
this print for content only—size & color not accurate spine = 1.205" 640 page count

Books for professionals By professionals®

Pro Web 2.0 Mashups:
Remixing Data and Web Services
Dear Reader,

The Web contains thousands of mashups that recombine everything including
Google Maps, Flickr, Amazon.com, NASA, the New York Times, and Wikipedia
with useful information about travel, finance, real estate, and more. By fusing
elements from multiple web sites, mashups are often informative, useful, fun,
and even transformative. Mashups also represent the way the Web as a whole
is heading.

By reading this book and working through the examples, you will learn how
to create your own mashups; how to exploit such web elements as URLs, tags,
and RSS feeds in your mashups; and how to combine APIs and data into mashups.
All you need to make full use of this book is basic knowledge of HTML, CSS,
and JavaScript, and at least one server-side language (such as PHP, ASP.NET, or
Python). By the time you’re finished, you will be able to take almost any source
of data on the Web and mash it up with another to create unique and exciting
sites of your own.

This book draws from my experiences teaching graduate students and high-
school students how to create mashups. I describe techniques to analyze and
dissect existing mashups so that you can start from first principles, gaining the
skills you need to write your own. Believe me, once you start creating mashups and
seeing what you can do with them, you won’t want to stop.

Raymond Yee

US $49.99

Shelve in
Web development

User level:
Intermediate–Advanced

Yee
W

eb 2.0 M
ashups

The eXperT’s Voice® in WeB DeVelopmenT

Pro

Web 2.0
Mashups
Remixing Data and Web Services

 cyan
 maGenTa

 yelloW
 Black
 panTone 123 c

Raymond Yee

Companion
eBook Available

THE APRESS ROADMAP

Building Flickr
Applications with PHP

Pro JavaScript
Design Patterns

Pro Web 2.0 Mashups:
Remixing Data

and Web Services

Accelerated DOM Scripting
with Ajax, APIs, and Libraries

Pro Web 2.0 Application
Development with GWT Practical

JavaScript, DOM Scripting,
and Ajax Projects

Beginning
Google Maps Applications

with PHP and Ajax

Beginning HTML with CSS
and XHTML: Modern
Guide and Reference

Beginning
Google Maps Applications

with Rails and Ajax

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-858-0
ISBN-10: 1-59059-858-X

9 781590 598580

54999

Remix the Web to create cutting-edge web applications

Pro

Raymond Yee

Pro Web 2.0 Mashups
Remixing Data and Web Services

858Xch00FM.qxd 2/4/08 2:45 PM Page i

Pro Web 2.0 Mashups: Remixing Data and Web Services

Copyright © 2008 by Raymond Yee

Permission is granted to copy, distribute, and/or modify this document under the terms of the Creative
Commons Attribution–NonCommercial-ShareAlike–2.5 License. Apress (http://www.apress.com/) and the
author ask for your support by buying the print or eBook edition through any online or retail outlet. A copy
of the license is included in the section entitled “Creative Commons Legal Code.” All rights reserved subject
to the provisions of the Creative Commons License.

ISBN-13 (pbk): 978-1-59059-858-0

ISBN-10 (pbk): 1-59059-858-X

ISBN-13 (electronic): 978-1-4302-0286-8

ISBN-10 (electronic): 1-4302-0286-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matthew Moodie
Technical Reviewer: John Watson
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Production Editors: Laura Esterman, Lori Bring
Compositor: Kinetic Publishing Service, LLC
Proofreader: Liz Welch
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You may need to answer
questions pertaining to this book in order to successfully download the code.

858Xch00FM.qxd 2/4/08 2:45 PM Page ii

For Laura, the love of my life

858Xch00FM.qxd 2/4/08 2:45 PM Page iii

Contents at a Glance

About the Author . xxi

About the Technical Reviewer . xxiii

Acknowledgments . xxv

Introduction . xxvii

PART 1 ■ ■ ■ Remixing Information
Without Programming

■CHAPTER 1 Learning from Specific Mashups . 3

■CHAPTER 2 Uncovering the Mashup Potential of Web Sites 21

■CHAPTER 3 Understanding Tagging and Folksonomies . 61

■CHAPTER 4 Working with Feeds, RSS, and Atom . 77

■CHAPTER 5 Integrating with Blogs . 105

PART 2 ■ ■ ■ Remixing a Single Web Application
Using Its API

■CHAPTER 6 Learning Web Services APIs Through Flickr . 121

■CHAPTER 7 Exploring Other Web APIs . 171

■CHAPTER 8 Learning Ajax/JavaScript Widgets and Their APIs 205

PART 3 ■ ■ ■ Making Mashups
■CHAPTER 9 Moving from APIs and Remixable Elements to Mashups 227

■CHAPTER 10 Creating Mashups of Several Services . 243

■CHAPTER 11 Using Tools to Create Mashups . 283

■CHAPTER 12 Making Your Web Site Mashable . 313

iv

858Xch00FM.qxd 2/4/08 2:45 PM Page iv

PART 4 ■ ■ ■ Exploring Other Mashup Topics
■CHAPTER 13 Remixing Online Maps and 3D Digital Globes 327

■CHAPTER 14 Exploring Social Bookmarking and
Bibliographic Systems . 395

■CHAPTER 15 Accessing Online Calendars and Event Aggregators. 417

■CHAPTER 16 Using Online Storage Services . 473

■CHAPTER 17 Mashing Up Desktop and Web-Based Office Suites 487

■CHAPTER 18 Using Microformats and RDFa As Embeddable
Data Formats . 537

■CHAPTER 19 Integrating Search . 559

■APPENDIX . 573

■INDEX . 579

858Xch00FM.qxd 2/4/08 2:45 PM Page v

858Xch00FM.qxd 2/4/08 2:45 PM Page vi

Contents

About the Author . xxi

About the Technical Reviewer . xxiii

Acknowledgments . xxv

Introduction . xxvii

PART 1 ■ ■ ■ Remixing Information
Without Programming

■CHAPTER 1 Learning from Specific Mashups . 3

Looking for Patterns in Mashups . 3

Housingmaps.com. 5

What Is Being Combined? . 5

Why Are the Constituent Elements Being Combined? What’s the
Problem Being Solved? . 5

Where Is the Remixing Happening? . 6

How Are These Elements Being Combined? . 6

Comparable Mashups . 7

Google Maps in Flickr . 7

What Is Being Combined? . 8

Why Are the Constituent Elements Being Combined? What’s the
Problem Being Solved? . 8

How Are These Elements Being Combined? . 12

Comparable Mashups . 13

LibraryLookup Bookmarklet. 13

Configuring a LibraryLookup Bookmarklet . 14

Invoking the LibraryLookup Bookmarklet . 15

How Does This Mashup Work? . 16

How Can This Mashup Be Extended?. 17

Comparable Mashups . 18

Tracking Other Mashups . 18

Summary . 18

vii

858Xch00FM.qxd 2/4/08 2:45 PM Page vii

■CHAPTER 2 Uncovering the Mashup Potential of Web Sites 21

What Makes Web Sites and Applications Mashable 22

Ascertaining the Fundamental Entities of the Web Site. 22

Public APIs and Existing Mashups . 23

Use of Ajax . 24

Embedded Scriptability . 24

Browser Plug-Ins . 25

Getting Data In and Out of the Web Site . 25

The Community of Users and Developers . 25

Mobile and Alternative Interfaces and the Skinnability
of the Web Site . 26

Documentation . 26

Is the Web Site Run on Open Source? . 26

Intellectual Property, Reusability, and Creative Commons 26

Tagging, Feeds, and Weblogging. 27

URL Languages of Web Sites. 27

Some Mashups Briefly Revisited . 28

Flickr: The Fundamentally Mashup-Friendly Site 29

Resources in Flickr . 29

Users and Photos . 30

Data Associated with an Individual Photo . 33

Tags . 34

User’s Archive: Browsing Photos by Date . 36

Sets . 37

Collections. 37

Favorites . 37

A User’s Popular Photos . 38

Contacts . 38

Groups . 38

Account Management . 40

Browsing Through Flickr. 40

Search . 41

Geotagged Photos in Flickr . 42

The Flickr Organizer . 43

Recent Activities. 44

Mailing Interfaces . 44

Interfacing to Weblogs . 44

Syndication Feeds: RSS and Atom . 45

Mobile Access. 45

Third-Party Flickr Apps . 45

■CONTENTSviii

858Xch00FM.qxd 2/4/08 2:45 PM Page viii

Creative Commons Licensing . 46

Cameras . 46

The Mashup-by-URL-Templating-and-Embedding Pattern 47

Google Maps . 49

URL Language of Google Maps . 49

Viewing KML Files in Google Maps . 51

Connecting Yahoo! Pipes and Google Maps . 51

Other Simple Applications of the Google Maps URL Language 52

Amazon . 53

Amazon Items. 53

Lists . 55

Tags . 55

Subject Headings . 55

del.icio.us . 56

Screen-Scraping and Bots . 58

Summary . 60

■CHAPTER 3 Understanding Tagging and Folksonomies. 61

Tagging in Flickr . 62

Tags in Flickr . 63

How Tags Are Used in Practice . 63

Creating Your Own Tags . 64

Syntax of Tags in Flickr . 64

Potential Weaknesses of Tags . 65

Singular and Plural Forms of Tags in Flickr . 65

Hacking the Tagging System: Geotagging and Machine Tags 66

Interesting Apps Using Flickr Tags . 67

Tagging in del.icio.us . 67

Mechanics of Adding Tags in del.icio.us . 68

Dealing with Case and Multiword Phrases . 68

Getting More Information . 69

Gathering Content Through Tags in Technorati. 71

Searching Technorati with Tags. 71

How Technorati Finds Tags on the Web . 72

Word Inflections and Syntactic Constraints in Technorati Tags 72

Using Tags to Mash Up Flickr and del.icio.us . 72

Other Systems That Use Tagging . 73

Relationship of Tags to Formal Classification Schemes 73

Summary . 75

■CONTENTS ix

858Xch00FM.qxd 2/4/08 2:45 PM Page ix

■CHAPTER 4 Working with Feeds, RSS, and Atom . 77

What Are Feeds, and Why Are They Important? . 78

RSS 2.0 . 78

RSS 1.0 . 80

Atom 1.0 . 82

Extensions to RSS 2.0 and Atom 1.0 . 84

Feeds from Flickr. 86

Flickr Feed Parameters . 86

Examining the Flickr Feeds . 87

Exchange Formats Other Than RSS and Atom 90

Feeds from Other Web Sites . 92

Finding Feeds and Feed Autodiscovery . 93

Feeds from Weblogs . 94

Wikipedia Feeds . 94

Google and Yahoo! News . 95

News Aggregators: Showing Flickr Feeds Elsewhere 96

Validating Feeds. 98

Scraping Feeds Using GUI Tools . 98

Remixing Feeds with Feedburner . 99

Remixing Feeds with Yahoo! Pipes . 100

A Simple First Pipe with Yahoo! News . 101

Google News and Refactoring Pipes. 102

Wikinews and NY Times: Filtering Feeds . 103

Pulling the Feeds Together . 104

Summary . 104

■CHAPTER 5 Integrating with Blogs . 105

Integration Scenarios for Blogs . 105

Sending Flickr Pictures to Blogs . 106

Configuring Flickr for Integration with Blogs. 107

Blogging a Flickr Picture. 110

How Does the Flickr Blog Integration Work?. 110

Desktop Blogging Tools . 111

Combining Feeds and Blogging to Generate Feedback Flows. 113

Flock: Bringing Together Blogs and Flickr . 114

RSD: Discoverability of Blog APIs . 115

Linkbacks . 116

Wiki Integration at an Early Stage . 116

Summary . 117

■CONTENTSx

858Xch00FM.qxd 2/4/08 2:45 PM Page x

PART 2 ■ ■ ■ Remixing a Single Web Application
Using Its API

■CHAPTER 6 Learning Web Services APIs Through Flickr 121

An Introduction to the Flickr API . 122

What Does This XML Response Mean? . 124

What Can You Do with the XML Response? 126

API Documentation, Community, and Policy . 128

Terms of Use for the API . 128

Using the Flickr API Explorer and Documentation 129

Calling a Basic Flickr API Method from PHP . 132

HTTP Clients . 133

A Refresher on HTTP . 134

XML Processing . 138

Pulling It All Together: Generating Simple HTML
Representations of the Photos . 143

Where Does This Leave Us?. 145

The Flickr API in General . 145

Using flickr.reflection Methods . 146

Querying the Flickr Reflection Methods with PHP 149

Request and Response Formats . 154

Flickr Authorization . 156

Why Passing Passwords Around Doesn’t Work Too Well 157

Authorization for Web Apps . 157

Using Flickr API Kits . 165

PEAR::Flickr_API . 165

phpFlickr . 166

Phlickr . 168

Limitations of the Flickr API . 169

Summary . 170

■CHAPTER 7 Exploring Other Web APIs . 171

XML-RPC. 172

What’s Happening on the Wire? . 176

Using Wireshark and curl to Analyze and Formulate
HTTP Messages . 177

Parsing XML-RPC Traffic. 178

■CONTENTS xi

858Xch00FM.qxd 2/4/08 2:45 PM Page xi

SOAP . 181

The Dream: Plug-and-Go Functionality Through WSDL
and SOAP . 181

geocoder.us . 182

Amazon ECS . 191

The Flickr API via SOAP. 195

Learning About Specific Web APIs . 195

Programmableweb.com . 196

YouTube . 198

GData and the Blogger API . 199

Using the Blogger API As a Uniform Interface Based on
HTTP Methods. 203

Summary . 204

■CHAPTER 8 Learning Ajax/JavaScript Widgets and Their APIs 205

What You Need to Know . 206

What Difference Does Ajax Make? . 207

Learning Firebug, DOM Inspector, and JavaScript Shell 208

Using the DOM Inspector . 208

Using the Firebug Extension for Firefox . 208

Using the JavaScript Shell . 210

Working with JavaScript Libraries . 210

YUI Widgets. 211

Using the YUI Calendar . 211

Installing YUI on Your Host . 212

Learning Google Maps . 213

Accessing Flickr via JavaScript. 217

Using Greasemonkey to Access New York Times Permalinks 220

Learning More About JavaScript and Ajax . 223

Summary . 223

PART 3 ■ ■ ■ Making Mashups
■CHAPTER 9 Moving from APIs and Remixable Elements

to Mashups . 227

Getting Oriented to ProgrammableWeb . 228

User-Generated Data in ProgrammableWeb 228

Can Any Directory of Mashups Keep Up? . 228

Learning About the Overall Mashup Scene . 229

■CONTENTSxii

858Xch00FM.qxd 2/4/08 2:45 PM Page xii

Directory of Mashups . 230

Using Feeds to Track Mashups . 230

Using Tags to Describe Mashups . 231

API and Mashup Verticals . 233

Looking at a Specific Mashup Profile. 233

Going from a Specific API to Mashups. 234

Sample Problems to Solve Using Mashups. 235

Tracking Interesting Books. 235

Knowing When to Buy Airplane Tickets . 239

Finding That Dream House. 240

Mapping Breaking News . 241

Summary . 242

■CHAPTER 10 Creating Mashups of Several Services 243

The Design . 244

Background: Geotagging in Flickr. 245

Background: XMLHttpRequest and Containing Libraries 248

Using XMLHttpRequest Directly. 248

Using the YUI Connection Manager. 250

Building a Server-Side Proxy . 253

What Happens with XHR and Direct API Calls?. 253

Building a Server-Side Script for Geolocated Photos. 255

Building a Simple Client-Side Frame . 257

Reading and Writing Elements. 257

Handling Simple Events to Connect Form Input and
Display Calculations . 260

Hooking the Client-Side Framework to Flickr . 261

Writing a URL for Querying flickrgeo.php . 262

Using XHR via the YUI Connection Manager to
Read the JSON . 262

Converting the JSON to HTML . 264

Mashing Up Google Maps API with Flickr . 266

Setting Up a Basic Google Map . 267

Making the Map Respond to Changes in the
Viewport of the Map. 268

Bringing Together the Flickr and GMap Code 269

Wiring Up the Bounding Box of the Google Map. 270

Making the Pictures Show Up in the Map . 272

Google Mapplet That Shows Flickr Photos . 277

Summary . 281

■CONTENTS xiii

858Xch00FM.qxd 2/4/08 2:45 PM Page xiii

■CHAPTER 11 Using Tools to Create Mashups . 283

The Problem Mashup Tools Solve. 284

What You Are Making in This Chapter . 284

Making the Mashup: A Step-by-Step Example. 286

Familiarizing Yourself with the Google Mashup Editor. 287

Reading and Displaying a Feed (Simple Template) 288

Introducing a Custom Template. 289

Using Yahoo! Pipes to Access Flickr . 291

Displaying Flickr Photos Using <gm:map>. 292

Adding JavaScript to the Mashup . 294

How to Persist Feeds and Use Tabs . 299

The Final Product: Showing the Saved Entries on a Map 304

Analysis of Trade-Offs in Using GME and Yahoo! Pipes. 309

Other Mashup Tools . 310

Summary . 311

■CHAPTER 12 Making Your Web Site Mashable . 313

Why Make Your Web Site Mashable? . 314

Using Techniques That Do Not Depend on APIs . 314

Use a Consistent and Rich URL Language. 314

Use W3C Standards to Develop Your Web Site 315

Pay Attention to Web Accessibility. 315

Consider Allowing Users to Tag Your Content 315

Make Feeds Available . 315

Make It Easy to Post Your Content to Blogs and
Other Web Sites . 316

Encourage the Sharing of Content with Explicit Licenses. 317

Develop Extensive Import and Export Options for
User Content . 317

Study How Users Remix Your Content and
Make It Easier to Do So . 317

Creating a Mashup-Friendly API . 317

Learn From and Emulate Other APIs. 318

Keep in Mind Your Audiences for the API . 318

Make Your API Easy to Learn . 318

Test the Usability of Your API . 319

Build a Granular, Loosely Coupled Architecture So That
Creating an API Serves You As Much As It Does Others. 319

Embrace REST But Also Support SOAP and XML-RPC
If You Can . 320

■CONTENTSxiv

858Xch00FM.qxd 2/4/08 2:45 PM Page xiv

Consider Using the Atom Publishing Protocol As a Specific
Instantiation of REST . 320

Encourage the Development of API Kits: Third Party or
In-House. 320

Support Extensive Error Reporting in Your APIs 321

Accept Multiple Formats for Output and Input 321

Support UI Functionality in the API . 321

Include a Search API for Your Own Site . 321

Version Your API . 322

Foster a Community of Developers. 322

Don’t Try to Be Too Controlling in Your API. 322

Consider Producing a Service-Level Agreement (SLA) 322

Help API Users Consume Your Resources Wisely 323

Consider Open Sourcing Your Application . 323

Easy-to-Understand Data Standards . 323

Summary . 324

PART 4 ■ ■ ■ Exploring Other Mashup Topics

■CHAPTER 13 Remixing Online Maps and 3D Digital Globes 327

The Number of Online Maps . 328

Examples of Map-Based Mashups . 329

Making Maps Without Programming . 329

Mapbuilder.net . 329

Google My Maps . 331

A Mashup Opportunity: Mapping Yahoo! Local Collections. 332

Transforming the Yahoo! Local XML into CSV for
Mapbuilder.net . 334

Collection Building in Microsoft’s Live Search Maps 336

Summary of Making Maps Without Programming 338

Data Exchange Formats . 338

CSV. 338

Microformats and Metatags for HTML . 338

GeoRSS . 339

Yahoo!’s Use of GeoRSS and Yahoo! YMaps Extensions 341

KML . 345

Interoperability Among Formats: GeoRSS vs. KML. 346

■CONTENTS xv

858Xch00FM.qxd 2/4/08 2:45 PM Page xv

Creating Maps by API Programming . 346

Google Maps API . 347

Yahoo! Maps API. 351

Microsoft’s Live Search Maps/Virtual Earth. 354

Geocoding. 356

Yahoo! Maps . 356

Geocoder.us . 357

Google Geocoder . 358

Virtual Earth . 361

Geocoding Non-U.S. Addresses. 363

Google Earth and KML . 364

Displaying and Handling KML As End Users 364

KML . 368

Programming Google Earth via COM and AppleScript 374

Mapstraction and OpenLayers . 376

An Integrative Example: Showing Flickr Pictures in Google Earth. 376

KML NetworkLink . 379

Generating the KML for the Photos. 382

The flickrgeo.php Code. 383

Summary . 393

■CHAPTER 14 Exploring Social Bookmarking and Bibliographic
Systems . 395

The Social Bookmarking Scene . 396

Using Programmableweb.com to Examine the
Popularity of APIs . 396

del.icio.us . 397

Using the del.icio.us API . 398

Third-Party Tools for del.icio.us. 405

Third-Party API Kits . 405

Yahoo! Bookmarks and MyWeb. 407

Connotea. 408

A Flickr and del.icio.us Mashup . 412

Summary . 416

■CHAPTER 15 Accessing Online Calendars and Event Aggregators 417

Google Calendar . 418

Setting Up Google Calendar As an End User 418

Exploring the Feed Formats from Google Calendar 420

■CONTENTSxvi

858Xch00FM.qxd 2/4/08 2:45 PM Page xvi

Using the GData-Based Calendar API Directly 426

Using the PHP API Kit for Google Calendar . 434

Using the Python API Kit for Google Calendar 437

30boxes.com . 438

An End User Tutorial . 439

30boxes.com API . 439

Event Aggregators . 443

Upcoming.yahoo.com . 443

Eventful.com. 452

Programming with iCalendar . 458

Python and iCalendar . 458

PHP and iCalendar . 460

Exporting an Events Calendar to iCalendar and Google Calendar. 461

The Source: UC Berkeley Event Calendars . 462

Creating an iCalendar Feed of Critic’s Choice Using Python. 462

Writing the Events to Google Calendar. 464

Summary . 471

■CHAPTER 16 Using Online Storage Services . 473

Introducing Amazon S3 . 473

Rationale for S3 . 474

Conceptual Structure of Amazon S3 . 475

The Firefox S3 Extension Gets You Started with S3. 476

Using the S3 REST Interface . 477

Listing Buckets Using the REST Interface . 480

Using the SOAP Interface to S3. 481

Amazon S3 API Kits . 482

PHP . 483

Python . 484

Summary . 486

■CHAPTER 17 Mashing Up Desktop and Web-Based Office Suites 487

Mashup Scenarios for Office Suites . 487

The World of Document Markup . 488

The OpenDocument Format. 488

Learning Basic ODF Tags . 497

Create an ODF Text Document Without Any Styling of
ODF Elements . 499

Setting the Paragraph Text to text-body . 503

■CONTENTS xvii

858Xch00FM.qxd 2/4/08 2:45 PM Page xvii

Formatting Lists to Distinguish Between Ordered and
Unordered Lists. 504

Getting Bold, Italics, Font Changes, and Color Changes
into Text Spans . 505

API Kits for Working with ODF . 507

Odfpy . 507

OpenDocumentPHP . 516

Leveraging OO.o to Generate ODF . 518

ECMA Office Open XML (OOXML) . 519

Viewers/Validators for OOXML. 522

Comparing ODF and OOXML . 522

Online Office Suites. 523

Usage Scenarios for Programmable Online Spreadsheets 523

Google Spreadsheets API . 524

Python API Kit . 524

Mashup: Amazon Wishlist and Google Spreadsheets Mashup. . . . 528

Zend PHP API Kit for Google Spreadsheets . 533

A Final Variation: Amazon Wishlist to Microsoft Excel
via COM . 535

Zoho APIs . 536

Summary . 536

■CHAPTER 18 Using Microformats and RDFa As Embeddable Data
Formats . 537

Using Operator to Learn About Microformats . 537

adr (Addresses) . 540

hCard (Contacts) . 541

hCalendar (Events). 542

geo (Locations) . 543

tag (Tagspaces) . 543

Definitions and Design Goals of Microformats . 543

Microformats Design Patterns. 545

rel-design-pattern . 545

class-design-pattern . 545

abbr-design-pattern . 546

include-pattern. 546

Examples of Microformats . 547

rel-license . 547

rel-tag . 548

xfn. 548

■CONTENTSxviii

858Xch00FM.qxd 2/4/08 2:45 PM Page xviii

xFolk. 549

geo . 549

hCard and adr. 550

hCalendar . 551

Other Microformats . 551

Microformats in Practice . 552

Programming with Microformats . 552

Language-Specific Libraries . 552

Writing an Operator Script . 553

Studying the Tutorial Script . 554

Writing a Geocoding Script. 556

Resources (RDFa): A Promising Complement to Microformats 557

Reference for Further Study . 558

Summary . 558

■CHAPTER 19 Integrating Search . 559

Google Ajax Search . 559

Manipulating Search Results . 559

Yahoo! Search . 561

Yahoo! Images . 563

Microsoft Live.com Search . 564

OpenSearch . 568

Google Desktop HTTP/XML Gateway . 570

Summary . 571

■APPENDIX . 573

■INDEX . 579

■CONTENTS xix

858Xch00FM.qxd 2/4/08 2:45 PM Page xix

858Xch00FM.qxd 2/4/08 2:45 PM Page xx

About the Author

■RAYMOND YEE is a data architect, consultant, and trainer. He is currently
a lecturer at the School of Information, UC Berkeley, where he teaches
the course “Mixing and Remixing Information.” While earning a PhD in
biophysics, he taught computer science, philosophy, and personal devel-
opment to K–11 students in the Academic Talent Development Program
on the Berkeley campus. He is the primary architect of the Scholar’s Box,
software that enables users to gather digital content from multiple sources
to create personal collections that can be shared with others. As a software

architect and developer, he focuses on developing software to support learning, teaching,
scholarship, and research.

Raymond is an erstwhile tubaist, admirer of J. S. Bach, Presbyterian elder, aspiring essayist,
son of industrious Chinese-Canadian restaurateurs, and devoted husband of the incomparable
Laura.

xxi

858Xch00FM.qxd 2/4/08 2:45 PM Page xxi

858Xch00FM.qxd 2/4/08 2:45 PM Page xxii

About the Technical Reviewer

■JOHN WATSON is a professional freelance software developer and has been creating web-based
software since 1994. He is best known on Flickr for fd’s Flickr Toys (Bighugelabs.com), a popular
collection of free photo manipulation utilities that use various APIs from Flickr, Google, and
Yahoo! John is married and living happily in southern California with his wife and two young
children. You can find out more about John and his recent projects at http://watson-net.com.

xxiii

858Xch00FM.qxd 2/4/08 2:45 PM Page xxiii

858Xch00FM.qxd 2/4/08 2:45 PM Page xxiv

Acknowledgments

I’m deeply thankful to those who provided detailed feedback to parts of my manuscript:
Jason Cooper, Andres Ferrate, Michael Kaply, John Musser, Paul Rademacher, Jon Udell, and
C. K. Yuan. John Musser graciously provided access to some data from Programmableweb.com.

I would never have written this book without the inspiration I drew from my former col-
leagues at UC Berkeley. I want to particularly thank Chris Ashley, Isaac Mankita, and Susan Stone,
who helped me persevere by listening patiently to my exuberant book talk over lunch or tea.
Thom King and Tom Schirmer generously shared their knowledge of data architecture and
software development. Shifra Gaman and Rich Meyer provided tons of technical and moral
support. Thanks to David Greenbaum for his supportive attitude toward my teaching work
and to Rick Jaffe, a colleague who took my class and who has been tirelessly championing my
teaching to others. Sara Leavitt and Aron Roberts generously helped me learn about iCalendar
and the Berkeley Events Calendar.

The School of Information at UC Berkeley has been an important intellectual home for the
past several years. I’m grateful for the opportunity to teach my course “Mixing and Remixing
Information” and the collegiality of the faculty and staff. Most of all, I want to thank my stu-
dents, who gave me their attention and created wonderful projects and in turn inspired me.
Thanks also to my teenage summer students for creating their mashup projects in a six-week
sprint and teaching me about music mashups.

Thanks to the many people at Apress who made this book a much better product than what
I alone could have written. In addition to consistently savvy editorial judgment, Matt Moodie
provided me with just the right amount of encouragement in the last months of writing. Richard
Dal Parto provided able project management, while Grace Wong pinch-hit in that capacity.
Thanks also to production editors Laura Esterman and Lori Bring, senior production editor
Kelly Winquist, and copy editor Kim Wimpsett for their work in turning code and text into a pub-
lishable form. I’m grateful to Tina Nielsen who was one of the first people I dealt with at Apress.
A special thanks goes to Chris Mills, who, as my first editor, got me off to a solid start in the
writing process with his enthusiasm and detailed feedback.

I learned much from the insightful comments of John Watson, who served as technical
reviewer, as well as from his very cool Flickr mashups!

I would like to thank my friends, who were excited for me and cheered me on. My family,
as always, was there for me; thank you so much for loving me and believing in me as I took on
this huge project.

And finally, I thank my wife, Laura, for everything she did for me while I wrote this book:
her love, encouraging words, and wise counsel; her listening to my ideas-in-process; her edit-
ing; and her sacrificial willingness to free up time for me to write. It’s time for us to take that
long-postponed vacation!

xxv

858Xch00FM.qxd 2/4/08 2:45 PM Page xxv

858Xch00FM.qxd 2/4/08 2:45 PM Page xxvi

Introduction

How many times have you seen a web site and said, “This would be exactly what I wanted—
if only . . .” If only you could combine the statistics here with data from your company’s earnings
projections. If only you could take the addresses for those restaurants and plot them on one
map. How often have you entered the date of a concert into your calendar with a single click
instead of retyping? How often do you wish that you could make all the different parts of your
digital world—your e-mail, your word processor documents, your photos, your search results,
your maps, your presentations—work together more seamlessly? After all, it’s all digital and
malleable information—shouldn’t it all just fit together?

In fact, below the surface, all the data, web sites, and applications you use could fit together.
This book teaches you how to forge those latent connections—to make the Web your own—by
remixing information to create your own mashups. A mashup, in the words of the Wikipedia, is
a web site or web application “that seamlessly combines content from more than one source
into an integrated experience.”1 Learning how to draw content from the Web together into new
integrated interfaces and applications, whether for yourself or for other others, is the central
concern of this book.

Let’s look at a few examples to see how people are remixing data and services to make
something new and useful:

• Housingmaps.com brings together Google Maps and the housing and rental listings
from Craigslist.com. Note that it was invented by neither Google nor Craigslist but by
an individual programmer, Paul Radamacher. Housingmaps.com adds to the function-
ality of Craigslist, which will show you on a map where a specific listing is located but
not all the rentals or houses in an area.2

• Google Maps in Flickr (GMiF) brings together Flickr pictures, Google Maps, Google Earth,
and the Firefox browser via Greasemonkey.3

• The Library Lookup bookmark is a JavaScript bookmarklet that connects Amazon.com
and your local library catalog.4

xxvii

1. http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid), accessed as
http://en.wikipedia.org/w/index.php?title=Mashup_%28web_application_hybrid%29&oldid=98002063

2. http://housingmaps.com/

3. http://webdev.yuan.cc/gmif/

4. http://weblog.infoworld.com/udell/stories/2002/12/11/librarylookup.html

858Xch00FM.qxd 2/4/08 2:45 PM Page xxvii

To create your own mashups and customize the Web, you will look at these examples in
greater detail, in addition to many other examples large and small, in this book. You can solve
countless specific problems by remixing information. Here are some examples of techniques
you will learn in this book:

• Taking a book you found on Amazon.com and instantly locating it in your local library

• Synthesizing a single news feed from many news sources through Yahoo! Pipes

• Posting Flickr photos to blogs with a click of a button

• Displaying your photos in Google Maps and Google Earth

• Using special extensions to Firefox to learn how to program Google Maps

• Inserting extra information into web pages with Greasemonkey

• Plotting stories from your favorite news source (such as the New York Times) on a map

• Making your own web site remixable so that others can create mashups from your content

• Creating Google calendars from your event calendars from the Web

• Storing and retrieving your files from online storage (S3)

• Creating an online spreadsheet from your Amazon.com wishlist

• Recognizing and manipulating data embedded in web pages

• Adding an event listed on the Web to your calendar and e-mailing it to other people
with one mouse click

• Building web search functionality into your own web applications

• Republishing word documents that are custom-formatted for your web site

Mashups are certainly hot right now, which is interesting because it makes you part of
a shared undertaking, a movement. Mashups are fun and often educational. There’s delight in
seeing familiar things brought together to create something new that is greater than the sum
of its parts. Some mashups don’t necessarily ask to be taken that seriously. And yet mashups
are also powerful—you can get a lot of functionality without a lot of effort. They might not be
built to last forever, but you often can get what you need from them without having to invest
more effort than you want to in the first place.

The Web 2.0 Movement
The Web 2.0 bandwagon is an important reason why mashups are popular now. Mashups have
been identified explicitly (under the phrases “remixable data source” and “the right to remix”)
by Tim O’Reilly in “What is Web 2.0?”5 Added to this, we have the development of what might
be accurately thought of as “Web 2.0 technologies/mind-sets” to remix/reuse data, web services,

■INTRODUCTIONxxviii

5. http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

858Xch00FM.qxd 2/4/08 2:45 PM Page xxviii

and micro-applications to create hybrid applications. Recent developments bring us closer to
enabling users to recombine digital content and services:

• Increasing availability of XML data sources and data formats in business, personal, and
consumer applications (including office suites)

• Wide deployment of XML web services

• Widespread current interest in data remixing or mashups

• Ajax and the availability of JavaScript-based widgets and micro-applications

• Evolution of web browsers to enable greater extensibility (for example, Firefox extensions
and Greasemonkey scripts)

• Explosive growth in “user-generated content” or “lead-user innovation”

• Wider conceptualization of the Internet as a platform (“Web 2.0”)

• Increased broadband access

These developments have transformed creating mashups from being technically chal-
lenging to nearly mainstream. It is not that difficult to get going, but you need to know a bit
about a fair number of things, and you need to be playful and somewhat adventurous.

Will mashups remain cutting-edge forever? Undoubtedly, no, but not because they will
prove to be an irrelevant fad but because the functionality we see in mashups will eventually
be subsumed into the ordinary “what-we-expect-and-think-has-always-been-there” function-
ality of our electronic society.

Moreover, mashups reflect deeper trends, even the deepest trends of human desire. As the
quality, quantity, and diversity of information grow, users long for tools to access and manage
this bewildering array of information. Many users will ultimately be satisfied by nothing less than
an information environment that gives them seamless access to any digital content source,
handles any content type, and applies any software service to this content. Consider, for example,
what a collection of bloggers expressed as their desires for next-generation blogging tools:6

Bloggers want tools that are utterly simple and allow them to blog everything that they

can think, in any format, from any tool, from anywhere. Text is just the beginning: Bloggers

want to branch out to multiple media types including rich and intelligent use of audio,

photos, and video.With input, having a dialog box is also seen as just a starting place for

some bloggers: everything from a visual tool to easy capture of things a blogger sees,

hears, or reads point to desirable future user interfaces for new generations of blogging

tools.

Mashups are starting to forge this sought-after access and integration of data and tools—
not only in the context of blogging but also to any point of interaction between users and
content.

■INTRODUCTION xxix

6. http://www.cadence90.com/blogs/2004_03_01_nixon_archives.html#107902918872392913

858Xch00FM.qxd 2/4/08 2:45 PM Page xxix

Overall Flow of the Book
A central question of this book is, how can both nontechnical end users and developers

recombine data and Internet services to create something new for their own use for and for
others? Although this book focuses primarily on XML, web services, and the wide variety of
web applications, I’ll also cover the role played by desktop applications and operating systems.

The Book’s Structure
The following is a breakdown of the parts and chapters in this book:

• Part 1, “Remixing Information Without Programming,” introduces mashups without
demanding programming skills from you and teaches skills for deconstructing applica-
tions for their remix potential.

• Chapter 1, “Learning from Specific Mashups,” analyzes in detail a selection of
mashups/remixes (specifically, Housingmaps.com, Google Maps in Flickr, and the
LibraryLookup bookmarklet) to get you oriented to mashups in general and to some
general themes we will continually revisit throughout the book.

• Chapter 2, “Uncovering the Mashup Potential of Web Sites,” analyzes Flickr (as our
primary extended example) for what makes it the remix platform par excellence for
learning how to remix a specific application and exploit features that make it so
remixable. We compare and contrast Flickr with other remixable platforms such as
del.icio.us, Google Maps, and Amazon.com.

• Chapter 3, “Understanding Tagging and Folksonomies,” covers tagging. Tagging,
which allows users to attach words to pictures, and websites—almost anything on
the Web—is the glue that holds many things together, both within and across web-
sites. This chapter illustrates how tags are used in Flickr, del.icio.us, and Technorati
and discusses how to create interesting tag-centric mashups, how people are
“hacking” the tagging system to create ad hoc databases, and how tags relate to
other classification systems.

• Chapter 4, “Working with Feeds, RSS, and Atom,” presents RSS and Atom, perhaps
the most widespread dialects of XML, as both a potent technology for remixing in
its own right and also as a specific way to learn about XML more generally. Not to
be missed are the sections on the various RSS/Atom-related formats and their sig-
nificance for information remix. The chapter includes a tutorial on using Yahoo!
Pipes to filter and synthesize feeds.

• Chapter 5, “Integrating with Blogs,” uses Flickr’s integration with weblogs as
a jumping-off point for an exploration of weblogs and wikis and their programma-
bility. Integration with blogging is an important topic since blogs represent a type
of remixing in a narrative, as opposed to data-oriented remixing via tags and the
straight RSS so far discussed. A brief discussion of integration with wikis concludes
the chapter.

■INTRODUCTIONxxx

858Xch00FM.qxd 2/4/08 2:45 PM Page xxx

• Part 2, “Remixing a Single Web Application Using Its API,” concentrates on teaching the
broad classes of web-based APIs by studying exemplars of each class.

• Chapter 6, “Learning Web Services APIs Through Flickr,” studies Flickr in detail. In
addition to be an exemplar for a range of nonprogramming remixing techniques in
Part 1, Flickr is also an excellent playground for learning XML web services. This
chapter will show you how to use the Flickr API, looking first at how to make a sim-
ple call to the API, next looking at how to make sense of the entire variety of calls
available, and then generalizing to handle authentication.

• Chapter 7, “Exploring Other Web APIs,” explains commonalities and contrasts
among various API providers, specifically those between Flickr and other systems,
and surveys the types of services available and how to think about the sheer range
of APIs. You will learn how to call REST, XML-RPC, and SOAP-based services. This
chapter looks at sites, such as Programmableweb.com, that document these vari-
ous APIs and the challenges faced in doing so.

• Chapter 8, “Learning Ajax/JavaScript Widgets and Their APIs,” describes the other
large class of web application remixability: those of JavaScript-based widgets, many
of which are Ajax applications. This chapter contrasts old-style web applications with
Ajax approaches through specific examples in Flickr and other applications and
introduces the Yahoo! UI Library, a specific JavaScript widget library to demonstrate
how to program widgets. You will also learn how to use the Firebug Firefox exten-
sion and the JavaScript Shell to learn about JavaScript. The chapter concludes with
an introduction to using Greasemonkey.

• Part 3, “Making Mashups,” is the heart of the book; it’s a discussion of how to use what
you learned in Parts 1 and 2 to create mashups.

• Chapter 9, “Moving from APIs and Remixable Elements to Mashups,” analyzes
mashups and their relationship to APIs through studying a series of specific prob-
lems for which mashups can provide useful solutions. The chapter looks at how
you can track books, real estate, airfare, and current events by combining various
APIs. You will learn how to use Programmableweb.com to analyze these problems.

• Chapter 10, “Creating Mashups of Several Services,” teaches you how to write mashups
by providing a detailed example that you’ll build from the ground up: a mashup of geo-
tagged Flickr photos and Google Maps using first the Google Maps API and then the
Google Mapplets API.

• Chapter 11, “Using Tools to Create Mashups,” discusses tools that have been devel-
oped to make creating mashups easier than by using traditional web programming
techniques. This chapter walks you through using one of these tools—the Google
Mashup Editor—and briefly surveys other tools.

• Chapter 12, “Making Your Web Site Mashable,” shifts the focus of the book briefly
from the consumption to the production of data and APIs. This chapter is a guide to
content producers who want to make their web sites friendly to mashups. That is,
this chapter answers the question, how would you as a content producer make your
digital content most effectively remixable and mashable to users and developers?

■INTRODUCTION xxxi

858Xch00FM.qxd 2/4/08 2:45 PM Page xxxi

2ca983ba3745582e6151dc1b079b2db0

• Part 4, “Exploring Other Mashup Topics,” covers how to remix and integrate specific
classes of applications, using the core conceptual framework of Parts 1 to 3 to guide the
discussion.

• Chapter 13, “Remixing Online Maps and 3D Digital Globes,” covers popular online
maps and virtual globes, offering examples of map-based mashups. You’ll learn
about making maps without programming and data exchange formats (GeoRSS
and KML), and then you’ll turn to the various APIs: Google Maps, Yahoo! Maps, and
Microsoft Maps. I’ll also cover geocoding American and non-American addresses.
The chapter closes with a discussion of Google Earth, its relationship to KML, and
how to display Flickr photos via KML.

• Chapter 14, “Exploring Social Bookmarking and Bibliographic Systems,” covers
how social bookmarking responds to a fundamental challenge—the job of keeping
found things found on the Web, which, at a basic level, is done through URLs, but
you’ll learn about other digital content such as images and data sets. Social book-
marking is interesting not only for the extensibility/remixability being built into
these systems but also for the insight it offers into other systems. This chapter
walks you through a select set of social bookmarking systems and their APIs, as
well as discusses interoperability challenges among these systems. The chapter
shows how to create a mashup of Flickr and del.icio.us.

• Chapter 15, “Accessing Online Calendars and Event Aggregators,” shows what data
you can get in and out of calendars without programming (using iCalendar and XML
feeds), how to program individual calendars (using Google Calendar and 30boxes),
and how to program individual event aggregator APIs (using Upcoming.yahoo.com
and Eventful.com). The chapter concludes with a mashup of a public events calen-
dar with Google Calendar.

• Chapter 16, “Using Online Storage Services,” surveys the potentially important and
growing area of online storage solutions and shows the basics of using Amazon S3.

• Chapter 17, “Mashing Up Desktop and Web-Based Office Suites,” shows how to
do some simple parsing in ODF and OpenXML, demonstrates how to create
a simple document in both ODF and OpenXML, explains some simple scripting
of Microsoft Office and OO.o, and concludes with a mashup of Google Spread-
sheets and Amazon.com web services.

• Chapter 18, “Using Microformats and RDFa As Embeddable Data Formats,” studies
two answers to the problem of how to embed information in web pages that is easy
to understand by both humans and computer programs: microformats and RDFa.
You will learn how to use and program the Operator Firefox extension to recognize
and manipulate microformats.

• Chapter 19, “Integrating Search,” shows how to use the Google Ajax Search API,
Yahoo! Search APIs, and Microsoft Live.com search; the chapter also introduces
OpenSearch and the Google Desktop HTTP/XML gateway.

■INTRODUCTIONxxxii

858Xch00FM.qxd 2/4/08 2:45 PM Page xxxii

Intended Audience
This book is accessible to a wide range of readers, including those who are curious about
Web 2.0 applications and those who want to know more about the technical underpinnings
of it. The technical perquisites are a good understanding of HTML, basic CSS, and basic
JavaScript. References to appropriate background materials will be provided. In this book,
most of the server-side code is presented in PHP. Some code is in Python.

At the same time, experienced developers will also be able to learn much from the book.
Although there will be a breadth of coverage, I will strive to state deep, essential facts about
the technologies in question (with respect to their applicability to remix)—aspects that might
not be obvious at first glance.

Information remixing can easily come across as a confusing grab bag of techniques.
Beginners have a hard time understanding the significance of XML, web services, Ajax, COM,
and metadata for remixing data. It is not that difficult to get going, but you need to know a bit
about a fair number of different topics, and you need to be playful and somewhat adventur-
ous. Usually these topics are found scattered throughout a large selection of books; this book
is the guide to show you where to begin.

Updates
Please go to http://mashupguide.net to find updates and supplementary materials for this
book.

■INTRODUCTION xxxiii

858Xch00FM.qxd 2/4/08 2:45 PM Page xxxiii

858Xch00FM.qxd 2/4/08 2:45 PM Page xxxiv

Remixing Information
Without Programming

In Part 1 of this book, we look at how to recombine information without resorting to formal

programming techniques. There is much that can be done by carefully examining various

web applications from the perspective of an end user looking for integrative opportunities.

