-202, 210, 231, 243

PICK_ACTIVITY_ACTION.....................201, 216, 217

POLL..............................................................266, 269

POST......................................................................188

373

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

PREFERENCE_CATEGORY..................................202

PROJECTION.........................................................232

R...............................................................................27

READ_CONTACTS................................................258

RECEIVE_SMS.......................................................262

RESULT_CANCELLED..........................................210

RESULT_FIRST_USER...........................................210

RESULT_OK.............................................210, 216, 217

RUN_ACTION.......................................................201

SEARCH_ACTION.........................................201, 339

SELECT..............................................172, 176, 178, 179

SELECTED_ALTERNATIVE_CATEGORY............202

SEND_ACTION......................................................201

SENDTO_ACTION................................................201

SMALLEST..............................................................115

START_TAG.....................................................161, 162

SUNDAY..................................................................84

SYNC_ACTION.....................................................202

TAB_CATEGORY...................................................202

TAG_ACTION........................................................223

TEST_CATEGORY.................................................202

TEXT.......................................................................161

TITLE.....................................................................234

UPDATE............................................175, 176, 237, 238

VERTICAL...............................................................42

VIEW_ACTION.......................200, 202, 209, 217, 314

WEB_SEARCH_ACTION......................................202

WHERE................175-178, 231, 238, 239, 246, 249-251

Method

add()..................................................................98, 99

addId()...................................................................230

addIntentOptions()................................100, 223-225

addMenu().............................................................100

addProximityAlert()..............................................293

addSeparator().......................................................100

addSubMenu().......................................................100

addTab()..................................................................94

appendWhere()......................................................178

applyFormat()........................................................156

applyMenuChoice()...............................................104

beforeTextChanged()..............................................80

bindService()..................................................275, 276

broadcastIntent()....................................210, 261, 262

broadcastIntentSerialized()..................................210

buildForecasts().....................................................190

buildQuery()..........................................................178

bulkInsert()............................................................238

call()................................................................326-328

cancel()...........................................................280, 281

canGoBack()............................................................111

canGoBackOrForward()..........................................111

canGoForward()......................................................111

centerMapTo().......................................................302

check()...............................................................37, 38

checkAccount().............................................269, 270

checkAccountImpl().............................................270

checkCallingPermission().....................................261

clear().....................................................................138

clearCache().............................................................111

374

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

clearCheck()............................................................37

clearHistory()..........................................................111

close()................................................147, 174, 179, 180

commit().................................................................138

commitUpdates()...........................................180, 237

count()....................................................................179

create()....................................................................119

createDatabase()..............................................173, 181

delete().....................................175, 176, 239, 250, 252

deleteDatabase()....................................................174

deleteInternal().....................................................252

deleteRow()............................................................180

dial()...............................................................326-328

draw()............................................................308, 309

drawCircle()...........................................................309

drawText().............................................................309

edit().......................................................................138

enable()..........................................................268, 277

enablePoll()...........................................................270

endCall()................................................................326

equery()..................................................................179

execSQL()........................................................174, 175

findViewById()........................27, 28, 40, 94, 143, 301

finish()............................................................140, 149

first()...............................................................179, 235

generatePage()........................................................191

get().........................................................................175