In Chapter 1, we’ll study in detail several specific mashups to get you oriented to mashups

and to some general themes that we will continually revisit throughout the book. In Chapter 2,

we’ll analyze Flickr, a remix platform par excellence that we’ll study throughout the book,

comparing and contrasting it with other remixable platforms, including del.icio.us, Google

Maps, and Amazon.com. Chapter 3 shows how user-generated tags are used in Flickr,

del.icio.us, and Technorati and discusses how to create interesting tag-centric mashups.

Chapter 4 discusses RSS and Atom feeds, perhaps the most widespread dialect of XML, as

both a potent technology for sharing information across the Web and as a specific way to

learn about XML. Finally, Chapter 5 uses Flickr’s integration with weblogs as a jumping-off

point for exploring weblogs and wikis and their programmability. Part 1 lays the foundation

for the rest of the book, which teaches you how to programmatically create mashups.

P A R T 1

■ ■ ■

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 1

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 2

3

Learning from Specific Mashups

Before you set out to build your own mashups, you’ll study some specific examples in this
chapter. Mashups combine content from more than one source into a new integrated whole.
You can understand a specific mashup by answering a number of basic questions:

• What is being combined?

• Why are these elements being combined?

• Where is the remixing or recombination happening?

• How are various elements being combined (that is, first in the interface but also behind
the scenes in the technical machinery)?

• How can the mashup be extended?

This chapter will explore three major examples:

• Housingmaps.com

• The Google Maps in Flickr Greasemonkey script

• Jon Udell’s LibraryLookup bookmarklet

In this chapter, I will analyze these three examples using the previous questions loosely as
a framework. A close study of each of these mashups will be amply rewarded when you start
creating your own mashups.

Looking for Patterns in Mashups
One pattern you will see repeated among mashups that link two web sites is the combination
of three actions:

1. Data is extracted from a source web site.

2. This data is translated into a form meaningful to the destination web site.

3. The repackaged data is sent to the destination site.

Of course, the details differ among the mashups, but this general pattern holds true, as you
will see in the three mashups presented in detail in this chapter. Where the remixing actually

C H A P T E R 1

■ ■ ■

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 3

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS4

happens differs in the three mashups you’ll see in this chapter: in a separate application as in
Housingmaps.com, in Flickr for the Google Maps in Flickr script, and in the browser without
a change of interface as in the LibraryLookup bookmarklet.

Although you’ll see this pattern of data extraction, translation, and redirection in the
mashups covered in this chapter, you’ll find other patterns in mashups as well. Chapter 9 will
explore those other patterns in detail.

UNDERSTANDING THE TERMINOLOGY

Throughout the book, I use a number of related terms (mashup, remix, recombine, data, and services) to describe
differing aspects of reusing intellectual and creative work to build derivative works. Of course, reuse—whether in
the form of artistic appropriation, scholarly attribution, literary quotation and allusion, parody, or satire—has
a long history throughout human intellectual, creative, and commercial endeavors. Some terms, such as reuse (as
in software reuse or code reuse), have been in popular usage for a while. Others, such as remix and mashup,
have more recently arisen in the context of discussions around Web 2.0 to apply to the combination of data from
disparate sources, often via the use of XML and XML web services. In some ways, mashups has won out as the
term to refer to web interfaces and applications that combine content into something new, whereas the term
remix is generally about reusing media while still having broader usage (as in remix culture).

The boundary between mashup and remix is a bit fuzzy, though. Mashup and remix are terms that have
their origins in popular music.1 Roughly speaking, a remix is an alternate version of a song, while a mashup
brings together elements of two or more songs. The term mashup has expanded recently to describe the
combination of video from multiple sources in a new video.2 At this point, I will say that if I wanted to make
the parallels from popular music hold up for digital applications, I would use remix to describe scenarios that
are about reusing or repackaging data without combining it with other content (for example, using the Flickr
API to make a web page that has only Flickr images), and I would reserve mashups to refer to combinations
of data from a variety of sources (for example, combining Flickr photos with photos from Picasa). But the
lines are fuzzy and, in my opinion, not worth the effort to draw too carefully.

Broadly speaking, I focus in this book on software mashups, mostly but not exclusively on web mashups
that are remixing data and services. By data, I mean any digital content, whether it is on a computer network,
on your computer, or on any other device. By services, I roughly mean services as in service-oriented archi-
tecture and software as a service, meaning web services and any applications that can be reused.

Whereas mashups are strongly associated with Web 2.0, parallel developments going under such names as
composite applications are occurring in enterprise computing and service-oriented architectures. Composite
applications are also concerned with weaving together data and services, though they usually integrate corporate
data and supply chains sitting behind firewalls instead of public APIs from Google and Amazon. Although mashups
and composite applications share common techniques, they are driven by vastly different cultural factors.

This book focuses on personal information instead of information reuse from an enterprise perspective.
Personal information is distinct for its heterogeneity, its connection to personal information management, the
need for mass customizability, and the many permutations of hardware, software, and data derived from the
unique needs of individuals. Nonetheless, if there are opportunities to draw upon synergies with enterprise
Web 2.0 without going far afield, I will do so here.

1. http://en.wikipedia.org/wiki/Mashup_%28music%29 and http://en.wikipedia.org/wiki/Remix

2. http://en.wikipedia.org/wiki/Mashup_%28video%29

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 4

Housingmaps.com
When I explain mashups to others, I typically use the example of the web site Housingmaps.com,
a mashup of Craigslist and Google Maps. Housingmaps.com is useful in ways that are quick
and easy to understand, which invites repeated usage. It also requires no software beyond
a modern web browser. Moreover, Housingmaps.com takes two already well-known web
applications to create something new.

Figure 1-1 shows Housingmaps.com displaying a specific rental listing. Note the photos
of the apartment and the links to Craigslist. All the data is drawn from Craigslist and then dis-
played in a Google map.

Figure 1-1. Housingmaps.com

What Is Being Combined?
Housingmaps.com takes the list of houses, apartments, and rooms that are for sale or rent
from Craigslist and displays them on a Google map. Note that it was invented by neither
Google nor Craigslist but by an individual programmer, Paul Rademacher, who, at the time of
its invention, was working for neither Google nor Craigslist but who was later hired by Google.

Why Are the Constituent Elements Being Combined? What’s the
Problem Being Solved?
Craigslist provides links to Google Maps and Yahoo! Maps for any individual real estate listing,
but it does not map the listings collectively. The single listing per map on the Craigslist inter-
face makes it a challenge to mentally track the location of all the properties. Moreover, when
looking for real estate, you often want to look at a narrowly defined neighborhood or find

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS 5

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 5

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS6

houses with good access to transit. With Craigslist, you have to click many links and manually
piece together a lot of maps to focus your search geographically.

Housingmaps.com addresses these challenge by letting you see on a Google map all
the Craigslist apartments or houses in a specific area, not just an individual item. At
Housingmaps.com, geographical location becomes the primary lens for looking for real
estate, with a map as the central element of the user interface.

Where Is the Remixing Happening?
The remixing occurs on the server side on a web site (Housingmaps.com) that is distinct from
both the source web site (Craigslist) and the destination application (Google Maps). Data is
drawn from the source and transformed into a Google map, which is embedded in web pages
at Housingmaps.com.

How Are These Elements Being Combined?
This question really breaks down into two questions:

• How does Housingmaps.com obtain the housing and rental data from Craigslist?

• How does Housingmaps.com create a Google map of that data?

A desirable, and increasingly common, method for mashups to obtain data from a web
site is through a web site’s publicly available application programming interface (API). An API
is designed specifically to facilitate communication between programs, often including the
exchange of data. (You will be introduced in detail to APIs in Chapters 6 and 7.)

At this time, Craigslist does not provide a public API but does provide RSS feeds. As I will
discuss in Chapter 4, RSS feeds are used to syndicate, or transport, information from a web site
to a program that consumes this information. The RSS feeds, however, do not provide enough
detail to precisely position the listings on a map.

Consequently, Housingmaps.com screen-scrapes (or crawls) Craigslist; that is, Housingmaps.
com retrieves and parses the HTML pages of Craigslist to obtain detailed information about
each listing. The crawling is performed carefully so as to minimize the use of bandwidth. When
you access Housingmaps.com, you are accessing not real-time data from Craigslist but rather
the data that has been screen-scraped by Housingmaps.com.

■Note Public APIs and RSS feeds are generally preferable to screen-scraping web sites. Screen-scraping,
when poorly implemented, can overtax the data source. Always check that you are complying with the terms
of service of the data source in how you use the data.

To display the real estate information on a Google map, the current version of Hous-
ingmaps.com uses the Google Maps API,3 which is the official Google-sanctioned way of
embedding Google maps in a non-Google-owned web page. (You will look in detail at the
Google Maps API in various other places, particularly in Chapter 13.)

3. http://www.google.com/apis/maps/

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 6

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS 7

It’s interesting to go into a bit of history here to understand the emergence of the mashup
phenomenon. When Housingmaps.com first showed up in April 2005, Rademacher was using
Google Maps before it had any real API. He deciphered the original JavaScript of Google Maps
and figured out how to incorporate Google Maps into Housingmaps.com. During the period
between the release of Google Maps on February 8, 2005, and the publication of version 1 of
the Google Maps API (on approximately June 29, 20054), there was a period of intense “hack-
ing” of Google Maps, described in the following way by members of the Google Maps team:5

For this and other reasons we were thrilled to see “hackers” have a go at Google Maps

almost immediately after we launched the site back in early February. Literally within

days, their blogs described the inner workings of our maps more accurately than our

own design documents did, and soon the most amazing “hacks” started to appear: Philip

Lindsay’s Google Maps “stand-alone” mode, Paul Rademacher’s [Housingmaps.com], and

Chris Smoak’s Busmonster, to mention a few.

Comparable Mashups
Since the debut of Housingmaps.com, many other mashups—in fact, tens of thousands—have
followed this pattern set of recasting data to make geographical location the organizing princi-
ple. These mashups cover an incredible range of topics and interests.6

Many other mashups involve extracting geocoded data (location information, often lati-
tude and longitude) from one source to then place it on an online map (such as a Google map
or Yahoo! map). I name two prominent examples here:

• Adrian Holovaty’s Chicago crime map (http://chicagocrime.org), which is a database
of crimes reported in Chicago fronted by a Google Map interface

• Weather Bonk, which is a mashup of weather data on a Google map (http://www.
weatherbonk.com/weather/about.jsp)

Google Maps in Flickr
In the earlier days of Flickr (before August 2006), there was no built-in feature that allowed
a user to show pictures on a map. The Google Maps in Flickr (GMiF) script was created to fill in
that gap by letting you see a Flickr photo on a Google map. Today, even with Flickr’s built-in
map of geotagged photos, which uses Yahoo! Maps technology, GMiF remains a valuable
mashup. GMiF allows users to use a Google map, which many prefer over Yahoo! Maps, to dis-
play their photos. Moreover, GMiF also integrates Google Earth, a feature not currently built
into Flickr. GMiF provides an excellent case study of how you can extend an application such
as Flickr to fit user preferences.

4. http://benmetcalfe.com/blog/index.php/2005/06/29/google-make-map-api-available-finally/

5. Google Maps Hacks by Rich Gibson and Erle Schuyler (O’Reilly Media, 2006)

6. See http://googlemapsmania.blogspot.com/ for many new mashups based on Google Maps that
appear every day.

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 7

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS8

What Is Being Combined?
GMiF (http://webdev.yuan.cc/gmif/) brings together Flickr pictures, Google Maps, and Google
Earth within the Firefox browser via a Greasemonkey script. I’ll break this down for you:

• Flickr (http://flickr.com) is a popular photo-sharing site.

• Google Maps (http://maps.google.com/) is an online mapping system.

• Google Earth (http://earth.google.com/) is a desktop "magic-carpet" interface that
lets you pan and zoom around the globe.

• The Firefox web browser (http://www.mozilla.com/firefox/) is an open source web
browser. Notable among its features is its extension/add-on architecture, which allows
developers to add functionality to the browser.

• The Greasemonkey extension (http://www.greasespot.net/) is a Firefox extension that
“allows users to install scripts that make on-the-fly changes to specific web pages. As
the Greasemonkey scripts are persistent, the changes made to the web pages are exe-
cuted every time the page is opened, making them effectively permanent for the user
running the script.”7 Greasemonkey scripts allow you—as the user of that web site and
not as the author of the web site—to make customizations, all within the web browser.

HOW TO INSTALL THE GMIF SCRIPT

To run the GMiF Greasemonkey script, you must use the Firefox web browser in conjunction with the
Greasemonkey add-on and the GMiF script.

Here’s how you install GMiF:

1. If you do not already have Firefox installed on your computer, go to http://getfirefox.com, hit the
Download Firefox button, and follow the instructions to install it.

2. Now you need to install the Greasemonkey add-on for Firefox, so go to the following URL: https://
addons.mozilla.org/en-US/firefox/addon/748.

3. Click the Install Now button. Restart the browser to activate the Greasemonkey add-on.

4. Now you need to install the GMiF Greasemonkey script, so go to the following URL: http://webdev.
yuan.cc/gmif/.

5. Click the “Download GM user script: flickr.gmap.user.js (latest version)” link. Click Install when you are
asked whether to install the script.

Why Are the Constituent Elements Being Combined? What’s the
Problem Being Solved?
GMiF is a Greasemonkey script that allows you as a user to display a Flickr picture on a Google
map or in Google Earth at the geographic location associated with that picture. GMiF was written

7. http://en.wikipedia.org/wiki/Greasemonkey, accessed on January 1, 2007, as http://en.wikipedia.
org/w/index.php?title=Greasemonkey&oldid=97588087

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 8

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS 9

to support geotagging in Flickr. Geotagging, in the context of Flickr, is the process of associating
a location with a given photo, which is typically but not necessarily the location where the photo
was taken.

Until geotagging was officially integrated into Flickr with the use of Yahoo! Maps in
August 2006,8 there was no direct way to associate geocoding (location information) with any
given picture. Rev Dan Catt catalyzed the mass-geotagging phenomenon by suggesting that
Flickr users shoehorn the latitude and longitude information into the tags associated with
a photo. Many people took up the practice. The GMiF Greasemonkey script uses that geocod-
ing for a photo.

Let’s take a look at how GMiF works. Consider one of my own photos, shown in Figure 1-2
(also available at http://flickr.com/photos/raymondyee/18389540/). Notice two things:

• This photo has associated geotagging information (for example, geo:lat=37.8721,
geo:lon=-122.257704, and the tag geotagged).

• Note the presence of the rightmost GMap button above the photo. This button is the
result of the GMiF script, which inserts the GMap button. In other words, if you do not
have the GMiF Greasemonkey script installed, you won’t see this button.

Figure 1-2. The Flickr photo “Campanile in fog” (http://flickr.com/photos/raymondyee/
18389540/) with associated geocoding embedded in the tags. (Reproduced with permis-
sion of Yahoo! Inc. ® 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of
Yahoo! Inc.)

8. http://blog.flickr.com/flickrblog/2006/08/great_shot_wher.html and http://blog.flickr.com/
flickrblog/2006/08/geotagging_one_.html

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 9

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS10

Clicking the GMap button opens a Google map embedded in the Flickr web page, with
a pin indicating the location of the picture in question (as shown in Figure 1-3). Note the red
pin indicating the location of the photo. The blue pins correlate to other geotagged photos.
The map also has a thumbnail of the photo in the upper-right corner.

Figure 1-3. Clicking the GMap button opens a Google map in the browser. (Reproduced with per-
mission of Yahoo! Inc. ® 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of
Yahoo! Inc.)

Clicking the pin opens a callout with a picture and options of other things to do with the
picture. Note how the latitude and longitude listed correspond to the information in the
geo:lat and geo:lon tags, respectively (as shown in Figure 1-4).

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 10

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS 11

Figure 1-4. Clicking the red pin opens a balloon containing the photo and further geotagging
functionality offered by GMiF. (Reproduced with permission of Yahoo! Inc. ® 2007 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.)

Among the GMiF functions is integration with Google Earth. If you hit the Fly To button,
you will be presented with a file to download. If you have Google Earth installed and it is con-
figured in the default fashion, downloading the file launches Google Earth, and you will be
“flown” to the location of the Flickr photo (as shown in Figure 1-5).

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 11

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS12

Figure 1-5. Clicking the GMiF Fly To button launches Google Earth, which then displays the
photo at the latitude and longitude associated with the photo.

How Are These Elements Being Combined?
The GMiF Greasemonkey script rewrites the HTML of the Flickr page to insert the GMap
button (this rewriting of the HTML DOM is akin to looking in the HTML source for where the
Flickr buttons are and inserting HTML code for the button). Furthermore, JavaScript code is
added to embed a Google map in the Flickr page, when you (as the user) click the GMap button.

Integration happens in the context of Flickr web page, loaded in the user’s browser. Note
how powerful this is: you don’t have to go to another application to see the picture on a Google
map because you get to use a slightly modified version of Flickr. These modifications do not
require the intervention of Flickr itself. Hence, there is room for a lot of customization.

■Note Of course, there are potential pitfalls with GMiF. GMiF, as with all Greasemonkey scripts, can cease
to function if the HTML and JavaScript source of the underlying web page the script operates on changes.
Also, with enough Greasemonkey scripts at play, instead of having a strong communal experience of Flickr,
users have many different fragmented understandings of the interface. I think these benefits of being able to
radically customize your interaction with a web site by actually changing your own version of the interface
are worth dealing with these risks.

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 12

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS 13

How is the integration of GMiF with Google Earth created? The downloaded file is a KML
file. KML is a dialect of XML, which is the closest thing we have to a lingua franca for exchang-
ing data. The KML file contains the latitude and longitude associated with the picture and a URL
of the picture. KML is used to exchange geographic type data that is understood by Google
Earth. In other words, GMiF takes information from one source (the URL of the picture and
the latitude and longitude of the picture embedded in tags from Flickr) and translates that
information into a form that is understood by the destination application, namely, KML for
Google Earth. Once you translate that information, you still need to get the information to the
destination; in this case, the transport happens through the formation and downloading of
the KML file.

Admittedly, GMiF is a bit “hackerish,” requiring the installation of the Firefox web browser
(which does not come by default on Windows or Mac OS X), the Greasemonkey extension, and
the GMiF script. But I bring this up here to talk about the lengths to which people are willing
to go to experiment with their tools to combine technologies.

Comparable Mashups
Mappr (http://www.mappr.com/), “an interactive environment for exploring place based on the
photos people take,” is a mashup of Flickr and a Flash-based map.

FORMAL VS. INFORMAL APIS AND INTEGRATION MECHANISMS

I mentioned in previous sections how the proliferation of formal integration mechanisms in the form of APIs
and XML feeds, for instance, are giving rise to many more mashups and remixed possibilities. It’s important
to note that you want to depend on not only these formal mechanisms but also on informal mechanisms. Hence
in this book, I’ll teach you how to look for both formal and informal mechanisms. The example mashups
I describe here use both. I hope to convey to you how to look for those informal hooks.

LibraryLookup Bookmarklet
Let’s say you find a book at an online bookstore (for example, Amazon), but instead of buying
the book, you want to borrow it from your local library.

Jon Udell’s LibraryLookup bookmarklet9 makes it easy to jump from the Amazon page to
the corresponding catalog entry in your local library catalog—via the simple click of a button.
To accomplish the same task without LibraryLookup, you might instead manually re-enter your
search in your local library catalog, which is a tedious task if you have to do it for many books.

LibraryLookup is a bookmarklet, which is “a small JavaScript program that can be stored
as a URL within a bookmark in most popular web browsers or within hyperlinks on a web
page.”10 A bookmarklet does not require the Greasemonkey extension in Firefox and works in
web browsers other than Firefox. LibraryLookup is, in a manner of speaking, a mashup of online
bookstores and library catalogs.

9. http://weblog.infoworld.com/udell/stories/2002/12/11/librarylookup.html

10. http://en.wikipedia.org/wiki/Bookmarklets, accessed as http://en.wikipedia.org/w/
index.php?title=Bookmarklet&oldid=96304211

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 13

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS14

LibraryLookup is less flashy than previous examples; it’s also not server side, like
Housingmaps.com. It is client side like the GMiF script, but not in exactly the same way.
But it shows another way to create browser-based integration.

Let’s look at how LibraryLookup works from the user’s point of view. To use the LibraryLookup
bookmarklet, you need to do the following:

1. Configure a bookmarklet for the library of your choice.

2. Invoke that bookmarklet when you arrive on a web page for the book you want to look
up in your library.

Configuring a LibraryLookup Bookmarklet
Go to the LibraryLookup Bookmarklet Generator at the following URL:

http://weblog.infoworld.com/udell/stories/2002/12/11/librarylookupGenerator.html

Now enter the base URL and library name, and select the catalog vendor corresponding
to your library. Consider, for example, the Berkeley Public Library (BPL). In comparing the BPL
OPAC to the examples of vendor online public access catalogs (OPACs) provided by Udell, you
can determine that the BPL OPAC is an instance of an Innovative system. When you type in
the base URL for the BPL OPAC (http://www.berkeley-public.org) and the name of the
library (Berkeley Public Library), select Innovative for the vendor (as shown in Figure 1-6), and
then hit Submit, you get a bookmarklet that you can then drag to your browser toolbar. The
source of the bookmarklet is as follows:

javascript:var%20re=/([\/-]|is[bs]n=)(\d{7,9}[\dX])/i;
if(re.test(location.href)==true){var%20isbn=RegExp.$2;
void(win=window.open('http://www.berkeley-public.org'+'/search/i='+isbn,
'LibraryLookup','scrollbars=1,resizable=1,location=1,width=575,height=500'))}

■Note If your library is not one of the vendors listed by Udell, it is not difficult to take these templates and
make them work for libraries with slightly changed systems.

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 14

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS 15

Figure 1-6. The LibraryLookup Bookmarklet Generator with parameters for the BPL

Invoking the LibraryLookup Bookmarklet
Let’s see this bookmarklet in action. Here I use the LibraryLookup bookmarklet for the
BPL, applied to the book Foundations of Ajax, which is published by Apress with an ISBN-10
of 1590595823. If you go to the corresponding Amazon page (http://www.amazon.com/
Foundations-Ajax-Foundation-Ryan-Asleson/dp/1590595823/) and hit the BPL Library-
Lookup bookmarklet, you would see a window pop up showing the book in the BPL (see
Figure 1-7).

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 15

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS16

Figure 1-7. Invoking the LibraryLookup bookmarklet to look up Foundations of Ajax at the BPL.
(Software copyright Innovative Interfaces, Inc. All rights reserved.)

How Does This Mashup Work?
The LibraryLookup bookmarklet looks for an ISBN (or ISSN) in the URL of the book-related
site to identify the book you want to find. The bookmarklet does the following:

1. It extracts an ISBN from the URL of the library catalog.

2. It repackages the ISBN in a new URL to look up that book in your library catalog.

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 16

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS 17

How Can This Mashup Be Extended?
This bookmarklet has some limitations. If you want to query multiple libraries in your area,
you might find it tedious to create the bookmarklet for each of these libraries. One approach is
to modify the bookmarklet to send ISBNs to the OCLC Open WorldCat catalog. Here’s the cor-
responding bookmarklet:

javascript:var%20re=/([\/-]|is[bs]n=)(\d{7,9}[\dX])/i;
if(re.test(location.href)==true){var%20isbn=RegExp.$2;
void(win=window.open('http://worldcatlibraries.org/wcpa'+'/isbn/'+isbn,
'LibraryLookup','scrollbars=1,resizable=1,width=575,height=500'))}

There is a deeper limitation of the LibraryLookup bookmarklet, which you can see through
the following example. If you use the BPL bookmarklet to see whether Czesĺaw Miĺosz’s New
and Collected Poems: 1931–2001 is in the library by first looking it up at Amazon and finding
a paperback version at http://www.amazon.com/exec/obidos/ASIN/0060514485 and then invok-
ing the bookmarklet to arrive at http://library.berkeley-public.org/search/i=0060514485,
you might be surprised to not turn up the book in question, especially since the Nobel Prize
winning poet spent the last 40 years of his life in Berkeley. It turns out that there are indeed
copies of Miĺosz’s book in the BPL, but they are a different edition with a different ISBN
(006019667X). See the following URL:

http://library.berkeley-public.org/search/i=006019667X

Different editions of a work have different ISBNs. Furthermore, it’s not obvious how to
derive the ISBN of related editions.

In recognizing that the LibraryLookup bookmarklet, by using an ISBN to uniquely identify
a work, is not able to recognize various editions of a book, Udell has taken a number of differ-
ent approaches to overcome this limitation, all of which use the OCLC xISBN service, a web
service that returns a list of ISBNs that are associated with a submitted ISBN:11

• The first is a Greasemonkey script that works on an Amazon page for a book. The script
first checks whether Udell’s local library has a book with the same ISBN as the Amazon
book in question. If not, the script then queries the local library for any of the ISBNs
associated with the book, a listed generated by the xISBN service.12

• The second extension is a port of the Greasemonkey script (which is tied to Firefox) to
something that works in Internet Explorer.13

Udell has also worked on another type of mashup between Amazon and a local library:
a service that checks your Amazon wish list in order to receive notifications about availability
in a Keene, NH library (Udell’s local libraries).14 This service awaits generalizations for multi-
ple OPACs and multiple libraries.

11. http://www.worldcat.org/affiliate/webservices/xisbn/app.jsp

12. http://weblog.infoworld.com/udell/2006/01/30.html

13. http://blog.jonudell.net/2007/04/23/greasemonkeying-with-ie/

14. http://elmcity.info/services

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 17

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS18

Comparable Mashups
BookBurro, in the form of either a Firefox extension or a Greasemonkey script, displays the
price of a corresponding book as a pop-up window.15

LibraryThing is “an online service to help people catalog their books easily.”16 It is much
more than a typical mashup but has elements that are mashup-like—including the thingISBN
API17 described in the following way:

Today I’m releasing thingISBN, LibraryThing’s “answer” to xISBN. Under the hood,

xISBN is a test of FRBR, a highly developed, well-thought-out way for librarians to

model bibliographic relationships. By contrast, thingISBN is based on LibraryThing’s

“everyone a librarian” idea of bibliographic modeling. Users “combine” works as they see

fit. If they make a mistake, other users can “separate” them. It’s a less nuanced and more

chaotic way of doing things but can yield some useful results.

William Denton has been experimenting with both xISBN and thingISBN, showing that it
might be better to use both services rather than just one.18

Tracking Other Mashups
Of course, many mashups exist other than the ones I have highlighted in this chapter. You can
always learn more by studying other examples of mashups.

In studying mashups, you will find one web site that is a particularly useful resource:
http://programmableweb.com. This site is created and managed by John Musser.

I will be referring to Programmableweb.com throughout the book but want to highlight
some specific parts here that will help you keep up with mashups:

• The Programmableweb.com blog is a narrative of the latest developments in the world
of mashups and APIs.19

• The Mashup Dashboard provides an overview of the mashups in the Programmableweb.
com database, which as of August 2007, covers more than 2,220 mashups.20

Summary
In this chapter, you studied three major examples of mashups: Housingmaps.com, Google
Maps in Flickr, and the LibraryLookup bookmarklet. I chose these examples to illustrate some
commonalities and differences you will find among mashups. By posing a number of analytic

15. http://bookburro.org/

16. http://www.librarything.com/about.php

17. http://www.librarything.com/thingology/2006/06/introducing-thingisbn_14.php

18. http://www.frbr.org/categories/librarything/

19. http://blog.programmableweb.com/

20. http://www.programmableweb.com/mashups

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 18

CHAPTER 1 ■ LEARNING FROM SPECIF IC MASHUPS 19

questions (What is being combined? Why are these elements being combined? Where is the
remixing or recombination happening? How are they being combined, in terms of the inter-
face and behind the scenes in the technical machinery? How can the mashup be extended?),
you saw a repeated pattern:

1. Data is extracted from a source web site.

2. This data is translated into a form meaningful to the destination web site.

3. The repackaged data is sent to the destination site.

There are important differences among the various mashups, specifically in where the
integration happens and what is being integrated. For instance, Housingmaps.com is a server-
side application, whereas the mashing up of GMiF and LibraryLookup occurs within the
browser.

Now that you have a sense of how mashups are constructed and what they are used for,
you’ll turn now to a study of the individual services and sources of data that can be recombined.

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 19

858X_ch01FINAL.qxd 2/4/08 2:47 PM Page 20

Uncovering the Mashup
Potential of Web Sites

In the previous chapter, you studied several examples of mashups in depth. With the goal of
learning how to create your own mashups, you’ll turn now to the raw ingredients of mashups—
individual web sites and web applications. Although the focus of this book is on public web
application programming interfaces (APIs), you’ll first study the human user interface (UI) of
web sites for their mashup potential.

Why not jump straight to using APIs if that’s what you want to use to create mashups?
After all, wouldn’t the APIs be the most useful place to begin with since they are especially
designed for enabling access to the web site’s data and services? What you learn from studying
a web site’s user interface is useful—even essential—to using APIs effectively. When you exer-
cise a web site’s public API, you usually need to understand the overall logic of the web site. For
instance, some mashups, such as those created with Greasemonkey (like the Google Maps in
Flickr [GMiF] script from Chapter 1), extend the application directly by hooking into and blend-
ing with the existing user interface. To create something like GMiF, you would need detailed
knowledge of the application you plan to mash up. One of the best ways to uncover potential
hooks of a web site is to use the web site as an end user, armed with a developer’s sensibility.

Creating mashups doesn’t always require much programming. It can be as simple as link-
ing to the right part of an application, accessing the appropriate feed, or connecting the web
site to a weblog. In this chapter, I will point out how features created for end users can enable
you to create mashups with minimal or no programming.

Flickr is the central example in this chapter, one that I analyze extensively. I follow with
Google Maps as an important complementary example. Flickr and Google Maps are among
the most mashed up APIs on the Web. I also discuss del.icio.us, a pioneering social bookmark-
ing site, and Amazon, which is an example of an e-commerce platform. In this chapter, I have
selected highly remixable applications—as opposed to web sites that are difficult to recombine—
as a way to ease into your study of creating mashups.

In this book, I focus mostly on how to use public APIs but briefly mention screen-scraping.
APIs often don’t do everything you might want from them. Although you can do a lot with
public APIs, screen-scraping provides an important alternative or complementary approach.
Nonetheless, you should use the API as the first resort. You can screen-scrape if you need to,
but always use a web site’s computational and network resources respectfully, being mindful
of the legal ramifications of what you are doing.

21

C H A P T E R 2

■ ■ ■

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 21

What Makes Web Sites and Applications Mashable
I’ll now cover the aspects of web sites and web applications that make them amenable to
mashups. Some features are useful regardless of whether you are using the API or whether you
are using informal mechanisms for integration. In either case, you are looking for ways to hook
into an application. The following sections will help you to analyze a web site for these inte-
gration hooks.

UNIDERSTANDING THE TERMINOLOGY

You want to be careful to distinguish different uses of the term hacking. When I say you want a site to be
hackable, I don’t mean people should easily be able to break the security elements of the web site. Such activity
isn’t hacking—that’s cracking. When you design a site to be hackable, you are designing it to be extensible,
even in what you hope to be highly transformative ways. See Eric Raymond’s Jargon File web site for a rel-
evant definition of a hacker (http://www.catb.org/jargon/html/H/hacker.html), especially the
following:

• “A person who enjoys exploring the details of programmable systems and how to stretch their capabilities”

• “One who enjoys the intellectual challenge of creatively overcoming or circumventing limitations”

Note the deprecated usage: “A malicious meddler who tries to discover sensitive information by poking
around. Hence password hacker, network hacker. The correct term for this sense is cracker.”

Some people are talking about “designing for hackability” (http://www.brianoberkirch.com/
2007/04/03/designing-for-hackability/).

I’m using the term reverse engineering to refer to a careful study of a web site, its functionality, and
how it’s put together. I outline some techniques, but there are more to use. Reverse engineering is a long-
honored tradition in this society—but you need to be aware of some of the legal and ethical issues of it.
Please refer to http://www.chillingeffects.org/reverse/faq.cgi for some information. (What I
write here, of course, is not legal advice on reverse engineering.)

Ascertaining the Fundamental Entities of the Web Site
The basic questions to begin with when analyzing a web site are the following: What is the web
site fundamentally about? What are the key entities, or resources to borrow a term from W3C
parlance? How are these entities or resources associated with specific URLs/URIs? A resource
is anything with a URI associated with it. A formal definition of a resource comes from “Uni-
form Resource Identifier (URI): Generic Syntax” (RFC 3986):1

This specification does not limit the scope of what might be a resource; rather, the term

“resource” is used in a general sense for whatever might be identified by a URI. Familiar

examples include an electronic document, an image, a source of information with

a consistent purpose (e.g., “today’s weather report for Los Angeles”), a service (e.g., an

HTTP-to-SMS gateway), and a collection of other resources. A resource is not necessarily

accessible via the Internet; e.g., human beings, corporations, and bound books in

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES22

1. http://tools.ietf.org/html/rfc3986#section-1.1

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 22

a library can also be resources. Likewise, abstract concepts can be resources, such as the

operators and operands of a mathematical equation, the types of a relationship (e.g.,

“parent” or “employee”), or numeric values (e.g., zero, one, and infinity).

The question of resources and their corresponding URIs are not as abstract as they may
sound. In fact, looking at resources may seem rather obvious. For example, for Flickr, which is
self-described as “almost certainly the best online photo management and sharing application
in the world,” important entities are, not surprisingly, photos and users. As you will see later in
the chapter, these entities are also resources; you can identify specific photos and users in the
URLs produced by Flickr. For example, this URL:

http://www.flickr.com/photos/raymondyee/508341822/

is for photo 508341822, which belongs to user raymondyee. A Flickr photo is addressable via
a URL; that is, a URL can lead you right to the photo in question. As experienced users of the
Web, we all know the useful things we can do when there are specific URLs. You can bookmark
a link, e-mail it, and use it as a reference in a web page. You don’t have to tell someone to go to
Flickr and type in the photo number to get to the photo.

As you will see later in this chapter, granular URLs also enable mashups. A major part of
this chapter is devoted to studying web sites by analyzing their end-user functionality and
how it can be seen through its URI structure (URL language). In the following sections, I discuss
in greater detail notions of addressability, granularity, transparency, and persistence in URLs.
I will present a detailed listing of entities and how you can refer to them in URIs for Flickr, as
well as a brief analysis of Google Maps, Amazon, and del.icio.us for comparison.

Public APIs and Existing Mashups
Is there a public API for the web site? A web site’s public API is specifically designed as the offi-
cial channel of programmatic access to the data and services of the web site. It essentially lets
you access and program the web site almost like a local object or database. For a slightly more
formal definition of an API, consider the one by John Musser from Programmableweb.com: “a
set of functions that one computer program makes available to other programs so they can talk
to it directly.”2 Although there are APIs for operating system, applications, and programming
toolkits, this book focuses on the APIs of web sites and web applications.

If there is a public API for a web site, how have people used the API? Looking for what
others have done with the API helps you get right into the application without wading through
any documentation.

What’s the range of the third-party wrappers available for the API? How many are officially
supported by the web site owners? Which ones were developed by the community?

Are there many people working with the API, or is there little evidence that it is being used
at all? Have any mashups using the web site been developed? How sophisticated are the mashups?
Are they straight-up remixes of the data or presentations of the data in a new context? Do you
see some emergent and unexpected property? Surprising mashups often reveal a capacity in
the formal API or some integration point that might not be obvious from a quick glance at the
documentation.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 23

2. http://programmableweb.com/faq#Q2

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 23

The more interesting mashups that exist for an application, the more likely it is that the
application is amenable to mashups. Look for mashups that contain functionality similar to
what you want to include.

Chapter 6 and Chapter 7 present an overview of how to use public web site APIs, starting
with a study of the Flickr APIs and then moving on to a survey of other APIs.

Use of Ajax
Does the web site use Ajax and allied JavaScript techniques to integrate data dynamically into
the user interface? As you will learn in Chapter 8, the presence of Ajax is an indicator that there
is likely an API at work—either a formalized public API or a programmatic structure, though not
intended for public interfacing, that might possibly be used for mashup making. (Recall from
Chapter 1 how Housingmaps.com placed markers on the first generations of Google Maps by
tapping into the programming logic before any public API for Google Maps was released.)

Embedded Scriptability
Can people embed plug-ins, add-ons, or extensions (as opposed to writing external applica-
tions) to extend the web site directly? Here are examples of extension frameworks for specific
web sites:

• Google Gadgets (http://www.google.com/ig/directory) to extend iGoogle (http://
www.google.com/ig) and Google Mapplets (http://www.google.com/apis/maps/
documentation/mapplets/) to extend Google Maps (http://maps.google.com/maps/
mm?mapprev=1)

• Microsoft Web Gadgets (http://gallery.live.com/) to extend Windows Live
(http://live.com)

For web applications, these are some examples:

• WordPress plug-ins (http://codex.wordpress.org/Plugins)

• MediaWiki extensions (http://www.mediawiki.org/wiki/MediaWiki_extensions)

For desktop applications/OS environments, take a look at these examples:

• Microsoft Office macros and add-ins (http://msdn2.microsoft.com/en-us/office/
default.aspx)

• OpenOffice.org macros, add-ins, and add-ons (http://wiki.services.openoffice.org/
wiki/Extensions)

• Yahoo! Widgets (http://widgets.yahoo.com/)

• SketchUp Ruby (http://www.sketchup.com/?sid=79)

If you have the required permissions, you can install or write extensions that incorporate
other services into the applications.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES24

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 24

Browser Plug-Ins
Are there Firefox add-ons (https://addons.mozilla.org/en-US/firefox/) that supplement or
enhance the user interface to the web site? For example:

• Better Flickr Firefox Extension (http://lifehacker.com/software/lifehacker-code/
upgrade-flickr-with-the-better-flickr-firefox-extension-263985.php)

• The del.icio.us Firefox extension (http://del.icio.us/help/firefox/extension)

• S3Fox Amazon S3 Firefox Organizer (https://addons.mozilla.org/en-US/firefox/
addon/3247)

If you see a form of communication between the add-on and the application, you know
there is some form of public or private API. Other browsers have extension mechanisms,3 but
I single out Firefox add-ons because you can unzip the add-on to study the code (if it hasn’t
been obfuscated) to gain more insight into the hooks of the corresponding web site.

Getting Data In and Out of the Web Site
How can you import data into the application? With what protocols? What data or file formats
are accepted?

How can you export data from the application? What formats are provided? What proto-
cols are supported?

It’s much easier to make mashups out of widely deployed data formats and protocols
(whether they are de jure or de facto standards) than with obscure data formats and protocols.

Can you embed data from the web site elsewhere? An example of such embedding is
a JavaScript badge (such as http://www.platial.com/mapkit/faq). What options do you have
for customizing the badge? Super-flexible badges can be used themselves to access data for
mashups and hint at the existence of a feature-rich API.

The Community of Users and Developers
What communities of users and developers have grown around the web site? Where can you
go to participate in that community and ask questions? What are members of the community
discussing? What are some of the limitations of the application that they want to be overcome?
What clever solutions or workarounds—hacks—are being popularized in that community, not
only among developers but also among nonprogramming power users in the community?

Again, seeing how the API gets used and discussed is a great way to get a handle on what
is possible and interesting. And if you don’t see much activity around the API, realize that you
are likely to be on your own if you decide to use it.

Why do I stress looking at the community around an application and its API? A vibrant
and active community makes a lot of mashup work practical. When making mashups, some
things are theoretically possible to do—if you had the time, energy, and resources—but are
practically impossible for you as an individual to pull off. A community of developers means
there are other people to work with, lots of examples of what other people have done, and
often code libraries that you can build upon.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 25

3. http://blog.mashupguide.net/2007/04/29/browser-extension-mechanisms-for-various-browsers/

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 25

Mobile and Alternative Interfaces and the Skinnability of the
Web Site
How many versions of the user interface are there for the web site? Is there a mobile interface?
A mobile version is often easier to decipher than the main site and highlights what the web
site’s creators believe to be some core logic of the web site. A mobile version might be more
easily integrated into a mashup for a phone; there is typically no JavaScript to worry about,
and the HTML is easier to parse.

How difficult is it to change the look of the interface? That is, how “skinnable” is the web
site? Easy customizability of the interface for end users is an indicator that the application
developers have likely separated the application logic from presentation logic. And if skinnability
is available to end users, that functionality might also be programmable. For example, WordPress
themes typically allow the owner of a WordPress site to change the set of global styles of the site.

Documentation
Good documentation of the features, the API, the data formats, and any other aspect of the
web site makes it much easier to understand and recombine its data and functionality. Are the
input and output data documented? If so, are there schemas, in other words, ways to validate
data? Are the formats properly versioned?

Documentation reduces the amount of guesswork involved. Moreover, it brings certainty
to whether a function you uncover through reverse engineering is an official feature or an
undocumented hack that has no guarantee of working for any length of time.

Is the Web Site Run on Open Source?
If the web site is powered by free or open source software, you have the option of studying the
source directly should reverse engineering—or reading the relevant documentation—not give
you the answers you need.

Intellectual Property, Reusability, and Creative Commons
Does the web site allow users to explicitly set the licensing of content and data, under Creative
Commons, for instance? Does the web site enable users to search and browse content by license?
Explicit licensing of digital content clears away important barriers to creating mashups with
that content. A detailed discussion of the Creative Commons is beyond the scope of this book.
To learn more, consult the following:

http://creativecommons.org

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES26

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 26

Tagging, Feeds, and Weblogging
Here I present a series of questions that will be explored at length in the chapters that immedi-
ately follow.

Does the web site use tagging? That is, can users tag items and search for items by tags in
the web site? Chapter 3 covers tagging and folksonomy in detail and shows how tags provide
mashups with hooks within a web site and among web sites.

Are there RSS and Atom feeds available from the site? Do they give you fine-grained access
to the web site? (That is, can you get feeds for a specific search term or for a specific part of
a web site?) In the absence of a formal API, syndication feeds become a source of structured,
easy-to-parse data. See Chapter 4 for detailed coverage of RSS and Atom feeds.

Does the web site allow you to send content to a weblog or wiki? Studying how the web site
is connected to a weblog in this manner is an excellent way to get some practice with config-
uring APIs without programming. See Chapter 5 for more on blogging and wiki APIs.

URL Languages of Web Sites
I will spend most of this chapter analyzing a web site’s functionality by explaining the way its
URLs relate to its various entities and resources. In other words, I decipher the web site’s URL
language. At the beginning of the chapter, I already made an argument for the usefulness of
having URLs that give you direct access to a resource. Before analyzing Flickr, Google Maps,
Amazon, and del.icio.us for their URL languages, I’ll make some general comments about URL
languages. Each web site has its own URL language, but URL languages vary in terms of address-
ability, granularity, transparency, and persistence.4

Leonard Richardson and Sam Ruby present a helpful definition of addressability: “Address-
ability means that every interesting aspect of your service is immediately accessible from
outside. Every interesting aspect of your service has a URI: a unique identifier in a format
that’s familiar to every computer-literate person.... Addressability makes it possible for others
to make mashups of your service: to use it in ways you never imagined.”

Some URL languages are highly expressive, making resources and their associated data
addressable at high granularity. Others expose relatively little of the functionality of the web
site or only at a very course-grained level. Some URL languages are relatively transparent; their
meaning and context are easily apparent to those who did not design the site. Other URL lan-
guages tend to the opaque, making it difficult or impossible to refer to web site’s functionality
in any detail. Finally, some URL languages have URLs that have high persistence, which means
to last, while others do not, making them difficult to link to.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 27

4. Restful Web Services by Leonard Richardson and Sam Ruby (O’Reilly Media, 2007). The idea of analyzing
URls in terms of addressability, granularity, transparency, and persistence comes from Restful Web
Services.

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 27

UNDERSTANDING THE RELATIONSHIP AMONG URI, URL, AND URN

Universal Resource Identifier (URI) is a specific type of identifier. URIs fall into two classes: Universal Resource
Locators (URLs) and Universal Resource Names (URNs). You’re likely to be much more familiar with the former.
An example of the latter is urn:isbn:159059858X, which refers to this book. Many of the things
I write about URLs in this book apply to URIs in general.

RFC 3986 clarifies the relationship among URI, URL, and URN (http://tools.ietf.org/html/
rfc3986#section-1.1.3):

A URI can be further classified as a locator, a name, or both. The term “Uniform

Resource Locator” (URL) refers to the subset of URIs that, in addition to identifying

a resource, provide a means of locating the resource by describing its primary access

mechanism (e.g., its network “location”). The term “Uniform Resource Name” (URN) has

been used historically to refer to both URIs under the “urn” scheme [RFC2141], which are

required to remain globally unique and persistent even when the resource ceases to exist

or becomes unavailable, and to any other URI with the properties of a name.

An individual scheme does not have to be classified as being just one of “name” or “loca-

tor.” Instances of URIs from any given scheme may have the characteristics of names or

locators or both, often depending on the persistence and care in the assignment of iden-

tifiers by the naming authority, rather than on any quality of the scheme. Future

specifications and related documentation should use the general term “URI” rather

than the more restrictive terms “URL” and “URN” [RFC3305].

Some Mashups Briefly Revisited
Let’s see how the ideas and questions presented so far in this chapter (for example, studying
the user interface of the applications, their URL languages, and how they exploit certain hooks
such as RSS) would have come in play for the developers of the mashups in Chapter 1:

• Housingmaps.com depends on a combination of screen-scraping the web pages of
Craigslist and the RSS feeds of Craigslist since Craigslist doesn’t have a public API.
(Chapter 9 is a fuller analysis of the logic behind Housingmaps.com.)

• The construction of Google Maps in Flickr (GMiF), a Greasemonkey script that sticks an
icon into the Flickr interface, rests on understanding the UI of Flickr, how the user com-
munity geotags photos, and how to screen-scrape information that is in the HTML
page—in addition to the public API of Flickr.

• Creating the LibraryLookup bookmarklet depended centrally on speaking the URL lan-
guages of both the source of book information (that is, Amazon) and the destination for
the query (that is, library catalogs).

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES28

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 28

Flickr: The Fundamentally Mashup-Friendly Site
Let’s start our study of highly remixable web sites with Flickr, looking for features that make this
site amenable to mashups. In addition to many features for storing and sharing photos, Flickr is
chock-full of features that make it easy to mash up Flickr, not least of which is its use of XML,
XML web services, tagging, and Ajax. These features are blended in a surprisingly coherent,
comprehensive demonstration of how to knit this new technology together. You won’t be
surprised then to read Flickr’s own description of its goals at http://www.flickr.com/about:

To do this, we want to get photos into and out of the system in as many ways as we can:

from the web, from mobile devices, from the users’ home computers and from whatever

software they are using to manage their photos. And we want to be able to push them

out in as many ways as possible: on the Flickr web site, in RSS feeds, by e-mail, by post-

ing to outside blogs or ways we haven’t thought of yet. What else are we going to use

those smart refrigerators for?

This flexibility of functionality makes Flickr a good web site to study when learning about
mashups. Flickr is made to be mashed up. You can see in one web site a great variety of mashup-
enabling techniques—and actually how they can be well integrated in one web site.

■Caution In the following analysis of Flickr, I answer many but not necessarily all the questions listed ear-
lier in the chapter. I’ll answer some of the questions later in the book. Moreover, it’s important to understand
that since Flickr is a constantly evolving web site, any of the details recorded here about Flickr can become
out of date. My hope is to provide you with enough ways to think about web sites so that you will be able to
adapt to those changes.

Resources in Flickr
Let me now explain Flickr in terms of its URI language, detailing resources and their corre-
sponding URIs. As you use Flickr as an end user and think about its functionality in terms of
key entities, you will probably come up with a list similar to the following:

• Users (or people) • Notes

• Photos • Comments (for both photosets and photos)

• Tags • Licenses

• Archives • Prefs

• Sets (which are also called photosets) • Groups

• Collections • Contacts

• Favorites • Blogs

• Geo

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 29

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 29

This list is meant to cover the broad range of what Flickr does, but I’m not attempting to
be exhaustive. Remember that there are different ways to slice the pie, so any listing of resources
won’t necessarily agree. We will end up agreeing on how the URLs are structured, though.

How did I come up with this list?

• I used Flickr, looking at each piece of functionality available to me. For each function,
I identified the “nouns,” or entities, at work and noted the corresponding URIs and how
the URLs change as the state of the application changes.

• I culled common terminology from the Flickr UI itself, from the documentation of the
UI, and from the documentation for the API (http://www.flickr.com/services/api/).
The structure of an API often points out key entities in the web site.

■Caution Keep in mind the warning about the opacity of unique identifiers in Flickr: “The Flickr API
exposes identifiers for users, photos, photosets and other uniquely identifiable objects. These IDs should
always be treated as opaque strings, rather than integers of any specific type. The format of the IDs can
change over time, so relying on the current format may cause you problems in the future.”5

Users and Photos
The host URL of the entire site is as follows:

http://www.flickr.com/

URLs using a host URL of http://flickr.com also seem to be valid, but I will use the for-
mer since the API returns URLs that use www.flickr.com as the host URL.

Since Flickr is a social photo-sharing site, let’s start with the two entities you expect at the
least: a Flickr user (or person) and a photo.

■Note I use URI Templates (http://bitworking.org/news/URI_Templates) to express the URL lan-
guage. These are strings into which I place variables that are replaced to form the full URI. The variables to
be substituted are delimited by {} (which are not part of legal URIs). Note that the URI Template is currently
an IETF draft, but the convention I use here is simply denoting the embedded variable with {}. Substituted
variables need to be properly URL encoded (http://en.wikipedia.org/wiki/Percent-encoding).

The profile page for a user, the URL that most closely represents a Flickr user, is as follows:

http://www.flickr.com/people/{user-id}/

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES30

5. http://www.flickr.com/services/api/misc.overview.html

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 30

The user-id can take one of two forms:

• An NSID (a unique identifier that contains a @ character) generated by Flickr when the
user signs up for an account (for example, 48600101146@N01)

• A custom URL handle or “permanent alias” chosen by the user, which can be set at
http://www.flickr.com/profile_url.gne (for example, raymondyee)

My profile page is thus accessible as either this:

http://www.flickr.com/people/48600101146@N01/

or this:

http://www.flickr.com/people/raymondyee/

As a logged-in user, you can upload photos to your account using the following form:

http://www.flickr.com/photos/upload/

Photos belonging to a user are collected here:

http://www.flickr.com/photos/{user-id}/

Representations of a Photo
Every photo belongs to one specific user, has a unique identifier photo-id, and is associated
with a URL:

http://www.flickr.com/photos/{user-id}/{photo-id}/

For example:

http://www.flickr.com/photos/raymondyee/508341822/

A given photo has a variety of representations, as documented here:

http://www.flickr.com/services/api/misc.urls.html

When you upload a photo to Flickr, Flickr retains the original image and generates versions
(in different sizes) of the photo, as recorded in Table 2-1.

Table 2-1. Representations of a Flickr Photo

photo-type context-type Image Type Sizes of Photo

s sq Small square 75×75

t t Thumbnail 100 on longest side

m s Small 240 on longest side

blank m Medium 500 on longest side

b l Large 1024 on longest side

o o Original image, either a JPG,
GIF, or PNG, depending on
source format

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 31

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 31

There are two types of URLs for each size of photo:

• The context page for the photos

• The photos themselves in their various sizes

The context page is of the following form:

http://www.flickr.com/photo_zoom.gne?id={photo-id}&size={context-type}

where context-type is one of sq, t, s, m, l, or o. Not every context-type is available for any
given photo. (Some photos are too small; nonpaying Flickr members cannot offer original
photos for downloading.)

To understand the URLs for the photos themselves, you need to know that in addition to
photo-id for every photo, there are the following parameters:

• farm-id

• server-id

• photo-secret

• original-secret

• file-suffix

The URL for the photos takes one of three slightly different forms:

• For the original photo, it is as follows where file-suffix is jpg, gif, or png:

http://farm{farm-id}.static.flickr.com/{server-id}/{photo-id}_{o-secret}_o.
{file-suffix}

• For all the derived sizes except the medium size, the URL is as follows:

http://farm{farm-id}.static.flickr.com/{server-id}/{photo-id}_{photo-secret}_
{photo-size}.jpg

• For medium images, the URL is as follows:

http://farm{farm-id}.static.flickr.com/{server-id}/{photo-id}_{photo-secret}.jpg

Let’s consider http://www.flickr.com/photos/raymondyee/508341822/ as an example. If
you go to the URL and hit the All Sizes button, you’ll see the various sizes that are publicly
available for the photo. If you click all the different sizes and look at the URLs for the photos
and the context pages, you can determine the values listed in Table 2-2, thus confirming the
values of the parameters in Table 2-3.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES32

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 32

Table 2-2. URLs for the Various Sizes of Flickr Photo 508341822

Image Type Context Page URL Image URL

Small square http://www.flickr.com/photo_zoom. http://farm1.static.flickr.com/193/
gne?id=508341822&size=sq 508341822_2f2bfb4796_s.jpg

Thumbnail http://www.flickr.com/photo_zoom. http://farm1.static.flickr.com/193/
gne?id=508341822&size=t 508341822_2f2bfb4796_t.jpg

Small http://www.flickr.com/photo_zoom. http://farm1.static.flickr.com/193/
gne?id=508341822&size=s 508341822_2f2bfb4796_m.jpg

Medium http://www.flickr.com/photo_zoom. http://farm1.static.flickr.com/193/
gne?id=508341822&size=m 508341822_2f2bfb4796.jpg

Large http://www.flickr.com/photo_zoom. http://farm1.static.flickr.com/193/
gne?id=508341822&size=l 508341822_2f2bfb4796_b.jpg

Original http://www.flickr.com/photo_zoom. http://farm1.static.flickr.com/193/
gne?id=508341822&size=o 508341822_5ab600db14_o.jpg

Table 2-3. Parameters Associated with Photo 508341822

Parameter Value

photo-id 508341822

farm-id 1

server-id 193

photo-secret 2f2bfb4796

original-secret 5ab600db14

file-suffix jpg

■Tip I suggest you look at the current documentation for the Flickr URLs every so often because the URLs
that Flickr produces have changed over time, and I suspect they will continue to change as Flickr scales up
its operations. Don’t worry about any URLs you have generated according to older schemes—Flickr tries
to keep them working. (It’s worthwhile to update your software to use the latest URL structures if you are
able to do so.)

Data Associated with an Individual Photo
Each photo has various pieces of information associated with it, including the following:

• Title

• Description

• Tags

• Machine tags

• Dates (the time it was uploaded as well as the time it was taken, if that time is available)

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 33

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 33

• EXIF data

• Owner of the picture

• Any sets to which the photo belongs

• Any groups to which the photo belongs

• Comments

• Notes

• Its visibility

I listed these data elements associated with each picture because each of the elements is
an opportunity for integration if you want to use that picture in another mashup context.
Many of data elements can be addressed in the URL, which is part of the Flickr URL language.

Miscellaneous Editing of Attributes
If you have JavaScript turned on in your browser while accessing Flickr, you might not see the
distinct URL for editing the tags, description, and title of the photo—beyond the URL for the
photo itself:

http://flickr.com/photo_edit.gne?id={photo-id}

You can see the EXIF data of a photo here:

http://www.flickr.com/photo_exif.gne?id={photo-id}

For example:

http://www.flickr.com/photo_exif.gne?id=688436870

You can edit a photo date here:

http://www.flickr.com/photo_date_taken.gne?id={photo-id}

Tags
Tags are one of the most important ways to organize photos in Flickr. Tags are words or short
phrases that the owner (or others with the proper permission) can associate with a photo.
A tag typically describes the photo and ties together related photos within a user’s collection of
photos and sometimes between photos of different users. However, there is no requirement
that tags have meaning to anyone except the tagger, or even the tagger! See Chapter 3 for an
extended discussion on tagging and folksonomy.

Flickr lets users search and browse photos by tags. First, let’s study how to address tags as
they are used throughout Flickr to describe pictures among all users. Then, you will examine
the functionality in the context of a specific user.

You can see a list of popular tags in Flickr here:

http://www.flickr.com/photos/tags/

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES34

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 34

Popular tags allow you to get a sense of the Flickr community, over the longer haul, as well
as over the last 24 hours or 7 days.

The URL for the most recent photos associated with a tag is as follows:

http://www.flickr.com/photos/tags/{tag}/

For example:

http://www.flickr.com/photos/tags/flower/

You can page through the photos with this:

http://www.flickr.com/photos/tags/flower/?page={page-number}

Instead of sorting photos by the date uploaded, you can see sort them by descending
“interestingness” (a quantitative measure calculated by Flickr of how interesting a photo is):

http://www.flickr.com/photos/tags/{tag}/interesting/

Finally, for some tags, Flickr identifies distinct clusters of photos, which you can access
here:

http://www.flickr.com/photos/tags/{tag}/clusters/

For example:

http://www.flickr.com/photos/tags/flower/clusters/

You can display the popular tags used by a specific user here:

http://www.flickr.com/photos/{user-id}/tags/

You can list all the user’s tags here:

http://www.flickr.com/photos/{user-id}/alltags/

You can show all photos with a given tag for a specific user here:

http://www.flickr.com/photos/{user-id}/tags/{tag}/

You can edit the tag for the given user, if you have permission to do so, here:

http://www.flickr.com/photos/{user-id}/tags/{tag}/edit/

You can delete a tag here:

http://www.flickr.com/photos/{user-id}/tags/{tag}/delete/

You can show a slide show of these tagged photos here:

http://www.flickr.com/photos/{user-id}/tags/{tag}/show/

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 35

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 35

User’s Archive: Browsing Photos by Date
You can browse through a user’s photos by date—by either the date the photo was taken or
when it was uploaded. Dates are an excellent way to organize resources such as photos. Even
if you leave a photo completely untagged, Flickr can at the very least place the photo in the
context of other photos that were uploaded around the same time. If you are careful about
generating good time stamps for your photos, you can display photos in an accurate time stream.
I have found looking at a user’s photos by date to be an effective way to make sense of large
numbers of photos.

The main page for a user’s archive is here:

http://www.flickr.com/photos/{user-id}/archives/

For example:

http://www.flickr.com/photos/raymondyee/archives/

You can sort your archive by the date taken or date posted with this:

http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/

where {date-taken-or-posted} is date-taken or date-posted.
You can view the photos for a given date with a different {archive-view} here:

http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/
{archive-view}

where {archive-view} is one of detail, map, or calendar.
You can also set the display option and limit photos by year, year/month, or

year/month/date. The following set of URLs use the default list view:

http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/{year}
http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/
{year}/{month}
http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/
{year}/{month}/{day}

The following URLs use the other display options where {archive-view-except-calendar}
is either detail or map—but not calendar:

http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/{year}
http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/
{year}/{archive-view}
http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/
{year}/{month}/{archive-view}
http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/
{year}/{month}/{day}/{archive-view-except-calendar}

Here are some specific examples:

http://www.flickr.com/photos/raymondyee/archives/date-taken/2007/
http://www.flickr.com/photos/raymondyee/archives/date-taken/2007/06/22/
http://www.flickr.com/photos/raymondyee/archives/date-posted/2007/calendar/

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES36

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 36

Sets
Sets or photosets (both terms are used in the Flickr UI and documentation) are groupings cre-
ated by users of their own photos. (Note that sets cannot include other users’ photos.)

You can see a user’s sets here:

http://www.flickr.com/photos/{user-id}/sets/

You can see a specific set with the unique ID set-id here:

http://www.flickr.com/photos/{user-id}/sets/{set-id}/

You can control the view for a given set here where set-view is one of detail, comments,
or show:

http://www.flickr.com/photos/{user-id}/sets/{set-id}/{set-view}

Consider some examples of sets:

http://www.flickr.com/photos/raymondyee/sets/72157600434284985/
http://www.flickr.com/photos/raymondyee/sets/72157600434284985/detail/

To display a photo in the context of a containing set, use this:

http://www.flickr.com/photos/{user-id}/{photo-id}/in/set-{set-id}/

For example:

http://www.flickr.com/photos/raymondyee/591991800/in/set-72157600434284985/

Collections
Users can create collections to make groupings of their sets. A user’s collections are found here:

http://www.flickr.com/photos/{user-id}/collections/

And you can find a specific collection here:

http://www.flickr.com/photos/{user-id}/collections/{collection-id}

For example:

http://www.flickr.com/photos/raymondyee/collections/72157600592620295/

Favorites
Users can add other users’ photos to their favorites:

http://www.flickr.com/photos/{user-id}/favorites/

Note that you can’t add your own photos to your favorites. There are also not many ways
to organize your favorites. You can search within your favorites using this:

http://www.flickr.com/search/?w=faves&q={search-term}

Since sets and collections can contain only those photos belonging to a user, there is no
built-in way in Flickr for you to group your own photos with photos belonging to others.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 37

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 37

A User’s Popular Photos
Users can track which of their photos are the most popular (by interestingness, number of
views, number of times they have been added as a favorite, and number of comments) here:

http://www.flickr.com/photos/{user-id}/{popular-mode}/

where {popular-mode} is one of popular-interesting, popular-views, popular-faves, or
popular-comments. Users can access popularity statistics for only their own photos.

Contacts
As a social photo-sharing site, Flickr allows users to maintain a list of contacts. From the per-
spective of a registered user of Flickr, there are five categories of people in Flickr: the user, the
user’s family, the user’s friends, the user’s contacts who are neither family nor friend, and
everyone else. Contacts, along with their recent photos, belonging to a user are listed here:

http://www.flickr.com/people/{user-id}/contacts/

Depending on access permissions, you may be able to access more fine-grained lists of
contacts for a user here where {contact-type} is one of family, friends, both, or contacts:

http://www.flickr.com/people/{user-id}/contacts/?see={contact-type}

Users can see their own list of users they are blocking here:

http://www.flickr.com/people/{user-id}/contacts/ignore/

Users can see their “reverse contacts” (users who consider them contacts) here:

http://www.flickr.com/people/{user-id}/contacts/rev/

To invite others to join Flickr, you go here:

http://www.flickr.com/invite.gne

Groups
Groups allow people to organize themselves into communities based around themes, places,
and common interests. Take a look at all the groups that are in Flickr:

http://www.flickr.com/groups/

You access an individual group here:

http://www.flickr.com/groups/{group-id}/

where group-id is the NSID of the group or its friendly name, which the group owner sets here:

http://www.flickr.com/groups_url.gne?id={group-nsid}

Consider, for instance, the Flickr Central Group, which is accessed from here:

http://www.flickr.com/groups/34427469792@N01/

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES38

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 38

and from here:

http://www.flickr.com/groups/central/

You can page through the discussion in a group here:

http://www.flickr.com/groups/{group-id}/discuss/page{page-number}/

You can post a new topic here:

http://www.flickr.com/groups_newtopic.gne?id={group-nsid}

For example:

http://www.flickr.com/groups_newtopic.gne?id=34427469792@N01

You access a specific thread here:

http://www.flickr.com/groups/{group-id}/discuss/{thread-id}/

For example:

http://www.flickr.com/groups/central/discuss/140537/

You access a specific comment in the thread here:

http://www.flickr.com/groups/{group-id}/discuss/{thread-id}/#comment{comment-id}

For example:

http://www.flickr.com/groups/central/discuss/140537/#comment1192964

You can edit, delete, or lock a thread if you have the appropriate rights:

http://www.flickr.com/groups/{group-id}/discuss/{thread-id}/{thread-action}

where {thread-action} is edit, delete, or lock.
Similarly, for the comments that hang off a thread (one-deep), you can find them here:

http://www.flickr.com/groups/{group-id}/discuss/{thread-id}/{comment-id}/
{comment-action}/

where {comment-action} can be edit or delete.

Each group has a photo pool accessible here:

http://www.flickr.com/groups/{group-id}/pool/

For example:

http://www.flickr.com/groups/central/pool/

You can look at the geotagged photos from the group on a map here:

http://www.flickr.com/groups/{group-id}/pool/map?mode=group

You can look at a list of the most popular tags used for photos in a group here:

http://www.flickr.com/groups/{group-id}/pool/tags/

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 39

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 39

You can look at photos with a certain tag in the group here:

http://www.flickr.com/groups/{group-id}/pool/tags/{tag}/

You can look at photos that have been contributed to the pool by a specific user here:

http://www.flickr.com/groups/{group-id}/pool/{user-nsid}/

Account Management
Some URLs are used for account management functions. You need to be logged in to access
them.

To access your contacts’ photos, go here:

http://www.flickr.com/photos/friends/

To manage your account, go here:

http://www.flickr.com/account

You can adjust various specific options at the following URLs:

http://www.flickr.com/account?tab=e-mail
http://www.flickr.com/account/?tab=privacy
http://www.flickr.com/account/?tab=extend
http://www.flickr.com/account/order/history/
http://www.flickr.com/account/prefs/screenname/
http://www.flickr.com/account/prefs/layout/

Browsing Through Flickr
Flickr’s jumping-off point for looking at the world of Flickr is this:

http://www.flickr.com/explore/

To look at what Flickr rates as the most “interesting” photos, go here:

http://www.flickr.com/explore/interesting/

The page gives some sense of how Flickr rates interestingness (even if there aren’t com-
plete details given):

There are lots of things that make a photo “interesting” (or not) in the Flickr: where the

clickthroughs are coming from, who comments on it and when, who marks it as

a favorite, its tags, and many more things which are constantly changing. Interesting-

ness changes over time, as more and more fantastic photos and stories are added to

Flickr.

You can look at the photos the most interesting photos for a specific period of time.
A special case is a random selection of photos from the last seven days:

http://www.flickr.com/explore/interesting/7days/

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES40

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 40

You can see interesting photos for a given month or day, the latter as a calendar or slide
show:

http://www.flickr.com/explore/interesting/{year}/{month}/
http://www.flickr.com/explore/interesting/{year}/{month}/{day}
http://www.flickr.com/explore/interesting/{year}/{month}/{day}/show/

For example:

http://www.flickr.com/explore/interesting/2007/01/04/show/

Search
Flickr provides interfaces for basic and advanced photo searches.

Basic Photo Search
The photo search URL is constructed as follows:

http://www.flickr.com/search/?w={search-scope}&q={search-term}&m={search-mode}

where search-scope is one of all, faves, or the {user-id} of a user and where search-mode is
tags or text. You can use some optional parameters to qualify the search:

• &z=t for thumbnails (as opposed to the detail view)

• &s=int or &s=rec to sort by interestingness or by recent date

• &page={page-number} to page through the results

Advanced Photo Search
For the advanced photo search (http://www.flickr.com/search/advanced), you can figure out
other ways to modify the search URL.

You can add terms to {search-term} by adding a hyphen (-) before the term. For instance,
you can look for photos that are tagged with flower but not rose or tulip with this:

http://www.flickr.com/search/?q=flower+-rose+-tulip&m=tags&ct=0

You can use add safe-search options with this:

&ss={safe-search}

where {safe-search} is 0,1, or 2 corresponding to on, moderate, and off, respectively.
You can limit searches to a particular content-type by using this:

&ct={content-type}

where {content-type} is one of the following:

• 0 for photos

• 1 for screenshots

• 2 for other stuff (art, drawings, CGI, and so on)

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 41

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 41

• 3 for photos and screenshots

• 4 for screenshots and other stuff

• 5 for photos and other stuff

• 6 for photos and other stuff and screenshots

You can also limit photos by a date range:

&d={taken-or-posted}-{from-date}-{to-date}

where {taken-or-posted} is taken or posted and where {from-date} and {to-date} are of the
form yyyymmdd. You can state one or both of the dates. For example:

&d=posted--20070702
&d=taken-20070613-20070702

Finally, you can search for photos with certain Creative Commons licenses by using this:

&l={CC-license}

where {CC-license} can be one of cc (for any Creative Commons license), com (for licenses
that permit commercial reuse), or deriv (for licenses that permit derivative works).

■Note I do not provide a full analysis of the URL language for searching groups (http://flickr.com/
search/groups/) and users (http://flickr.com/search/people/).

Geotagged Photos in Flickr
You can use the Flickr World map to plot georeferenced photos here:

http://www.flickr.com/map/

You can control the center, zoom level, and display type of the map with this:

http://www.flickr.com/map/?&fLat={lat}&fLon={lon}&zl={zoom-level}&
map_type={map-type}

where zoom-level is an integer ranging from 1 to 17 (17 is the most zoomed out) and map-type
is hyb or sat. If map-type is not explicitly set, the map has a default (political-style) map.

You can filter photos in various ways by adding more parameters to the URL:

• By search terms with this:

&q={search-term}

• By group with this:

&group_id={group-nsid}

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES42

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 42

• By person with this:

&user_id={user-nsid}

• By date bounds where taken-date is of the form yyyy-mm-dd%20hh:mm:ss:

&min_taken_date={taken-date}
&max_taken_date={taken-date}

and with the following:

&min_upload_date={upload-date}
&max_upload_date={upload-date}

where upload-date is a Unix timestamp (number of seconds since January 1, 1970,
UTC).

• By page with this:

&page={page-number}

• By interestingness with this:

&s=int

For example, this address:

http://www.flickr.com/map/?&q=flower&fLat=37.871268&fLon=-122.286414&zl=4

produces a map of geotagged pictures around Berkeley, California, filtered on a full-text
search of flower. A corresponding list view according to Flickr is as follows:

http://www.flickr.com/search/?&q=flower&m=text&s=rec&b=-122.346496,37.847598,
-122.226333,37.894938&a=10&d=taken-19700101-

This search uses parameters I have already presented in the “Advanced Photo Search” sec-
tion in addition to this for a geographic bounding box:

&b={lon0},{lat0}{lon1},{lat1}
and this:

&a={accuracy}

where accuracy is presumably the same parameter as the accuracy parameter used in the Flickr
API in flickr.photo.search to denote the “recorded accuracy level of location information.”6

The Flickr Organizer
You can use the JavaScript-based Organizer to process your Flickr photos:

http://www.flickr.com/photos/organize/

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 43

6. http://www.flickr.com/services/api/flickr.photos.search.html

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 43

Most of its functionality is not addressable through URLs, but a few aspects are. You can
process your recently uploaded photos here:

http://www.flickr.com/photos/organize/?start_batch=recent_uploads

You can create and organize your sets and collections here:

http://www.flickr.com/photos/organize/?start_tab=sets

Finally, you can tag your untagged photos here:

http://www.flickr.com/photos/organize/?start_batch=untagged&mode=together

Recent Activities
You can look at recent activities around your photos here:

http://www.flickr.com/recent_activity.gne?days={time-period}

where time-period can be any of the following:

• A natural number (up to some limit that I’ve not tried to determine) to indicate the
number of days

• A natural number appended with h for number of hours

• Blank to mean “since last login”

Mailing Interfaces
Flickr has its own e-mail type interface for facilitating communication among Flickr people:

http://www.flickr.com/messages.gne?ok=1

This messaging facility allows communication by proxy to retain the anonymity of users.
You can access your sent mail here:

http://www.flickr.com/messages_sent.gne

You can read a message here:

http://www.flickr.com/messages_read.gne?id={message-id}

You compose a new message here:

http://www.flickr.com/messages_write.gne

Interfacing to Weblogs
One fun thing to do with pictures is to send a picture to one’s weblog along with some commen-
tary. Flickr helps make the process easier to do. You configure weblogs here:

http://www.flickr.com/blogs.gne

You can configure the settings for a specific weblog here:

http://www.flickr.com/blogs_edit.gne?id={blog-id}

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES44

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 44

You can configure the layout here:

http://www.flickr.com/blogs_layout.gne?id={blog-id}&edit=1

In Chapter 5, I go into greater detail about how the properties used to set up a blog to
work with Flickr is a reflection of the blogging APIs that you will study.

Syndication Feeds: RSS and Atom
RSS and Atom feeds are well integrated in Flickr. These feeds are an example of XML, and you
will learn more about that in Chapter 4. Flickr implements RSS and other syndication feeds in
an extensive manner, as documented here:

http://www.flickr.com/services/feeds/

There’s a lot to cover, which I’ll come back to in Chapter 4.

Mobile Access
Flickr provides a model to help you integrate your own services with mobile devices. For
example, you can e-mail pictures to Flickr. This functionality is not strictly tied to mobile
devices but is particularly useful on a mobile phone because e-mail is perhaps the most con-
venient way to upload a picture from a camera phone while away from your desk. You can
configure e-mail uploading here:

http://www.flickr.com/account/uploadbye-mail/

You can also look at pictures on a mobile device through a simplified interface customized
for small displays here:

http://m.flickr.com

Third-Party Flickr Apps
Flickr has an API that enables the development of third-party applications or tools. The API is
at the heart of what makes Flickr such a great mashup platform. Hundreds of third-party apps
have been written to use the API, and these apps have made it easier and more fun and surpris-
ing to use Flickr. The Google Maps and Flickr Greasemonkey script are examples of third-party
Flickr apps.

Go to http://www.flickr.com/services/ to see a list of such third-party Flickr apps. To get
inspired about how you can use the Flickr API in fun, useful, and imaginative ways, play with
John Watson’s collections of Flickr Toys:

http://bighugelabs.com/flickr/

While looking at the Flickr Toys, think about what content and services from Flickr are
being accessed.

I analyze various Flickr third-party applications in more detail in conjunction with my
study of the Flickr API in Chapter 6.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 45

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 45

Creative Commons Licensing
Under copyright laws in the United States, you can’t reuse other people’s pictures by default
except under the “fair use” rule. If someone uses a Creative Commons (CC) license for a picture,
the owner is saying, “Hey, you can use my picture under looser restrictions without having to
ask me for permission.” You can see a license attached to any given picture.

Flickr makes it easy for users to associate CC licenses with their photos. You can browse
and search for photos by CC license here:

http://www.flickr.com/creativecommons/

You can look at pictures by specific license here:

http://www.flickr.com/creativecommons/{cc-license}/

where {cc-license} is currently one of the following:

• by-2.0

• by-nd-2.0

• by-nc-nd-2.0

• by-nc-2.0

• by-nc-sa-2.0

• by-sa-2.0

Consult the following to get an understanding of the various licenses:

http://creativecommons.org/licenses/

Cameras
Flickr enables users to view photos by the brand of cameras used to take them:

http://www.flickr.com/cameras/

To get at all the brands of cameras, see the following:

http://www.flickr.com/cameras/brands/

You can look at pictures by the specific camera type here:

http://www.flickr.com/cameras/{camera-company}/{camera-model}/

For example:

http://www.flickr.com/cameras/canon/
http://www.flickr.com/cameras/canon/powershot_sd600/

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES46

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 46

The Mashup-by-URL-Templating-and-Embedding
Pattern
Let’s now apply Flickr’s URL language to make a simple mashup with Flickr. In this section, I’ll show
how to create a simple example of what I call the Mashup-by-URL-Templating-and-Embedding
pattern. Specifically, I connect Flickr archives and a WordPress weblog by virtue of translating
URLs; an HTML page takes a given year and month and displays my Flickr photos along with
the entries from the weblog for this book (http://blog.mashupguide.net). The mashup works
because both the Flickr archives and the entries for the weblog are addressable by year and
month. For Flickr, recall the following URL template for the archives:

http://www.flickr.com/photos/{user-id}/archives/{date-taken-or-posted}/
{year}/{month}/{archive-view}

For example:

http://www.flickr.com/photos/raymondyee/archives/date-taken/2007/06/calendar/

The weblog has URLs for posts by year and month (if posts from those dates exist):

http://blog.mashupguide.net/{year}/{month}

For example:

http://blog.mashupguide.net/2007/06/

The mashup takes the year and month from the user and loads two iframes correspon-
ding to the Flickr photos and Mashupguide.net entries for the month by constructing the
URLs for the year and month:7

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Raymond Yee's Flickr and mashupguide weblog</title>
<script type="text/javascript">
//<![CDATA[
function reloadFrames() {
// get a handle to the iframes and the year and month in the form
var dateForm = document.getElementById('date');
var flickrFrame = document.getElementById('FlickrFrame');
var wpFrame = document.getElementById('WPFrame');
year = dateForm.year.value;
month = dateForm.month.value;
var year, month, dateForm;
var flickrURL =
"http://www.flickr.com/photos/raymondyee/archives/date-taken/" +

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 47

7. http://examples.mashupguide.net/ch02/Flickr.and.WordPress.html

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 47

year + "/" + month + "/calendar";
var wpURL = "http://blog.mashupguide.net/" + year + "/" + month + "/";
//reset the URLs for the iframes
flickrFrame.src = flickrURL;
wpFrame.src = wpURL;
return false;

}
//]]>

</script>
</head>
<body>
<form id="date" action="#" onsubmit="return reloadFrames();">
Year: <input type="text" size="4" name="year" value="2007" />
Month: <input type="text" size="4" name="month" value="06" />
<input type="submit" value="Reload Frames" />

</form>
<iframe id="FlickrFrame"

src="http://www.flickr.com/photos/raymondyee/archives/date-taken/2007/
06/calendar/"

name="Flickr" style="width:600px; height:500px; border: 0px"></iframe>
<iframe id="WPFrame" src="http://blog.mashupguide.net/2007/06/"

name="WordPress"
style="width:600px; height:500px; border: 0px"></iframe>

</body>
</html>

This example may seem trivial, even accounting for its intentional simplicity as an illus-
tration, but ask yourself, what if you wanted to add a third source, such as the posts I made to
del.icio.us posts for a given month? As you will see later in this chapter, there is no delic.io.us
URL corresponding to a listing of the bookmarks uploaded in a given year or month (that is,
the human UI to del.icio.us is not addressable by the posting date), so I can’t add del.icio.us to
my mashup by adding a corresponding iframe and URI template. Addressability of resources
is what makes the Mashup-by-URL-Templating-and-Embedding pattern possible.

■Note You can use https://api.del.icio.us/v1/posts/dates to get a list of the number of posts for
a date and then use https://api.del.icio.us/v1/posts/get? to retrieve them. You can configure
del.icio.us to send your daily postings to your blog (https://secure.del.icio.us/settings/user-id/
blogging/posting).

Granular URI addressability, the ability to refer to resources through a URI in very specific
terms, enables simple mashups. This is especially true if the parameters in the URI templates
are ones that have the same meaning across many web sites. Such identifiers are often the
point of commonality between URIs from different sites. You have seen a number of such
identifiers already:

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES48

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 48

• ISBN

• Year, month, day

• Latitude and longitude

• URLs themselves; for example, http://validator.w3.org?uri={uri-to-validate},
where uri-to-validate is a URL to validate, such as http://validator.w3.org/
check?uri=http%3A%2F%2Fvalidator.w3.org%2F)

These identifiers contrast with application-specific identifiers (such as NSIDs of Flickr
users and groups). Somewhere between widely used identifiers and those that are confined to
one application only are objects such as tags, which may or may not have meaning beyond
the originating web site. I’ll return to this issue in Chapter 3.

Google Maps
Now, let’s turn to studying the functionality of Google Maps, located at http://maps.google.com/.

With the standard Google Maps site, you can do the following:

• You can search for locations on a map.

• You can search for businesses on a map.

• You can get driving directions between two points.

• You can make your own map now with the My Maps feature.

You can also embed a Google Maps “widget” into a web page via JavaScript—using the
Google Maps API.8 The focus of this chapter is on maps that are hosted directly by Google.
I examine third-party embedded Google maps in Chapters 8 and 13.

Even though Google Maps is not the most highly trafficked online map site,9 it is (according
to Programmableweb.com), the application is often used in mashups.

URL Language of Google Maps
Understanding the syntax and semantics of URLs in Google Maps will help you better recom-
bine the functionality of the standard Google Maps site. Consider an example: I have an address
I want to locate—for instance, the address of the White House (1600 Pennsylvania Ave., Wash-
ington, D.C.). I go to Google Maps (http://maps.google.com/) and type 1600 Pennsylvania
Ave, Washington, DC into the search box to get a map. I get the URL for the map by examining
the “Link to this page” link:

http://maps.google.com/maps?f=q&hl=en&q=1600+Pennsylvania+Ave,+Washington,+DC&
sll=36.60585,-121.858956&sspn=0.006313,0.01133&ie=UTF8&z=16&om=1&iwloc=addr

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 49

8. http://www.google.com/apis/maps/

9. http://news.yahoo.com/s/ap/20070405/ap_on_hi_te/google_maps—“Google’s maps already are a big
draw, with 22.2 million U.S. visitors during February, according to the most recent data available from
comScore Media Metrix. That ranked Google Maps third in its category, trailing AOL’s Mapquest (45.1
million visitors) and Yahoo (29.1 million visitors).”

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 49

What do the various parameters in the URL mean? Table 2-4 draws from the Google Maps
Parameters page of the Mapki wiki.10

Table 2-4. Dissecting Parameters for a Link to Google Maps

Parameter Description

f=q The f parameter, which controls the display of the Google Maps
form, can be d (for the directions form or l for the local form).
Without the f parameter, the default search form is displayed.

hl=en Google Maps supports a limited number of host languages,
including en for English and fr for French.

q=1600+Pennsylvania+Ave, The value of the q parameter is treated as though it were entered
+Washington,+DC via the query box at http://maps.google.com.

sll=36.60585, sll contains the latitude and longitude for the center point around
-121.858956 which a business search is performed.

spn=0.006313, spn is the approximate latitude/longitude span for the map.
0.01133

ie=UTF8 ie is the character encoding for the map.

om=1 om determines whether to include an overview map. With om=0, the
overview map is closed.

iwloc=addr iwloc controls display options for the info window.

A good way to get a feel for how these parameters function is to change a parameter, add
new ones, or drop ones in the sample URL and take a look at the resulting map. For instance, if
you have only the q parameter, you would still get a map with some default behavior:

http://maps.google.com/maps?q=1600+Pennsylvania+Ave,+Washington,+DC

That is, the other parameters are not mandatory. Let’s play with the z parameter to adjust
the zoom factor:

http://maps.google.com/maps?q=1600+Pennsylvania+Ave,+Washington,+DC&z=0

versus the following:

http://maps.google.com/maps?q=1600+Pennsylvania+Ave,+Washington,+DC&z=17

There is a comprehensive list of Google Maps parameters11 to help you figure out the
common and uncommon parameters. Since the wiki page is not part of Google’s documenta-
tion, you can’t take it as an official description of the URL language of Google Maps. However,
the web page is also the work of a highly engaged community, actively working on uncovering
every nook and cranny of Google Maps. With the list of parameters, you can learn some fea-
tures that you might not have known from casual use of the Google Maps user interface. For
instance:

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES50

10. http://mapki.com/wiki/Google_Map_Parameters, accessed as
http://mapki.com/index.php?title=Google_Map_Parameters&oldid=4145

11. http://mapki.com/wiki/Google_Map_Parameters, accessed as http://maps.google.com/
maps?f=q&hl=en&q=1600+Pennsylvania+Ave,+Washington,+DC on April 14, 2007

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 50

• mrad lets you specify an additional destination address.

• output=kml gets a KML file to send to Google Earth.

• layer=t adds the traffic layer.

• mrt=kmlkmz shows “user-created content.” For example, the following shows user-generated
information about hotels around the White House:

http://maps.google.com/maps?f=q&hl=en&q=hotel&near=1600+Pennsylvania+Ave,
+Washington,+DC&sll=36.60585,-121.858956&sspn=0.006313,0.01133&ie=UTF8&z=16&om=1&
iwloc=addr&mrt=kmlkmz

Just as you can create mashups involving Flickr by using Flickr’s URL language, you can
create mashups with Google Maps by exploiting its URL structures. Let’s consider a few examples.

Viewing KML Files in Google Maps
Many of the popular sources for KML (such as http://earth.google.com/gallery/) assume
you will view KML in Google Earth. However, you can display a limited subset of KML in Google
Maps. Consider, for instance, the KML file at the following location:

http://services.google.com/earth/kmz/global_heritage_fund_n.kmz

It can be viewed in Google Maps by passing in the URL of the KML file via the q parameter,
as shown here:

http://maps.google.com/maps?q=http:%2F%2Fservices.google.com%2Fearth%2Fkmz%2Fglobal_
heritage_fund_n.kmz

Hence, in your own web site, you can give the option to your users of downloading KML
to Google Earth or viewing the KML on Google Maps by linking to the following:

http://maps.google.com/maps?q={URL-of-KML}

Connecting Yahoo! Pipes and Google Maps
A specific case of displaying KML files is feeding KML from Yahoo! Pipes into Google Maps.
(I describe Yahoo! Pipes in detail in Chapter 4. For the purposes of this discussion, you need to
know only that Yahoo! Pipes can generate KML output.) Consider, for example, Apartment
Near Something, configured specifically to list apartments that are close to cafes around UC
Berkeley:

http://pipes.yahoo.com/pipes/pipe.info?location=94720&what=cafes&mindist=2&
=Run+Pipe&_id=1mrlkB232xGjJDdwXqIxGw&_run=1

You can get KML output from Yahoo! Pipes from the following:

http://pipes.yahoo.com/pipes/pipe.run?_id=1mrlkB232xGjJDdwXqIxGw&_render=kml&_run=1&
location=94720&mindist=2&what=cafes

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 51

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 51

which you can feed into Google Maps in the q={URL-of-KML} parameter:

http://maps.google.com/maps?f=q&hl=en&geocode=&q=http%3A%2F%2Fpipes.yahoo.com%2F
pipes%2Fpipe.run%3F_id%3D1mrlkB232xGjJDdwXqIxGw%26_render%3Dkml%26_run%3D1%26
location%3D94720%26mindist%3D2%26what%3Dcafes&ie=UTF8&ll=37.992916,-122.24556&
spn=0.189398,0.362549&z=12&om=1

Other Simple Applications of the Google Maps URL Language
Here are a few other examples of how to connect Google Maps to your applications by creat-
ing the appropriate URL:

• Let’s not forget that by just using q={address}, you can now generate a URL to a map
centered around that address. If such a map suffices, it’s hard to imagine a simpler way
to create a map corresponding to that address. No geocoding is needed.

• You can create a URL for custom driving directions for any source and destination
address creating custom driving directions from your spreadsheet of addresses by mak-
ing the URLs. For example, to generate driving directions from Apress to the Computer
History Museum, you can use this:

http://www.google.com/maps?saddr={source-address}&daddr=
{destination-address}

to generate this:

http://www.google.com/maps?saddr=2855+Telegraph+Ave,+Berkeley,+CA+
94705&daddr=1401+N+Shoreline+Blvd,+Mountain+View,+CA+94043

Although driving directions have recently been added to the Google Maps API,12 it is
currently not possible to use the API to create directions to avoid highways, something
you can do by using the dirflg=h parameter.13 Hence, you can easily generate a scenic
route for myself between the Apress offices and the Computer Museum, while avoiding
the API altogether:

http://www.google.com/maps?saddr=2855+Telegraph+Ave,+Berkeley,+CA
+94705&daddr=1401+N+Shoreline+Blvd,+Mountain+View,+CA+94043&dirflg=h

It pays to know the URL language of an application!

• You can use Google Maps as a nonprogrammer’s geocoder. Center the map on the
point for which you want to calculate its latitude and longitude, and read the values
off the ll parameter. If the ll parameter is not present, you can double-click the center
of the map, just enough to cause the map to recenter on the requested point.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES52

12. http://www.google.com/apis/maps/documentation/#Driving_Directions

13. http://groups.google.com/group/Google-Maps-API/browse_thread/thread/279ee413e4e0309/
0dabfb71863af712?lnk=gst&q=avoid+highway&rnum=2#0dabfb71863af712

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 52

Amazon
Amazon is the third major example in this chapter. Not only is Amazon a popular e-commerce
site, but it is an e-commerce platform this is easily remixed with other content. Although you
will study the Amazon APIs later in this book, you’ll focus here on Amazon from the view of an
end user. Moreover, the goal in this section is not to learn all the features of Amazon but rather
to study its URL language.

■Note Although Amazon sells merchandise other than books, I use books in my examples. Moreover,
I focus on Amazon, the site geared to the United States instead of Amazon’s network of sites aimed to cus-
tomers outside the United States.

The strategy you’ll follow here is to discern the key entities of the Amazon site through
a combination of using and experimenting with the site, sifting through documentation, and
seeing what other users have done. You will see that figuring out the structure of Amazon’s
URLs is not as straightforward as working through the Flickr URL language. Since some of the
conclusions here are not supported by official documentation from Amazon, I cannot make
any long-term guarantee behind the URLs.