getAltitude()..........................................................290

getAsInteger().........................................................175

getAsString()..........................................................175

getAttributeCount()..............................................162

getAttributeName()...............................................162

getBearing()...........................................................290

getBestProvider()..................................................290

getBoolean()...........................................................138

getCheckedRadioButtonId()...................................37

getCollectionType()...............................................251

getColumnIndex().................................................179

getColumnNames()...............................................179

getContentProvider()............................................238

getContentResolver().....................................237, 254

getCurrentLocation()............................................290

getFloat()...............................................................236

getIMAPMessageIds()............................................195

getInputStream()...................................................239

getInt()............................................................179, 236

getIntent().............................................................336

getLastKnownPosition().......................................290

getLatitude()..........................................................189

getLocation().........................................................189

getLongitude().......................................................189

getMapCenter().....................................................303

getMapController()................................................301

getMessageIds().....................................................195

getName().............................................................289

getOutputStream()...............................................239

getPackageManager()............................................225

getParent()...............................................................39

getParentOfType()..................................................40

getPointXY()..........................................................309

375

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

getPollState().........................................................270

getPOP3MessageIds()............................................195

getPreferences()..............................................137, 138

getProgress()...........................................................90

getProviders()........................................................289

getRequiredColumns().........................................249

getResources()........................................................143

getRootView().........................................................40

getSettings()............................................................114

getSharedPreferences()...................................137, 138

getSingleType()......................................................251

getSpeed().............................................................290

getString().........................................153, 156, 179, 236

getStringArray().....................................................165

getTitle()................................................................237

getType().........................................................251, 252

getView()....................................................67, 77, 235

getXml()..................................................................161

goBack()...................................................................111

goBackOrForward()................................................111

goForward().............................................................111

handleMessage().............................................124, 126

hasAltitude().........................................................290

hasBearing()..........................................................290

hasSpeed().............................................................290

incrementProgressBy()...........................................90

insert()......................175, 238, 245, 248, 249, 252, 253

insertInternal()......................................................252

isAfterLast()....................................................179, 236

isBeforeFirst()........................................................236

isChecked()........................................................34, 37

isCollectionUri()............................................248, 250

isEnabled().......................................................39, 276

isFirst()...................................................................236

isFocused()..............................................................39

isLast()...................................................................236

isNull()...................................................................236

isOffhook()............................................................326

isSatellite().............................................................304

isStreetView()........................................................304

isTraffic()...............................................................304

isUIThread()...........................................................128

last().......................................................................235

loadData().......................................................109, 110

loadTime()..............................................................113

loadUrl()...........................................................108-110

makeMeAnAdpater()............................................339

makeText()..............................................................118

managedQuery().............................................231-234

move()....................................................................236

moveTo()................................................................236

newCursor()...........................................................180

newTabSpec()....................................................93, 94

next()........................................................161, 179, 236

notify()...........................................................280, 281

notifyChange()...............................................254, 255

obtainMessage().....................................................124

onActivityResult()..........................................210, 216

onBind()........................................................266, 269

onCheckedChanged()................................35, 48, 142

376

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

onClick().............................................................20, 21

onCompleteThaw().........................................133, 134

onContextItemSelected()...............................101, 104

onCreate()20, 21, 26, 27, 38, 48, 98, 103, 108, 132-134, 
140, 146, 156, 190, 234, 244, 252, 264-266, 303, 310, 
329, 335, 336, 339