Amazon Items
It doesn’t take much analysis of Amazon to see that the central entity of the site is an item for
sale (akin to a photo in Flickr). By looking at the URL of a given item and looking throughout
a page describing it, you will see that Amazon uses an Amazon Standard Identification Num-
ber (ASIN) as a unique identifier for its products.14 For books that have an ISBN, the ASIN is
the same as the ISBN-10 for the book. According to the Wikipedia article on ASIN, you can
point to a product with an ASIN with the following URL:

http://www.amazon.com/gp/product/{ASIN}

Take for instance, Czesĺaw Miĺosz’s New and Collected Poems (paperback edition), which
has an ISBN-10 of 0060514485. You can find it on Amazon here:

http://www.amazon.com/gp/product/0060514485

It is important to know that the way to link to Amazon has changed in the past and will
likely continue to change. For instance, you can also link to the book with this:

http://www.amazon.com/exec/obidos/ASIN/0060514485

or even with this shorter form:

http://amazon.com/o/ASIN/0060514485

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 53

14. http://en.wikipedia.org/wiki/Amazon_Standard_Identification_Number

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 53

Using this syntax would ideally be founded on some official documentation from Ama-
zon. Where would you find definitive documentation on how to structure a link to a product of
a given ASIN? My search through the Amazon developers’ site led to the technical documenta-
tion,15 whose latest version at the time of writing was the April 4, 2004, edition.16 That trail leads
ultimately to a page on the use of identifiers, which, alas, does not spell out how to formulate
the URL for an item with a given ASIN.17 The bottom line for now is that Wikipedia, combined
with experimentation, is the best way to discern the URL structures of Amazon.

Let’s apply this approach to other functions of Amazon. For instance, can you generate
a URL for a full-text search? Go to Amazon, and enter your favorite search term. Take for
example, flower. When I hit Submit, I got the following URL:

http://amazon.com/s/ref=nb_ss_gw/102-1755462-2944952?url=search-alias%3Daps&field-
keywords=flower&Go.x=0&Go.y=0

If I did the search again, say in a different browser, I got another URL:

http://amazon.com/s/ref=nb_ss_gw/102-8204915-1347316?url=search-alias%3Daps&field-
keywords=flower&Go.x=0&Go.y=0&Go=Go

Notice where things are similar and where they are different. Looking for what’s common
(the http://amazon.com/s prefix and the ?url=search-alias%3Daps&field-keywords=
flower&Go.x=0&Go.y=0&Go=Go argument), I eliminated the sections that were different to get
the following:

http://amazon.com/s/?url=search-alias%3Daps&field-keywords=flower&Go.x=0&Go.y=0&
Go=Go

This URL seemed to work fine. You can even eliminate &Go.x=0&Go.y=0&Go=Go to boil the
request down to this:

http://amazon.com/s/?url=search-alias%3Daps&field-keywords=flower

So, how do you limit the search to books? Going to Amazon, selecting the Book section,
and using the flower keyword, you can get to the following URL:

http://amazon.com/s/ref=nb_ss_gw/102-6984159-2338509?url=search-
alias%3Dstripbooks&field-keywords=flower&Go.x=12&Go.y=6

Stripping away the parameters as before gave me this:

http://amazon.com/s/?url=search-alias%3Dstripbooks&field-keywords=flower

This trick works for the other departments. For example, to do a search on flowers in
Home & Garden, use this:

http://amazon.com/s/?url=search-alias%3Dgarden&field-keywords=flower

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES54

15. http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=19

16. http://developer.amazonwebservices.com/connect/entry.jspa?externalID=703&categoryID=19

17. http://docs.amazonwebservices.com/AWSECommerceService/2007-04-04/DG/ItemIdentifiers.html

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 54

Based on these experiments, I would conclude that the URL for searching for a keyword
in a department is as follows:

http://amazon.com/s/?url=search-alias%3D{amazon-dept}&field-keywords={keyword}

Let’s run through the syntax of other organizational structures.

Lists
You can find the Wish List section at the following URL:

http://www.amazon.com/gp/registry/wishlist/

If you are logged in, you will see a list of your lists on the left. Look at the URL of one of the
lists, which will look something like the one for my public wish list:

http://www.amazon.com/gp/registry/wishlist/1U5EXVPVS3WP5/ref=cm_wl_rlist_go/
102-5889202-4328156

Now look at another. I surmised that since the number on the right (102-5889202-4328156)
remained the same and the other number (1U5EXVPVS3WP5) changed for each list, the unique
1U5EXVPVS3WP5 is the identifier for the list. You can point to a list using its list identifier by
entering something similar to the following:

http://www.amazon.com/gp/registry/wishlist/1U5EXVPVS3WP5

Hence, you can conclude that the URL for a wish list is as follows:

http://www.amazon.com/gp/registry/wishlist/{wishlist-id}

Tags
Tags are a recent introduction to Amazon. You will see links like the following:

http://www.amazon.com/tag/czeslaw%20milosz/ref=tag_dp_ct/102-8204915-1347316

which can be reduced (following the strategy you took for other parts of Amazon) to this:

http://www.amazon.com/tag/czeslaw%20milosz/

The URL for books that correspond to a tag is as follows:

http://www.amazon.com/tag/{tag}/

Subject Headings
In looking through the Browse Subject section of Amazon (http://www.amazon.com/
Subjects-Books/b/?ie=UTF8&node=1000), you can find a link such as the following:

http://www.amazon.com/b/ref=amb_link_1760642_21/104-0367717-
9318361?ie=UTF8&node=5&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-
3&pf_rd_r=0J0MADE0YSN1VRBA6XZS&pf_rd_t=101&pf_rd_p=233185601&pf_rd_i=1000

This refers to the Computers & Internet Section, which you can reduce to the following:

http://www.amazon.com/b/?ie=UTF8&node=5

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 55

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 55

from which you can conclude that the URL for a section is as follows:

http://www.amazon.com/b/?ie=UTF8&node={node-number}

■Caution The fact that the node is specified by number corresponding to its order by alphabetical listing
rather than a unique key makes me concerned about the long-term stability of the link. Will 5 always refer to
computers, or if there is another section added that goes before it alphabetically, will the link break?

There are plenty of other entities whose URL structures can be discerned, including the
following:

• Listmania lists:

http://www.amazon.com/lm/{list-mania-id}/

For example:

http://www.amazon.com/lm/1FH0E3G892IA/

• So You’d Like To guides:

http://www.amazon.com/gp/richpub/syltguides/fullview/{slltg-id}

For example:

http://www.amazon.com/gp/richpub/syltguides/fullview/3T3I3YDBG889B

• Personal profiles:

http://www.amazon.com/gp/pdp/profile/{user-id}/

For example:

http://www.amazon.com/gp/pdp/profile/A2D978B87TKMS2/

• Similar items for a book:

http://amazon.com/sim/{ISBN-10}/1/ref=pd_sexpl_esi/

For example:

http://amazon.com/sim/0060514485/1/ref=pd_sexpl_esi/

In Chapter 1, you already studied how the Amazon URL language is used by the Library-
Lookup bookmarklet to mash up Amazon and library catalogs. Linking to Amazon resources
by a tag enables tag-based mashups, which I will describe in Chapter 3.

del.icio.us
The social-bookmarking site del.icio.us is a deeply influential site, credited by many for jump-
starting the immense amount of activity around tagging.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES56

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 56

The main resources of importance in del.icio.us (http://del.ico.us) are bookmarks, that
is, URLs. You can associate tags with a given URL and look at an individual’s collection of URLs
and the tags they use. In this section, I again explain the URL structures by browsing through
the site and noting the corresponding URLs.

You can look at the public bookmarks for a specific user (such as rdhyee) here:

http://del.icio.us/{user-id}

For example:

http://del.icio.us/rdhyee

You can see all the bookmarks of a user by tag here:

http://del.icio.us/{user-id}/{tag}

For example:

http://del.icio.us/rdhyee/NYTimes

You can see all the URLs that people have tagged with a given tag here:

http://del.icio.us/tag/{tag}

You can see just the popular URLs associated with the tag here:

http://del.icio.us/popular/{tag}

You can access today’s popular items here:

http://del.icio.us/popular/

You can access just the newest popular ones here:

http://del.icio.us/popular/?new

Correlating a URL to a del.icio.us page is a bit trickier. Consider the following URL:

http://harpers.org/TheEcstasyOfInfluence.html

which you can reference from del.icio.us here:

http://del.icio.us/url/53113b15b14c90292a02c24b55c316e5

So, how do you get 53113b15b14c90292a02c24b55c316e5 from http://harpers.org/
TheEcstasyOfInfluence.html? The answer is that the identifier is an md5 hash of the URL.
In Python, the following line of code:

md5.new("http://harpers.org/TheEcstasyOfInfluence.html").hexdigest()

or the following PHP code:

<?php
$url = "http://harpers.org/TheEcstasyOfInfluence.html";
print md5($url);
?>

yields 53113b15b14c90292a02c24b55c316e5.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 57

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 57

Note that the following:

http://del.icio.us/url?url=http://harpers.org/TheEcstasyOfInfluence.html

also does work and redirects to the following:

http://del.icio.us/url/53113b15b14c90292a02c24b55c316e5

Screen-Scraping and Bots
The focus of this book is on creating mashups using public APIs and web services. If you want
to mash up a web site, one of the first things to look for is a public API. A public API is specifi-
cally designed as an official channel for giving you programmatic access to data and services
of the web site. In some cases, however, you may want to create mashups of services and data
for which there is no public API. Even if there is a public API, it is extremely useful to look
beyond just the API. An API is often incomplete. That is, there is functionality in the user inter-
face that is not included in the API. Without a public API for a web site, you need to resort to
other techniques to reuse the data and functionality of the application.

One such technique is screen-scraping, which involves extracting data from the user
interface designed for display to human users. Let me define bots and spiders, which often
use screen-scraping techniques. Bots (also known as an Internet bots, web robots, and
webbots) are computer programs that “run automated tasks over the Internet,” typically tasks
that are “both simple and structurally repetitive.”18 Bots come in a variety of well-known types
and engage in activities that range from positive and benign to illegal and destructive:

• “Chatterbots” that automatically reply to human users through instant messaging or IRC19

• Wikipedia bots that automate the monitoring, maintaining, and editing of the Wikipedia20

• Ticket-purchasing bots that buy tickets on behalf of ticket scalpers

• Bots that generate spam or launch distributed denial of service attacks

Web spiders (also known as web crawlers and web harvesters) are a special type of Internet
bot. They typically focus on getting collections of web pages—up to billions of pages—rather
than focused extraction of data on a given page. It’s the spiders from search engines such as
Google and Yahoo! that visit your web pages to collect your web pages with which to build
their large indexes of the Web.

There are some important technical challenges to screen-scraping. The vast majority of
data embedded in HTML is not marked up to be unambiguously and consistently parsed by
bots. Hence, screen-scraping depends on making rather brittle assumptions about what the
placement and presentation style of embedded data implies about the semantics of the data.
The author of web pages often changes its visual style without intending to change any under-
lying semantics—but still ends up breaking, often inadvertently, screen-scraping code. In

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES58

18. http://en.wikipedia.org/wiki/Internet_bot, accessed on July 11, 2007, as http://en.wikipedia.org/w/
index.php?title=Internet_bot&oldid=142845374

19. http://en.wikipedia.org/wiki/Chatterbot

20. http://en.wikipedia.org/wiki/Wikipedia:Bots

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 58

contrast, by packaging data in commonly understood formats such as XML geared to com-
puter consumption, you are an implicit—if not explicit—commitment to the reliable transfer
of data to others. Public API functions are controlled, defined programmatic interfaces between
the creator of the site and you as the user. Hence, accessing data through the public API should
theoretically be less fragile than screen-scraping/web-scraping a web site.

■Caution Since I’m not a lawyer, do not construe anything in this book, including the following discussion,
as legal advice!

If you engage in screen-scraping, you need to be thoughtful about how you go about it
and, in some cases, even whether you should do it in the first place. Start with reading the
terms of service (ToS) of the web site. Some ToSs explicitly forbid the use of bots (such as
automated crawling) of their sites. How should you respond to such terms of services? On the
one hand, you could decide to take a conservative stance and not screen-scrape the site at all.
Or you could go to the other extreme and screen-scrape the site at will, waging that you won’t
get sued and noting that if the web site owner is not happy, the owner could just use technical
means to shut down your bot.

I think a middle ground is often in order, one that is well-stated by Bausch, Calishan, and
Dornfest: “So use the API whenever you can, scrape only when you absolutely must, and mind
your Ps and Qs when fiddling about with other people’s data.”21 In other words, when you
screen-scrape a web site, you should be efficient in how you use computational and network
resources and respectful of the owner in how you reuse the data. Consider contacting the web
site owners to ask for permission.

Even though bots have negative connotations, many do recognize the positive benefits of
some bots, especially search engines. If everyone were to take an extremely conservative read-
ing of the terms of services for web sites, wouldn’t many of the things we take for granted on
the Internet (such as search engines) simply disappear?

Since screen-scraping web sites without public APIs is largely beyond the scope of this
book, I will refer you to the following books for more information:

• Webbots, Spiders, and Screen Scrapers by Michael Schrenk (No Starch Press, 2007)

• Spidering Hacks by Kevin Hemenway and Tara Calishain (O’Reilly and Associates, 2003)

■Note There’s some recent research around end-user innovation that should encourage web site owners
to make their sites extensible and even hackable. See Eric Von Hippel’s books. Von Hippel argues that many
products and innovations are originally created by users of products, not the manufacturers that then bake in
those innovations after the fact (http://en.wikipedia.org/wiki/Eric_Von_Hippel).

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES 59

21. Google Hacks, Third Edition by Paul Bausch, Tara Calishain, and Rael Dornfest (O’Reilly and Associates,
2006); http://proquest.safaribooksonline.com/0596527063/I_0596527063_CHP_8_SECT_8

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 59

Summary
In this chapter, I presented techniques for assessing and exploiting features of web sites that
make them amenable to mashups. Specifically, you looked at web sites from the point of view
of an end user. I presented a list of questions to use in analyzing web sites. Key questions include
the following: What are the main resources and their URLs? How is the public being used in
mashups? Does the site use tags, feeds, and weblogging features? What are the data formats for
importing and exporting data? You applied these questions briefly when revisiting the mashups
from the previous chapter.

The bulk of this chapter is devoted to studying URL languages of web sites and their impor-
tance in making mashups. Specifically, I presented an extensive analysis of Flickr, which has
a rich URL language that covers a large part—but not all—of Flickr’s functionality. I presented
a simple pattern for creating that exploits the URL languages (the Mashup-by-URL-Templating-
and-Embedding pattern) to create a mashup between Flickr and WordPress. I continued my
examination of URL languages with a study of Google Maps, Amazon, and del.icio.us. I con-
cluded the chapter with a discussion of screen-scraping and bots and how they can be used
when public APIs are not available.

You’ll turn in the next chapter to looking in depth at one group of issues raised in this
chapter: tagging and folksonomies, their relationship to formal taxa, and how they can be
used to knit together elements within and across sites.

CHAPTER 2 ■ UNCOVERING THE MASHUP POTENTIAL OF WEB SITES60

858Xch02FINAL.qxd 2/4/08 2:48 PM Page 60

Understanding Tagging
and Folksonomies

A major challenge of dealing with digital content—our own and others—is organizing it. We
want to be able to find the piece of content we want, and we want to be able see its relation-
ship to the whole and to other digital content. We might want to be able to reuse this content.
Also, most important, we want other people to be able to understand the organization of our
digital content so that they can find and reuse it.

Tags are one of the most popular mechanisms used in contemporary web sites for letting
users organize digital content. A tag is a label, typically a word or short phrase, that a user can
add to a piece of digital content, such as a photo, a URL, a video, or an e-mail (don’t confuse
these tags with the tags used to mark up pages, especially an HTML page’s metatags). You can
then search for digital content with those tags. As you saw in Chapter 2, when tags are embed-
ded in URLs, you can link and embed content related by tags through those URLs.

The term folksonomy was coined to contrast tags with taxonomies, which are formal
schemes typically created by communities with strict practices of classifying items. In other
words, folksonomy uses an informal collection of tags provided by the community to build up
a collaborative description of an item. There are few restrictions on the tags you can come up
with to associate with your content. In fact, there are no preset categories or controlled vocab-
ularies from which you must choose. Still, tags have proliferated; users have taken to them en
masse, generating collections—or clouds—of tags that help order their own content as well as
content throughout the Web. You can use these tags to relate content in your mashups, if you’re
mindful, however, that tags can often be idiosyncratic, ambiguous, and irregular.

For now at least, tags have not led to the anarchy predicted by some taxonomists, and
there is more order to how people tag than you might think, created by rules such as personal
and social conventions and the syntax of tags. On the other hand, the proliferation of tagging
has certainly not obviated the need for formal classification schemes. There are rich opportu-
nities to bring together user-generated, bottom-up folksonomic tags and controlled vocabularies
and taxa.

This chapter will show you how to connect content by mashing things up, with tagging as
the glue. Tags allow the aggregation of resources within a system (say, pictures in Flickr—your
own and others) and across web sites (Technorati).

61

C H A P T E R 3

■ ■ ■

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 61

This chapter covers the following:

• It illustrates how tags are used in Flickr, del.icio.us, and Technorati.

• It shows how people are using tags to create interesting apps with tags.

• It discusses how people are hacking the tagging system to put more information into
Flickr and other web sites, specifically geotagging, and now, more generally, machine tags.

• It covers some issues around the interoperability of tags across systems, specifically
through a study of Technorati.

• It briefly shows how tagging relates to formal classification systems, using books as an
example.

Tagging in Flickr
According to the Flickr FAQ,1 “tags are like keywords or labels that you add to a photo to make
it easier to find later.” In other words, tagging is a central way of tying words to pictures. (Think
about how search works—the user types in words and phrases.) Tagging is important for photos
since computer vision/automatic scene recognition is in its infancy.

WILL WE HAVE VISUAL SEARCHING INSTEAD OF RELYING ON TAGS?

Note that companies such as Riya.com are hard at work to bring you visual search.2 What might a non-word-
based search look like? Draw something you want to look for, and the search engine will return pictures that
look like what you drew? Or would you present a photo to the search engine, and it would return similar photos?
The fact that we still have to type words in a search engine to search for pictures, video, or music shows how
dependant we are on words for searching and for describing nontextual objects. That’s why tags are so central
in Flickr, where the dominant form of data is visual. That’s not to say that there aren’t interesting experiments
in nontextual search such as the “search by sketch” system retreivr (http://labs.systemone.at/
retrievr/).

Here are some practical skills related to tags in Flickr you will learn in the following sections:

• You’ll see how tags are used in the Flickr community—by individuals and by subgroups—
right across Flickr to bind photos together. (It’s useful to study tags before creating your
own.)

• You’ll see how to tag a picture and thereby run into issues when you sit down to tag your
pictures or those of others.

• You’ll see how to deal with the syntax of tags in Flickr, how to use multiword tags, and
how multiword tags get boiled down to canonical tags.

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES62

1. http://flickr.com/help/tags/#37

2. http://riya.com and http://www.riya.com/riyaAPI (for the Riya API)

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 62

Tags in Flickr
In Chapter 2, I presented an overview of how tags are used in Flickr, specifically how they
manifest in the web site’s URL language. Here, you’ll look deeper at Flickr tags, specifically at
the social context of tags in Flickr, the syntax and semantics of tags in Flickr, hacks of Flickr
tags, and some remixes and mashups that build upon the Flickr tags.

Before I jump to those topics, let me present parts of the URL language concerning tags.
For instance, you can see a list of popular tags in Flickr here:

http://www.flickr.com/photos/tags/

The URL for the most recent photos in Flickr associated with a tag is as follows:

http://www.flickr.com/photos/tags/{tag}/

For example:

http://www.flickr.com/photos/tags/flower/

Instead of sorting photos by the date uploaded, you can sort them by descending “inter-
estingness” (a quantitative measure calculated by Flickr of how “interesting” a photo is):

http://www.flickr.com/photos/tags/{tag}/interesting/

Finally, for some tags, Flickr identifies distinct clusters of photos, which you can access
here:

http://www.flickr.com/photos/tags/{tag}/clusters/

For example:

http://www.flickr.com/photos/tags/flower/clusters/

You can display the popular tags used by a specific user here:

http://www.flickr.com/photos/{user-id}/tags/

You can list all the user’s tags here:

http://www.flickr.com/photos/{user-id}/alltags/

You can show all photos with a given tag for a specific user here:

http://www.flickr.com/photos/{user-id}/tags/{tag}/

How Tags Are Used in Practice
So, how do people actually use tags in Flickr? Look around to get a feel for how people have
been tagging their photos. It is also helpful to draw upon the observations of seasoned Flickr
users with respect to general trends for how tags are used—or should be used.3

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES 63

3. http://www.flickr.com/groups/central/discuss/2026/ and http://www.flickr.com/groups/central/
discuss/2730/

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 63

The issue of how tags are used is complicated. To get a feel for the issues involved, let’s
look at how people tag photos for July 4. You can probably imagine a number of different ways
of tagging, including the following:

• july4 (for example, http://www.flickr.com/photos/tags/july4/)

• fourthofjuly (for example, http://www.flickr.com/photos/tags/fourthofjuly)

• july4th (for example, http://www.flickr.com/photos/tags/july4th)

• july04 (for example, http://www.flickr.com/photos/tags/july04)

• july4th2007 (for example, http://www.flickr.com/photos/tags/july4th2007)

As an end user, which tag should you use? It depends. Are you trying to use the most popular
one? Flickr offers no guidance about which specific tag to use but attempts to make pictures
related to July 4 all findable regardless of the exact tag used. The Flickr clustering algorithm, when
applied to some of these specific tags (for example, http://www.flickr.com/photos/tags/
july4th/clusters/), groups pictures with tags aimed at describing the same phenomenon.

It is significant that you can set a default permission that allows other people (which you
can limit to your family, friends, contacts, or any registered Flickr user in general) to add tags
and notes to your photos—but there is no provision for letting other people change the title or
description of your photo. This suggests it might be a good idea to let other people tag your
photos. Think of scenarios when it would be helpful to let others tag your photos. Consider
why it might not be a good idea to let other people change the title or description of a photo.

Creating Your Own Tags
To add a tag to a photo for which you have permission, follow these steps:

1. Go to the Flickr page of the photo.

2. Click the Add a Tag link. A text box will open, and you can enter a single tag or a series
of tags separated by spaces. You can also enter phrases by using double quote marks
around the phrase.

3. You can also choose to add tags by selecting from tags you already use by clicking the
Choose from Your Tags link instead of entering tags in the text box.

Syntax of Tags in Flickr
The Flickr tagging system is sufficiently well designed that you may never have occasion to think
about the syntactical limitations of tags in Flickr. However, let’s look at a simple case study. As
noted earlier, you can add phrases as tags using double quotes, such as "San Francisco". The tag
is displayed as "San Francisco", but internally, it is represented with spaces and with punctua-
tion removed and letters turned to lowercase—that is, sanfrancisco. You can prove this by going
to a picture and trying to enter "San Francisco" and sanfrancisco as tags. Flickr will take only
one of the tags since it considers them to be the same tag.4 Now, why should you care about
the exact syntax of a tag? One reason is that tag syntax is going to be different among systems.

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES64

4. http://www.flickr.com/services/api/misc.tags.html draws the distinction between the “clean”
version of a tag and the “raw” version of the tag.

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 64

To understand this, it helps to understand at least one system, such as Flickr, and then to figure
out the syntax of tagging for these other web sites or applications. Also, it gives you insight into
one issue that will challenge all tagging systems: figuring out which tags are the same and which
are not.

Potential Weaknesses of Tags
Anyone who has spent much time using tags runs into the idiosyncrasies, inaccuracies, and
irregularities often present in tagging. Drawing from an analysis in the Wikipedia, I list some
possible causes for these problems:5

Polysemy: Since words often have multiple meanings, which meaning is supposed to be
associated with a tag? (For example, does the tag apple refer to the fruit or to a computer?)

Synonymy: When multiple words can have the same or similar meaning, which tag
should you use, and how do you find all the tags that mean the same? (For example,
are "Independence Day" in the United States and "July 4th" the same?)

Word inflections: Since words are modified for specific grammatical contexts, which varia-
tion do you use for a tag? (For example, you might see mouse and mice.)

Syntactic constraints: How should you create tags out of phrases when spaces are not
allowed? How should you deal with punctuation? How do you deal with non-ASCII words?

In this chapter, I cover the issue of word inflections (specifically the handling of single
versus plural forms) and the syntax of tags, a topic that is not explicitly mentioned in this list
but that presents practical difficulties in making mashups based on tags.

Singular and Plural Forms of Tags in Flickr
Web sites often leave it ambiguous whether users should use the singular or plural form for
tags. When you use these tags, it’s helpful to know whether tags created with the single and
plural forms are treated as the same tag.

Here I describe a small experiment to figure out how Flickr deals with this issue, one you
can adapt for other web sites. I tagged one of my photos with the tag mouse and did a full-text
search and a tag search for mouse, mouses, and mice. Table 3-1 records whether the photo is
returned in the search.

Table 3-1. Stemming of Terms Related to mouse in Flickr

Search Term Full-Text or Tag Search? Was the Picture Found?

mouse Full text Yes

mouse Tag Yes

mouses Full text Yes

mouses Tag No

mice Full text Yes

mice Tag No

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES 65

5. http://en.wikipedia.org/wiki/Folksonomy as http://en.wikipedia.org/w/index.php?title=
Folksonomy&oldid=145985651

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 65

Based on these limited observations, I can make the following tentative conclusions
about how Flickr handles singular and plural English nouns in tags:

• Singular and plural forms of English nouns used are considered to be different tags.

• In full-text searches, Flickr uses some form of stemming to match singular and plural
forms of English nouns. The Flickr stemming process is at least sophisticated enough to
recognize that mouse and mice are related words.

Obviously, you would have to either find official documentation from Flickr or test with
many more tags to validate these conclusions.6 The point here is not to rigorously test these
conclusions but to point out how simple experiments can sometimes reveal interesting aspects
about a web site such as Flickr.

Hacking the Tagging System: Geotagging and Machine Tags
The Flickr map (http://www.flickr.com/map/), which displays Flickr photos on a map, is the
official implementation of what started as a hack. Before the map, there was no official way to
store the location information of a picture and display that location information on a map.

The ad hoc solution that became widely adopted was to insert geo-related information
into the Flickr tags, specifically the geotagged tag along with geo:lat and geo:lon, to indicate
the latitude and longitude of a photo.

This convention of geotagging worked well in many ways. Hundreds of thousands of Flickr
photos were geotagged according to this convention. Tools such as the Google Maps in Flickr
arose to use the geotagging data. On the downside, the Flickr user interface became cluttered
with tags that were meant for programmatic consumption. There wasn’t ideal support for such
tags in the Flickr API (for instance, the only reason for the geotagged tag to be there was that the
API did not allow you to look for tags that began with geo:lat).

It was to fix these problems that Flickr introduced machine tags, also known as triple tags.
Machine tags are tags with a specific syntax aimed primarily for programmatic consumption
and not directly for display to the typical end user. You can use machine tags to store extra data
elements for a given photo. The most important example of such data has so far been the lati-
tude and longitude associated with a photo; it’s so important that Flickr ultimately introduced
specialized functionality to handle this data to prevent people from shoehorning it into tags.

Machine tags are meant to support new types of applications along the lines of geotagging
by adding functionality to the API that recognizes that machine tags have a different use pattern
than standard tags. Also, the UI of Flickr has changed to hide the default machine tags from
users.

The syntax of machine tags, which relates the triplets of namespace, predicate, and value,
is as follows:

namespace:predicate=value

So, for example, geo:lat=37.866276 is a machine tag, where geo is a namespace, lat is
a predicate, and 37.866276 is a value.

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES66

6. The thread at http://www.flickr.com/forums/bugs/31668/ includes a Flickr staff member confirming
the use of stemming in titles and descriptions. http://tech.groups.yahoo.com/group/yws-flickr/
message/1913 mentions stemming in the context of tags. http://www5.flickr.mud.yahoo.com/help/
forum/37259/#reply211324 shows why these things happen.

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 66

Since machine tags are still in the early stages of uptake in Flickr, which is a pioneer in the
field of letting people stick place in arbitrary data into their systems, I would be surprised to
find other web applications that are further along. There are some nascent developments
along these fronts in Google Base (which has attributes)7 and Amazon S3 (with its item-level
metadata).8 In Chapter 16, I return to the topic of Amazon S3.

Interesting Apps Using Flickr Tags
A good way to understand how tags are used in Flickr is to study how others have built on top
of the tagging system. Here are several to study:

• Flickr Related Tag Browser (http://www.airtightinteractive.com/projects/related_
tag_browser/app/) lets you browse relationships among related tags.

• findr (http://www.forestandthetrees.com/findr/findr.html) lets you display related
tags and photos that have been tagged by a combination of related tags.

• fastr (http://randomchaos.com/games/fastr/) is a game in which you guess a tag based
on the photo presented to you.

• ZoneTag (http://zonetag.research.yahoo.com/) is an example of Flickr tag hacking to
insert location data of photos taken by cell phones.

• TagMaps (http://tagmaps.research.yahoo.com/) shows on a map popular tags correlated
with geotagged Flickr photos for a region.

These examples show how Flickr calculates relationships among tags by mining informa-
tion about how tags are being used. You can get a sense of how people use tags.

Tagging in del.icio.us
del.icio.us is a social-bookmarking application, the first of its kind and in many ways still the
best. People use deli.cio.us to keep track of bookmarks, identified by URLs, and to follow other
users’ bookmarks. Tagging is an important part of del.icio.us, which pioneered tagging in gen-
eral and has done much to popularize it.

In the discussion of Flickr, I show how tagging enables textual searching and browsing of
nonverbal objects such as pictures. Why would tags be useful in del.icio.us for categorizing web
pages, whose primary constituent still tends to be text? Tags capture essentials about a web page
that cannot be easily uncovered by full-text searching. Useful tags might not even involve any
of the words that are actually in the text of the web page. Tags often describe the relationship
between the bookmark and the user (for example, the tag toread) rather than anything intrin-
sic to the web page. Nonetheless, you might get to the point in which computer summarization
techniques could automatically generate tags for a given web page. For instance, Tagthe.net
(http://tagthe.net/) provides such an API.

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES 67

7. http://base.google.com/support/bin/answer.py?answer=27882

8. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/BasicsObjects.html and http://
docs.amazonwebservices.com/AmazonS3/2006-03-01/RESTObjectPUT.html, where you can stick in user
metadata (name/value pair).

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 67

Note a fundamental difference between tagging in Flickr and del.icio.us: in Flickr, each
object being tagged (a photo) has only one set of tags, created by the object’s owner and others
granted permission to tag the photo. In del.icio.us, each object (a bookmark) being tagged
could belong to many users, each having their own sets of tags. As Thomas Vander Wal explains,
“broad” folksonomies such as that of del.icio.us (as opposed to the “narrow” folksonomies,
such as Flickr’s) enable one to compare how different people tag the same object.9 For objects
that are tagged by many people, del.icio.us is able to recommend tags to use, based solely on
how others have already tagged the object. In Flickr, you can’t get such recommendations since
there is only one set of tags for any photo.

Chapter 2 documented the URL language of del.icio.us. In this chapter, I describe more
about the mechanics of adding tags and the issues of multiple-word tags and multilingual tags.

Mechanics of Adding Tags in del.icio.us
Without the del.icio.us Firefox plug-in, you can use the web site’s upload form:

1. Go to http://del.icio.us/post/, enter the URL (for example, http://www.rubyonrails.
org/), and hit the Save button.

2. You will end up on a page that prompts you for the description, notes, and tags. Note
that del.icio.us offers recommended tags and lists your tags, which are tags you have
already used in del.icio.us—if any.

With the del.icio.us Firefox plug-in (http://del.icio.us/help/firefox/extension), it
becomes easier to push a link into del.icio.us. You can also use a bookmarklet to put in pages
(http://del.icio.us/help/buttons) or get Internet Explorer buttons (http://del.icio.us/
help/ie/extension).

Dealing with Case and Multiword Phrases
In contrast to Flickr, del.icio.us tags are single-word labels. Tags in del.icio.us cannot contain
any spaces, but they can contain punctuation. The example given in the documentation
(http://del.icio.us/help/tags) is what to do with a multiword phrase such as San Francisco;
the suggested tags are sf, san-francisco, SanFrancisco, san.francisco, or “whatever makes
sense to you.” Does it matter which of these tags you choose?

Let’s gather some facts about how del.icio.us works with search phrases. There’s some
documentation at http://del.icio.us/help/search, but you can also do a little experiment.
Let’s look for San Francisco in del.icio.us. If you type San Francisco in the search box, selecting
the option to search all of del.icio.us, you go here:

http://del.icio.us/search/?fr=del_icio_us&p=san+francisco&type=all

You can limit the domain of the search (to your own bookmarks, to all of del.icio.us, or to
the Web). This search “goes through bookmark descriptions, notes, and tags.” You can limit the
search to tags via a tag: prefix (tag:sanfrancisco):

http://del.icio.us/search/?fr=del_icio_us&p=tag%3Asanfrancisco&type=user

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES68

9. http://www.personalinfocloud.com/2005/02/explaining_and_.html

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 68

What can you learn from this search?

• The case of tags is preserved in how a tag is displayed (that is, if you enter SanFrancisco,
it will stay SanFrancisco). However, searches for tags are case insensitive; that is, if you
enter sanfrancisco or SanFrancisco, you still get the same tags (http://del.icio.us/tag/
SanFrancisco).

• On the other hand, punctuation is significant in search as well as in the display. Unlike
Flickr, in which punctuation is stripped from the canonical representation of a tag,
punctuation does not behave like whitespace.

In del.icio.us, because you can’t have spaces in tags, there are many variations in deal-
ing with multiword tags. Returning to the example of San Francisco and the variants sf,
san-francisco, SanFrancisco, and san.francisco for a minute, contrast the syntax of tags in
del.icio.us and Flickr:

• In del.icio.us, San Francisco is not a valid tag because it contains a space. sf, san-francisco,
SanFrancisco, and san.francisco are all distinct tags.

• In Flickr, San Francisco is a permissible tag. However, you cannot tag the same photo
with any of the following variants (san-francisco, SanFrancisco, and san.francisco)
because the punctuation is stripped away to determine the clean version of a tag.

Getting More Information
The http://tech.groups.yahoo.com/group/ydn-del.icio.us/ site is a good place to get
answers to developer-type technical questions. You’ll often see Joshua Schachter, the founder
of deli.cio.us, actively answering people’s questions.

REPRESENTATION OF LATIN-8 AND UNICODE CHARACTERS

Let’s see how tags work for Latin-8 characters first (for example, the French word français) and then for Chinese.

In Flickr

Let’s look at http://flickr.com/photos/tags/fran%C3%A7ais/. There is no collapsing of français to
francais. See the photo at http://flickr.com/photos/raymondyee/368644336/ to see that I can
have both a français and francais tag; invoking the API10 confirms that the two tags stay distinct.

It seems that Chinese works in a similar way. I don’t know much Chinese, but I do know my name in
Chinese (). I managed to add it as a tag for one of my pictures.11 You can pull up all pictures with that tag:

http://flickr.com/photos/raymondyee/tags/%E4%BD%99%E4%BF%8A%E9%9B%84/

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES 69

10. http://api.flickr.com/services/rest/?method=flickr.tags.getListPhoto&api_key={api-key}&photo_
id=368644336

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 69

Again, you can confirm that %E4%BD%99%E4%BF%8A%E9%9B%84 is a URL-encoded UTF-8 representation
of my Chinese name. With Python, here’s that code:

import urllib
print urllib.unquote('%E4%BD%99%E4%BF%8A%E9%9B%84').decode('utf-8')
u'\u4f59\u4fca\u96c4'

And you can see that the Unicode character point 4f59 is indeed .12

In del.icio.us

I added a URL for the France-Berkeley program:13

http://del.icio.us/tag/fran%C3%A7ais
does come up with many links with the tag français, as well as the corresponding full-text search for français.14

To test Chinese functionality in del.icio.us, I added my picture,15 and as expected, I can pull up the picture
via the tag of my Chinese name,16 and a search works.17 How do you get fran%C3%A7ais from français?
With a bit of Python programming, you can convince yourself that it’s a URL-encoding of the UTF-8 encoding
of français:

>>> print chr(231)
ç
>>> print urllib.urlencode({'q':chr(231).decode('ISO-8859-1').➥

encode('utf-8')})
q=%C3%A7

YouTube copes well with Chinese characters too: I can find a video tagged with my Chinese name:
http://www.youtube.com/results?search_query=%E4%BD%99%E4%BF%8A%E9%9B%84.

In rel-tag

The rel-tag specification gives the following example of how to encode tags:18

Santé et bien-être

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES70

11. http://flickr.com/photos/raymondyee/79915850/ and http://flickr.com/photos/raymondyee/tags/
%E4%BD%99%E4%BF%8A%E9%9B%84/

12. http://www.cojak.org/index.php?function=code_lookup&term=4F59 and http://www.unicode.org/
cgi-bin/GetUnihanData.pl?codepoint=4F59

13. http://del.icio.us/url?url=http://ies.berkeley.edu/fbf/

14. http://del.icio.us/search/?fr=del_icio_us&p=fran%C3%A7ais&type=all

15. http://del.icio.us/url?url=http://flickr.com/photos/raymondyee/79915850/

16. http://del.icio.us/tag/%E4%BD%99%E4%BF%8A%E9%9B%84

17. http://del.icio.us/search/?fr=del_icio_us&p=%E4%BD%99%E4%BF%8A%E9%9B%84&type=all

18. http://microformats.org/wiki/rel-tag#Encoding_issues as http://microformats.org/wiki?title=
rel-tag&diff=0&oldid=18625

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 70

You can verify that the tag is the URL encoding of the UTF-8 encoding of the tag string. In Python, the
following code:

import urllib
s = "Santé et bien-être"
u = s.decode('iso-8859-1')
print urllib.urlencode({'q':u.encode('utf8')})

returns the following:

q=Sant%C3%A9+et+bien-%C3%AAtre
http://technorati.com/tag/Sant%C3%A9+et+bien-%C3%AAtre

which is a search on Santé et bien-être.

Gathering Content Through Tags in Technorati
Technorati is a search engine, focused primarily on searching weblogs but also “tagged social
media” (specifically, photos in Flickr and videos in YouTube). Technorati is an excellent case
study of how a web site crawls for tags on the Web and then uses those tags to organize digital
content. (Think of Technorati as a big tag-based mashup.) Let’s now look in detail at how Tech-
norati presents tags to users and how it finds the tags in the first place.

Searching Technorati with Tags
The primary emphasis in the Technorati user interface is on searching by tag. In fact, the default
search is a tag search. For instance, a search for the term mashup brings you to this page:

http://technorati.com/tag/mashup

Generally, items for a given tag are at the following URL:

http;//technorati.com/tag/{tag}

where {tag} is the URL-encoded version of the UTF-8 encoding of the tag. The items are
broken as follows:

• Blog posts (http://technorati.com/posts/tag/{tag})

• Videos (http://technorati.com/videos/tag/{tag})

• Photos (http://technorati.com/photos/tag/{tag})

• Weblogs (http://technorati.com/blogs/tag/{tag})

Note that you can string tags together with OR to search for multiple tags.
A quick way to get a feel for Technorati is to look at the “most popular” search:

http://technorati.com/pop/

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES 71

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 71

How Technorati Finds Tags on the Web
Technorati derives its tags from a variety of sources, as documented at http://technorati.com/
help/tags.html:

• Categories embedded in Atom and RSS 2.0 feeds. (See Chapter 4 for more on feeds.)

• Tags in links using the rel-tag microformat, such as <a href="http://technorati.com/tag/
{tagname}" rel="tag">tagname. (See Chapter 18 for a complete description.)

• Tags from public photos in Flickr.

• Tags from public videos in YouTube.

Word Inflections and Syntactic Constraints in Technorati Tags
As with Flickr and deli.cio.us, singular and plural nouns in tags are not conflated. For example,
the following:

http://technorati.com/tag/mouse

and the following:

http://technorati.com/tag/mice

return different results. Technorati is, however, able to recognize that mouse and mice are related
tags, as are peripherals and animals. Unlike Flickr, but like del.icio.us, punctuation in Technorati
tags is significant in tag-based searches. For example, the following:

http://technorati.com/tag/san+francisco

returns different results from the following:

http://technorati.com/tag/san-francisco

Tag searches are not case sensitive in Technorati, though other applications that use the
rel-tag microformat may be case sensitive. Through rel-tag, you should be able to pass in
the full range of non-ASCII words as tags. (See the “Representation of Latin-8 and Unicode
Characters” sidebar on representing non-ASCII characters in tags to learn more.)

The next time you want to make a mashup of digital content based on tags, you can model
what to do on how Technorati has dealt with making tags from different web sites work (inter-
operate) with one another. Moreover, you can leverage its work by linking directly to Technorati
(through its URL language) or by using its API (http://technorati.com/developers/api/).

Using Tags to Mash Up Flickr and del.icio.us
In the following sections, I’ll show how you can use tags in del.icio.us to collect Flickr pictures
and make a simple visual collection. The idea is simple: you can use del.icio.us to gather pictures
from Flickr by tagging Flickr URLs in del.icio.us and using a specific del.icio.us tag on all the pic-
tures you want in the same set. Because del.icio.us shows thumbnails of photos from Flickr, you
get a simple album maker using this combination of Flickr and del.icio.us and tagging.

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES72

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 72

Here’s an example:

http://del.icio.us/rdhyee/set:Berkeley

In this case, I’ve tagged a selection of Flickr URLs with the tag set:Berkeley.
This mashup is certainly not a replacement for Picasa or iPhoto. You can’t sort the pic-

tures, for instance, though you could imagine adding another tag with a number and writing
a Greasemonkey script that would sort the pictures for you (and allow you to edit the order-
ing). This mashup is a helpful supplement to Flickr, but you might ask, why not just use the
Flickr favorites or collections to accomplish this goal? The problem that this little mashup
solves is combining your own photos with those of others. Favorites must be other people’s
pictures; your collections can contain only your own photos.

Other Systems That Use Tagging
Many other applications use tags. If you look at the Wikipedia article on tags,19 you will see
some of the following mentioned:

• Other social-bookmarking sites.

• Other photo-sharing sites.

• Video sites such as YouTube.

• The Gmail and Thunderbird 2.0 email systems.

• You can generate tag clouds based on categories from your blog (for example, Ultimate
Tag Warrior 3 WordPress plug-in20).

Relationship of Tags to Formal Classification
Schemes
I don’t think that folksonomies will supplant formal subject headings and taxonomies. There’s
plenty of room to experiment with the interplay between folksonomic and taxonomic approaches.
Indeed, how can one combine some of the simplicity of tagging with the careful structures of
formal classification schemes? In this section, I show a specific example to highlight some of the
relevant challenges.

Let’s return to an example I first used in Chapter 1, the book Czesĺaw Miĺosz’s New and
Collected Poems 1931–2001, specifically the hardcover edition with the ISBN-10 of 006019667X.
You can search for the book at the Library of Congress here to learn how the Library of Congress
has formally classified the book and its author:

http://catalog.loc.gov/cgi-bin/Pwebrecon.cgi?v3=1&DB=local&CMD=kisn+006019667X&
CNT=10+records+per+page

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES 73

19. http://en.wikipedia.org/wiki/Tags

20. http://www.neato.co.nz/ultimate-tag-warrior/

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 73

The book is assigned to the Library of Congress Subject Heading (LCSH) Miĺosz, Czesĺaw
Translations into English:

http://catalog.loc.gov/cgi-bin/Pwebrecon.cgi?SC=Subject&SA=Mi%C5%82osz%2C%20Czes
%C5%82aw%20Translations%20into%20English

Through this subject heading, which you can access through its corresponding URL, you
can get all the books that are classified in the same group. In this specific case, you can reliably
find a list of many, if not all, of the English translations of Miĺosz’s poetry published in the
United States.

Why does this matter? By using the LCSH as a category, you get to leverage the careful and
reliable work that the Library of Congress has done in classifying books. Just because you use
tags doesn’t mean you have to ignore formal classifications.

The LCSH is not the only formal classification scheme around for books. If you look the
same book up at the Online Computer Library Center (OCLC) WorldCat.org site, like so:

http://worldcatlibraries.org/wcpa/isbn/006019667X

you will find the look listed under the subject of Miĺosz, Czesĺaw:

http://worldcatlibraries.org/search?q=su%3AMi%C5%82osz%2C+Czes%C5%82aw

The subject headers used by OCLC are based on its FAST project, which aims to simplify
yet be upward compatible with LCSH:

http://www.oclc.org/research/projects/fast/

To see a sophisticated example of how tags can be effectively combined with formal clas-
sification, let’s look at OCLC, where you can get a different subject category for the same book:

http://worldcatlibraries.org/search?q=su%3AMi%C5%82osz%2C+Czes%C5%82aw

You can feed an ISBN to LibraryThing, a social book-cataloging site, with this:

http://www.librarything.com/isbn/{isbn}

which will redirect to a URL with a work-id tag (different editions of a book, which can have
different ISBNs, are collected under the same work-id):

http://www.librarything.com/work/{librarything-work-id}

Using our example, the following URL:

http://www.librarything.com/isbn/006019667X

redirects to the following:

http://www.librarything.com/work/161671

where you see tags that users of LibraryThing have applied to the book. At the same time, you
can find LibraryThing lists here:

http://www.librarything.com/work-info/{librarything-work-id}

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES74

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 74

For example:

http://www.librarything.com/work-info/161671

The following is how the book has been formally classified (including such metadata as
the Library of Congress Call Number and the Dewey Decimal classification) along with the
LCSH:

http://www.librarything.com/subject.php?subject=Mi%B1osz%2C+Czes%B1aw%09
Translations+into+English

■Caution There is an error in character encoding in LibraryThing that causes Miĺosz, Czesĺaw to be
incorrectly displayed.21

Summary
In this chapter, you looked at how to use tags to create mashups. I first compared and con-
trasted how tags are used in Flickr and del.icio.us. Flickr’s tagging system is an example of
a narrow folksonomy, enabling textual searches to be done over visual media. As a broad tax-
onomy, del.icio.us involves many people tagging any given bookmark, creating multiple sets
for tags for a bookmark. You considered some factors that reduce the reliability of tags and
studied specifically the issue of singular versus plural nouns and the role played by syntactic
constraints such as spaces, punctuation marks, multiple cases, and non-ASCII characters in
Flickr and del.icio.us. You looked at Technorati as an example of a tag-based search engine as
a case study of how to use tags to relate disparate digital content. I showed how you can create
a simple mashup of Flickr and del.icio.us using del.icio.us tags to create sets of pictures that
intermix your photos and other people’s photos in Flickr. This chapter ended with an example
of combining tags with formal classification schemes in the context of books.

CHAPTER 3 ■ UNDERSTANDING TAGGING AND FOLKSONOMIES 75

21. http://www.librarything.com/talktopic.php?topic=12559#138896

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 75

858X_ch03FINAL.qxd 2/4/08 2:49 PM Page 76

Working with Feeds, RSS,
and Atom

A fundamental enabling technology for mashups is syndication feeds, especially those pack-
aged in XML. Feeds are documents used to transfer frequently updated digital content to users.
This chapter introduces feeds, focusing on the specific examples of RSS and Atom. RSS and Atom
are arguably the most widely used XML formats in the world. Indeed, there’s a good chance
that any given web site provides some RSS or Atom feed—even if there is no XML-based API
for the web site. Although RSS and Atom are the dominant feed format, other formats are also
used to create feeds: JSON, PHP serialization, and CSV. I will also cover those formats in this
chapter.

So, why do feeds matter? Feeds give you structured information from applications that is
easy to parse and reuse. Not only are feeds readily available, but there are many applications
that use those feeds—all requiring no or very little programming effort from you. Indeed, there
is an entire ecology of web feeds (the data formats, applications, producers, and consumers)
that provides great potential for the remix and mashup of information—some of which is
starting to be realized today.

This chapter covers the following:

• What feeds are and how they are used

• The semantics and syntax of feeds, with a focus on RSS 2.0, RSS 1.0, and Atom 1.0

• The extension mechanism of RSS 2.0 and Atom 1.0

• How to get feeds from Flickr and other feed-producing applications and web sites

• Feed formats other than RSS and Atom in the context of Flickr feeds

• How feed autodiscovery can be used to find feeds

• News aggregators for reading feeds and tools for validating and scraping feeds

• How to remix and mashup feeds with Feedburner and Yahoo! Pipes

77

C H A P T E R 4

■ ■ ■

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 77

■Note In this chapter, I assume you have an understanding of the basics of XML, including XML name-
spaces and XML schemas. A decent tutorial on XML is available at http://www.w3schools.com/xml/.
If you are new to the world of XML, working with RSS and Atom is an excellent way to get started with the
XML family of technology.

What Are Feeds, and Why Are They Important?
Feeds are documents used to transfer frequently updated digital content to users. This content
ranges from news items, weblog entries, installments of podcasts, and virtually any content that
can be parceled out in discrete units. In keeping with this functionality, there is some commonly
used terminology associated with feeds:

• You syndicate, or publish, content by producing a feed to distribute it.

• You subscribe to a feed by reading it and using it.

• You aggregate feeds by combining feeds from multiple sources.

Although feeds come in many data formats, I focus in the following sections on three for-
mats that you are likely to see in current web sites: RSS 2.0, Atom 1.0, and RSS 1.0. (Later in the
chapter, I will mention other feed formats.) The formats have fundamental conceptual and
structural similarities but also are different in fundamental ways. In addition, they have a com-
plicated, interdependent, and contested history—which I do not untangle here.

The examples of the three feed formats are adapted from the RSS 2.0 feed of new books
from Apress (http://www.apress.com/rss/whatsnew.xml). They are meant to be (as much as
possible) the same data packaged in different formats. They are minimalist, though not the
absolute minimal, example to illustrate the core of each format. For instance, the description
elements have embedded HTML. Also, I show two items to illustrate that channels (feeds) can
contain more than one item (entries). I discuss extensions to RSS and Atom later in the chapter.

RSS 2.0
There are two main branches of formats in the RSS family. RSS 2.0 is the current inheritor of
the line of XML formats that includes RSS versions 0.91, 0.92, 0.93, and 0.94. The “RSS 1.0”
section covers the other branch. You can find the specification for RSS 2.0 here, from which
you can get the details of required and optional elements and attributes:

http://cyber.law.harvard.edu/rss/rss.html

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM78

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 78

Here are some key aspects of RSS 2.0:

• The root element is <rss> (with the version="2.0" attribute).

• The <rss> element must contain a single <channel> element, which represents the source
of the feed.

• A <channel> contains any number of <item> elements.

• A <channel> is described by three mandatory elements (<title>, <link>, and
<description>) contained within <channel>.

• An <item> element is described by such optional elements, such as <title>, <description>,
and <link>. An item must contain at least a <title> or <description> element.

• The tags in RSS 2.0 are not placed in any XML namespaces to retain backward compati-
bility with 0.91–0.94.

Here is an example of an RSS 2.0 feed with two <item> elements, each representing a new
book. Each description contains entity-encoded HTML.1

<?xml version="1.0" ?>
<rss version="2.0">
<channel>
<title>Apress :: The Expert's Voice</title>
<link>http://www.apress.com/</link>
<description>
Welcome to Apress.com. Books for Professionals, by Professionals(TM)...
with what the professional needs to know(TM)</description>

<item>
<title>Excel 2007: Beyond the Manual</title>
<link>http://www.apress.com/book/bookDisplay.html?bID=10232</link>
<description>
<p><i>Excel 2007: Beyond the Manual</i>
will introduce those who are already familiar with Excel basics to more
advanced features, like consolidation, what-if analysis, PivotTables,
sorting and filtering, and some commonly used functions. You'll learn how to
maximize your efficiency at producing professional-looking spreadsheets and
charts and become competent at analyzing data using a variety of tools. The
book includes practical examples to illustrate advanced features.</p>

</description>
</item>
<item>
<title>Word 2007: Beyond the Manual</title>
<link>http://www.apress.com/book/bookDisplay.html?bID=10249</link>
<description>

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 79

1. http://examples.mashupguide.net/ch04/RSS2.0_Apress_simple_example.xml

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 79

<p><i>Word 2007: Beyond the Manual</i> focuses on new
features of Word 2007 as well as older features that were once less
accessible than they are now. This book also makes a point to include
examples of practical applications for all the new features. The book
assumes familiarity with Word 2003 or earlier versions, so you can focus on
becoming a confident 2007 user.</p>

</description>
</item>

</channel>
</rss>

RSS 1.0
As a data model, RSS 1.0 is similar to RSS 2.0, since both are designed to be represent feeds. In
contrast to RSS 2.0, however, RSS 1.0 is expressed using the W3C RDF specification (http://
www.w3.org/TR/REC-rdf-syntax/). Consequently, RSS 1.0 feeds are part of the Semantic Web,
an ambitious effort of the W3C to build a “common framework that allows data to be shared
and reused across application, enterprise, and community boundaries...based on the Resource
Description Framework (RDF).”2

■Note Other than this description of RSS 1.0 and a brief analysis of RDFa in Chapter 18, the Semantic Web
is beyond the scope of this book. Although I urge any serious student of mashups to track the Semantic Web
for its long-term promise to transform the world of mashups, it has yet to make such an impact. Nonetheless,
because RSS 1.0 is a concrete way to get started with RDF, I mention it here.

You can find the RDF 1.0 specification here:

http://web.resource.org/rss/1.0/spec

The RDF 1.0 format is associated with an RDF schema (http://www.w3.org/TR/rdf-schema/):

http://web.resource.org/rss/1.0/schema.rdf

Here I rewrite the RSS 2.0 feed to represent the same information as RSS 1.0 to give you
a feel for the syntax of RSS 1.0:3

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/">
<channel rdf:about="http://www.apress.com/rss/whatsnew.xml">

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM80

2. http://www.w3.org/2001/sw/

3. http://examples.mashupguide.net/ch04/RSS1.0_Apress.xml

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 80

<title>Apress :: The Expert's Voice</title>
<link>http://www.apress.com/</link>
<description>
Welcome to Apress.com. Books for Professionals, by Professionals(TM)...
with what the professional needs to know(TM)

</description>
<items>
<rdf:Seq>
<rdf:li rdf:resource="http://www.apress.com/book/bookDisplay.html?

bID=10232" />
<rdf:li rdf:resource="http://www.apress.com/book/bookDisplay.html?

bID=10249" />
</rdf:Seq>

</items>
</channel>
<item rdf:about="http://www.apress.com/book/bookDisplay.html?bID=10232">
<title>Excel 2007: Beyond the Manual</title>
<link>http://www.apress.com/book/bookDisplay.html?bID=10232</link>
<description>
<p><i>Excel 2007: Beyond the Manual</i> will introduce those
who are already familiar with Excel basics to more advanced features, like
consolidation, what-if analysis, PivotTables, sorting and filtering, and some
commonly used functions. You'll learn how to maximize your efficiency at
producing professional-looking spreadsheets and charts and become competent at
analyzing data using a variety of tools. The book includes practical examples
to illustrate advanced features.</p>

</description>
</item>
<item rdf:about="http://www.apress.com/book/bookDisplay.html?bID=10249">
<title>Word 2007: Beyond the Manual</title>
<link>http://www.apress.com/book/bookDisplay.html?bID=10249</link>
<description>
<p><i>Word 2007: Beyond the Manual</i> focuses on new
features of Word 2007 as well as older features that were once less accessible
than they are now. This book also makes a point to include examples of
practical applications for all the new features. The book assumes familiarity
with Word 2003 or earlier versions, so you can focus on becoming a confident
2007 user.</p>

</description>
</item>

</rdf:RDF>

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 81

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 81

Consider the following aspects of RSS 1.0:

• Note the commonality in data structure between RSS 1.0 and RSS 2.0 in the use of such
elements as <channel>, <item>, <title>, and <description>.

• It uses an XML namespace associated with RDF (http://www.w3.org/
1999/02/22-rdf-syntax-ns#) and a default namespace related to RSS 1.0
(http://purl.org/rss/1.0/) to place all elements such as <channel>, <item>, and
<title> into that namespace.

• It uses an enclosing <rdf:RDF> root element.

• Note the sequencing of <rdf:resources> contained by an <items> element.

• Note the placement of the <item> elements outside the <channel> element.

Since RSS 1.0 feeds are harder to find than RSS 2.0 and Atom 1.0 feeds, the following are
some examples of RSS 1.0 feeds:

• http://rss.slashdot.org/Slashdot/slashdot

• http://www.nature.com/nature/current_issue/rss/index.html (drawn from a list at
http://www.nature.com/webfeeds/index.html)

• http://www.w3.org/2000/08/w3c-synd/home.rss

• http://simile.mit.edu/blog/?feed=rdf

■Note There are efforts to update RSS. The RSS Advisory Board (http://www.rssboard.org/) has been
designing updates to RSS 2.0, whereas RSS 1.1 (http://inamidst.com/rss1.1/) has been created by
a small number of developers to enhance RSS 1.0. RSS 2.0 and RSS 1.0 remain the most important versions
of the two major families of RSS specifications.

Atom 1.0
The name Atom applies to two related proposed standards: the Atom Syndication Format
(whose current version is also known as Atom 1.0) and the Atom Publication Protocol (APP).
Here, I discuss Atom 1.0 and return to APP later in this book in the context of various Google
web services that use GData, an extension of APP.

Designed to overcome perceived shortcomings of the various RSS formats, Atom 1.0 is
currently a proposed IETF standard:

http://tools.ietf.org/html/rfc4287

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM82

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 82

Atom 1.0, constructed to syndicate web content, has a similar semantics to RSS but a dif-
ferent naming scheme. In an Atom document, a <feed> element is composed of one or more
<entry> elements, each described by a set of tags such as <title>, <link>, <id>, and <summary>.

Let me now rewrite the sample Apress “new books” feed into Atom 1.0:4

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Apress :: The Expert's Voice</title>
<subtitle>
Welcome to Apress.com. Books for Professionals, by Professionals(TM)...
with what the professional needs to know(TM)

</subtitle>
<link rel="alternate" type="text/html" href="http://www.apress.com/"/>
<link rel="self" href="http://examples.mashupguide.net/ch04/Atom1.0_Apress.xml"/>
<updated>2007-07-25T12:57:02Z</updated>
<author>
<name>Apress, Inc.</name>
<email>support@apress.com</email>

</author>
<id>http://apress.com/</id>
<entry>
<title>Excel 2007: Beyond the Manual</title>
<link href="http://www.apress.com/book/bookDisplay.html?bID=10232"/>
<id>http://www.apress.com/book/bookDisplay.html?bID=10232</id>
<updated>2007-07-25T12:57:02Z</updated>
<summary type="html">
<p><i>Excel 2007: Beyond the Manual</i> will introduce those
who are already familiar with Excel basics to more advanced features, like
consolidation, what-if analysis, PivotTables, sorting and filtering, and some
commonly used functions. You'll learn how to maximize your efficiency at
producing professional-looking spreadsheets and charts and become competent at
analyzing data using a variety of tools. The book includes practical examples
to illustrate advanced features.</p>

</summary>
</entry>
<entry>
<title>Word 2007: Beyond the Manual</title>
<link href="http://www.apress.com/book/bookDisplay.html?bID=10249"/>
<id>http://www.apress.com/book/bookDisplay.html?bID=10249</id>
<updated>2007-07-25T12:57:10Z</updated>
<summary type="html">
<p><i>Word 2007: Beyond the Manual</i> focuses on new
features of Word 2007 as well as older features that were once less accessible
than they are now. This book also makes a point to include examples of
practical applications for all the new features. The book assumes familiarity

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 83

4. http://examples.mashupguide.net/ch04/Atom1.0_Apress.xml

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 83

with Word 2003 or earlier versions, so you can focus on becoming a confident
2007 user.</p>

</summary>
</entry>

</feed>

Note the following about this example:

• Note the use of a default Atom-related XML namespace (http://www.w3.org/2005/Atom).

• The <subtitle> element instead of <description> (in RSS) describes the feed.

• The <feed> and <entry> elements must both include an <updated> element.

• <link rel="alternate" type="text/html" href="http://www.apress.com/"/> indicates
that the document is an “alternate” representation (that is, a feed) of the web page
http://www.apress.com/.

• <link rel="self" href="http://examples.mashupguide.net/ch04/Atom1.0_Apress.xml"/>
indicates the location of this feed document.

• The attribute type="html" in the <summary> elements indicates the use of entity-encoded
HTML.

Writing a simple feed as RSS 2.0 and Atom 1.0 sheds some light on how the two formats
compare. For a more detailed analysis, see the following:

http://en.wikipedia.org/wiki/Atom_%28standard%29#Atom_Compared_to_RSS_2.0

Finally, Atom 1.0 has an official RNG schema, defined in the appendix of RFC 4287:

http://atompub.org/rfc4287.html#schema

Extensions to RSS 2.0 and Atom 1.0
Extensions to RSS 2.0 and Atom 1.0 enable you to take advantage of the popular feed formats
to be able to move information within the whole feed ecology while adding more information
than is allowed in the simple base RSS or Atom vocabulary.

You can insert foreign XML elements (ones that are not defined in the respective specifi-
cations) into RSS 2.0 and Atom 1.0 by using XML namespaces. That is, with a few exceptions in
Atom 1.0,5 foreign tags are allowed as long as they are qualified in a namespace that is differ-
ent from that of the base format. For RSS 2.0, that would mean the foreign tag would have to
be placed in some namespace instead of having no namespace such as the core elements
in RSS 2.0.

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM84

5. Foreign markup is permitted unless explicitly forbidden for specific contexts. See http://tools.ietf.org/
html/rfc4287#section-6 for more details.

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 84

■Note I do not cover RSS 1.0 extensibility here other than to refer readers to RSS 1.0 Modules
(http://web.resource.org/rss/1.0/modules/) and to note the standard modules: (http://
web.resource.org/rss/1.0/modules/dc/ (Dublin Core), http://web.resource.org/rss/1.0/
modules/syndication/ (Syndication), and http://web.resource.org/rss/1.0/modules/content/
(Content).

Let’s look at a simple example by adding a tag to the Atom 1.0 feed listed previously.
Suppose you want to add a tag called <isbn> for each of the <entry> elements. You can do so
by associating the <isbn> tag with a namespace (say, http://mashupguide.net):6

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" xmlns:mg="http://mashupguide.net">
[....]
<entry>
<title>Excel 2007: Beyond the Manual</title>
<link href="http://www.apress.com/book/bookDisplay.html?bID=10232"/>
<id>http://www.apress.com/book/bookDisplay.html?bID=10232</id>
<updated>2007-07-25T12:57:02Z</updated>
<mg:isbn>1590597982</mg:isbn>

[....]
</entry>

</feed>

This example is not meant to show the best way to encode an ISBN but to show how to
extend Atom 1.0. Although inserting your own custom vocabulary results in a completely valid
document, it doesn’t necessarily help in terms of interoperability. How much software out
there is set to interpret an <isbn> element in the http://mashupguide.net namespace—other
than to ignore it? If you use a widely used extension, the better your chances that there is soft-
ware that acts on those extensions. Some prominent RSS 2.0 extensions are as follows:

• Media RSS (http://search.yahoo.com/mrss), used in Flickr

• iTunes (http://www.apple.com/itunes/store/podcaststechspecs.html), used for
podcasting

• OpenSearch (http://www.opensearch.org/Specifications/OpenSearch/1.1)

■Tip Other XML dialects use XML namespaces in a similar fashion to enable extensions, so it’s useful to
understand how extensions work in feeds to get a handle of how it works elsewhere.

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 85

6. http://examples.mashupguide.net/ch04/Atom1.0_Apress_ISBN.xml

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 85

There are few widely used Atom 1.0 extensions at this point. If you want to follow that
topic, I suggest the series of articles by James Snell on Atom 1.0 and various proposed
extensions.7

Now that you have studied three important formats for feeds (RSS 2.0, RSS 1.0, and Atom 1.0),
you’ll learn how feeds are implemented in Flickr and then in other web sites.

Feeds from Flickr
You can find feeds in Flickr in several ways. First, you can look throughout the Flickr UI for the
orange feed icon and the text Subscribe To, as shown in Figure 4-1. You can then find out the
feed’s URL from the Feed link. Once you have that URL, you can subscribe to the feed and
read the data it contains. For example, if you go to the following address:

http://flickr.com/groups/central/

you will find a the feed icon and link pointing here:

http://api.flickr.com/services/feeds/groups_discuss.gne?id=34427469792@N01&
lang=en-us&format=rss_200

Figure 4-1. Icon for subscribing to a feed in Flickr. (Reproduced with permission of Yahoo! Inc. ®
2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.)

A second way of finding feeds is to consult Flickr’s documentation of its feeds:

http://www.flickr.com/services/feeds/

In a moment, I’ll list the Flickr feeds that are available following the same convention of
using URI templates as I did in Chapter 2. All the feeds share two common optional parameters:
format and lang.

Flickr Feed Parameters
Let’s look first at format, which can be one of the values listed in Table 4-1.

Table 4-1. Values for the format Parameter in Flickr Feeds

Format Definition

rss_200 or rss2 RSS 2.0

atom_1 or atom Atom 1.0

rss_091 RSS 0.91

rss_092 or rss RSS 0.92

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM86

7. http://www-128.ibm.com/developerworks/xml/library/x-atom10.html, http://www-128.ibm.com/
developerworks/xml/library/x-extatom1/, and http://www-128.ibm.com/developerworks/xml/
library/x-extatom2.html

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 86

Format Definition

rss_100 or rdf RSS 1.0

rss_200_enc RSS 2.0 with enclosures (but without enclosure sizes)

php Code to represent feed as a PHP array

php_serial Input to the PHP unserialize function

csv Comma-separated value

json JavaScript Object Notation (http://www.json.org/)

sql Statements to store the feed data into a SQL database

yaml YAML (http://en.wikipedia.org/wiki/YAML)

cdf Channel Definition Format (http://en.wikipedia.org/wiki/Channel_
Definition_Format)

If format is not specified, Atom 1.0 is assumed. Note that RSS 2.0, RSS 1.0, and Atom 1.0
(along with RSS 0.92 and RSS 0.91) are included among the formats. I’ll present some samples
of various formats later in this chapter, after I cover the rest of the URL language for Flickr feeds.

The second pervasive and optional parameter is lang, which represents the language you
can use to query Flickr. Table 4-2 lists the values. The default language is en-us (English).

Table 4-2. Values for the lang Parameter in Flickr Feeds

Format Definition

de-de German

en-us English

es-us Spanish

fr-fr French

it-it Italian

ko-kr Korean

pt-br Portuguese (Brazilian)

zh-hk Traditional Chinese (Hong Kong)

I’ll now list the feeds available. Remember that all the feed URLs can include the optional
format and lang parameters.

Examining the Flickr Feeds
Feeds for public photos in Flickr are available here:

http://api.flickr.com/services/feeds/photos_public.gne

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 87

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 87

with the following optional parameters:

• id={user_nsid}

• ids={comma_delimited_user_nsids}

• tags={comma_delimited_tags}

• tagmode={mode} where mode is all (the default value) or any

For example, the following:

http://api.flickr.com/services/feeds/photos_public.gne?tags=flower%2CBerkeley&
format=rss2&lang=fr-fr

returns a RSS 2.0 feed, annotated in French, of recent public photos tagged with both flower
and Berkeley tags.

You can get a feed of recent photos of a user’s friends here:

http://api.flickr.com/services/feeds/photos_friends.gne?user_id={user-nsid}

where user-nsid is the NSID of the user whose friends’ photos you want to access. There are
also optional parameters:

• display_all can be 1 to show multiple photos per friend, instead of the default value of
one photo per friend.

• friends can be set to 1 to limit photos to only the family and friends for the requested user.

For example, the following:

http://api.flickr.com/services/feeds/photos_friends.gne?user_id=48600101146@N01&
friends=0&display_all=0&lang=en-us&format=atom_1

is an Atom 1.0 feed of up to one photo each from my Flickr friends, family, and contacts.
You can get feeds of a group discussion here:

http://api.flickr.com/services/feeds/groups_discuss.gne?id={group-nsid}

Feeds for the group photo pools are accessible here:

http://api.flickr.com/services/feeds/groups_pool.gne?{group-nsid}

Discussion feeds from the Help forum (http://www.flickr.com/help/forum/en-us/) are here:

http://api.flickr.com/services/feeds/forums.gne

You can track recent activity on a user’s photos through feeds here:

http://api.flickr.com/services/feeds/activity.gne?user-id={user-nsid}

Feeds of recent comments made by a user are here:

http://api.flickr.com/services/feeds/photos_comments.gne?user-id={user-nsid}

You can track Flickr news bulletins here:

http://api.flickr.com/services/feeds/news.gne

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM88

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 88

Now that you know how to access the various feeds available in Flickr, you’ll look at some
examples of feeds to understand how various formats are implemented, including the role of
extensions. Consider the following excerpt of a sample RSS 2.0 feed of recent public photos
with the tag tree:

http://api.flickr.com/services/feeds/photos_public.gne?tags=tree&format=rss2
<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmlns:media="http://search.yahoo.com/mrss/"

xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>
<title>tree - Everyone's Tagged Photos</title>
<link>http://www.flickr.com/photos/tags/tree/</link>
<description>A feed of tree - Everyone's Tagged Photos</description>
<pubDate>Mon, 29 Jan 2007 06:40:42 -0800</pubDate>
<lastBuildDate>Mon, 29 Jan 2007 06:40:42 -0800</lastBuildDate>
<generator>http://www.flickr.com/</generator>

<item>
<title>Odd Tree</title>
<link>http://www.flickr.com/photos/davidleong/373343287/</link>
<description>[....]</description>
<pubDate>Mon, 29 Jan 2007 06:40:42 -0800</pubDate>
<dc:date.Taken>2007-01-28T11:31:31-08:00</dc:date.Taken>
<author>nobody@flickr.com (mountainhiker)</author>
<guid isPermaLink="false">tag:flickr.com,2004:/photo/373343287</guid>
<media:content
url="http://farm1.static.flickr.com/127/373343287_df43da61f7_m.jpg"
type="image/jpeg" height="160" width="240"/>

<media:title>Odd Tree</media:title>
<media:text type="html">[....]</media:text>
<media:thumbnail
url="http://farm1.static.flickr.com/127/373343287_df43da61f7_s.jpg"
height="75" width="75"/>

<media:credit role="photographer">mountainhiker</media:credit>
<media:category scheme="urn:flickr:tags">snow tree vancouver northvancouver

grousemountain</media:category>
</item>
<item>
[....]
</item>

</channel>
</rss>

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 89

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 89

Note the following about this XML fragment:

• Within an <item> element are some standard elements that you will find in RSS 2.0
feeds, namely, <title>, <link>, <description>, <pubDate>, and <guid>, as well as ele-
ments that are extensions of RSS 2.0, including <dc.date.Taken> and the tags in the
media namespace such as <media:thumbnail>.

• Remember that RSS is basically a flat structure. That is, a <channel> consists of <item>
elements—but an <item> doesn’t consist of other <item> elements. This contrasts with
other XML formats that you will learn about in later chapters of the book (such as the
OpenDocument format).

Let’s take a closer look at the extensions used in the RSS 2.0 Flickr feed:

• The dc prefix (for example, in <dc:date.Taken>), corresponding to the http://purl.org/
dc/elements/1.1/ namespace, denotes the Dublin Core (DC) metadata standard. DC is
a vocabulary for a core set of metadata designed to be applicable to a wide range of dig-
ital content.

• Media RSS (http://search.yahoo.com/mrss), which supplements the <enclosure> element
in RSS 2.0, is used by Flickr to store metadata of the photos, such as the following:

• <media:content>, with the attributes url, type, height, and width

• <media:title> to hold the photo’s title

• <media:text> with HTML to embed that picture into a web page

• <media:thumbnail> to hold a URL to the thumbnail in the url attribute

• <media:credit> to indicate the owner of the photo

• <media:category> to holds tags

It’s interesting to look at how all the Flickr metadata is expressed in the other feed formats.
The following:

http://api.flickr.com/services/feeds/photos_public.gne?tags=tree&format=atom

shows that Atom 1.0 is natively able to encode much of the information for which Media RSS
is being used in RSS 2.0. The Atom feed does, however, use a Dublin Core extension to mark
up a date.

Exchange Formats Other Than RSS and Atom
Let’s now return to the feed formats supported by Flickr other than RSS 2.0, RSS 1.0, and Atom 1.0.
To get a start at understanding the various formats, load a Flickr feed, which will by default be
in Atom 1.0, and replace the format parameter with the alternatives. For instance, if you are
curious about CDF, change the following:

http://api.flickr.com/services/feeds/photos_public.gne?tags=tree

to the following:

http://api.flickr.com/services/feeds/photos_public.gne?tags=tree&format=cdf

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM90

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 90

In the following sections, I’ll mention some but not all of formats supported in Flickr feeds.

RSS 0.91 and RSS 0.92
Although RSS 0.91 and RSS 0.92 have largely been superseded by RSS 2.0, you can still look at
examples such as this:

http://api.flickr.com/services/feeds/photos_public.gne?tags=tree&format=rss_091

and this:

http://api.flickr.com/services/feeds/photos_public.gne?tags=tree&format=rss_092

to see how those older versions do not contain any of the Media RSS or Dublin Core exten-
sions you find in the RSS 2.0 feeds.

JSON
The JSON format facilitates the consumption of Flickr feeds in JavaScript. I discuss JSON at
greater length in Chapter 8. However, if you look at the following:

http://api.flickr.com/services/feeds/photos_public.gne?tags=tree&format=json

you can see that Flickr returns JavaScript code, specifically a call to a jsonFlickrFeed() function
with one parameter. This parameter is a JavaScript object that holds the feed data. As a JavaScript
programmer, you can use this JSON-formatted feed by supplying a jsonFlickrFeed() function
to do something with the feed, such as displaying it on a web page.

Here’s an example of some code that reads the Flickr JSON feed and renders the feed as
HTML in the browser:8

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Flickr JSON feed</title>
<script type="text/javascript">
//<![CDATA[

function jsonFlickrFeed (feed) {
var feed_div = document.getElementById("feed");
var feed_html = '<p>' + '' +
feed.title + ''+ '</p>';

for (x=0; x<feed.items.length; x++) {
feed_html += '' +
'<img ' + 'src="' + feed.items[x].media["m"] + '"' + ' alt="' +
feed.items[x].title + '"' + '/>' + ''+ '
';

}

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 91

8. http://examples.mashupguide.net/ch04/Flickr.JSON.html

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 91

feed_div.innerHTML = feed_html;
}

function load() {
var head_element = document.getElementsByTagName("head")[0];
var newScript = document.createElement('script');
newScript.type = 'text/javascript';
newScript.src = 'http://api.flickr.com/services/feeds/photos_public.gne?

tags=tree&format=json';
head_element.appendChild(newScript);

}

//]]>
</script>

</head>
<body onload="load()">
<div id="feed" />

</body>
</html>

In Chapter 8, I’ll return to how to use JSON in mashups.

Other Feed Formats
The other available formats are less commonly used to represent feeds in web sites other than
Flickr but come in handy depending on your specific needs. For example:

• You can use the php or php_serial format to generate a convenient representation of
the feed for PHP programming. (These formats have roughly the relationship to PHP
that the json format has to JavaScript.)

• You can use the sql format to quickly generate SQL code to get the Flickr feed into your
SQL database.

• The csv format comes in handy for importing your feed into a spreadsheet.

• The rss_200_enc format is used to insert a reference to the original photo in an RSS 2.0
<enclosure> tag.

Feeds from Other Web Sites
Feeds are extremely helpful in creating mashups because feeds are packaged in formats designed
to be accurately and automatically parsed by software. Not only do they not require program-
ming to use—they are widely available, much more so than web APIs.

Nonetheless, feeds are still sometimes difficult to find. I first revisit the question of how to
find feeds and the topic of autodiscovery. I then provide examples of feeds that are available
from some specific web sites: a selection of blogs, Wikipedia, Google, and Yahoo! News. You
will see how web sites other than Flickr use feeds. Moreover, I have focused in my examples on
news-oriented web sites because I draw upon such sites in the feed mashups I create with
Yahoo! Pipes later in the chapter.

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM92

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 92

Finding Feeds and Feed Autodiscovery
In the context of Flickr, I mention two ways of finding feeds that are applicable to other web
sites:

• Looking in the user interface for features such as the common orange icon or the words
feed, RSS, subscribe, and so on

• Finding documentation for a web site’s feeds

Let’s explore some other approaches to finding feeds. There are specialized feed directories
and search engines such as the following, which also has an API (in case you find it useful):

http://www.syndic8.com/

Some of this feed search functionality has been incorporated into feed aggregators (which
I describe more in a moment). For instance, you can browse and search for feeds from within
Google Reader. This search functionality is also available from the Google AJAX Feed API.9

Some have used general-purpose search engines to search for feeds, but it’s hard to say how
reliable such self-described hacks are.10

It seems sensible that if you know the URL of a web page, you should be able to easily
figure out the URL for any feeds that are associated with it. Indeed, a mechanism called RSS
autodiscovery (or more generally, feed autodiscovery) has become a de facto standard in asso-
ciating web pages with feeds. To connect a web page to a feed, you add <link> elements to the
<head> element, making appropriate use of the rel, href, and type (and optionally title)
attributes of <link>:

• rel is set to the value alternate.

• href is the URL of the feed.

• type is set to the MIME type of the feed (either application/rss+xml or
application/atom+xml).

• title is optionally set to be a title of the feed.

For example, in the following <head> element:

http://news.yahoo.com

you find the following <link>, which points to a corresponding RSS feed at http://rss.news.
yahoo.com/rss/topstories:

<link rel="alternate" type="application/rss+xml" title="Yahoo! News - Top Stories"
href="http://rss.news.yahoo.com/rss/topstories" />

Many of the modern browsers support feed autodiscovery. If you use any of those browsers
to go to a web page with a link to its feeds, you’ll see an icon that leads to those feeds.

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 93

9. http://code.google.com/apis/ajaxfeeds/

10. http://www.xml.com/pub/a/2004/02/11/googlexml.html

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 93

Autodiscovery is similarly useful for creators of mashups. For example, if your program is
fed the URL of a web page, you could look for the presence of associated feeds that might give
you the data you need by using feed autodiscovery.

OFFICIAL STANDARDIZATION OF FEED AUTODISCOVERY?

Even though feed autodiscovery has been widely implemented, there is currently no de jure standard for
this practice. Autodiscovery started as a collaboration carried out through weblogs (such as http://
diveintomark.org/archives/2002/06/02/important_change_to_the_link_tag), progressed to
being discussed as an IETF draft (whose last expired version was http://www.ietf.org/internet-drafts/
draft-snell-atompub-autodiscovery-00.txt), and now is being considered in the context of
standardization as part of HTML 5 (http://www.whatwg.org/specs/web-apps/current-work/
#alternate).

In the meantime, some of the current practice around feed autodiscovery is documented in places such
as the wiki at http://www.feedautodiscovery.org/doku.php.

Feeds from Weblogs
Weblogs are a major source of feeds because almost all modern weblog software produces
feeds, which are often turned on by default. For example:

• Blogspot weblogs have Atom feeds11 (for example, http://googleblog.blogspot.com/
atom.xml and http://googleblog.blogspot.com/feeds/posts/default).

• WordPress blogs12 (for example, http://blog.mashupguide.net/feed/ and http://
blog.mashupguide.net/feed/atom/).

• TypePad blogs support feeds.13

Wikipedia Feeds
Let’s look at what Wikipedia has in the way of feeds to supplement Flickr as an example and to
be of use in the following case studies. Wikipedia is a great source of information about the news
and publishes RSS feeds. Here’s some documentation for the feeds:

• http://meta.wikimedia.org/wiki/RSS

• http://en.wikipedia.org/wiki/Wikipedia:Syndication.

You can get a feed for the history of any regular page here:

http://en.wikipedia.org/w/index.php?title={page-name}&action=history&feed={format}

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM94

11. http://help.blogger.com/bin/topic.py?topic=8927

12. http://codex.wordpress.org/WordPress_Feeds

13. http://support.typepad.com/cgi-bin/typepad.cfg/php/enduser/std_adp.php?p_faqid=86

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 94

For example:

http://en.wikipedia.org/w/index.php?title=Hurricane_Katrina&action=history&
feed=atom

http://en.wikipedia.org/w/index.php?title=Mashup_%28web_application_hybrid%29&
action=history&feed=atom

Two of Wikipedia’s special pages also have feeds. The first is of all recent changes to Wikipedia
(which tends to have way too much data because Wikipedia is extremely active):

http://en.wikipedia.org/wiki/Special:Recentchanges?feed={format}

and the other lets you track the creation of new pages:

http://en.wikipedia.org/wiki/?Special:Newpagesfeed={format}

If you want to track news using Wikipedia, you might want to use Wikinews (http://
en.wikinews.org/wiki/Main_Page), which has an RSS feed:

http://feeds.feedburner.com/WikinewsLatestNews

Finally, you can get at your Wikipedia watch list (when logged in) here:

http://en.wikipedia.org/w/api.php?action=feedwatchlist&feedformat={format}

where format is rss or atom.

Google and Yahoo! News
The feeds for Google News are documented here:

http://news.google.com/intl/en_us/news_feed_terms.html

You can access a variety of U.S.-oriented feeds here:

http://news.google.com/news?ned=us&topic={topic}&output={format}

where output is rss or atom and where topic is one of the values listed in Table 4-3.

Table 4-3. Possible Values for topic in Google News Feeds

Topic Coverage

h Top news

w World

n United States

b Business

t Science/technology

m Health

s Sports

e Entertainment

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 95

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 95

For example, you can get the top news in RSS here:

http://news.google.com/news?ned=us&topic=h&output=rss

You can also get international news here:

http://news.google.com/news?ned={region}&topic=n&output={format}

where region is one of the values listed in Table 4-4.

Table 4-4. Possible Values for region in Google News Feeds

Region Country

au Australia

ca Canada

in India

ie Ireland

nz New Zealand

en_za South Africa

uk United Kingdom

In addition to feeds for general topics, you can generate a feed for a specific search term
in Google News (an extremely useful feature you will use when constructing targeted feeds
later in the chapter):

http://news.google.com/news?q={query}&output={output}

For example, to follow news on mashups, use this:

http://news.google.com/news?q=mashup&output=rss

Yahoo! News has some similarities to Google News. In addition to getting feeds by large
categories, listed here:

http://news.yahoo.com/rss

you can also get feeds by keywords via http://news.search.yahoo.com/news/rss?p={search-term}.
For example:

http://news.search.yahoo.com/news/rss?p=Hurricane+Katrina

News Aggregators: Showing Flickr Feeds Elsewhere
A primary use of feeds is to allow you as an end user to keep up with lots of information from
many different sources—all in one place. News aggregators (also known as feed readers) gather
items from the feeds you subscribe to and present them to you to read in a single interface.

Subscribing to feeds has become such a sufficiently mainstream activity for web users
that modern web browsers now provide options for doing so when the user arrives at an RSS
or Atom feed in the browser. For example, in Firefox 2.0+, you see options for how to subscribe
to that feed, as shown in Figure 4-2.

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM96

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 96

Figure 4-2. Choosing a news aggregator with which to subscribe to a feed in Firefox

There are different news/feed aggregators of note:

• Firefox Live Bookmarks. You can track feeds within the context of Firefox bookmarks.14

There seem to be similar features in other browsers such as Safari15 and Internet
Explorer 7.16

• Bloglines (http://www.bloglines.com/).

• SharpReader, a desktop RSS aggregator/news reader for Windows (http://www.
sharpreader.net/).

• NetNewsWire, a desktop news reader for the Mac. (http://www.newsgator.com/
NGOLProduct.aspx?ProdID=NetNewsWire).

• Google Reader (http://www.google.com/reader/view/).

• My Yahoo! You can add an RSS feed to http://my.yahoo.com. You can, for instance, add
an RSS feed with this URL: http://e.my.yahoo.com/config/cstore?.opt=rss&.page=p1.
For more information, see the following:

• http://my.yahoo.com/s/faq/rss/

• http://publisher.yahoo.com/rssguide

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 97

14. http://www.mozilla.com/en-US/firefox/livebookmarks.html

15. http://www.apple.com/macosx/features/safari/

16. http://www.microsoft.com/windows/rss/default.mspx

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 97

Validating Feeds
In addition to consuming feeds, you may want to create feeds as part of your mashups. It’s
certainly helpful to read and understand the specifications for the various feed formats. I have
found the following feed validators to be invaluable in helping me to spot and correct errors in
feeds that I create or read from others:

• http://feedvalidator.org is an online service, whose software you can also run locally.17

• http://validator.w3.org/feed/ is a W3C service built from the software available at
http://feedvalidator.org. The syntax checking is available also as a SOAP web service.18

• For dealing with RSS 1.0, you may find the W3C RDF Validation Service useful (http://
www.w3.org/RDF/Validator/).

Scraping Feeds Using GUI Tools
Feeds are available for many applications—but by no means for all applications. Because feeds
are so useful, some services have arisen to generate feeds out of unstructured web sites. The goal
of these services is to enable you to construct feeds more easily than you could screen-scrape
the pages yourself—which, as I discuss in Chapter 2, is an option absent of APIs and feeds. Let’s
briefly consider one usage scenario to which we will apply two services. (I return to this topic of
feed-scraping in Chapter 11.)

As I mention elsewhere in this book, perhaps the single most useful site on the Web for
tracking web APIs is Programmableweb.com. Currently, it does not have an API and does not
have a feed to represent all the APIs tracked by the site, but there is a feed for the latest changes
in the list of APIs. The scenario I explore here is creating an RSS or Atom feed out of the list of
APIs here:

http://programmableweb.com/apis/directory

Here I apply two services to this problem. The first is a specialized feed-creation web site:

http://www.feedity.com/

You can use Feedity to generate an RSS feed:

http://feedity.com/?http://programmableweb.com/apis/directory%40%40%40CAT%40%40%406

The feed is a perfectly fine feed except for the ads embedded in the feed. You need to use
Pro (for-fee) level to get rid of the ads.

I used Openkapow.com’s RoboMaker as a second approach to generate a feed. RoboMaker
is a desktop visual tool to create bots hosted on Openkapow.com to generate feeds and APIs
for web sites. In Chapter 11, I analyze RoboMaker and other tools that simplify mashup mak-
ing. Here, I simply point out the end product of the Openkapow.com bot that converts the list
of APIs into an RSS 2.0 feed:

http://service.openkapow.com/rdhyee/programmablewebapis.rss

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM98

17. http://feedvalidator.org/docs/howto/install_and_run.html

18. http://validator.w3.org/feed/docs/soap

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 98

There is a small image for Openkapow.com in the feed but no advertisements buried in
the items themselves.

As you will see in the next section, being able to generate feeds for sites that don’t have the
feeds you want enables you to use the many tools that accept feeds as input.

Remixing Feeds with Feedburner
Feedburner (http://feedburner.com) lets users remix feeds and offers intermediary services
based on feeds (such as tracking usage and advertising). It thus provides a useful illustration of
the ways some users and companies are reusing and repackaging feeds.

The best way to understand Feedburner is to study the effect various options have on the
feed you create with the service. Here’s what happened when I created a Feedburner feed:

1. I signed up for an account and went to http://www.feedburner.com/fb/a/myfeeds.
I entered the URL of my weblog http://blog.mashupguide.net, instead of the URL of
a feed.

2. Feedburner prompted me to choose a feed from among the five feeds associated with
my weblog via the feed autodiscovery mechanism (described earlier in this chapter).
I chose the Mashup Guide Atom Feed (http://blog.mashupguide.net/feed/atom/).

3. I accepted the defaults for the title (Mashup Guide) and address (http://feeds.feedburner.
com/MashupGuide).

Feedburner has various features for customizing your feed:

• You can customize the appearance of your feed in the browser. Feedburner attaches an
XSLT style sheet to perform client-side transformation of the feed to HTML for a cleaner
display of the feed in most browsers. For an example feed, you can explicitly see the HTML
output using the W3C online XSLT service (http://www.w3.org/2005/08/online_xslt/)
to generate this:

http://www.w3.org/2005/08/online_xslt/xslt?xslfile=
http%3A%2F%2Ffeeds.feedburner.com%2F%7Ed%2Fstyles%2
Fatom10full.xsl&xmlfile=http%3A%2F%2Ffeeds.feedburner.com%2FMashup
Guide+&content-type=&submit=transform

• You can get traffic statistics for the feeds you create.