onCreateOptionsMenu()...................98, 100, 101, 104

onCreatePanelMenu()...........................................100

onDestroy().....................................134, 140, 264, 266

onFreeze()........................................................133, 134

onItemSelected()...................................................365

onKeyUp().............................................................366

onListItemClick()...................................................69

onNewIntent()...............................................336, 339

onOptionsItemSelected().........................99-101, 104

onPageStarted()......................................................112

onPause()..........................133, 134, 140, 149, 206, 264

onPopulateContextMenu()....................................101

onReceivedHttpAuthRequest().............................112

onReceiveIntent().........................................205, 206

onRestart().............................................................134

onResume() 133, 134, 140, 149, 189, 206, 264, 291, 305

onSearchRequested()............................................335

onServiceConnected()...................................275, 276

onServiceDisconnected()..............................275, 276

onStart()....................................126, 127, 133, 264, 277

onStop()....................................................133, 134, 140

onTap().............................................................310, 311

onTextChanged()....................................................80

onTooManyRedirects()...........................................112

openDatabase()......................................................173

openFileInput()..............................................147, 149

openFileOutput()...........................................147, 149

openRawResource()...............................................143

pause()............................................................315, 324

play()......................................................................324

populateDefaultValues()......................................249

populateMenu()..............................................103, 104

position()...............................................................236

post()...............................................................127, 128

postDelayed().........................................................127

prepare().................................................................315

prepareAsync()........................................315, 319, 320

prev()......................................................................236

putInt()..................................................................237

putString().............................................................237

query().......................176-178, 180, 246, 247, 252, 253

queryIntentActivityOptions()..............................225

queryInternal()......................................................252

rawQuery().....................................................176, 180

registerContentObserver()...................................254

registerIntent()......................................................206

releaseConnection()..............................................188

reload()....................................................................111

remove().................................................................138

removeProximityAlert()........................................293

removeUpdates()...................................................292

requery().........................................................180, 237

requestFocus().........................................................39

requestUpdates()...........................................292, 305

runOnUIThread()..................................................128

377

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

sendMessage()........................................................124

sendMessageAtFrontOfQueue()...........................124

sendMessageAtTime()...........................................124

sendMessageDelayed()..........................................124

setAccuracy()........................................................290

setAdapter()...........................................68, 70, 75, 78

setAlphabeticShortcut().........................................99

setAltitudeRequired()...........................................290

setCellRenderer()....................................................66

setChecked().......................................34, 38, 142, 276

setColumnCollapsed()............................................59

setColumnShrinkable()..........................................59

setColumnStretchable().........................................59

setContent()......................................................93, 94

setContentView()..............................................20, 40

setCostAllowed()...................................................290

setCurrentTab()......................................................94

setDataSource()......................................................315

setDefaultFontSize()...............................................115

setDefaultKeyMode()............................................335

setDropDownViewResource()................................70

setDuration()..........................................................118

setEnabled()............................................................39

setFantasyFontFamily()..........................................114

setFollowMyLocation().........................................305

setGravity()..............................................................44

setGroupCheckable().......................................98, 99

setHeader()............................................................100

setIcon()..................................................................119

setImageURI()..........................................................31

setIndicator()....................................................93, 94

setItemCheckable()................................................99

setJavaScriptCanOpenWindowsAutomatically(). 115

setJavaScriptEnabled()...........................................115

setLayoutView()......................................................26

setListAdapter()......................................................69

setMessage()...........................................................119

setNegativeButton()...............................................119

setNeutralButton().................................................119

setNumericShortcut()............................................99

setOnClickListener().......................................20, 149

setOnCompletionListener()..................................319

setOnItemSelectedListener().....................68, 70, 75

setOnPopulateContextMenuListener()................101

setOnPreparedListener().......................................319

setOrientation()......................................................42

setPadding()............................................................44

setPositiveButton().................................................119

setProgress()...........................................................90

setProjectionMap()................................................178

setQwertyMode()...................................................99

setResult()..............................................................210

setText()....................................................................21

setTextSize()............................................................115

setTitle().................................................................119

setTypeface()...........................................................24

setup().............................................................94, 320

setupTimer()..........................................265, 266, 270

setUseDesktopUserAgent()....................................115

setView().................................................................118

378

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

setWebViewClient()...............................................112

shouldOverrideUrlLoading()...........................112, 113

show().................................................118, 119, 121, 324

showList()..............................................................363

showNotification()................................................282

sRadioOn()............................................................326

start()......................................................................315

startActivity().........................................209, 210, 220

startService().........................................................277

startSubActivity()...........................................210, 216