• You can add tags from the iTunes or Media RSS extensions to your feeds to support
podcasts.

• You can splice your feed with your links from various social-bookmarking sites (includ-
ing del.icio.us) or your photos from various photo-sharing sites (such as Flickr).

• You can georeference your feed by having Feedburner attach the latitude and longitude
of a given location to it.

• You can convert your feed to one of RSS 2.0, RSS 1.0, Atom 0.3, or Atom 1.0.

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 99

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 99

I list these features here not to advertise Feedburner (it seems to do well enough for itself
given its acquisition by Google) but rather to present it as a model so you can study the many
ways in which others are remixing and mashing up feeds. In fact, Feedburner provides an API
(http://www.feedburner.com/fb/a/developers), which suggests the high level of automation
in place (or at least anticipated) for feeds.

Remixing Feeds with Yahoo! Pipes
Yahoo! Pipes (http://pipes.yahoo.com/pipes/) is a “an interactive data aggregator and manip-
ulator that lets you mash up your favorite online data sources.” Yahoo! Pipes is focused on
enabling end users to filter and combine feeds into new feeds. You construct pipes through
dragging and dropping graphical widgets (called modules), entering parameters, and describ-
ing data flows through wiring these widgets together. Yahoo! Pipes is arguably more accessible
to nonprogrammers because it does not involve typing code in a text editor. You’ll see in prac-
tice whether the masses will be making mashups with Yahoo! Pipes.

■Note I will say that as a programmer, Yahoo! Pipes does make it easier to remix feeds in many instances
and got me to create feeds that I could have created programmatically but was not inspired to do so without
the Yahoo! Pipes environment.

In this section, I describe how I built a series of pipes to solve a specific problem. In doing
so, I hope to shed light on how to think about Yahoo! Pipes, specifically how to construct increas-
ingly more complicated structures. For the basics of Yahoo! Pipes, please consult the official
documentation:

http://pipes.yahoo.com/pipes/docs

especially the documentation of the modules available in Yahoo! Pipes:

http://pipes.yahoo.com/pipes/docs?doc=modules

The problem I address with Yahoo! Pipes is creating a single feed from diverse news sources,
unified around a single topic or search term. In constructing my pipes, I had a concrete sce-
nario in mind. I wanted a feed that enables one to follow the latest news about the aftermath
of Hurricane Katrina. Though I generalized my Yahoo! Pipes where I could easily do so, I am
not attempting here to develop a comprehensive solution.

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM100

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 100

The solution I devised was to synthesize a feed out of the following four sources:

• Yahoo! News

• Google News

• Wikinews

• The national section of The New York Times

This range of new sources enables me to illustrate how to overcome some of the chal-
lenges you’ll likely face when using Yahoo! Pipes.

A Simple First Pipe with Yahoo! News
The first step I took was to build a pipe to handle the first source, Yahoo! News. I exploited the
fact that you can generate an RSS Yahoo! News for a search term with this:

http://news.search.yahoo.com/news/rss?p={search-term}

I built two versions of a pipe to return a feed for a given search term. The first version—
called “Yahoo! News by Search Term (First Version)”—is here:

http://pipes.yahoo.com/pipes/pipe.info?_id=Rg_rh3NA3BGdECIel7okhQ

You can run it and view the source if you are logged in. You can run a pipe to get an RSS 2.0
feed for a given search term here:

http://pipes.yahoo.com/pipes/pipe.run?_id={pipe-id}&_render=rss&search_term=
{search-term}

For example, to search for Hurricane Katrina, go here:

http://pipes.yahoo.com/pipes/pipe.run?_id=Rg_rh3NA3BGdECIel7okhQ&_render=rss&
search_term=Hurricane+Katrina

The pipe uses three widgets to enable a user to pass in a search term and return a feed of
Yahoo! News (see Figure 4-3):

• A Text Input module that takes the search term from the user and is wired to feed this
term to the URL Builder described next

• A URL Builder module that has a Base parameter of
http://news.search.yahoo.com/news/rss and a query parameter of p

• A Fetch Feed that fetches the feed at the URL coming from the URL Builder

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 101

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 101

Figure 4-3. Pipe for “Yahoo! News by Search Term (First Version)”. (Reproduced with permission
of Yahoo! Inc. ® 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.)

Google News and Refactoring Pipes
The second news source that I need to pull in is Google News, which returns an Atom feed for
a given search term here:

http://news.google.com/news?q={search-term}&output=atom

I use output=atom instead of output=rss to show that Yahoo! Pipes can handle Atom feeds.
One way to build a module to handle Google News is to clone the one for Yahoo! News

and change the parameters in the URL Builder module. Instead, because I figured that there
are plenty of feeds with URLs that consist of a single parameter and search term, I decided to
build a utility pipe that would return feeds at URLs in the following form:

{base-URL}?{parameter_name}={parameter_value}{URL_suffix}

Constructing such a pipe is equivalent to writing a reusable function. By contrast, cloning
a pipe is analogous to copying and pasting code. When you use pipes seriously, you begin to
see patterns that can be captured and reused in a pipe.

The pipe I constructed for that purpose (called “Feed from a URL Constructed from One
Variable Parameter”) is located here:

http://pipes.yahoo.com/pipes/pipe.info?_id=VoLceXZA3BGkqcJZJxOy0Q

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM102

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 102

Note the intermixing of the URL Builder and String Builder modules to concatenate
parameters and build a URL that can actually be fed to Fetch Feed module.

I used that pipe and the fact you can write the URLs to retrieve feeds from Yahoo! News
and Google News in terms of these four parameters (see Table 4-5).

Table 4-5. Parameters for Pipe Called “Feed from a URL Constructed from One Variable Parameter”

parameter_ parameter_ URL_
base-URL name value suffix

http://news.google.com/news q {search-term} &output=atom

http://news.search.yahoo.com/news/rss p {search-term}

The pipe that accesses Yahoo! News using the utility pipe (entitled “Yahoo! News by
Search Term”) is as follows:

http://pipes.yahoo.com/pipes/pipe.info?_id=5NhmMndA3BGg5zQ5n0artA

The “Google News by Search Term” pipe is here:

http://pipes.yahoo.com/pipes/pipe.info?_id=OKWv6nNA3BGkPtA8qWIyXQ

Wikinews and NY Times: Filtering Feeds
Now we come to the third and fourth sources: Wikinews, which has a single feed:

http://feeds.feedburner.com/WikinewsLatestNews

and the New York Times National News (I select the National News feed because of the focus
on Hurricane Katrina):

http://www.nytimes.com/services/xml/rss/nyt/National.xml

In contrast to the Yahoo! News and Google News for which I can generate a feed for
a given search term by constructing the appropriate URL, I use search-term to filter the feed.
To that end, I use the Filter module in the Filter for Given Term in Feed Description and Title
pipe here:

http://pipes.yahoo.com/pipes/pipe.info?_id=KIYSv3pA3BGgloVbCB2yXQ

to pass along only those items in the feed whose description or title contains the search term.
With that pipe as a foundation, I construct the “Wikinews Filtered by Search Term” pipe here:

http://pipes.yahoo.com/pipes/pipe.info?_id=PA7iqHpA3BGb0AiVX0sBXw

and the NY Times National News Filtered by a Search Term pipe here:

http://pipes.yahoo.com/pipes/pipe.info?_id=yhBh7HxA3BGu_YRj1vC6Jw

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM 103

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 103

Pulling the Feeds Together
With a pipe each for my four news sources, each of which takes a search term as input, I then
create a pipe here:

http://pipes.yahoo.com/pipes/pipe.info?_id=qlUkcn1A3BGeWlNQjknRlg

that does the following:

• Takes a search term as input and passes it to the individual news source pipes

• Concatenates the individual feeds with the Union module

• Gets rid of feed items that have the same link with the Unique module

You’re done. You can search for Hurricane Katrina in the four news sources here:

http://pipes.yahoo.com/pipes/pipe.info?Search_term=Hurricane+Katrina&_cmd=Run+Pipe&
_id=qlUkcn1A3BGeWlNQjknRlg&_run=1

The corresponding feed is available here:

http://pipes.yahoo.com/pipes/pipe.run?Search_term=Hurricane+Katrina&
_id=qlUkcn1A3BGeWlNQjknRlg&_render=rss

Obviously, the pipes I created could be refined. Indeed, you can do so right now by going
to the list of pipes I created for this chapter and cloning and modifying them for your own use:

http://pipes.yahoo.com/pipes/tag.info?namespace=user&tag=mashupguide

This section used feeds that are relatively easy to access. If you start to use tools such as
Openkapow.com to screen-scrape new feeds, you have even more combinatorial possibilities for
your mashups. Note that other tools that I discuss later in the book (such as the Google Mashup
Editor) are able to consume feeds, such as those generated by Yahoo! Pipes and Feedburner.

Summary
Feeds provide the backbone of data exchange for mashups. Many web sites—including Flickr—
generate feeds, particularly in the RSS and Atom formats. In this chapter, you learned about
the ecosystem that has arisen around this plethora of feeds: news aggregators that gather
feeds for reading, validators that help you produce good feeds, scrapers that let you generate
feeds when a web site doesn’t provide one, and remixing tools that let you generate elaborate
mashups of feeds. In an extended example of mashups based on feeds, I showed how to use
Yahoo! Pipes to generate a single topical news feed that is a mashup of several other appropri-
ately filtered feeds.

CHAPTER 4 ■ WORKING WITH FEEDS, RSS, AND ATOM104

858X_ch04FINAL.qxd 2/4/08 2:50 PM Page 104

Integrating with Blogs

Blogs (also known as weblogs) have become lightweight, general-purpose platforms for pub-
lication, self-expression, and collaboration. Bloggers push the limits of new-media production,
especially in the area of integration, because they want ultimately to discuss anything they
can see or think or hear—without any effort, of course. Because you can directly tie blogs in
with other systems—often without any programming on your own part—you’ll now study how
to combine blogs with other applications and data sources. In this chapter, I cover end-user
functionality that lets you publish content to a blog from a web site or a desktop application.
In Chapter 7, you’ll study how you can program the relevant web APIs to read and publish blog
content. I close this chapter by applying lessons from blog integration to wikis, which I believe
are ripe for a similar type of remixing.

In this chapter, you will do the following:

• You’ll learn how to configure your WordPress or Blogger blog to receive pictures from
Flickr through Flickr’s Blog This button.

• You’ll study the mechanisms behind blog integration by studying how it’s done with
Flickr.

• You’ll learn how to use a desktop blogging client to take advantage of a richer writing
environment for blogging.

• You’ll see how the combination of syndication feeds and blogging can be recursive (that
is, how content from blogs can be refashioned into new blog entries).

• You’ll experience the forward-looking social browser integration of Flock, which
combines a Web browser, Flickr photos, and blogging all in one user interface.

I’ll first cover the mechanics of blogging from the point of view of the user, and then I’ll
cover what this means in terms of the back end (specifically the use of APIs once again, this
time for blogs).

Integration Scenarios for Blogs
Essentially, blogs are online journals about a topic, a theme, or a person written by one person
or a small group. Here are other general patterns:

105

C H A P T E R 5

■ ■ ■

858X_ch05.qxd 2/4/08 2:51 PM Page 105

• Blogs consist of entries that are typically displayed in reverse chronological order.

• These entries are often classified into categories.

• Most blogs provide their content via RSS or Atom syndication.

In Chapter 4, I discussed how RSS/Atom syndication makes the life of a reader simpler by
allowing the reader to aggregate content. In this chapter, you’ll examine how the lives of blog
authors can be made simpler. Wouldn’t it be great to be able to do the following?

1. First write or create some piece of digital content (it could be simple text, HTML,
images, video, or a word-processed document) in the tool of your choice (Microsoft
Word, OpenOffice.org, the rich-text editor of WordPress, vi, Thunderbird).

2. Then easily publish that content to a blog (or any other web site). That is, you could have
the piece of content you wrote show up in a blog in a way that preserves the formatting—
or at least translates that format appropriately to the new environment—without having
to do much (or any) of the manual work of translating that formatting.

We have not pulled off such general seamless integration yet. However, we will examine
some specific and useful cases of integration in this chapter. Figuring out how integration
happens in these specific scenarios enables you to build not only your own tools for support-
ing similar circumstances but also solutions to the general integration problems.

FREE HOSTED BLOGS AS A WAY TO START BLOGGING

If you are not already using a blog, it's useful to set up an account with which to experiment. You can down-
load blogging software, write your own, or pay for blog hosting, but the easiest way to get started is to use
one of the following free hosted blogging services:

• WordPress (http://wordpress.com)

• Blogger (http://blogger.com)

• LiveJournal (http://livejournal.com)

There are others, but these three should get you started.1

Sending Flickr Pictures to Blogs
As you have seen in previous chapters, Flickr provides excellent functionality to display and
add narration to your photos; you can create slide shows; create sets; tack titles, descriptions,
and tags to photos; and create groups to collaborate with others with similar interests. Yet, it is
natural to want to present your photos outside the world of Flickr. If you have a personal blog,
would you not want to display your photos on your own blog and tell stories around them?

CHAPTER 5 ■ INTEGRATING WITH BLOGS106

1. http://blogs.about.com/od/blogsoftwareandhosts/a/topfreeblogs.htm

858X_ch05.qxd 2/4/08 2:51 PM Page 106

As a Flickr user, you can automatically post a photo to your blog, provided you do the
following:

1. First configure Flickr to work with your blog.

2. Hit the Blog This button for the desired photo.

The following sections are detailed instructions on the previous two steps. Before I cover
how to use the automated process, I’ll cover how you would manually present a photo from
Flickr on your blog. You would do the following:

1. Generate the appropriate HTML for the photo in question. For this to work, you would
need to know the URL for the actual image, as well as the URL for the photo page. You
could grab the URL of the image from the web browser (through right-clicking the
image and copying the image URL, for instance).

If the photo in question is your own, Flickr provides some help in this department. For
a given picture, hit the All Sizes button. For a given size of the photo, you can copy and
paste the HTML given under the “Copy and Paste this HTML into Your Webpage” heading.

2. With the HTML now in hand, you would go to your blog to create a new post and then
paste in that HTML.

Flickr helps automate this process by using blogging APIs. I’ll now cover how.

Configuring Flickr for Integration with Blogs
Before you publish your photos from Flickr to a blog, you need to tell Flickr about the blogs you
plan to use. Here are step-by-step instructions for configuring your blogs for access by Flickr:

1. Go to http://flickr.com/blogs.gne. You have to sign in to Flickr first.

2. Hit the Add Another Blog link (http://flickr.com/blogs_add.gne). You will see a list of
weblogs that you have already configured. Note the types of blogs supported by Flickr:

• Blogger

• TypePad

• Movable Type

• LiveJournal

• WordPress

• Manila

• Atom

• Blogger API

• MetaWeblog API

• Vox

Depending on the type of blog you want to integrate with, the parameters you will need to
fill in differ.

CHAPTER 5 ■ INTEGRATING WITH BLOGS 107

858X_ch05.qxd 2/4/08 2:51 PM Page 107

WHY IS THERE A LIST OF BLOG TYPES IN THE FIRST PLACE?

If all you are interested in is setting up Flickr to enable you to send a photo to your blog, you do not need to
understand why there are so many blog types listed. If, however, you are interested in the mechanisms
behind blogging integration, it's useful to ponder what you see here.

For instance, why does Flickr ask about the type of blog you have? It’s conceivable that Flickr would not
have to ask that question at all if all blogs were the same in terms of the mechanics of integration. The fact
that this question is asked indicates that there is some sort of dependency on the blog type that affects how
Flickr connects to the blog. But if your blog type is not on the list, what are you supposed to do? What exactly
are those dependencies, and can they be formulated in terms of parameters of the system? I’ll return to
these questions later in this chapter.

Let’s take a look at two types of blog software to understand some of the necessary
parameters involved in blogging integration: WordPress and Blogger.

WordPress
To add a WordPress blog to your Flickr configuration, do the following:

1. Go to http://flickr.com/blogs_add.gne. Make sure you have a WordPress blog that
you own for this example. You can either install your own WordPress blog on your host-
ing service or use the free WordPress service (see the “Free Hosted Blogs As a Way to
Start Blogging” sidebar).

2. Click WordPress Blog in response to the question “What kind of blog do you have?”
Note that with this choice you end up at the URL http://flickr.com/blogs_add_
metaweblogapi.gne—which suggests that WordPress is accessible through the
MetaWeblog API.2

3. Enter the following parameters:

• API endpoint (for WordPress blogs, the URL is http://{url-of-your-blog}/
xmlrpc.php, for example, http://blog.mashupguide.net/xmlrpc.php)

• Username

• Password

4. After you hit Next—and assuming you entered the correct combination of API end-
point, username, and password—you have the choice of storing the password on Flickr
and changing the URL or label. After you have entered your choices, click All Done.

5. You can now choose a template for your blog and customize it (if you know HTML and CSS).

6. You can test the blog configuration by issuing a test post. To do so, go to http://flickr.
com/blogs.gne, and click the Test Post button that corresponds to the blog. If things go
well, you’ll get the message “A test post to [name of your blog] has been sent. Feel free to
delete it once it’s gone through,” and you should see a test post on your blog.

CHAPTER 5 ■ INTEGRATING WITH BLOGS108

2. http://en.wikipedia.org/wiki/MetaWeblog

858X_ch05.qxd 2/4/08 2:51 PM Page 108

Blogger Blogs
Blogger is another popular host of free blogs and is owned by Google. To add a new-style Blog-
ger blog to Flickr, do the following:

1. Select Blogger Blog from the drop-down menu at http://flickr.com/blogs_add.gne. Make
sure you have a Blogger blog, which you can sign up for at http://www2.blogger.com/
create-blog.g.

2. At this point, you may be asked to head over to Google to authorize Flickr’s access to
your blog. If so, you will see a prompt like that in Figure 5-1. If not, skip to step 4.

Figure 5-1. A prompt from Flickr explaining the authentication process required to enable
you to send Flickr photos to new Blogger blogs. (Reproduced with permission of Yahoo! Inc. ®
2007 by Yahoo! Inc.YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.)

3. At Google, if you are not already logged in to Blogger, you will be prompted to log in.
(Notice that it is Google/Blogger asking for the login, not Flickr here.) Once you are
logged in, you’ll be asked to grant access rights to Flickr, as shown in Figure 5-2. Note
the comment “Flickr.com will not have access to your password or any personal infor-
mation.” There is a fuller explanation of how the authentication scheme works
available on the Google web site.3

Figure 5-2. A prompt from Google requesting authorization to post to your Blogger blog
from Flickr

CHAPTER 5 ■ INTEGRATING WITH BLOGS 109

3. https://www.google.com/support/accounts/bin/answer.py?answer=41192

858X_ch05.qxd 2/4/08 2:51 PM Page 109

4. If you grant access to Google, your browser will be redirected to a page presenting you
with a drop-down list of the blogs available at Blogger. Select the one you want.

5. Verify the settings (you can change the URL and label). Hit the All Done button.

6. Test your settings by making a test entry to your blog. Do you see a test entry on your
blog? If so, your parameters are correct.

Notice that you never enter your username/password for your Blogger blogs to Flickr at
any time during the process.

Blogging a Flickr Picture
Once you have a blog configured for blogging from Flickr, you are now ready to write a blog
post based on a photo directly from Flickr. Here’s how:

1. Go to a specific Flickr picture, and hit the Blog This button located above the picture.

2. Choose the blog from the list to which you want to send the picture.

3. Fill out the title and your post; I often find it helpful to copy and paste the description
of the picture into the post. Hit Return.

If everything goes according to plan, you’ll see the message from Flickr saying “Your blog
entry has been posted!” and a URL to your blog so that you can check out your new post.

■Note Sometimes, you will get errors (such as timeouts). Often you can just try again. Sometimes Flickr
reports an error when the post actually goes through and you can end up with multiple posts should you try
again.

How Does the Flickr Blog Integration Work?
After you have configured a WordPress or Blogger blog and posted a picture, I encourage you
to think about what must be happening underneath the hood to make the Flickr blogging
interaction happen. Here are some specific issues to consider and questions to ask:

• Note the contrast in the parameters needed for a WordPress blog and a Blogger blog.
For the WordPress blog, you need to enter an API endpoint along with the user and
password, whereas for Blogger, you don’t enter those credentials but are redirected to
Google for authorization. Here are some issues to consider:

• What do you think is happening differently to account for the contrast in functionality?

• Why do you not need to type in an API endpoint for Blogger?

• Where do you send username/passwords for each case?

• What are the advantages and disadvantages of each approach?

CHAPTER 5 ■ INTEGRATING WITH BLOGS110

858X_ch05.qxd 2/4/08 2:51 PM Page 110

• Note the wide variety of classes of blogs recognized by Flickr. You can try each type to
study the parameters required to make each type of blog work.

• Note that once you blog a picture in the Flickr interface, a list dynamically pops up
via Ajax.

• Study the types of templates available and how you can customize them via CSS
and HTML.

After I describe web APIs in detail (for Flickr and for other web sites), I’ll answer the
questions I just posed in Chapter 7. There I explore in greater detail the use of blogging APIs.
Still, without diving into technical details about the APIs, you can make several observations:

• Once you have configured a blog for access by Flickr, the process for publishing a photo
is the same regardless of the actual blog you use.

• By contrast, Flickr is unable to smooth out the differences among weblogs to make the
configuration process look identical. That means the protocols for connecting to Word-
Press and to Blogger probably differ.

• Blogging protocol must address the important issue of authentication and authoriza-
tion; the process in which you grant Flickr the power to post to your blog depends on
the type of blog you use.

Desktop Blogging Tools
You have just seen how you can send HTML that encodes a photo and description from Flickr
to a blog. It should not then be surprising to find out that you can send data to blogs from sys-
tems other than Flickr. Indeed, a whole genre of tools lets you compose and post blog entries
in a more convenient environment (such as a desktop application) and then send those posts
to your blog instead of having to use the native blog post interface. The following are examples
of blogging clients:

• w.bloggar (http://www.wbloggar.com/) is a Windows desktop client.

• ecto (http://ecto.kung-foo.tv/) for Windows and Mac OS X.

• MarsEdit (http://www.red-sweater.com/marsedit/) is for Mac OS X.

• Windows Live Writer (http://windowslivewriter.spaces.live.com/) is a desktop client
for Windows.

• BlogDesk (http://www.blogdesk.org/en/index.htm) is a Windows desktop client.

• ScribeFire (http://www.scribefire.com/) is a client right within Firefox.

• mo:Blog (http:www.moblogworld.net/) is a client for Palm OS devices.

CHAPTER 5 ■ INTEGRATING WITH BLOGS 111

858X_ch05.qxd 2/4/08 2:51 PM Page 111

Some brave souls such as Jon Udell are even doing cutting-edge experiments of blogging
from Microsoft Word 2007.4 Figure 5-3 shows how it looks to write a blog post in one of these
clients.

Figure 5-3. Writing to a WordPress blog from the Windows w.bloggar client. Note that the post
already exists on the blog and that w.bloggar is being used to post it for editing.

It is instructive to ponder why there are so many tools in this area, what exactly is being
integrated by the tools, and the exact list of functionality in these tools. Answers to these ques-
tions shed light on how users actually write blogs. For instance, Brent Simmons’ description of
MarsEdit, which he created, gives some insight into the genre:5

MarsEdit is weblog posting and editing software. It makes writing for the web like writ-

ing email: you open a window and write something, then send it to your weblog. It has

many of the same features that email applications have: drafts, text editing commands,

even AppleScript support. It also has features specific to weblogs: categories, text filters,

trackbacks, pings, and so on. People that have more than one weblog find it especially

useful because they have just one place to write and edit all their weblog posts, even if

their weblogs are on different systems.

CHAPTER 5 ■ INTEGRATING WITH BLOGS112

4. http://blog.jonudell.net/2007/02/19/blogging-from-word-2007-crossing-the-chasm/#comments

5. http://www.newsgator.com/NGOLProduct.aspx?ProdID=MarsEdit

858X_ch05.qxd 2/4/08 2:51 PM Page 112

Combining Feeds and Blogging to Generate
Feedback Flows
In blogging there is often tight coupling between reading other people’s blogs and writing your
own blog entries. If you happen to be reading other blogs through a feed reader, you might
even be able to easily drop pieces of other people’s blogs (that are coming in as RSS or Atom
items) into your own blog editor.

For example, on Windows, using SharpReader6 combined with w.bloggar7 and the w.blog-
gar SharpReader plug-in,8 you can directly write blog entries based on items coming into your
SharpReader news feeds (in a process that has been called reblogging), as shown in Figure 5-4.

Figure 5-4. On a Windows desktop, SharpReader is looking at one of Udell’s posts, along with a
right-click invocation of w.bloggar to send this entry to a blog.

Since reblogging often produces nothing more than trivial republication of other people’s
words, it’s easy to forget that this flow of content is actually undergird by a feedback loop of
reading and writing. When you use Flickr’s blog functionality, content goes from Flickr to a
blog, but there’s no easy flow of content from blogs back into Flickr. By contrast, the combina-
tion of weblogs that syndicate their contents through feeds and feed aggregators that are also
blog clients means that what you read can flow easily into what you write. In the next section,
I’ll discuss Flock, a web browser that facilitates this flow between reading and writing by
building in greater integration with blogging and various social media web sites.

CHAPTER 5 ■ INTEGRATING WITH BLOGS 113

6. http://www.sharpreader.net/

7. http://wbloggar.com/

8. http://www.sharpreader.net/plugins.html

858X_ch05.qxd 2/4/08 2:51 PM Page 113

Flock: Bringing Together Blogs and Flickr
Flock (http://flock.com) is advertised by its creators as the “social web browser.” Built upon
the Firefox code base, Flock incorporates the following in its own interface:

• Flickr, Photobucket, and YouTube integration

• Blogging integration (including Blogger, LiveJournal, TypePad, WordPress, and various
self-hosted blogs), as shown in Figure 5-5

• Integration with your social bookmarks at del.icio.us and ma.gnolia.com

• Drag-and-drop functionality that allows you to drag Flickr photos into a writing toolbar
that then connects to your blogs

Experimenting with the Flickr and blogging integration9 in the Flock browser is a useful
way to see the flow of data between systems that are starting to be built into service composi-
tion frameworks (see Chapter 11).

Figure 5-5. Blogging Flickr photos from Flock by dragging and dropping multiple Flickr photos
into an editing window and then posting that entry into a configured blog. (Reproduced with
permission of Yahoo! Inc. ® 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of
Yahoo! Inc.)

CHAPTER 5 ■ INTEGRATING WITH BLOGS114

9. http://www.flock.com/faq/show/29#q_8369

858X_ch05.qxd 2/4/08 2:51 PM Page 114

RSD: Discoverability of Blog APIs
If you configure Flock for blogging, you might wonder why some blogs can be configured by
simply entering the URL of the blog only, while in Flickr, you sometimes need to enter the URL
to the specific API endpoint. How is Flock able to find the URL endpoint from the URL of the
blog? Finding the URL of the API endpoint is similar to the problem described in Chapter 4 of
locating the URLs of feeds based on the URL of the web site. You won’t be surprised then to dis-
cover that someone invented an autodiscovery mechanism for the existence of blogging APIs:

http://en.wikipedia.org/wiki/Really_Simple_Discovery

For detailed technical information on the mechanism, read the RSD specification:

http://cyber.law.harvard.edu/blogs/gems/tech/rsd.html

Here I point out how RSD has been implemented by at least two major blog publishing
services: WordPress and Blogger. You can go to any of the blogs run by WordPress, such as the
one for WordPress news:

http://wordpress.com/blog/

in which you will find the following link:

<link rel="EditURI" type="application/rsd+xml" title="RSD"
href="http://wordpress.com/xmlrpc.php?rsd" />

From looking at http://wordpress.com/xmlrpc.php?rsd , which is as follows:

<?xml version="1.0" encoding="UTF-8"?><rsd version="1.0"
xmlns="http://archipelago.phrasewise.com/rsd">

<service>
<engineName>WordPress</engineName>
<engineLink>http://wordpress.org/</engineLink>
<homePageLink>http://wordpress.com</homePageLink>
<apis>
<api name="WordPress" blogID="1" preferred="true"

apiLink="http://wordpress.com/xmlrpc.php" />
<api name="Movable Type" blogID="1" preferred="false"

apiLink="http://wordpress.com/xmlrpc.php" />
<api name="MetaWeblog" blogID="1" preferred="false"

apiLink="http://wordpress.com/xmlrpc.php" />
<api name="Blogger" blogID="1" preferred="false"

apiLink="http://wordpress.com/xmlrpc.php" />
</apis>

</service>
</rsd>

you can see how the WordPress blog is advertising itself as having support for four blog APIs:
WordPress, Movable Type, Metablog, and Blogger.

Similarly, for Blogger blogs such as http://googleblog.blogspot.com/, you’ll get the following:

<link rel="EditURI" type="application/rsd+xml" title="RSD"
href="http://www.blogger.com/rsd.g?blogID=10861780" />

CHAPTER 5 ■ INTEGRATING WITH BLOGS 115

858X_ch05.qxd 2/4/08 2:51 PM Page 115

And http://www.blogger.com/rsd.g?blogID=10861780 shows support for one API, the
Blogger API:

<api name="Blogger" preferred="true" apiLink="http://www.blogger.com/api"
blogID="10861780"/>

Like feed autodiscovery, RSD functions as a reasonably well-implemented de facto standard
without much formalization.

Linkbacks
I’ll now explain a type of communication flow that you might notice from studying blogs
(though not directly from how Flickr interacts with blogs). Among comments listed for a given
blog post are often entries that come from other web sites. How is a blog able to track links
that come from the outside? Weblogs use linkbacks, a family of methods for receiving notifica-
tions of inbound links to a web site.

As documented at http://en.wikipedia.org/wiki/Linkback, there are three major proto-
cols for linkbacks: refback, trackback, and pingback. It’s useful to know which of the protocols
are supported by various blogging software so that you know which of the protocols to support if
you set out to use linkbacks. Why might linkbacks be useful for mashups? You may want your
mashup to either notify web sites that it links to or receive notifications of being linked to.

Note that Flickr doesn’t support linkbacks, although it notifies you when someone else
adds a comment to your picture or makes it a favorite.

Wiki Integration at an Early Stage
Wikis are web sites for bringing together user contributions, though they are designed to be
more radically collaborative than blogs. According to the Wikipedia, a wiki is as follows:

A website that allows the visitors themselves to easily add, remove, and otherwise edit

and change available content, typically without the need for registration.10

The ideal scenario for wikis is allowing anyone to edit pages, combined with a lack of bro-
ken links. That is, when a user follows a link to a page that doesn’t exist, the user is not given a
404 error but rather the opportunity to create that page.

I mention blogs and wikis together in this chapter because they are siblings. Indeed, there
are hybrid blogs/wikis—or at least experimentation to bring them into hybrid structures.11

And there are other similarities between blogs and wikis: both are used to publish web sites,
both can have APIs that facilitate integration, and both tend to have plug-in infrastructures
that make them more like platforms than simple software. This combination of APIs and plug-
ins increases the mashup opportunities.

CHAPTER 5 ■ INTEGRATING WITH BLOGS116

10. http://en.wikipedia.org/wiki/Wiki—accessed as http://en.wikipedia.org/w/index.
php?title=Wiki&oldid=109882004

11. http://www.docuverse.com/blog/donpark/2003/09/05/wiki-based-web sites

858X_ch05.qxd 2/4/08 2:51 PM Page 116

You have seen some complicated ways in which the tools and data involved in blogs aren’t
being mashed up. Although the potential for wiki mashups is great, there are a lot fewer exam-
ples of such mashups. Much of the technical foundation is in place (for instance, many wikis
have APIs and plug-in frameworks12), but the uptake of wikis is less than that for blogs.

The closest thing to a mass phenomenon we have in the world of wikis is Wikipedia. It’s
not surprising then to see some mashing up of Wikipedia, though not as much as you might
expect. Let’s look at one example of a remix of Wikipedia, FUTEF, which is a custom search
engine that draws content from Wikipedia (http://futef.com/):

1. Go to http://futef.com/, and type Bach into the search engine.

2. Study the search results that come back, their order, and the categories listed.

3. Compare what you see in FUTEF with what you get from the same search in Wikipedia.
In Wikipedia, you get an immediate redirection to the article on Johann Sebastian
Bach. For other Bach-related terms, study the Bach disambiguation page.13

Curiously, FUTEF has built its own API that it has invited others to use.14 Why, for instance,
would anyone use FUTEF’s API to access Wikipedia when Wikipedia provides its own? Well,
once FUTEF fulfills its plans to offer content other than Wikipedia, I can see a good reason for
trying the FUTEF API. At this point, I’d say FUTEF is useful primarily as a demonstration of
how you can repackage Wikipedia.

Other places to look in terms of integration with Wikipedia is in authoring tools akin to
blogging clients and in bots that have been written to support the editing of Wikipedia. You
can find a list of such editors here:

http://en.wikipedia.org/wiki/Wikipedia:Text_editor_support

And you can find a discussion of Wikipedia bots here:

http://meta.wikimedia.org/wiki/Bot

Summary
Here are a few points to remember from this chapter:

• Flickr lets you blog a single picture. From this function, you can see a specific instance
of data being sent to blogs.

• There are many types of blogs, and they require different type of configuration schemes.

• Flock tries to envision a future in which a whole bunch of tools are integrated: a web
browser, Flickr, blogs, and social bookmarking.

CHAPTER 5 ■ INTEGRATING WITH BLOGS 117

12. http://en.wikipedia.org/w/api.php for MediaWiki and http://api.pbwiki.com/ for PBWiki, which
is a popular free wiki host provider

13. http://en.wikipedia.org/wiki/Bach_%28disambiguation%29

14. http://www.programmableweb.com/api/FUTEFWikipedia

858X_ch05.qxd 2/4/08 2:51 PM Page 117

• You can generate a feedback loop using RSS, news aggregators, and blogging, and most
blogs automatically generate RSS.

• Blogs represent a type of remixing in a narrative, in contrast with the data-oriented
remixing via tags and straight RSS so far discussed.

Now that you have studied how these tools work, you are in a good position in the coming
chapters to start building your own tool. You will create some mashups step by step, remem-
bering what you have seen as an end user of these tools.

CHAPTER 5 ■ INTEGRATING WITH BLOGS118

858X_ch05.qxd 2/4/08 2:51 PM Page 118

Remixing a Single
Web Application
Using Its API

In Part I, we looked at how to recombine information without resorting to formal program-

ming techniques. There is a lot that can be done by carefully examining various web

applications from the perspective of an end user looking for integrative opportunities. We

studied, for instance, how you can recombine information through manipulating URLs,

introducing tags, and connecting feeds from one application to another.

In the rest of the book, we’ll take on the programmer’s perspective. In the first two chap-

ters in this part, for example, we turn to learning about how to use web services, starting

from the concrete example of Flickr (Chapter 6) and then contrasting and comparing Flickr

to other examples (Chapter 7). In Chapter 8, we turn to Ajax-based and JavaScript-based

widgets, building upon what we learn in Chapter 6 and Chapter 7.

P A R T 2

■ ■ ■

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 119

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 120

121

Learning Web Services APIs
Through Flickr

Flickr is an excellent playground for learning XML web services. Among other reasons, Flickr
offers clear documentation, an instructive API Explorer that lets you try the API through a browser,
and lots of prior art to study in terms of remixes and mashups. Hundreds of third-party apps
are using the Flickr API.

As I discussed in previous chapters (especially Chapter 2), application programming
interfaces (APIs) are the preferred way of programming a website and accessing its data and
services, although not all websites have APIs. We looked at a wide range of things you can do
without doing much programming, which in many cases means not resorting to the API. But
now we turn to using APIs. Don’t forget what you learned while looking at end-user function-
ality, because you will need that knowledge in applying APIs.

By the end of this chapter, you will see that the Flickr API is an extensive API that can do
many things using many options. The heart of the API is simple, though. I’ll start this chapter
by presenting and analyzing perhaps the simplest immediately useful thing you can do with
the Flickr API. I’ll walk you through that example in depth to show you conceptually how to use
the search API and how to interpret the results you get. After walking you through how to make
that specific request, I’ll outline the various ways in which the example can be generalized.

After an overview of the policy and terms of service surrounding the API, I’ll show you how
to make sense of the Flickr documentation and how to use the excellent Flickr API Explorer to
study the API. I’ll revisit in depth the mechanics of making a basic call of a Flickr API method,
using it as an opportunity to provide a tutorial on two fundamental techniques: processing
HTTP requests and parsing XML. I then demonstrate how to knit those two techniques to create
a simple HTML interface based on the photo search API.

With an understanding of how to exercise a single method in hand, you’ll then look at all
the API methods in Flickr. I’ll demonstrate how to use the reflection methods in the Flickr API
to tell you about the API itself. I’ll next explain the ways in which you can choose alternative
formats for the requests and responses in the API, laying the foundation for a discussion of
REST and SOAP that I’ll revisit in the next chapter.

By that point in the chapter, you will have done almost everything you can do with authori-
zation, the trickiest part of the API. Flickr authorization can confusing if you do not understand
the motivation behind the steps in the authorization dance. I’ll explain the mechanics of the
authorization scheme in terms of what Flickr must be accomplishing in authorization—and
how all the technical pieces fit together to accomplish those design goals. It’s an involved story

C H A P T E R 6

■ ■ ■

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 121

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR122

but one that might elucidate for you other authentication schemes out there with similar design
constraints. After the narrative, I’ve included some PHP code that implements the ideas.

For practical use of the Flickr API to make mashups, you probably do not want to work so
close to the API itself but instead use API kits or third-party language-specific wrappers. There-
fore, I’ll survey briefly three of the PHP API kits for Flickr. I’ll conclude this chapter by pointing
out some of the limitations of the Flickr API with respect to what’s possible with the Flickr user
interface.

An Introduction to the Flickr API
It’s useful to start with a simple yet illustrative example of the Flickr API before diving into the
complexities that can easily obscure the simple idea at the heart of the API. The API is designed
for you as a programmer to send requests to the API and get responses that are easy for you to
decipher with your program. In earlier chapters, especially Chapter 2, you learned about you can
use the URL language of Flickr to access resources from Flickr. However, for a computer program
to use that information, it would have to screen-scrape the information. Screen-scraping is
a fragile and cumbersome process. The Flickr API sets a framework for both making requests
and getting responses that are well defined, stable, and convenient for computer programs.

Before you proceed any further, sign up for a Flickr API key so that you can follow along
with this example (see “Obtaining a Flickr API Key”).

OBTAINING A FLICKR API KEY

You need a key to use the Flickr API. A key is a string of numbers and letters that identifies you as the source
of an API request. That is, when you make a call of the API, you typically need to pass in your key (or some
other parameter derived from your key). You get a key through registering your application with Flickr:

http://www.flickr.com/services/api/keys/apply/

Get your own API key to try the exercises in this chapter and the following chapters. You can see the list
of your current keys here:

http://www.flickr.com/services/api/keys/

In the next chapter, you will see that keys are a common mechanism used in other application APIs.
Through keys, the API provider knows something about the identity of an API user (typically at least the API key
holder’s e-mail address if nothing else) and monitors the manner in which a user is accessing the API (such as
the rate and volume of calls and the specific requests made). Through such tracking, the API provider might
also choose to enforce the terms of use for the API—from contacting the user by e-mail to shutting down
access by that key...to suing the user in extreme cases!

Once you have your key, let’s make the simplest possible call to the Flickr API. Drop the
following URL in your browser:

http://api.flickr.com/services/rest/?method=flickr.test.echo&api_key={api-key}

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 122

where api-key is your Flickr API key. For this request, there are two parameters: method, which
indicates the part of the API to access, and api_key, which identifies the party making the API
request. Flickr produces the following response corresponding to your request:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<method>flickr.test.echo</method>
<api_key>[API-KEY]</api_key>
</rsp>

Note that the entity body of the response is an XML document containing your key.
Let’s now consider a slightly more complicated call to the Flickr API that returns some-

thing more interesting. Let’s ask Flickr for photos with a given tag. You learned in Chapter 2
that the corresponding URL in the Flickr UI for pictures corresponding to a given tag (say, the
tag puppy) is as follows:

http://www.flickr.com/photos/tags/{tag}/

For example:

http://www.flickr.com/photos/tags/puppy/

The corresponding way to get from the Flickr API to the most recently uploaded public
photos for a tag is like so:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_key}
&tags={tag}&per_page={per_page}

When you substitute your API key, set tag to puppy, and set per_page to 3 to issue the fol-
lowing call:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_key}
&tags=puppy&per_page=3

you will get something similar to the following:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page="1" pages="96293" perpage="3" total="288877">
<photo id="1153699093" owner="7841384@N07" secret="d1fba451c9" server="1023"

farm="2" title="willy after bath and haircut" ispublic="1" isfriend="0"
isfamily="0" />

<photo id="1154506492" owner="7841384@N07" secret="881ff7c4bc" server="1058"
farm="2" title="rocky with broken leg" ispublic="1" isfriend="0"
isfamily="0" />

<photo id="1153588011" owner="90877382@N00" secret="8a7a559e68" server="1288"
farm="2" title="DSC 6503" ispublic="1" isfriend="0" isfamily="0" />

</photos>
</rsp>

What happens in this Flickr API call? In the request, you ask for the three most recently
uploaded public photos with the tag puppy via the flickr.photos.search method. You get back

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 123

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 123

an XML document in the body of the response. I’ll show you later in the chapter the mechan-
ics of how to parse the XML document in languages such as PHP. For the moment, notice the
information you are getting in the XML response:

• Within the rsp root element, you find a photos element containing three child photo
elements.

• Attributes in the photos element tell you a number of facts about the photo: the total
attribute is the number of public photos tagged with puppy (288,877), the perpage attri-
bute is the number of photo elements actually returned in this response (3), the page
attribute tells you which page corresponds to this response (1), and the pages attribute
is the total number of pages (96,293), assuming a page size of perpage.

■Note Just as with the human user interface of Flickr, you get API results as a series of pages. (Imagine if
the API were to send you data about every puppy picture in one shot!) The default value for perpage is 100,
and the maximum value is 500. I choose 3 in this example so that you can easily study the entire response.

• Each of the photo elements has attributes that enable you to know a bit about what the
photo is about (title), map them to the photo’s various URLs (id, owner, secret, server,
and farm), and tell you about the photo’s visibility to classes of users (ispublic, isfriend,
and isfamily).

Let’s now consider two related issues about this pattern of request and response:

• What does this XML response mean?

• What can you do with the XML response?

What Does This XML Response Mean?
The user interface (UI) and the API give you much of the same information in different forms,
meant for different purposes. The requests for the UI and the API are both HTTP GETs—but
with their corresponding URLs and parameters. In the UI, the body of the response is HTML +
JavaScript for display in a web browser. In the API, the response body is XML, meant for consump-
tion by a computer program. (Remember, you learned about XML feeds in Chapter 4. The format
of the XML is not the same as RSS or Atom, but you get the benefits of stuff coming back in XML
instead of HTML—you don’t have to screen-scrape the information. Also remember from the
discussion in Chapter 2 that it is possible to screen-scrape HTML + JavaScript, but it’s not ideal.)

Let’s see how to convince ourselves of the correspondence of the information in the UI
and the API. It’s very powerful to see this correspondence—the same information is in the
UI and from the API—because you’ll get a vivid visual confirmation that you understand
what’s happening in the API. Let’s return to comparing the following (when you are logged
out of Flickr—to make sure you see only public photos):

http://www.flickr.com/photos/tags/puppy/

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR124

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 124

with the following:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_key}
&tags=puppy&per_page=3

What type of comparisons can you do?

• You can compare the total numbers of photos in the UI and the API (which you might
expect to be same but are not quite the same because of privacy options—see the “Why
Are Flickr UI Results Not the Same As Those in the API?” sidebar).

• You can map the information about the photo elements into the photo URLs in order to
see what photos are actually being referred to by the API response.

With what you learned in Chapter 2 and with the attributes from the photo element, you
can generate the URL for the photo. Take, for instance, the first photo element:

<photo id="1153699093" owner="7841384@N07" secret="d1fba451c9" server="1023"
farm="2" title="willy after bath and haircut" ispublic="1" isfriend="0"
isfamily="0" />

With this you can tabulate the parameters listed in Table 6-1.

Table 6-1. Parameters Associated with Photo 1153699093

Parameter Value

photo-id 1153699093

farm-id 2

server-id 1023

photo-secret d1fba451c9

file-suffix jpg

user-id 7841384@N07

Remember, the URL templates for the context page of a photo is as follows:

http://www.flickr.com/photos/{user-id}/{photo-id}/

And the link to the medium-sized photo is as follows:

http://farm{farm-id}.static.flickr.com/{server-id}/{photo-id}_{photo-secret}.jpg

So, the following are the URLs:

http://www.flickr.com/photos/7841384@N07/1153699093/
http://farm2.static.flickr.com/1023/1153699093_d1fba451c9.jpg

You can follow the same procedure for all the photos—but one would probably be enough
for you to use to compare with the photos in the UI. (You’re likely to see the same photo from
the API in the UI and hence confirm that the results are the same.)

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 125

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 125

■Note You might wonder how you derive the URL for the original image. Assuming that the original photo
is publicly accessible at all, you add &extras=original_format to the query to get the originalsecret
and originalformat attributes.

WHY ARE FLICKR UI RESULTS NOT THE SAME AS THOSE IN THE API?

The information available in the Flickr API and in the Flickr UI are closely aligned, so much so that it’s easy to
think they are the same. Not so. You as a Flickr user can set whether your photos are visible to site-wide
searches in the Flickr UI and whether your photos are visible to other users via the API at the following location:

http://flickr.com/account/prefs/optout/?from=privacy

If any user with public photos tagged with puppy has enabled results from one type but not the other
type of search to be visible, then what you get from the API and the UI will be different when you look for
puppy-tagged photos. I still expect that the results will be similar since I would guess that most people have
not hidden their public photos from the public search or the API.

What Can You Do with the XML Response?
Now that you know that you can generate an HTML representation of each photo, let’s think
about what you use flickr.photos.search for. Later in the chapter, I’ll walk you through the
details of how to generate a simple HTML interface written in PHP. Using that method alone
and a bit of web programming, you can generate a simple Flickr search engine that lets you
page through search results. You can do many other things as well. For example, you could
generate an XML feed from this data. With feeds coming out the API, you’d be able to use all
the techniques you learned in Chapter 4 (including mashing up feeds with Yahoo! Pipes). You
might not have all the information you could ever want; there are other methods in the Flickr
API that will give you more information about the photos, and I will show you how to use
those methods later in the chapter.

Where to go from here? First, you won’t be surprised to learn that many other parameters
are available to you for flickr.photos.search given how many search options there are in the
Flickr UI for search (see Chapter 2 for a review). You can learn more about those parameters
by reading the documentation for the method here:

http://www.flickr.com/services/api/flickr.photos.search.html

Here you will see documented all the possible arguments you can pass to the method. In
addition, you see an example response that, not surprisingly, should look similar to the XML
response we studied earlier. In addition, you will see mention of two topics that I glossed over
in my example:

Error handling: The carefully constructed simple request should work as described here.
But errors do happen, and Flickr uses an error-handling process that includes the use of
error codes and error messages. Any robust source code you write should take into account
this error handling.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR126

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 126

Authorization: The example we looked at involved only public photos. Things get a lot
messier once you work with private photos. In the UI, that means having to establish
a user account and being logged in. With the API, there is a conceptually parallel process
with one twist. Three parties are involved in Flickr authentication; in addition to the user
and Flickr, there is a third-party application that uses the API. To avoid users having to
give their passwords to the third-party application to log in on their behalf, there’s a com-
plicated dance that could easily obscure the core ideas behind the API. We’ll look at
authentication later in this chapter.

As interesting as flickr.photos.search is (and it is probably the single most useful and
functionally rich Flickr method), you’ll want to see what other methods there are in the API.
I’ll show you how to learn about the diversity of functionality available in the Flickr API by
using, among other things, the very cool Flickr API Explorer.

You’ll find that a good understanding of Flickr’s functionality will come in handy when
you learn how to use the API. (This is a point I was stressing in Chapter 2.) There’s the ad hoc
method of learning the API that is to start with a specific problem you want to solve—and then
look for a specific piece of functionality in the API that will solve it. You can consult the Flickr
API documentation when you need it and use the Flickr API Explorer. You can also try to take
a more systematic approach to outlining what’s available in the Flickr API (a bit like the detailed
discussion of Flickr’s URL language I presented in Chapter 2). I will outline a method for doing
this. This is cool, because such a method will involve the Flickr API telling us about itself! I will
use that as an opportunity to talk about APIs in general.

A large part of this chapter will cover some of the programming details you will encounter
working with the Flickr API and other APIs. The way I showed you to formulate the Flickr API
through the use of the following:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_key}
&tags=puppy&per_page=3

is only one way of three ways to do so. There are also other formats for the response that Flickr
can generate. I’ll cover the different request and response formats in the “Request and Response
Formats” section later in this chapter.

When working with these Flickr web services, you find that a detailed understanding of
HTTP, XML, and request and response formats is helpful—but you’re likely to want to work at
a higher level of abstraction once you get down to doing some serious programming. That’s
when third-party wrappers to the API, what Flickr calls API kits, come into play. I will cover
how to use a number of the PHP Flickr API kits later in this chapter.

There is a lot of complexity in using APIs, but just don’t forget the essential pattern that
you find in the Flickr API: you make an HTTP request formatted with the correct parameters,
and you get back in your response XML that you can then parse. The rest is detail.

The bottom line is that you can learn a lot by using and studying the Flickr API. It’s extremely
well designed in so many ways. It’s certainly not perfect—and there are other, sometimes bet-
ter, ways of instantiating the certain functionality of an API. A close study of the Flickr API will
help you understand the APIs of other systems—as you will see in Chapter 7.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 127

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 127

API Documentation, Community, and Policy
You can find the official documentation for the Flickr API here:

http://www.flickr.com/services/api/

As you get familiar with the API, I recommend consulting or lurking in two communities:

• The Flickr API mailing list (http://tech.groups.yahoo.com/group/yws-flickr/)

• The Flickr API group on Flickr (http://www.flickr.com/groups/api/)

You can get a feel for what people are thinking about in terms of the API and get your ques-
tions answered too. When you become more proficient with the API, you can start answering
other people’s questions. (The first group is more technically oriented, and the second one is
more focused on the workflow of Flickr.)

Terms of Use for the API
API providers, including Flickr, require assent to terms of service (ToS, also known as terms of
use) for access to the API. The terms of use for the Flickr API are at the following location:

http://www.flickr.com/services/api/tos/

There is, of course, no substitute for reading the ToS carefully for yourself. Here I list a few
highlights of the ToS, including what it tells you about Flickr and how you might find similar
issues raised in the ToS of other web APIs. Here are some factors:

Commercial vs. noncommercial use: You need to apply for special permission to use the
Flickr API for commercial purposes.

Payment for use: The Flickr API is free for noncommercial use, like many web APIs are.

Rate limits: The ToS states that you can’t use an “unreasonable amount of bandwidth.”

Compliance with the user-facing website ToS: Programmatic access to Flickr content must
comply with all the terms that govern human users of Flickr. This includes, for instance,
the requirement to link to Flickr when embedding Flickr-hosted photos.

Content ownership: You need to pay attention to the ownership of photos, including any
Creative Commons licenses attached to the photos.

Caching: You are supposed to cache Flickr photos for only a “reasonable” period of time to
provide your Flickr service.

Privacy policies: Your applications are supposed to respect (and by proxy enforce) Flickr’s
privacy policy and the photo owner’s settings. You are supposed to have a clearly articu-
lated privacy policy of your own for the photos you access through the Flickr API.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR128

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 128

Using the Flickr API Explorer and Documentation
The column on the right at http://www.flickr.com/services/api/ lists all the API methods avail-
able in the Flickr API. There are currently 106 methods in the API organized in the following 23
groups:

• Activity

• Auth

• Blogs

• Contacts

• Favorites

• Groups

• Groups.pools

• Interestingness

• People

• Photos

• Photos.comments

• Photos.geo

• Photos.licenses

• Photos.notes

• Photos.transform

• Photos.upload

• Photosets

• Photosets.comments

• Prefs

• Reflection

• Tags

• Test

• URLs

I’ve already used two methods in the early parts of the chapter: flickr.test.echo (part of
the test group) and flickr.photos.search (part of the photos group). In this section, I’ll show
you how to exercise a specific API method in detail and return to looking at the full range of
methods. Here I use flickr.photos.search for an example.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 129

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 129

You can get the documentation for any method here:

http://www.flickr.com/services/api/{method-name}.html

For example:

http://www.flickr.com/services/api/flickr.photos.search.html

Notice the following subsections in the documentation of each method:

• A description of the method’s functionality.

• Whether the method requires authentication and, if so, the minimum level of per-
mission needed: one of none, read, write, or delete. read is permission to read private
information; write is permission to add, edit, and delete metadata for photos in addi-
tion to the read permission; and delete is permission to delete photos in addition to
the write and read permissions.

• Whether the method needs to be signed. All methods that require authentication
require signing. Some methods, such as all the ones belonging to the auth group (for
example, flickr.auth.getToken) don’t need authentication but must be signed. I will
describe the mechanics of signing later in the chapter.

• A list of arguments, the name of each argument, whether it is required or mandatory,
and a short description of the argument.

• An example response.

• The error codes.

In the documentation, there is a link to the Flickr API Explorer:

http://www.flickr.com/services/api/explore/?method={method-name}

For example:

http://www.flickr.com/services/api/explore/?method=flickr.photos.search

The Flickr API Explorer is my favorite part of the Flickr API documentation. Figure 6-1
shows the API Explorer for flickr.photos.getInfo. For each method, the API Explorer not
only documents the arguments but lets you fill in arguments and call the method (with your
argument values) right within the browser. You have three choices for how to sign the call:

• You can leave the call unsigned.

• You can sign it without attaching any user information.

• You can sign it and grant the call write permission for yourself (as the logged-in user).

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR130

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 130

Figure 6-1. The Flickr API Explorer for flickr.photos.getInfo. (Reproduced with permis-
sion of Yahoo! Inc. ® 2007 by Yahoo! Inc.YAHOO! and the YAHOO! logo are trademarks of
Yahoo! Inc.)

When you hit the Call Method button, the XML of the response is displayed in an iframe,
and the URL for the call is displayed below the iframe. You can use the Flickr API Explorer to
understand how a method works. In the case of the unsigned call, you can copy the URL and
substitute your own API key to use it in your own programs.

For example, if you use the Flickr API Explorer to call flickr.photos.search with the tag
set to puppy and then click the Do Not Sign Call button, you’ll get a URL similar to this:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_key}
&tags=puppy

Copy and paste the URL you get from the Flickr API Explorer into a web browser to con-
vince yourself that in this case of searching for public images, you can now call the Flickr API
through a simple URL that returns results to you in XML.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 131

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 131

■Note The Flickr API Explorer uses an api_key that keeps changing. But that’s fine because you’re supposed
to use your own API key in your own applications. Substituting your own key is not hard for an unsigned call.

Now when I click Sign Call As Raymond Yee with Full Permissions, I get the following URL:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_key}
&tags=puppy&auth_token=72157601583650732-e30f91f3313b3d14&
api_sig=3d7a2d1975e9699246a299d2deaf5b70

When I use that URL immediately—before the key expires—I get to perform searches for
puppy-tagged photos with write permission for my user account. This URL is useful to test the
functionality of the method. It’s not so useful for dropping into a program. Getting it to work is
not simply a matter of substituting your own api_key but also getting a new auth_token and
calculating the appropriate api_sig (that is, signing the call)—tasks that take a couple of more
calls to the Flickr API and a bit of computing. It’s this set of calculations, which makes authori-
zation one of the trickiest parts of the Flickr API, that I will show you how to do later in the
chapter.

Calling a Basic Flickr API Method from PHP
Now that you have used the Flickr API Explorer and documentation to make sense of the
details of a given API method and to package a call in the browser, you will now learn how to
make a call from a simple third-party application that you write. In this section, I return to the
flickr.photos.search example I used earlier in this chapter:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_key}
&tags={tag}&per_page={per_page}

Specifically, the following:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_key}
&tags=puppy&per_page=3

generates a response similar to this:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page="1" pages="96293" perpage="3" total="288877">
<photo id="1153699093" owner="7841384@N07" secret="d1fba451c9" server="1023"

farm="2" title="willy after bath and haircut" ispublic="1" isfriend="0"
isfamily="0" />

<photo id="1154506492" owner="7841384@N07" secret="881ff7c4bc" server="1058"
farm="2" title="rocky with broken leg" ispublic="1" isfriend="0"
isfamily="0" />

<photo id="1153588011" owner="90877382@N00" secret="8a7a559e68" server="1288"
farm="2" title="DSC 6503" ispublic="1" isfriend="0" isfamily="0" />

</photos>
</rsp>

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR132

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 132

In the earlier narrative, I described to you how you can extract from the XML response such
quantities as the total number of photos and how to derive from a photo element such as this:

<photo id="1153699093" owner="7841384@N07" secret="d1fba451c9" server="1023"
farm="2" title="willy after bath and haircut" ispublic="1" isfriend="0"
isfamily="0" />

Here are the URLs for the corresponding photo:

http://www.flickr.com/photos/7841384@N07/1153699093/
http://farm2.static.flickr.com/1023/1153699093_d1fba451c9.jpg

In the following sections, I’ll show you how to instantiate that logic into code. Specifically,
we will write a simple third-party Flickr app in PHP that makes a Flickr API call and converts
the response to HTML. We’ll use two important sets of techniques that I will elaborate on in
some detail, HTTP clients and XML processing, after which I describe how to use these tech-
niques to make the call to Flickr. Here I focus on PHP, but you can apply these ideas to your
language of choice.

■Tip When debugging web services, I have found it helpful to use a network protocol analyzer such as
Wireshark (http://en.wikipedia.org/wiki/Wireshark). Properly formulating a web service call often
requires trial and error. Through its support of HTTP, Wireshark lets you see exactly what was sent and what
was received, including HTTP headers, response codes, and entity bodies.

HTTP Clients
Let’s consider first the issue of how to perform an HTTP GET request and retrieve the response
in PHP. The function file_get_contents takes a URL and returns the corresponding content in
a string, provided the allow_url_fopen option is set to true in the system-wide php.ini. For
example:

<?php
// retrieve Atom feed of recent flower-tagged photos in Flickr
$url = "http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=
en-us&format=atom";

$content = file_get_contents($url);
echo $content;
?>

If you are using an instance of PHP for which URL access for file_get_contents is dis-
abled (which is not uncommon for shared hosting facilities with security concerns), then you
might still be able to use the cURL extension for PHP (libcurl) to perform the same function.
libcurl is documented here:

http://us3.php.net/curl

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 133

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 133

The following getResource function does what file_get_contents does. Note the four
steps in using the curl library: initializing the call, configuring options, executing the call, and
closing down the handle:

<?php
function getResource($url){
// initialize a handle

$chandle = curl_init();
// set URL

curl_setopt($chandle, CURLOPT_URL, $url);
// return results a s string

curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
// execute the call

$result = curl_exec($chandle);
curl_close($chandle);

return $result;
}
?>

The many options you can configure in libcurl are documented here:

http://us3.php.net/manual/en/function.curl-setopt.php

In this book, I use libcurl for HTTP access in PHP. Should you not be able to use libcurl,
you can use the libcurl Emulator, a pure-PHP implementation of libcurl:

http://code.blitzaffe.com/pages/phpclasses/files/libcurl_emulator_52-7

■Note I will often use curl to demonstrate HTTP requests in this book. More information is available at
http://curl.haxx.se/.

A Refresher on HTTP
So, how would you configure the many options of a library such as libcurl? Doing so requires
some understanding of HTTP. Although HTTP is a foundational protocol, it’s really quite easy
to get along, even as programmers, without knowing the subtleties of HTTP. My goal here is not
to describe HTTP in great detail. When you need to understand the protocol in depth, I suggest
reading the official specifications; here’s the URL for HTTP 1.0 (RFC 1945):

http://tools.ietf.org/html/rfc1945

And here’s the URL for HTTP 1.1:

http://tools.ietf.org/html/rfc2616

You can also consult the official W3C page:

http://www.w3.org/Protocols/

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR134

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 134

Reading and digesting the specification is not the best way to learn HTTP for most of us,
however. Instead of formally learning HTTP all in one go in its formal glory, I’ve learned differ-
ent aspects of HTTP at different times, and because that partial knowledge was sufficient for
the situation at hand, I felt no need to explore the subtleties of the protocol. It was a new situ-
ation that prompted me to learn more. My first encounter with HTTP was simply surfing the
Web and using URLs that had http for their prefix. For a little while, I didn’t even know that http
wasn’t the only possible scheme in a URI—and that, technically, http:// is not a redundant
part of a URI, even if on business cards it might be. (People understand www.apress.com means
an address for a page in web browser—and the prefix http:// just looks geeky.)

Later when I learned about HTML forms, I learned that there are two possible values for
the method attribute for FORM: get and post.1 (It puzzled me why it wasn’t get and put since put
is often the complement to get.) For a long time, the only difference I perceived between get
and post was that a form that uses the get method generates URLs that include the name/value
pairs of the submitted form elements, whereas post doesn’t. The practical upshot for me was
that get produces addressable URLs, whereas post doesn’t. I thought I had post figured out as
a way of changing the state of resources (as opposed to using get for asking for information)—
and then I learned about the formal way of distinguishing between safe and idempotent methods
(see the “Safe Methods and Idempotent Methods” sidebar for a further explanation of these
terms). Even with post, it turns out that there is a difference between two different forms of
form encoding stated in the FORM enctype attribute (application/x-www-form-urlencoded vs.
multipart/form-data), a distinction that is not technically part of HTTP but that will have
a practical effect on how you programmatically make certain HTTP requests.2

SAFE METHODS AND IDEMPOTENT METHODS

The HTTP specification defines safe methods and idempotent methods here:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Safe methods “should not have the significance of taking an action other than retrieval” of a represen-
tation of a resource. You shouldn’t be changing the resource through a safe method. In HTTP, GET and HEAD
methods are supposed to be safe. Unsafe methods that have the potential of altering the state of the retrieved
resource include POST, PUT, and DELETE.

Idempotent methods are those that have the same effect on the resource whether they are performed
once or more than one time. It’s akin to multiplying a number by zero—the result is the same whether you do
it once or more than once. According to the HTTP standard, the GET, HEAD, PUT, and DELETE methods should
be idempotent operations. Moreover, “the methods OPTIONS and TRACE should not have side effects and so
are inherently idempotent.”

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 135

1. http://www.w3.org/TR/html401/interact/forms.html#h-17.13.1

2. http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 135

Formal Structure of HTTP
When I moved from writing HTML to writing basic web applications, I then learned more
about the formal structure of HTTP—and how what I had learned fit within a larger structure
of what HTTP is capable of doing. For instance, I learned that, in addition to GET and POST,
HTTP defines six other methods, among which was a PUT after all. (It’s just that few, if any, web
browsers support PUT.) Let me describe the parts of HTTP 1.1 request and response messages.
(I draw some terminology in the following discussion from the excellent presentation of HTTP
by Leonard Richardson and Sam Ruby in Restful Web Services.)

An HTTP request is composed of the following pieces:

• The method (also known as verb or action). In addition to GET and POST, there are six
others defined in the HTTP specification: OPTIONS, HEAD, PUT, DELETE, TRACE, and CONNECT.
GET and POST are widely used and supported in web browsers and programming libraries.

• The path—the part of the URL to the right of the hostname.

• A series of request headers. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

• A request body, which may be empty.

The parts of the HTTP response include the following:

• A response code. You can find a long list of codes at http://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html. Examples include 200 OK, 400 Bad Request, and 500 Internal Server
Error.

• Response headers. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html.

• A response body.

Let’s consider the following example:

http://api.flickr.com/services/rest/?method=flickr.photos.search
&api_key={api-key}&tags=puppy&per_page=3

To track the HTTP traffic, I’m using curl (with the verbose option) to make the call. (You
can also use Wireshark to read the parameters of the HTTP request and response):

curl --verbose "http://api.flickr.com/services/rest/?method=flickr.photos.search
&api_key={api-key}&tags=puppy&per_page=3"

This is an edited version of what I get:

* About to connect() to api.flickr.com port 80
* Trying 68.142.214.24... * connected
* Connected to api.flickr.com (68.142.214.24) port 80
> GET /services/rest/?method=flickr.photos.search&api_key={api-key}&tags=puppy
&per_page=3 HTTP/1.1
User-Agent: curl/7.13.2 (i386-pc-linux-gnu) libcurl/7.13.2 OpenSSL/0.9.7e zlib/1.2.2
libidn/0.5.13
Host: api.flickr.com
Pragma: no-cache
Accept: */*

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR136

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 136

< HTTP/1.1 200 OK
< Date: Tue, 21 Aug 2007 20:42:54 GMT
< Server: Apache/2.0.52
< Set-Cookie: cookie_l10n=en-us%3Bus; expires=Friday, 20-Aug-10 20:42:54 GMT;
path=/; domain=flickr.com
< Set-Cookie: cookie_intl=deleted; expires=Monday, 21-Aug-06 20:42:53 GMT; path=/;
domain=flickr.com
< Content-Length: 570
< Connection: close
< Content-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page="1" pages="97168" perpage="3" total="291503">

<photo id="1196703288" owner="69161261@N00" secret="d4e5a75664"
server="1412" farm="2" title="Pomeranian" ispublic="1" isfriend="0" isfamily="0" />

<photo id="1196707012" owner="58944004@N00" secret="9d88253b87"
server="1200" farm="2" title="Fraggle" ispublic="1" isfriend="0" isfamily="0" />

<photo id="1195805641" owner="21877391@N00" secret="311d276ec7"
server="1177" farm="2" title="Blue" ispublic="1" isfriend="0" isfamily="0" />
</photos>
</rsp>

Let’s break down the specifics of this request/response exchange, as shown in Table 6-2
and Table 6-3, respectively.

Table 6-2. The HTTP Request Parameters in a Flickr Call

Parameter Value

method GET

path /services/rest/?method=flickr.photos.search&api_key={api-key}&tags=
puppy&per_page=3

headers Four headers of the following types: User-Agent, Host (which identifies
api.flickr.com), Pragma, and Accept

response Empty (typical of GET requests)

Table 6-3. The HTTP Response Parameters in a Flickr Call

Parameter Value

Response code 200 OK

Response headers Seven headers of the following types: Date, Server, Set-Cookie (twice),
Content-Length, Connection, Content-Type

Response body The XML document representing the photos that match the query

Keep this example in mind to see how the HTTP request and response are broken down
as you continue through this chapter. Notice the structure of having a document (in the body)
and a set of headers in both the HTTP request and response structure.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 137

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 137

Even though you now understand the basic structure of HTTP, the point is to not have to
understand the intricacies of the protocol. You can shield yourself from the details while still
taking advantage of the rich functionality of HTTP with the right choice of tools and libraries.
Richardson and Ruby provide a helpful shopping list of desirable features in an HTTP client
library:

• Support for HTTPS and SSL certificate validation.

• Support for what they consider to be the five main HTTP methods: GET, HEAD, POST, PUT,
and DELETE. Some give you only GET. Others let you use GET and POST.

• Lets you customize the request body of POST and PUT requests.

• Lets you customize the HTTP request headers.

• Gives you access to the response code and HTTP response headers—not just the body
of the response.

• Lets you communicate through an HTTP proxy.

They list the following features as nice options:

• Lets you request and handle data compression. The relevant HTTP request/response
headers are Accept-Encoding and Encoding.

• Lets you deal with caching. The relevant HTTP headers are ETag and If-Modified-Since
and ETag and Last-Modified.

• Lets you deal with the most common forms of HTTP authentication: Basic, Digest, and
WSSE.

• Lets you deal with HTTP redirects.

• Helps you deal with HTTP cookies.

They also make specific recommendations for what to use in various languages, including
the following:

• The httplib2 library (http://code.google.com/p/httplib2/) for Python

• HttpClient in the Apache Jakarta project (http://jakarta.apache.org/commons/
httpclient/)

• rest-open-uri, a modification of Ruby’s open-uri to support more than the GET method
(http://rubyforge.org/projects/rest-open-uri/)

XML Processing
Once you have made the HTTP request to the Flickr API, you are left with the second big task
of processing the XML document contained in the response body. The topic of how to process
XML is a large subject, especially when you consider techniques in multiple languages. What
I show you here is one way of parsing XML in PHP 5 through an example involving a reason-
ably complicated XML document (with namespaces and attributes).

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR138

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 138

The simpleXML library is built into PHP 5, which is documented here:

http://us3.php.net/simplexml

I found the following article particularly helpful to me in understanding how to handle
namespaces and mixed content in simpleXML:

http://devzone.zend.com/node/view/id/688

In the following example, I parse an Atom feed (an example from Chapter 4) and print
various parts of the document. I access XML elements as though they are PHP object proper-
ties (using ->element-name) and the attributes as though they are members of an array (using
["attribute-name"]), for example, $xml->title and $entry->link["href"]. First I list the code
and then the output from the code:

<?php
// An example to show how to parse an Atom feed (with multiple namespaces)
// with SimpleXML
create the XML document in the $feed string
$feed=<<<EOT
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:dc="http://purl.org/dc/elements/1.1/">
<title>Apress :: The Expert's Voice</title>
<subtitle>Welcome to Apress.com. Books for Professionals,
by Professionals(TM)...with what the
professional needs to know(TM)</subtitle>

<link rel="alternate" type="text/html" href="http://www.apress.com/"/>
<link rel="self"

href="http://examples.mashupguide.net/ch06/Apress.Atom.with.DC.xml"/>
<updated>2007-07-25T12:57:02Z</updated>
<author>
<name>Apress, Inc.</name>
<email>support@apress.com</email>

</author>
<id>http://apress.com/</id>
<entry>
<title>Excel 2007: Beyond the Manual</title>
<link href="http://www.apress.com/book/bookDisplay.html?bID=10232"/>
<id>http://www.apress.com/book/bookDisplay.html?bID=10232</id>
<updated>2007-07-25T12:57:02Z</updated>
<dc:date>2007-03</dc:date>
<summary type="html"
><p><i>Excel 2007: Beyond the Manual</i> will introduce

those who are already familiar with Excel basics to more advanced features, like
consolidation, what-if analysis, PivotTables, sorting and filtering, and some
commonly used functions. You'll learn how to maximize your efficiency at producing
professional-looking spreadsheets and charts and become competent at analyzing data
using a variety of tools. The book includes practical examples to illustrate
advanced features.</p></summary>

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 139

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 139

</entry>
<entry>
<title>Word 2007: Beyond the Manual</title>
<link href="http://www.apress.com/book/bookDisplay.html?bID=10249"/>
<id>http://www.apress.com/book/bookDisplay.html?bID=10249</id>
<updated>2007-07-25T12:57:10Z</updated>
<dc:date>2007-03-01</dc:date>
<summary type="html"
><p><i>Word 2007: Beyond the Manual</i> focuses on new

features of Word 2007 as well as older features that were once less accessible than
they are now. This book also makes a point to include examples of practical
applications for all the new features. The book assumes familiarity with Word 2003
or earlier versions, so you can focus on becoming a confident 2007
user.</p></summary>
</entry>

</feed>
EOT;

instantiate a simpleXML object based on the $feed XML
$xml = simplexml_load_string($feed);

access the title and subtitle elements
print "title: {$xml->title}\n";
print "subtitle: {$xml->subtitle}\n";

loop through the two link elements, printing all the attributes for each link.

print "processing links\n";
foreach ($xml->link as $link) {
print "attribute:\t";
foreach ($link->attributes() as $a => $b) {
print "{$a}=>{$b}\t";

}
print "\n";

}
print "author: {$xml->author->name}\n";

let's check out the namespace situation

$ns_array = $xml->getDocNamespaces(true);

display the namespaces that are in the document
print "namespaces in the document\n";
foreach ($ns_array as $ns_prefix=>$ns_uri) {
print "namespace: ${ns_prefix}->${ns_uri}\n";

}
print "\n";

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR140

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 140

loop over all the entry elements
foreach ($xml->entry as $entry) {
print "entry has the following elements in the global namespace: \t";

// won't be able to access tags that aren't in the global namespace.
foreach ($entry->children() as $child) {
print $child->getName(). " ";

}
print "\n";
print "entry title: {$entry->title}\t link: {$entry->link["href"]}\n";

// show how to use xpath to get date
// note dc is registered already to $xml.
$date = $entry->xpath("./dc:date");
print "date (via XPath): {$date[0]}\n";

// use children() to get at date
$date1 = $entry->children("http://purl.org/dc/elements/1.1/");
print "date (from children()): {$date[0]}\n";

}

add <category term="books" /> to feed -- adding the element will work
but the tag is in the wrong place to make a valid Atom feed.
It is supposed to go before the entry elements
$category = $xml->addChild("category");
$category->addAttribute('term','books');

output the XML to show that category has been added.
$newxmlstring = $xml->asXML();
print "new xml (with category tag): \n$newxmlstring\n";
?>

The output from the code is as follows:

title: Apress :: The Expert's Voice
subtitle: Welcome to Apress.com. Books for Professionals,
by Professionals(TM)...with what the professional needs to know(TM)
processing links
attribute: rel=>alternate type=>text/html href=>http://www.apress.com/
attribute: rel=>self
href=>http://examples.mashupguide.net/ch06/Apress.Atom.with.DC.xml
author: Apress, Inc.
namespaces in the document
namespace: ->http://www.w3.org/2005/Atom
namespace: dc->http://purl.org/dc/elements/1.1/

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 141

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 141

entry has the following elements in the global namespace: title link id
updated summary
entry title: Excel 2007: Beyond the Manual link:
http://www.apress.com/book/bookDisplay.html?bID=10232
date (via XPath): 2007-03
date (from children()): 2007-03
entry has the following elements in the global namespace: title link id
updated summary
entry title: Word 2007: Beyond the Manual link:
http://www.apress.com/book/bookDisplay.html?bID=10249
date (via XPath): 2007-03-01
date (from children()): 2007-03-01
new xml (with category tag):
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:dc="http://purl.org/dc/elements/1.1/">
<title>Apress :: The Expert's Voice</title>
<subtitle>Welcome to Apress.com. Books for Professionals,

by Professionals(TM)...with what the professional needs to know(TM)</subtitle>
<link rel="alternate" type="text/html" href="http://www.apress.com/"/>
<link rel="self"

href="http://examples.mashupguide.net/ch06/Apress.Atom.with.DC.xml"/>
<updated>2007-07-25T12:57:02Z</updated>
<author>
<name>Apress, Inc.</name>
<email>support@apress.com</email>

</author>
<id>http://apress.com/</id>
<entry>
<title>Excel 2007: Beyond the Manual</title>
<link href="http://www.apress.com/book/bookDisplay.html?bID=10232"/>
<id>http://www.apress.com/book/bookDisplay.html?bID=10232</id>
<updated>2007-07-25T12:57:02Z</updated>
<dc:date>2007-03</dc:date>
<summary type="html"><p><i>Excel 2007: Beyond the

Manual</i> will introduce those who are already familiar with Excel basics to
more advanced features, like consolidation, what-if analysis, PivotTables, sorting
and filtering, and some commonly used functions. You'll learn how to maximize your
efficiency at producing professional-looking spreadsheets and charts and become
competent at analyzing data using a variety of tools. The book includes practical
examples to illustrate advanced features.</p></summary>
</entry>
<entry>
<title>Word 2007: Beyond the Manual</title>
<link href="http://www.apress.com/book/bookDisplay.html?bID=10249"/>
<id>http://www.apress.com/book/bookDisplay.html?bID=10249</id>
<updated>2007-07-25T12:57:10Z</updated>

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR142

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 142

<dc:date>2007-03-01</dc:date>
<summary type="html"><p><i>Word 2007: Beyond the

Manual</i> focuses on new features of Word 2007 as well as older features that
were once less accessible than they are now. This book also makes a point to include
examples of practical applications for all the new features. The book assumes
familiarity with Word 2003 or earlier versions, so you can focus on becoming a
confident 2007 user.</p></summary>
</entry>

<category term="books"/></feed>

There are certainly alternatives to simpleXML for processing XML in PHP 5, but it provides
a comfortable interface for a PHP programmer to XML documents.

■Note When trying to figure out the structures of PHP objects, consider using one of the following func-
tions: print_r, var_dump, or var_export.

Pulling It All Together: Generating Simple HTML Representations
of the Photos
Now we have the two pieces of technology to send an HTTP request to Flickr and parse the
XML in the response:

• The getResource function I displayed earlier that uses the libcurl library of PHP 5

• The simpleXML library to parse the XML response

I’ll now show you a PHP script that uses these two pieces of functionality to prompt a user
for a tag and that returns the list of five HTML-formatted photos for that tag.

Here’s a breakdown of the logical steps that take place in the following script:

1. It displays the total number of pictures ($xml->photos['total']).

2. It iterates through the array of photos through an elaboration of the following loop:

foreach ($xml->photos->photo as $photo) {
$id = $photo['id'];

}

3. It forms the URL of the thumbnail and the URL of the photo page through the logic
contained in the following line:

$thumb_url =
"http://farm{$farmid}.static.flickr.com/{$serverid}/{$id}_{$secret}_t.jpg";

The following is one possible version of such a script.3 (Note the Content-Type HTTP
response header of text/html to keep Internet Explorer happy with XHTML, but the output is
XHTML 1.0 Strict.)

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 143

3. http://examples.mashupguide.net/ch06/flickrsearch.php

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 143

<?php
header("Content-Type:text/html");
echo '<?xml version="1.0" encoding="utf-8"?>';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>flickrsearch.php</title>

</head>
<body>

<?php
if (isset($_GET['tag'])) {

do_search($_GET['tag']);
} else {
?>

<form action="<?php echo $_SERVER['PHP_SELF']?>" method="get">
<p>Search for photos with the following tag:
<input type="text" size="20" name="tag"/> <input type="submit" value="Go!"/></p>
</form>

<?php
}
?>
<?php

uses libcurl to return the response body of a GET request on $url
function getResource($url){
$chandle = curl_init();
curl_setopt($chandle, CURLOPT_URL, $url);
curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
$result = curl_exec($chandle);
curl_close($chandle);

return $result;
}

function do_search($tag) {
$tag = urlencode($tag);

#insert your own Flickr API KEY here

$api_key = "[API-Key]";
$per_page="5";
$url = "http://api.flickr.com/services/rest/?method=flickr.photos.search

&api_key={$api_key}&tags={$tag}&per_page={$per_page}";

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR144

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 144

$feed = getResource($url);
$xml = simplexml_load_string($feed);
print "<p>Total number of photos for {$tag}: {$xml->photos['total']}</p>";

http://www.flickr.com/services/api/misc.urls.html
http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}.jpg
foreach ($xml->photos->photo as $photo) {
$title = $photo['title'];
$farmid = $photo['farm'];
$serverid = $photo['server'];
$id = $photo['id'];
$secret = $photo['secret'];
$owner = $photo['owner'];
$thumb_url = "http://farm{$farmid}.static.flickr.com/{$serverid}/

{$id}_{$secret}_t.jpg";
$page_url = "http://www.flickr.com/photos/{$owner}/{$id}";
$image_html= "";
print "<p>$image_html</p>";

}

} # do_search
?>
</body>

</html>

Where Does This Leave Us?
This code allows you to search and display some pictures from Flickr. More important, it is an
example of a class of Flickr methods: those that require neither signing nor authorization to be
called. You will see in the next section how to determine which of the Flickr API methods fall in
that category. In the following sections, you’ll look at generalizing the techniques you have used
in studying flickr.photos.search to the other capabilities of the Flickr API.

The Flickr API in General
What are some approaches to learning the Flickr API? My first suggestion is to look around the
documentation and glance through the list of API methods here:

http://www.flickr.com/services/api/

While you are doing so, you should think back to all the things you know about Flickr as
an end user (aspects I discussed in Chapter 2) and see whether they are reflected in the API.
For example, can you come up with an API call to calculate the NSID of your own account?
What is a URL to return that information? Hint: flickr.people.findByUsername.

Perhaps the best way to learn about the API is to have a specific problem in mind and then
let that problem drive your learning of the API. Don’t try to learn commit the entire API to
memory—that’s what the documentation is for.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 145

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 145

As I argued earlier, calls that require neither signing nor authorization (such as
flickr.photos.search) are the easiest place to start. How would you figure out which calls
those are? You can make pretty good guesses from the names of methods. For instance, you
won’t be surprised that the method flickr.photos.geo.setLocation would need authoriza-
tion: you would be using it to change the geolocation of a photo, an act that would require
Flickr to determine whether you have the permission to do so. On the other hand, the method
flickr.groups.pools.getPhotos allows you to retrieve photos for a given group. A reasonably
proficient Flickr user knows that there are public groups whose photos would be visible to
everybody, including those who are not logged in to Flickr at all. Hence, it’s not surprising
that this method would not require signing or authorization.

Using flickr.reflection Methods
You can get fairly far by eyeballing the list of Flickr methods for ones that do not require any per-
mission to execute. (Recall the levels of permissions within the Flickr API: none, read, write, and
delete.) It turns out that the Flickr API has a feature that you won’t find in too many other web APIs:
the Flickr API has methods that return information about the API itself. flickr.reflection.getMethods
returns a list of all the Flickr methods available. flickr.reflection.getMethodInfo takes a given
method name and returns the following:

• A description of the method

• Whether the method needs to be signed

• Whether the method needs to be authorized

• The minimal permission level needed by the method (0 = none, 1 = read, 2= write,
3=delete)

• The list of arguments for the method, including a description of the argument and
whether it is optional

• The list of possible errors arising from calling the method

For example, let’s look at what the Flickr API tells us about flickr.photos.geo.setLocation.
You can use this format:

http://api.flickr.com/services/rest/?method= flickr.reflection.getMethodInfo
&api_key={api-key}&method_name={method-name}

Specifically, you can use this:

http://api.flickr.com/services/rest/?method=flickr.reflection.getMethodInfo
&api_key={api-key}&method_name=flickr.photos.geo.setLocation

to generate this:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<method name="flickr.photos.geo.setLocation" needslogin="1" needssigning="1"

requiredperms="2">
<description>Sets the geo data (latitude and longitude and, optionally,

the accuracy level) for a photo.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR146

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 146

Before users may assign location data to a photo they must define who, by default,
may view that information. Users can edit this preference at http://www.flickr.com
/account/geo/privacy/. If a user has not set this preference, the API
method will return an error.</description>
</method>
<arguments>
<argument name="api_key" optional="0">Your API application key. See here for more
details.</argument>
<argument name="photo_id" optional="0">The id of the photo to set location

data for.</argument>
<argument name="lat" optional="0">The latitude whose valid range is -90 to

90. Anything more than 6 decimal places will be truncated.</argument>
<argument name="lon" optional="0">The longitude whose valid range is -180

to 180. Anything more than 6 decimal places will be truncated.</argument>
<argument name="accuracy" optional="1">Recorded accuracy level of the

location information. World level is 1, Country is ~3, Region ~6, City ~11, Street
~16. Current range is 1-16. Defaults to 16 if not specified.</argument>
</arguments>
<errors>
<error code="1" message="Photo not found">The photo id was either invalid

or was for a photo not viewable by the calling user.</error>
<error code="2" message="Required arguments missing.">Some or all of the

required arguments were not supplied.</error>
<error code="3" message="Not a valid latitude.">The latitude argument

failed validation.</error>
<error code="4" message="Not a valid longitude.">The longitude argument

failed validation.</error>
<error code="5" message="Not a valid accuracy.">The accuracy argument

failed validation.</error>
<error code="6" message="Server error.">There was an unexpected problem

setting location information to the photo.</error>
<error code="7" message="User has not configured default viewing settings

for location data.">Before users may assign location data to a photo they must
define who, by default, may view that information. Users can edit this preference at

http://www.flickr.com/account/geo/privacy/</error>
<error code="96" message="Invalid signature">The passed signature was

invalid.</error>
<error code="97" message="Missing signature">The call required signing but

no signature was sent.</error>
<error code="98" message="Login failed / Invalid auth token">The login

details or auth token passed were invalid.</error>
<error code="99" message="User not logged in / Insufficient

permissions">The method requires user authentication but the user was not logged in,
or the authenticated method call did not have the required permissions.</error>
<error code="100" message="Invalid API Key">The API key passed was not

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 147

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 147

valid or has expired.</error>
<error code="105" message="Service currently unavailable">The requested

service is temporarily unavailable.</error>
<error code="111" message="Format "xxx" not found">The requested

response format was not found.</error>
<error code="112" message="Method "xxx" not found">The requested

method was not found.</error>
<error code="114" message="Invalid SOAP envelope">The SOAP envelope send in

the request could not be parsed.</error>
<error code="115" message="Invalid XML-RPC Method Call">The XML-RPC request

document could not be parsed.</error>
</errors>
</rsp>

Note specifically that the following:

<method name="flickr.photos.geo.setLocation" needslogin="1" needssigning="1"
requiredperms="2">

confirms what we had surmised—that it needs authorization and signing because it requires
a minimum permission level of write. Compare that to what we would get for flickr.photos.
search, which is the method that we have used throughout this chapter as an easy place to
start in the API:

<method name="flickr.photos.search" needslogin="0" needssigning="0"
requiredperms="0">

These reflection methods give rise to many interesting possibilities, especially to those of
us interested in the issue of automating and simplifying the way we access web APIs. Methods
in the API are both similar and different from the other methods. It would be helpful to be able
to query the API with the following specific questions:

• What are all the methods that do not require any permissions to be used?

• Which methods need to be signed?

• What is an entire list of all arguments used in the Flickr API? Which method uses which
argument? Which methods have in common the same arguments?

■Caution These reflection methods in the Flickr API are useful only if they are kept up-to-date and
provide accurate information. In working with the reflection APIs, I have run into some problems (for example,
http://tech.groups.yahoo.com/group/yws-flickr/message/3263) that make me wonder the degree
to which the reflection methods are a first-class member of the APIs.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR148

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 148

Querying the Flickr Reflection Methods with PHP
As a first step toward building a database of the Flickr API methods that would support such
queries, I wrote the following PHP script to generate a summary table of the API methods. First there is
a flickr_methods.php class that has functions to read the list of methods using flickr.methods.
getMethods and, for each method, convert the data from flickr.reflection.getMethodInfo into
a form that can be serialized and unserialized from a local file.

<?php
flickr_methods.php
can use this class to return a $methods (an array of methods) and $methods_info --
directly from the Flickr API or via a cached copy

class flickr_methods {

protected $api_key;

public function __construct($api_key) {
$this->api_key = $api_key;

}

public function test() {
return $this->api_key;

}

generic method for retrieving content for a given url.
protected function getResource($url){
$chandle = curl_init();
curl_setopt($chandle, CURLOPT_URL, $url);
curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
$result = curl_exec($chandle);
curl_close($chandle);

return $result;
}

return simplexml object for $url if successful with specified number of retries
protected function flickrCall($url,$retries) {
$success = false;
for ($retry = 0; $retry < $retries; $retry++) {
$rsp = $this->getResource($url);
$xml = simplexml_load_string($rsp);
if ($xml["stat"] == 'ok') {
$success = true;
break;

}
} // for

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 149

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 149

if ($success) {
return $xml;

} else {
throw new Exception("Could not successfully call Flickr");

}
}

go through all the methods and list

public function getMethods() {

// would be useful to return this as an array (later on, I can have another
// method to group them under common prefixes.)