stop()...............................................................315, 320

stopPlayback().......................................................324

stopService()..........................................................277

supportUpdates()...................................................179

switch()..................................................................100

toggle()...............................................................34, 37

toggleEdgeZooming()...........................................302

toggleRadioOnOff()..............................................326

toggleSatellite().....................................................304

toggleStreetView()................................................304

toggleTraffic()........................................................304

toString().........................................................66, 289

unbindService().....................................................276

unregisterContentObserver()...............................255

unregisterIntent().................................................206

update().............................175, 176, 237, 238, 249-253

updateInt().............................................................180

updateInternal()....................................................252

updateLabel()..........................................................86

updateString().......................................................180

updateTime()..........................................................20

updateView().........................................................307

upgradeDatabases()..............................................252

zoomTo()................................................................301

Property

android:authorities........................................253, 254

android:autoText......................................................31

android:background...............................................39

android:capitalize....................................................31

android:collapseColumns.......................................59

android:columnWidth............................................74

android:completionThreshold...............................78

android:digits...........................................................31

android:drawSelectorOnTop.............................71, 82

android:horizontalSpacing.....................................74

android:id.....................................25, 26, 37, 51, 91-93

android:indeterminate...........................................90

android:indeterminateBehavior............................90

android:inputMethod.............................................32

android:label............................................................13

android:layout_above..............................................52

android:layout_alignBaseline.................................52

android:layout_alignBottom..................................52

android:layout_alignLeft........................................52

android:layout_alignParentBottom........................51

android:layout_alignParentLeft..............................51

android:layout_alignParentRight...........................51

android:layout_alignParentTop.........................51, 55

android:layout_alignRight......................................52

379

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition



Keyword Index

android:layout_alignTop...................................52, 53

android:layout_below.............................................52

android:layout_centerHorizontal...........................51

android:layout_centerInParent...............................51

android:layout_centerVertical................................51

android:layout_column...........................................57

android:layout_gravity............................................44

android:layout_height...........................25, 43, 53, 92

android:layout_span...............................................57

android:layout_toLeft.............................................52

android:layout_toRight...........................................52

android:layout_weight............................................43

android:layout_width............................25, 43, 47, 53

android:manifest......................................................12

android:max.....................................................90, 125

android:name.............................13, 253, 258, 270, 341

android:nextFocusDown........................................39

android:nextFocusLeft............................................39

android:nextFocusRight.........................................39

android:nextFocusUp.............................................39

android:numColumns.............................................74

android:numeric......................................................31

android:orientation................................................42

android:padding................................................44, 45

android:paddingBottom.........................................45

android:paddingLeft...............................................45

android:paddingRight.............................................45

android:paddingTop.........................................45, 92

android:password.....................................................31

android:permission........................................260, 271

android:phoneNumber...........................................32

android:progress.....................................................90

android:shrinkColumns..........................................58

android:singleLine.............................................31, 32

android:spacing.......................................................82

android:spinnerSelector.........................................82

android:src...............................................................31

android:stretchColumns.........................................58

android:stretchMode..............................................74

android:text.......................................................25, 29

android:textColor..............................................30, 34

android:textStyle................................................29, 31

android:typeface.....................................................29

android:value.........................................................341

android:verticalSpacing..........................................74

android:visibility.....................................................39

380

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition


	Welcome to the Book!
	Prerequisites
	Warescription
	Book Bug Bounty
	Source Code License
	Creative Commons and the Four-to-Free (42F) Guarantee
	The Big Picture
	What Androids Are Made Of
	Activities
	Content Providers
	Intents
	Services

	Stuff At Your Disposal
	Storage
	Network
	Multimedia
	GPS
	Phone Services


	Project Structure
	Root Contents
	The Sweat Off Your Brow
	And Now, The Rest of the Story
	What You Get Out Of It

	Inside the Manifest
	In The Beginning, There Was the Root, And It Was Good
	Permissions, Instrumentations, and Applications (Oh, My!)
	Your Application Does Something, Right?

	Creating a Skeleton Application
	Begin at the Beginning
	The Activity
	Dissecting the Activity
	Building and Running the Activity

	Using XML-Based Layouts
	What Is an XML-Based Layout?
	Why Use XML-Based Layouts?
	OK, So What Does It Look Like?
	What's With the @ Signs?
	And We Attach These to the Java...How?
	The Rest of the Story

	Employing Basic Widgets
	Assigning Labels
	Button, Button, Who's Got the Button?
	Fleeting Images
	Fields of Green. Or Other Colors.
	Just Another Box to Check
	Turn the Radio Up
	It's Quite a View
	Useful Properties
	Useful Methods


	Working with Containers
	Thinking Linearly
	Concepts and Properties
	Orientation
	Fill Model
	Weight
	Gravity
	Padding

	Example

	All Things Are Relative
	Concepts and Properties
	Positions Relative to Container
	Relative Notation in Properties
	Positions Relative to Other Widgets
	Order of Evaluation

	Example

	Tabula Rasa
	Concepts and Properties
	Putting Cells in Rows
	Non-Row Children of TableLayout
	Stretch, Shrink, and Collapse

	Example

	Scrollwork

	Using Selection Widgets
	Adapting to the Circumstances
	Using ArrayAdapter
	Other Key Adapters

	Lists of Naughty and Nice
	Spin Control
	Grid Your Lions (Or Something Like That...)
	Fields: Now With 35% Less Typing!
	Galleries, Give Or Take The Art

	Employing Fancy Widgets and Containers
	Pick and Choose
	Time Keeps Flowing Like a River
	Making Progress
	Putting It On My Tab
	The Pieces
	The Idiosyncrasies
	Wiring It Together

	Other Containers of Note

	Applying Menus
	Flavors of Menu
	Menus of Options
	Menus in Context
	Taking a Peek

	Embedding the WebKit Browser
	A Browser, Writ Small
	Loading It Up
	Navigating the Waters
	Entertaining the Client
	Settings, Preferences, and Options (Oh, My!)

	Showing Pop-Up Messages
	Raising Toasts
	Alert! Alert!
	Checking Them Out

	Dealing with Threads
	Getting Through the Handlers
	Messages
	Runnables

	Running In Place
	Utilities (And I Don't Mean Water Works)
	And Now, The Caveats

	Handling Activity Lifecycle Events
	Schroedinger's Activity
	Life, Death, and Your Activity
	onCreate() and onCompleteThaw()
	onStart(), onRestart(), and onResume()
	onPause(), onFreeze(), onStop(), and onDestroy()


	Using Preferences
	Getting What You Want
	Stating Your Preference
	A Preference For Action

	Accessing Files
	You And The Horse You Rode In On
	Readin' 'n Writin'

	Working with Resources
	The Resource Lineup
	String Theory
	Plain Strings
	String Formats
	Styled Text
	Styled Formats

	Got the Picture?
	XML: The Resource Way
	Miscellaneous Values
	Dimensions
	Colors
	Arrays

	Different Strokes for Different Folks

	Managing and Accessing Local Databases
	A Quick SQLite Primer
	Start at the Beginning
	Setting the Table
	Makin' Data
	What Goes Around, Comes Around
	Raw Queries
	Regular Queries
	Building with Builders
	Using Cursors
	Change for the Sake of Change
	Making Your Own Cursors

	Data, Data, Everywhere

	Leveraging Java Libraries
	The Outer Limits
	Ants and Jars

	Communicating via the Internet
	REST and Relaxation
	HTTP Operations via Apache Commons
	Parsing Responses
	Stuff To Consider

	Email over Java

	Creating Intent Filters
	What's Your Intent?
	Pieces of Intents
	Stock Options
	Intent Routing

	Stating Your Intent(ions)
	Narrow Receivers

	Launching Activities and Sub-Activities
	Peers and Subs
	Start 'Em Up
	Make an Intent
	Make the Call


	Finding Available Actions via Introspection
	Pick 'Em
	Adaptable Adapters
	Would You Like to See the Menu?
	Asking Around

	Using a Content Provider
	Pieces of Me
	Getting a Handle
	Makin' Queries
	Adapting to the Circumstances
	Doing It By Hand
	Position
	Getting Properties
	Setting Properties

	Give and Take
	Beware of the BLOB!

	Building a Content Provider
	First, Some Dissection
	Next, Some Typing
	Step #1: Create a Provider Class
	ContentProvider
	onCreate()
	query()
	insert()
	update()
	delete()
	getType()

	DatabaseContentProvider

	Step #2: Supply a Uri
	Step #3: Declare the Properties
	Step #4: Update the Manifest
	Notify-On-Change Support

	Requesting and Requiring Permissions
	Mother, May I?
	Halt! Who Goes There?
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere

	May I See Your Documents?

	Creating a Service
	Getting Buzzed
	Service with Class
	When IPC Attacks!
	Write the AIDL
	Implement the Interface

	Manifest Destiny
	Where's the Remote?

	Invoking a Service
	Bound for Success
	Request for Service
	Prometheus Unbound
	Manual Transmission

	Alerting Users Via Notifications
	Types of Pestering
	Hardware Notifications
	Icons

	Letting Your Presence Be Felt

	Accessing Location-Based Services
	Location Providers: They Know Where You're Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing...Testing...

	Mapping with MapView and MapActivity
	The Bare Bones
	Exercising Your Control
	Zoom
	Center
	Reticle

	Traffic and Terrain
	Follow You, Follow Me
	Layers Upon Layers
	Overlay Classes
	Drawing the Overlay
	Handling Screen Taps


	Playing Media
	Get Your Media On
	Making Noise
	Moving Pictures

	Handling Telephone Calls
	No, No, No – Not That IPhone...
	What's Our Status?
	You Make the Call!

	Searching with SearchManager
	Hunting Season
	Search Yourself
	Craft the Search Activity
	Update the Manifest
	Try It Out


	The TourIt Sample Application
	Installing TourIt
	Demo Location Provider
	SD Card Image with Sample Tour

	Running TourIt
	Main Activity
	Configuration Activity
	Cue Sheet Activity
	Map Activity
	Tour Update Activity
	Help Activity

	TourIt's Manifest
	TourIt's Content
	Data Storage
	Content Provider
	Model Classes

	TourIt's Activities
	TourListActivity
	TourViewActivity
	Custom List Contents
	Details Panel

	TourMapActivity
	TourEditActivity
	HelpActivity
	ConfigActivity