$url = "http://api.flickr.com/services/rest/?method=flickr.reflection.getMethods
&api_key={$this->api_key}";

$xml = $this->flickrCall($url, 3);
foreach ($xml->methods->method as $method) {
//print "${method}\n";
$method_list[] = (string) $method;

}
return $method_list;

}

get info about a given method($api_key, $method_name)

public function getMethodInfo($method_name) {

$url =
"http://api.flickr.com/services/rest/?method=flickr.reflection.getMethodInfo

&api_key={$this->api_key}&method_name={$method_name}";
$xml = $this->flickrCall($url, 3);
return $xml;

}

get directly from Flickr the method data
returns an array with data
public function download_flickr_methods () {

$methods = $this->getMethods();

// now loop to grab info for each method

this counter lets me limit the number of calls I make -- useful for testing
$limit = 1000;
$count = 0;

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR150

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 150

foreach ($methods as $method) {

$count += 1;
if ($count > $limit) {
break;

}

$xml = $this->getMethodInfo($method);
$method_array["needslogin"] = (integer) $xml->method["needslogin"];
$method_array["needssigning"] = (integer) $xml->method["needssigning"];
$method_array["requiredperms"] = (integer) $xml->method["requiredperms"];
$method_array["description"] = (string) $xml->method->description;
$method_array["response"] = (string) $xml->method->response;

// loop through the arguments
$args = array();
foreach ($xml->arguments->argument as $argument) {
$arg["name"] = (string) $argument["name"];
$arg["optional"] = (integer) $argument["optional"];
$arg["text"] = (string) $argument;
$args[] = $arg;

}
$method_array["arguments"] = $args;

// loop through errors
$errors = array();
foreach ($xml->errors->error as $error) {
$err["code"] = (string) $error["code"];
$err["message"] = (integer) $error["message"];
$err["text"] = (string) $error;
$errors[] = $err;

}
$method_array["errors"] = $errors;

$methods_info[$method] = $method_array;
}

$to_store['methods'] = $methods;
$to_store['methods_info'] = $methods_info;
return $to_store;

} // download_Flickr_API

store the data
public function store_api_data($fname, $to_store) {

$to_store_str = serialize($to_store);
$fh = fopen($fname,'wb') OR die ("can't open $fname!");

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 151

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 151

$numbytes = fwrite($fh, $to_store_str);
fclose($fh);

}

convenience method for updating the cache
public function update_api_data($fname) {

$to_store = $this->download_flickr_methods();
$this->store_api_data($fname,$to_store);

}

restore the data

public function restore_api_data($fname) {

$fh = fopen($fname,'rb') OR die ("can't open $fname!");
$contents = fread($fh, filesize($fname));
fclose($fh);
return unserialize($contents);

}

} //flickr_methods

This form of serialization in the flickr_method class provides some basic caching so that
you don’t have to make more than 100 calls (one for each method) each time you want to dis-
play a summary table—which is what the following code does:

<?php

require_once("flickr_methods.php");
$API_KEY = "[API_KEY]";

$fname = 'flickr.methods.info.txt';

$fm = new flickr_methods($API_KEY);

if (!file_exists($fname)) {
$fm->update_api_data($fname);

}
$m = $fm->restore_api_data($fname);

$methods = $m["methods"];
$methods_info = $m["methods_info"];

header("Content-Type:text/html");
echo '<?xml version="1.0" encoding="utf-8"?>';

?>

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR152

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 152

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Flickr methods</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

</head>
<body>
<table>
<tr>
<th>method name</th>
<th>description</th>
<th>needs login</th>
<th>needs signing</th>
<th>permissions</th>
<th>args (mandatory)</th>
<th>args (optional)</th>

</tr>
<?php
foreach ($methods_info as $name=>$method) {
$description = $method["description"];

calc mandatory and optional arguments
$m_args = "";
$o_args = "";
foreach ($method["arguments"] as $arg){
//print "arg: {$arg['name']}\n";
//print_r ($arg);
// don't list api_key since it is mandatory for all calls
if ($arg['name'] != 'api_key') {
if ($arg["optional"] == '1') {
$o_args .= " {$arg['name']}";

} else {
$m_args .= " {$arg['name']}";

}
} //if

}
print <<<EOT
<tr>
<td>
{$name}

</td>
<td>{$description}</td>
<td>{$method["needslogin"]}</td>
<td>{$method["needssigning"]}</td>
<td>{$method["requiredperms"]}</td>
<td>{$m_args}</td>
<td>{$o_args}</td>

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 153

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 153

</tr>
EOT;
}

?>
</table>

</body>
</html>

What Else Can Be Done with Reflection?
There’s certainly a lot more you can do with this code. Let me suggest a few ideas:

• Store the data in a database (relational or XML) that can support a query language for
making the queries that I listed earlier. (A poor person’s approach is to copy the output
of the script into a spreadsheet and work from there.)

• Create your own version of the Flickr API Explorer, perhaps as a desktop application, to
help you learn about pieces of the API as you have specific questions.

• Use the reflection methods as the basis of a new third-party API wrapper that is able
to update itself as the API changes.

■Note In all the examples I have shown of the Flickr API, I have used HTTP GET because none of the
examples so far has required any write or delete permissions. If your calls do require write or delete
permissions, you must issue your Flickr call with HTTP POST.

Request and Response Formats
So far in this chapter, I have limited myself to one particular way of formulating a request to
call a Flickr API method and the corresponding default format for the response. The Flickr API
actually supports three different ways of packaging a request and five different formats for the
response. In this section, I describe the choices you have with respect to request and response
formats. Understanding these choices will help you make sense of APIs other than Flickr’s since
you will face similar choices in working with them.

Regardless of the request or response format used, the Flickr API rests on HTTP. Hence,
we need to remember that making a Flickr API call involves two steps, which is a reflection of
the request and response pattern of the underlying HTTP protocol of the API:

• You formulate an HTTP request corresponding to API method and parameters you want
to use. With Flickr, you have a choice of three formats for the request format: REST (what
we have used so far), XML-RPC, and SOAP.

• You process the HTTP response that includes a payload that is by default XML but that
also can contain JavaScript (JSON) or PHP (input for the PHP unserialize method).

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR154

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 154

■Note Although web services are not necessarily tied to HTTP (for instance, SOAP can be bound to SMTP),
HTTP is the only transport protocol supported for the Flickr API. However, the vast majority of web services
used, especially for mashups, are made over HTTP. Hence, I don’t cover the use of transport protocols other
than HTTP in this book.

Flickr supports three different request formats to call the methods of the API (REST, SOAP,
and XML-RPC):

• The REST request format, the simplest one to work with, is similar conceptually and prac-
tically to submitting a request through an HTML form. (That is, you submit a request
through either HTTP GET or POST and use named parameters.) In the simplest cases, that
could be equivalent to setting parameters for a URL to which you get back some XML that
you can parse. Think about the examples I have presented so far to confirm that this is
what has been happening. For Flickr, I recommend starting with its REST request format.

■Note In Chapter 7, I revisit and refine the term REST. What Flickr calls the REST approach is a commonly
used pattern of structuring web services but is more accurately described as a REST-RPC hybrid.

• SOAP has an envelope around the request and enables higher levels of abstraction, but it
is more complicated and typically takes more specialized libraries and tools to deal with
than REST. We will return to this subject in the next chapter, both in the context of Flickr’s
SOAP request format and in other APIs’ SOAP interfaces. SOAP is an important web serv-
ices technique, especially among folks who use web services for enterprise work.4

■Note In version 1.1 of SOAP, SOAP is an acronym for Simple Object Access Protocol. Version 1.2 of the
SOAP specification indicates that SOAP is no longer an acronym.

• XML-RPC was, in many ways, the proto-SOAP. It’s most convenient to use XML-RPC
from a library, of which there are many in a variety of languages.

There are current five different formats for Flickr responses: the three corresponding default
response formats (REST, XML-RPC, SOAP) and two specialized response formats (json and
php_serial). In other words, a REST-formatted request generates by default a REST-formatted
response. You can change the format for the response by using the format parameter.

The default behavior of tying the request and request format is typical for web APIs. With
the exception of the REST-to-JSON pairing, which we will return to in our discussion of Ajax
programming in Chapter 8, the ability to decouple the request format from the response format

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 155

4. http://en.wikipedia.org/wiki/SOAP

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 155

is unusual. For instance, with the Flickr API, you issue a SOAP-formatted request that asks for
a REST-formatted response. I’m not aware of any standard SOAP libraries that can handle
such a pairing.

You can see for yourself these five formats in action through a simple REST-formatted request:

http://api.flickr.com/services/rest/?method=flickr.test.echo
&api_key={api-ky}&format={format}

where format = rest, xmlrpc, soap, json, php_serial, or blank (for the default response format).

Flickr Authorization
Authentication is a bit tricky to follow, and ultimately you may want to leave the details to one
of the Flickr API kits (covered later in the chapter). However, you may still be interested in work-
ing through the details at least once so that you know what’s going on below the hood before
you use someone else’s library. Besides, there will be other authentication schemes out there
besides Flickr’s that you will want to use. Getting a solid handle on Flickr’s authentication scheme
is good preparation for more quickly understanding those other authentication schemes.

You can find the specification for Flickr authentication here:

http://www.flickr.com/services/api/auth.spec.html

There are three types of authentication cases to handle with Flickr:

• Web applications

• Desktop applications

• Mobile applications

Each scheme is different because of the differing natures of each type of application. For
example, the author of a web application can configure it to have a URL through which Flickr
would be able to communicate. It’s hard to guarantee that a desktop application would have
a URL through which such communication could happen. In this book, I cover only the spe-
cific case of authentication for web applications. Once you understand this case, you will be
able to understand the others without much problem.

Three parties are involved in the authentication dance:

• Flickr

• A third-party application that is using the Flickr API and that I refer to as the app

• A person who is both a user of the app and a Flickr user

Authorization is required when an app is calling a Flickr method that requires a permission
level of read, write, or delete—anything but none. Through authorization, the app is granted
a specific permission level by the user to access the Flickr API on the user’s behalf. Flickr creates
a token that ties a specific app with a specific user and a specific permission level to embody
this authorization act. The authentication dance is all about how that token gets created, used
in conjunction with specific API calls, and can be managed and possibly revoked by the user.
The details are a bit complicated because this process must also fulfill certain design criteria,
which you can surmise from how the authorization scheme is designed:

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR156

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 156

• The three parties need to be reliably and securely identified and associated in the
process of authorization.

• The user must be able to undo an authorization act given to a specific app.

• The protocol must be done using HTTP and not HTTPS. That is, all the parameters
being passed are visible to potential third-party interlopers. In other words, knowledge
of the token itself should not allow another app to have the token’s permissions.

• The app should not need to know anything a priori about a person’s Flickr identity to
secure permission.

Why Passing Passwords Around Doesn’t Work Too Well
The current Flickr authorization scheme is not the first one it used. In the early days of Flickr,
users granted the power to an app to act on their behalf by giving the apps their Flickr username
and password. Doing so meant that in order to revoke an app’s permission, users would have
to change their Flickr password. Of course, doing that would also instantly revoke permissions
of other third-party apps with knowledge of the user’s password. The new authorization scheme
is meant to correct obvious problems with the old scheme. Why should you as a user have to
use your Flickr password for anything other than your dealings with Flickr? Why should revok-
ing permissions to one app mean revoking permissions to other apps?

Authorization for Web Apps
Let’s now look at the authorization scheme used with Flickr. We first need to set up some
permissions.

Setting Up the Example of Lois and ContactLister
Let’s now get down to the details of the process of authentication for web-based applications,
keeping the authorization design criteria in mind. Let’s have a specific example in mind. The
app, which I will call ContactLister, displays the list of contacts for a given Flickr user. It specif-
ically uses the flickr.contacts.getList method, which requires authorization with read
permission. (A Flickr user’s contacts list is private.) Let’s also make up a hypothetical user
called Lois.

Basic Lesson: Flickr Needs to Mediate the Authorization Dance
For ContactLister to get permission from Lois, why couldn’t ContactLister just directly display
a screen asking Lois to give it permission to read her contact list—and then relay that fact to
Flickr? For starters, how does ContactLister prove to Flickr that Lois did in fact give ContactLister
permission to access her photos? In the old days of Flickr, ContactLister would have Lois’s Flickr
username and password. At that time, ContactLister might as well have been Lois since it’s the
Flickr username/password that Flickr used to authenticate a user.

The solution that Flickr came up with is based on that Flickr needs to establish unambigu-
ously that Lois is with full knowledge of (that is, not being tricked into) giving ContactLister (and
not some other third-party app) read (and not some other) permission. To do that, Flickr needs
to mediate communication between Lois and ContactLister.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 157

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 157

Step 1: ContactLister Directs Flickr to Ask Lois for Permission
So instead of ContactLister directly prompting Lois for permission, ContactLister directs Flickr
to prompt Lois for read permission by formulating the following Flickr URL that it directs Lois to:

http://flickr.com/services/auth?api_key={api_key}&perms={perms}&api_sig={api_sig}

Let’s look at the various arguments. You are familiar with the api_key; perms would be set
to read in this circumstance.

Signing a Call: How Does ContactLister Create and Send One?

The part that is new in this chapter is the api_sig. It is the act of calculating the api_sig and
attaching it to method calls in the Flickr API that we refer to as signing the call. The purpose of
signing a call is to reliably establish the identity of the signer, the one formulating the URL.
Why isn’t the api_key enough to establish the identity of the caller? In some circumstances, it
would be if no one but the author of ContactLister and Flickr knew this api_key. On another
level, Flickr API keys are sent unencrypted every time a call is made to the Flickr API, akin to
passwords being sent in plain text. Hence, the api_key alone is an insufficient foundation for
signing this call. You shouldn’t be able to easily fake a signature.

When you sign up for a Flickr API key, in addition to getting a key, you get a corresponding
string: secret. As the name implies, you are supposed to keep secret secret so that in theory
only you and Flickr know it. Go to http://www.flickr.com/services/api/keys/ to see your own
keys and secrets.

ContactLister has to use this secret to calculate the api_sig and thereby sign the call. The
api_sig is calculated according to the following algorithm for any Flickr API call:

• Make a signature string that starts with the secret followed by a concatenation of all the
name/value pairs of the arguments to be passed to Flickr, sorted alphabetically by name—
excluding the api_sig but including method. The values need to UTF-8 encoded but not
URL-encoded.

• The api_sig is then the hexadecimal digest of the md5 hash of the signature string.

The following is a Python function that takes a secret and a dictionary of name/value
pairs and returns the corresponding api_sig:

def calcSig(secret,params):
import md5
l = params.keys()
l.sort()
hash = ''
for key in l:

hash += str(key) + params[key].encode('utf-8')
hash = secret + hash
api_sig = md5.new(hash).hexdigest()
return api_sig

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR158

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 158

Let’s first run through a concrete example and then discuss how this process constitutes
signing the call. Consider the following sample key and secret:

• Key: 020338ddabd2f41ae7ce9413a8d51429

• Shared secret: f0fc085289c7677a

The signature string is then as follows:

{secret}api_key{api_key}perms{perms}

which is as follows:

f0fc085289c7677aapi_key{api_key}permsread

The md5 hexadecimal digest of the string is then as follows:

f9258a76e4ad3cb5fa40bd8b0098d119

Therefore, the signed call is as follows:

http://flickr.com/services/auth?api_key={api_key}&perms=read
&api_sig=f9258a76e4ad3cb5fa40bd8b0098d119

What Flickr Makes of the Signed Call

So when ContactLister directs Lois to go to this URL, Flickr first determines the integrity of this call
by performing the same signature calculation as ContactLister did in the first place: find the secret
that corresponds to the api_key, sort all the parameters by key (except for the api_sig parameter),
form the signature string, and then compare it to the value of the api_sig parameter. If two match
up, then Flickr can conclude the call did indeed come from ContactLister because presumably the
author of ContactLister is the only one other than Flickr who knows the key/secret combination.

You might ask, why can’t someone take the api_sig from the call and reverse the md5
calculation to derive the secret? Although it’s straightforward to calculate the md5 hash of
a string, it’s much more difficult computationally to go in the other direction. For the purposes
here, you should think of this reverse direction for md5 as practically—but not theoretically—
impossible. Moreover, using md5 makes it difficult to change the parameters of the call. If you
change, say, perms=read to perms=delete, you get a different api_sig, which is very hard to cal-
culate without knowing secret.

■Note md5, it turns out, does have limitations as a cryptographic hash function. Researchers have demon-
strated how to take an md5 hash and create another string that will give you the same md5 hash. Can this
weakness be used to issue fake Flickr calls? I don’t know; see http://en.wikipedia.org/wiki/MD5 for
more information.

Step 2: Flickr Asks Lois for Permission on Behalf of ContactLister
At any rate, assuming a properly signed call to http://flickr.com/services/auth, Flickr now
knows reliably that it is indeed ContactLister asking for read permission. Remember, though,
that the end goal, a token, ties three things together: an app, a permission level, and a user.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 159

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 159

The call reliably ties the app and permission together for Flickr. However, the call has no explicit
mention of a user at all. There’s no parameter for user_id, for instance.

That ContactLister doesn’t have to pass to Flickr anything about Lois’s Flickr account is
a virtue—not a problem. Why should a third-party app have to know anything a priori about
a person’s relationship to Flickr? So, how does Flickr figure out the user to tie to the request by
ContactLister for the read permission? The fact is that it’s Lois—and not someone else—who
uses the authorization URL:

http://flickr.com/services/auth?api_key={api_key}&perms=read
&api_sig=f9258a76e4ad3cb5fa40bd8b0098d119

When Lois loads the authorization URL in her browser, Flickr then determines the user in
question. If Lois is logged in, then Flickr knows the user in question is Lois. If no one is logged
in to Flickr, then Lois will be sent through the login process. In either case, it’s Flickr that is fig-
uring out Lois’s identity as a Flickr user and taking care of her authenticating to Flickr. In that
way, Flickr can establish to its own satisfaction the identity of the user involved in the authori-
zation dance—rather than trusting ContactLister to do so.

Now that Flickr knows for sure the identity of the app, the permission level requested, and
the user involved, it still needs to actually ask Lois whether it’s OK to let ContactLister have the
requested read permission. If Lois had not already granted ContactLister such permission,
then Flickr presents to Lois a screen that clearly informs her of ContactLister’s request. The
fact that such a display comes from Flickr instead of ContactLister directly should give Lois
some confidence that Flickr can track what ContactLister will do with any permissions she
grants to it and thereby hold the authors of ContactLister accountable.

Step 3: Flickr Lets ContactLister Know to Pick Up a Token
Assuming that Lois grants ContactLister read permission, Flickr must now inform ContactLister
of this fact. (Remember, the permission granting is happening on the Flickr site.) Flickr com-
municates this authorization act by sending the HTTP GET request to the callback-URL for
ContactLister with what Flickr calls a frob. Flickr knows the callback-URL to use because part
of registering a web application to handle authorization is specifying a callback URL at the
following location:

http://www.flickr.com/services/api/keys/{api-key}/

where the api-key is that for the app. In other words, ContactLister must handle a call from
Flickr of the following form:

callback-URL?frob={frob}

A frob is akin to a session ID. It lets ContactLister know that some form of authorization
has been granted to ContactLister. To actually get the token that ContactLister needs to use the
requested read permission, ContactLister needs to use flickr.auth.getToken to exchange the
frob for the token. Frobs aren’t meant to be the permanent representation of an authorization
act. Frobs expire after 60 minutes or after flickr.auth.getToken is used to redeem the frob for
a token. This exchange ensures that ContactLister receives a token and that Flickr knows that
ContactLister has received the token. Note that flickr.auth.getToken is also a signed call with
two mandatory arguments: api_key and frob—in addition to api_sig, of course. The returned
token is expressed in the following form (quoting from http://www.flickr.com/services/api/
flickr.auth.getToken.html):

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR160

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 160

<auth>
<token>976598454353455</token>
<perms>write</perms>
<user nsid="12037949754@N01" username="Bees" fullname="Cal H" />

</auth>

Note that it’s the token that tells ContactLister the details of what is being authorized: the
Flickr user and the permission granted. Now, ContactLister knows the Flickr identity of Lois—
without ever needing Lois to tell ContactLister directly.

Step 4: ContactLister Can Now Make an Authorized and Signed Call
ContactLister can now actually make the call to flickr.contacts.getList. How so? In addition
to signing a call to flickr.contacts.getList, ContactLister adds the appropriate authorization
information by adding the following argument to the call and signing it appropriately:

auth-token={token}

We should note moreover that Lois, like all users, can revoke any permission she had
previously granted here:

http://flickr.com/services/auth/list.gne

It’s nice for Lois to know that she doesn’t have to convince ContactLister to stop accessing
her account. She just tells Flickr.

Implementation of Authorization in PHP
That’s the narrative of how to do Flickr authorization for web applications. Now let’s look at it
implemented in PHP. There are two pieces of code. The first generates the authorization URL.
(To use it, use your own API key and secret.)

<?php
$api_key = "";
$secret = "f0fc085289c7677a";
$perms = "read";

function login_link($api_key,$secret,$perms) {
calculate API SIG
sig string = secret + [arguments listed alphabetically name/value --
including api_key and perms]

$sig_string = "{$secret}api_key{$api_key}perms{$perms}";
$api_sig = md5($sig_string);

$url = "http://flickr.com/services/auth?api_key={$api_key}&perms={$perms}
&api_sig={$api_sig}";

return $url;
}

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 161

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 161

$url = login_link($api_key,$secret,$perms);
?>
<html>
<body><a href="<?php print($url);?>">Login to Flickr</body>

</html>

To confirm that you have things set up correctly, if you run the app, you should get a prompt
from the Flickr site asking for access (see Figure 6-2).5

Figure 6-2. Flickr authorization screen. (Reproduced with permission of Yahoo! Inc. ® 2007 by
Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.)

The second piece of code is the authentication-handling script whose URL is the callback
URL registered to the API key. It reads the frob, gets the token, and then lists the contacts of
the user (a type of access that demonstrates that authorization is working, since without
authorization, an app will not be able to access a user’s contact list). To try this yourself, you
will need to create this file and then enter its URL in the Callback URL field of your app’s key
configuration screen at Flickr:6

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR162

5. http://examples.mashupguide.net/ch06/auth.php

6. http://examples.mashupguide.net/ch06/auth_cb.php

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 162

<?php
##insert your own Flickr API KEY here
$api_key = "[API_KEY]";
$secret = "[SECRET]";

$perms = "read";

$frob = $_GET['frob'];

function getResource($url){
$chandle = curl_init();
curl_setopt($chandle, CURLOPT_URL, $url);
curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
$result = curl_exec($chandle);
curl_close($chandle);

return $result;
}

function getContactList($api_key, $secret, $auth_token) {
calculate API SIG
sig string = secret + [arguments listed alphabetically name/value --
including api_key and perms]; don't forget the method call

$method = "flickr.contacts.getList";
$sig_string =
"{$secret}api_key{$api_key}auth_token{$auth_token}method{$method}";

$api_sig = md5($sig_string);

$token_url =
"http://api.flickr.com/services/rest/?method=flickr.contacts.getList

&api_key={$api_key}&auth_token={$auth_token}&api_sig={$api_sig}";
$feed = getResource($token_url);
$rsp = simplexml_load_string($feed);

return $rsp;
}

function getToken($api_key,$secret,$frob) {
calculate API SIG
sig string = secret + [arguments listed alphabetically name/value --
including api_key and perms]; don't forget the method call

$method = "flickr.auth.getToken";
$sig_string = "{$secret}api_key{$api_key}frob{$frob}method{$method}";
$api_sig = md5($sig_string);

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 163

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 163

$token_url =
"http://api.flickr.com/services/rest/?method=flickr.auth.getToken

&api_key={$api_key}&frob={$frob}&api_sig={$api_sig}";
$feed = getResource($token_url);
$rsp = simplexml_load_string($feed);

return $rsp;
}

$token_rsp = getToken($api_key,$secret,$frob);
$nsid = $token_rsp->auth->user["nsid"];
$username = $token_rsp->auth->user["username"];
$auth_token = $token_rsp->auth->token;
$perms = $token_rsp->auth->perms;

display some user info
echo "You are: ", $token_rsp->auth->user["fullname"],"
";
echo "Your nsid: ", $nsid, "
";
echo "Your username: ", $username,"
";
echo "auth token: ", $auth_token, "
";
echo "perms: ", $perms, "
";

make a call to getContactList

$contact_rsp = (getContactList($api_key,$secret,$auth_token));
$n_contacts = $contact_rsp->contacts["total"];
$s = "<table>";
foreach ($contact_rsp->contacts->contact as $contact) {
$nsid = $contact['nsid'];
$username = $contact['username'];
$realname = $contact['realname'];
$s = $s . "<tr><td>{$realname}</td><td>{$username}</td><td>{$nsid}</td></tr>";

}

$s = $s . "</table>";
echo "Your contact list (which requires read permission)
";
echo "Number of contacts: {$n_contacts}
";
echo $s;
?>

■Note Uploading photos to Flickr is a major part of the Flickr API that is not covered in this book. I suggest
reading the documentation (http://www.flickr.com/services/api/upload.api.html) and using one
of the API kits.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR164

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 164

Using Flickr API Kits
Once you get the hang of the APIs using REST, you’ll likely get tired of using it directly in your
programming. The details of authorizing users, uploading photos, and managing a cache of
Flickr results (to speed up access) are not things you want to deal with all the time.

API kits in various programming languages have been written to make it more comfort-
able for you to use the API in your language. These tools often express the Flickr API in terms
that are more natural for a given language, by abstracting data, maintaining sessions, and tak-
ing care of some of the trickier bits of the API.

You can find a list of API kits for Flickr here:

http://www.flickr.com/services/api/

In this section I’ll describe briefly some options of API kits for PHP. Currently, three Flickr
API kits are publicized on the Flickr services page. This section shows how to set them up to do
a simple example of a working program for each of the API kits. You then need to figure out
which is the best to use for your given situation.

SETTING UP INCLUDE_PATH AND FLICKR KEYS

Whenever you use third-party libraries, you need to ensure that your PHP path (the include_path variable)
is set properly so that your PHP code can find your libraries. If you have access to php.ini, by all means use
it. You can also use the ini_set() function in PHP to set your include_path variable within your code. In
the following code, I assume that include_path is properly set.

Also, it’s convenient to store your Flickr key and secret in an external file that you can then include. For
the following examples, I have a file named fickr_key.php containing the following:

<?php
define('API_KEY', '[YOUR_KEY]');
define('API_SECRET', '[YOUR_SECRET]');
?>

PEAR::Flickr_API
This kit,7 written by Cal Henderson, is the earliest and simplest of the API kits. To try it on your
hosting platform, make sure you have PEAR installed, and install the library using the following
command:

pear install -of http://code.iamcal.com/php/flickr/Flickr_API-Latest.tgz

Here’s a little code snippet to show you its structure:

<?php
include("flickr_key.php");
require_once 'Flickr/API.php';
create a new api object

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 165

7. http://code.iamcal.com/php/flickr/readme.htm

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 165

$api =& new Flickr_API(array(
'api_key' => API_KEY,
'api_secret' => API_SECRET

));

call a method

$response = $api->callMethod('flickr.photos.search', array(
'tags' => 'flower',
'per_page' => '10'

));

check the response

if ($response){
response is an XML_Tree root object
echo "total number of photos: ", $response->children[0]->attributes["total"];

}else{
fetch the error
$code = $api->getErrorCode();
$message = $api->getErrorMessage();

}
?>

Why might you want to use PEAR::Flickr_API? It’s a simple wrapper with some defining
characteristics:

• There’s not much of an abstraction of the method calls. You pass in the method name.
The advantage is that the API will not be out-of-date with the addition of new Flickr
methods. The disadvantage is that one can imagine abstractions that are more idiomatic
PHP.

• You pass in the API key when creating a new Flickr_API object.

• The response is an XML_Tree root object.8

My conclusion is that it makes sense to use one of the newer, richer PHP API kits: phpFlickr
or Phlickr; also, more people are actively working on them.

phpFlickr
You can find Dan Coulter’s toolkit at http://phpflickr.com/. It is written in PHP 4, which is
currently an advantage, since PHP 5 is not always readily available. Moreover, there seems to
be a continued active community around phpFlickr. To install and test the library, following
these steps:

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR166

8. http://pear.php.net/package/XML_Tree—this package has been superseded by XML_Serializer
(http://pear.php.net/package/XML_Serializer)

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 166

1. Follow the detailed instructions at http://phpflickr.com/docs/?page=install. Down-
load the latest ZIP file from http://sourceforge.net/projects/phpflickr. At the time
of writing, the latest is the following:9

http://downloads.sourceforge.net/phpflickr/phpFlickr-2.1.0.tar.gz

or the following:

http://downloads.sourceforge.net/phpflickr/phpFlickr-2.1.0.zip

2. In theory, PEAR should let me install it, but I was not been able to get it to install
phpFlickr.10 Uncompress the file into a directory so that you can include it. I put it in
a non-PEAR phplib directory and renamed the file to phpFlickr.

3. Copy and paste the following code as a demonstration of working code:

<?php

include("flickr_key.php");
require_once("phpFlickr/phpFlickr.php");

$api = new phpFlickr(API_KEY, API_SECRET);

#
Get user's ID
#
$username = 'Raymond Yee';
if (isset($_GET['username']))

$username = $_GET['username'];
$user_id = $api->people_findByUsername($username);
$user_id = $user_id['id'];

print $user_id;

?>

Let’s see how phpFlickr works:

• The constructor has three arguments: the mandatory API key and two optional param-
eters, secret and die_on_error (a Boolean for whether to die on an error condition).
Remember that you can use the getErrorCode() and getErrorMsg() functions of $api.11

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 167

9. http://sourceforge.net/project/showfiles.php?group_id=139987&package_id=153541&release_id=488387

10. pear install -of http://downloads.sourceforge.net/phpflickr/phpFlickr-2.1.0.tar.gz gets me “Could
not extract the package.xml file from /home/rdhyee/pear/temp/download/phpFlickr-2.1.0.tar.gz.”

11. http://phpflickr.com/docs/?page=install

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 167

• This is from the official documentation:

• Apparently, all of the API methods have been implemented in the phpFlickr class.

• To call a method, remove the flickr. part of the name, and replace any periods
with underscores. You call the functions with parameters in the order listed in the
Flickr documentation—with the exception of flickr.photos.search, for which you
pass in an associative array.

• To enable caching, use the phpFlickr::enableCache() function.

Because the naming convention of phpFlickr, which is closely related to that of the
Flickr API, you can translate what you know from working with the API pretty directly into
using phpFlickr.

Phlickr
Phlickr requires PHP 5 and is not just a facile wrapper around the Flickr API; it provides new
classes that significantly abstract the API. There are significant advantages to this approach; if
the abstraction is done well, you should be able to program Flickr in a more convenient and
natural method in the context of PHP 5 (for example, you can work with objects and not XML,
which you can then turn into objects). The downside is that you might need to juggle between
the Flickr API’s way of organizing Flickr functionality and the viewpoint of the Phlickr author.
Moreover, if Flickr adds new methods, there is a greater chance of Phlickr breaking as a result—
or at least not being able to keep up with such changes.

The home page for the project is as follows:

http://drewish.com/projects/phlickr/

You can get the latest version of Phlickr from here:

http://sourceforge.net/project/showfiles.php?group_id=129880

The following code is a simple demonstration of Phlickr in action—it uses the
flickr.test.echo method:

<?php
ini_set(
'include_path',
ini_get('include_path') . PATH_SEPARATOR . "/home/rdhyee/pear/lib/php"

);

require_once 'Phlickr/Api.php';

#insert your own Flickr API KEY here
define('FLICKR_API_KEY', '[API-KEY]''');
define('FLICKR_API_SECRET', '[SECRET]''');

$api = new Phlickr_Api(FLICKR_API_KEY, FLICKR_API_SECRET);
$response = $api->ExecuteMethod(
'flickr.test.echo',
array('message' => 'It worked!'));

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR168

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 168

print "<hi>{$response->xml->message}</h1>";
?>

http://drewish.com/projects/phlickr/docs/ documents the objects of the library. To
learn more about Phlickr, buy and read Building Flickr Applications with PHP by Rob Kunkle
and Andrew Morton (Apress, 2006). Andrew Morton is the author of Phlickr.

■Note Phlickr must be in a folder called exactly Phlickr for operating systems (such as Linux) whose
filenames are case-sensitive.

Limitations of the Flickr API
The Flickr API is extensive. The methods of the Flickr API are a fairly stable, well-supported
way for your program to access data about most resources from Flickr. As one would expect,
the functionality of the Flickr API overlaps strongly with that of the Flickr UI—but the two are
not identical. There are currently things you can do in the UI that you can’t do in the API. For
example:

• Although you can access a Flickr group’s photo pool, you can’t read or write to the group
discussions with the API (though you can get at the latest comments in a group discus-
sion through Flickr feeds).

• You can’t add, delete, and configure a weblog for your Flickr account including layout
and settings with the API.

• You can’t add or delete contacts via the API.

• You can’t delete your Flickr account with the API or do most of the account management
elements such as changing your e-mail or using a different Yahoo! ID for this Flickr account.

• There is no support for Flickr collections in the API.

• I don’t think there is currently support for tag clusters in the API (http://tech.groups.
yahoo.com/group/yws-flickr/message/1596).

Some of limitations of the API are probably intentional design decisions that are unlikely
to change (such as not being able to programmatically delete your entire account). Other dis-
crepancies reflect that new features in Flickr tend to show up first in the UI and then in the API.
I would guess, for instance, that there will eventually be support for Flickr collections in
the API.

I will point out another class of differences between the API and UI. There is, however,
some information from Flickr that is available from both the UI and the API—but that is easier
to derive from screen-scraping the UI and through using the API. Take this, for example:

http://www.flickr.com/photos/{user-id}/archives/

This lists for every year and month the number of photos that the user has taken or uploaded.
Accessing this information from the UI involves one HTTP GET and screen-scraping the HTML.
In contrast, generating the same dataset using the Flickr API requires calculating Unix timestamps

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR 169

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 169

for the beginnings and ends of months (for the time zone of the user, which is not available via
the API) so that you can feed those time boundaries to flickr.photos.getCounts.

What’s the point here? Although the API provides the flexibility to calculate the number of
photos taken or uploaded between any two arbitrary times, the UI for the archives provides
a count of the photos for a very useful default case (that by month), which turns out to require
a bit of work to get from the API. In other words, the UI of an application gives insight into what
the mainstream use cases for the API are.

I’ve found such examples about limitations of APIs with respect to the UI a bit surprising
at first. I would have expected a given functionality to be purposely excluded from the API
(because of a policy decision) or easier to programmatically access via the UI—but not harder
than screen-scraping using the API. Otherwise, there’s a disincentive to use the API in that case.

Summary
If you have read this long chapter and studied the examples in depth, you should now be able
to see both the conceptual heart of the Flickr API—a bunch of HTTP requests that look like
HTML form submissions and responses that by default return nice-to-parse XML—and the
complexities that arise when dealing with various cases (different request and response for-
mats, authorization, and the need to abstract the API when using them in practice). I’m a big
believer in learning as much as you can from the API before taking on authorization. You can
use simple calls to solidify your understanding of HTTP and XML processing. Then you can
move on to the more complicated cases when you are ready.

If you want to make sense of the Flickr API as a whole, focus on tackling specific problems
that get you into exploring parts of the API. The reflection methods, though, do give you the
potential to computationally support your understanding of the API as well as make more robust
libraries for interacting with Flickr.

Understanding the underlying details of Flickr authorization is something you don’t have
to deal with if you don’t want to—turn to your favorite API kit for help. However, understand-
ing it brings not only intellectual satisfaction but also enables you to better understand other
authorization schemes you may encounter (such as the one for Amazon S3).

In the next chapter, we’ll turn to web APIs other than Flickr. I will use the lens of the Flickr
API to show you how to explore the bigger world of APIs in general.

CHAPTER 6 ■ LEARNING WEB SERVICES APIS THROUGH FLICKR170

858Xch06FINAL.qxd 2/4/08 2:53 PM Page 170

Exploring Other Web APIs

In Chapter 6, you examined the Flickr API in great detail, so I’ll turn now to other web APIs.
Studying the Flickr API in depth is obviously useful if you plan to use it in your mashups, but
I argue here that it’s useful in your study of other APIs because you can draw from your under-
standing of the Flickr API as a point of comparison. (I’ll cover the subject of HTTP web APIs
bound to a JavaScript context in the next chapter. You’ll take what you learn in Chapter 6 and
this chapter and study the specific context of working within the modern web browser using
JavaScript.)

How do you generalize from what you know about the Flickr API to other web APIs? I will
use three major axes/categories for organizing my presentation of web APIs. (I’m presenting
some heuristics for thinking about the subject rather than a watertight formula. This scheme
won’t magically enable you to instantly understand all the various APIs out there.) The cate-
gories I use are as follows:

• The protocols used by the API. Some questions that I’ll discuss include the following: Is
the API available with a REST interface? Does it use SOAP or XML-RPC?

• The popularity or influence of the API. It’s helpful to understand some of the more pop-
ular APIs because of their influence on the field in general and also because popularity
is an indicator of some utility. We’ll look at how you might figure out what’s popular.

• The subject matter of the APIs. Since APIs are often tied to specific subject matter, you’ll
naturally need to understand the basics of the subject to make sense of the APIs. What
are some of those subject areas?

It doesn’t take being too long in the field of web services to hear about REST vs. SOAP as
a great divide—and hence the impetus for classifying web services by the protocols used. You
already saw the terms REST and SOAP (as well as XML-RPC) in Chapter 6 to describe the request
and response formats available to developers of the Flickr API. I focused on the Flickr REST
formats because they are not only the easiest ones to work with but also they are the ones that
are most helpful for learning other APIs.

In this chapter, I’ll cover what XML-RPC and SOAP are about. Understanding just Flickr’s
REST request/response structure can get you far—but there are web APIs that have only
XML-RPC or SOAP interfaces. So, I’ll start by discussing XML-RPC and SOAP and show you
the basics of how to use those two protocols. Also, I’ll lay out tips for dealing with the practical
complexities that sometimes arise in consuming SOAP services.

171

C H A P T E R 7

■ ■ ■

858X_ch07.qxd 2/4/08 2:54 PM Page 171

■Note The term REST (an acronym for Representational State Transfer) was coined by Roy Fielding to describe
a set of architectural principles for networks. In Fielding’s usage, REST is not specifically tied to HTTP or the Web.
At the same time, a popular usage has arisen for REST to refer to exchanging messages over HTTP without using
such protocols as SOAP and XML-RPC, which introduce an additional envelope around these messages. These
two different usages of the term REST have caused confusion since it is possible to use HTTP to exchange mes-
sages without additional envelopes in a way that nonetheless does not conform to REST principles. If a creator of
a service associates the service with the term REST (such as the Flickr REST interface), I will also refer to it as
REST in this chapter.

Once you have a good understanding of the protocols and architectural issues behind
HTTP web services, you’re in a good position to consume any web API you come across—at
least on a technical level. You still have to understand what a service is about and which serv-
ices you might want to use. I will cover how to use Programmableweb.com as a great resource
to learn about APIs in general. Programmableweb.com helps you understand which are the
popular APIs as well as how APIs can be categorized by subject matter. I conclude the chapter
with a study of two APIs: the API for YouTube as a simple REST interface and the Blogger API
as a specific case of an entire class of APIs that share a uniform interface based on a strict
usage of the HTTP methods.

XML-RPC
Although Flickr provides the option of using the XML-RPC and SOAP request and response
formats in addition to REST, I wrote all my examples using the Flickr REST request format in
Chapter 6. I’ll show you how to use the XML-RPC protocol in this section and cover SOAP in
the following section.

■Tip Before taking on this section, it might be helpful to review Chapter 6’s “A Refresher on HTTP” section
and remind yourself of the structure of an HTTP request and response and the variety of HTTP request methods.

XML-RPC is defined at http://www.xmlrpc.com/ as “remote procedure calling using HTTP
as the transport and XML as the encoding.” XML-RPC specifies how to form remote procedure
calls in terms of requests and responses, each of which has parameters composed of some
basic data types. There are XML-RPC libraries written in many languages, including PHP and
Python.

A central point of having an XML-RPC interface for a web API is akin to that of an API kit—
getting an interface that is a closer fit to the native structures and found in the programming
language you are using. Let’s consider a specific example to make this point.

Recall from Chapter 6 how to use the Flickr REST interface to search for public photos.
You do an HTTP GET request on the following URL:

CHAPTER 7 ■ EXPLORING OTHER WEB APIS172

858X_ch07.qxd 2/4/08 2:54 PM Page 172

http://api.flickr.com/services/rest/?method=flickr.test.echo&api_key={api-key}

and parse the resulting XML (using, say, the libcurl and simpleXML libraries in PHP). Let’s see
how you do the same query using XML-RPC in Python and PHP for comparison. In Python, you
can use xmlrpclib, which is part of the standard Python distribution and is documented at

http://docs.python.org/lib/module-xmlrpclib.html

Here’s a program to illustrate how to make a call to Flickr: one to flickr.search.photos.
Note how parameters are passed in and how you can use the ElementTree library to parse the
output. To use the xmlrpclib to make this call, you need to know that the XML-RPC server
endpoint URL is as follows:

http://api.flickr.com/services/xmlrpc/

and you need to name your parameters and stick them into a dictionary. When I ran the
following:

API_KEY = "[API-KEY]"

from xmlrpclib import ServerProxy, Error, Fault
server = ServerProxy("http://api.flickr.com/services/xmlrpc/")

try:
from xml.etree import ElementTree as et

except:
from elementtree import ElementTree as et

call flickr.search.photos

args = {'api_key': API_KEY, 'tags':'flower', 'per_page':3}
try:

rsp = server.flickr.photos.search(args)
except Fault, f:

print "Error code %s: %s" % (f.faultCode, f.faultString)

show a bit of XML parsing using elementtree
useful examples: http://www.amk.ca/talks/2006-02-07/
context page for photo: http://www.flickr.com/photos/{user-id}/{photo-id}

fixes parsing errors when accented characters are present
rsp = rsp.encode('utf-8')
print rsp
tree = et.XML(rsp)
print "total number of photos: %s" %(tree.get('total'))
for p in tree.getiterator('photo'):

print "%s: http://www.flickr.com/photos/%s/%s" % (p.get("title"),➥

p.get("owner"), p.get("id"))

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 173

858X_ch07.qxd 2/4/08 2:54 PM Page 173

I got this:

<photos page="1" pages="485798" perpage="3" total="1457392">
<photo id="1236197537" owner="7823684@N06" secret="f58310acf3"

server="1178" farm="2" title="Rainbow over flower" ispublic="1"
isfriend="0" isfamily="0" />

<photo id="1236134903" owner="27238986@N00" secret="fa461fb8e3" server="1036"
farm="2" title="Watercolor" ispublic="1" isfriend="0"
isfamily="0" />

<photo id="1237043346" owner="33121739@N00" secret="7a116ff4af" server="1066"
farm="2" title="Flowers" ispublic="1" isfriend="0" isfamily="0" />

</photos>

total number of photos: 1457392
Rainbow over flower: http://www.flickr.com/photos/7823684@N06/1236197537
Watercolor: http://www.flickr.com/photos/27238986@N00/1236134903
Flowers: http://www.flickr.com/photos/33121739@N00/1237043346

Note how the xmlrpclib library takes care of packaging the response and sending you
back the XML payload (which doesn’t have the <rsp> root node that is in the Flickr REST
response). However, you still have to parse the XML payload. Whether using XML-RPC or
REST is more convenient, you can judge for yourself.

Let’s take a look at how some PHP code looks. There are two major PHP libraries for
XML-RPC:

• http://phpxmlrpc.sourceforge.net/

• http://pear.php.net/package/XML_RPC/

Here I show how to use the PEAR::XML_RPC package. You can install it using PEAR:

pear install XML_RPC

The following program shows how to use PEAR::XML-RPC to do a number of things:

• You can retrieve the current time by making a call that requires no parameters
(currentTime.getCurrentTime) from http://time.xmlrpc.com.

• In search_example(), you can make a specific call to flickr.photos.search.

• The class flickr_client shows how to generalize search_example() to handle more of
the Flickr methods.

Here’s the program:

<?php

// flickr_xmlrpc.php
// This code demonstrates how to use XML-RPC using the PEAR::XML-RPC library.
// gettime() is the simple example that involves
// calling a timeserver without passing in any parameters.
// search_example() shows a specific case of how to pass in some parameters
// for flickr.photos.search

CHAPTER 7 ■ EXPLORING OTHER WEB APIS174

858X_ch07.qxd 2/4/08 2:54 PM Page 174

// the flickr_client class generalizes search_example() to handle Flickr methods
// in general.

require_once('XML/RPC.php');
$API_KEY ='[API-KEY]';

function process_xmlrpc_resp($resp) {
if (!$resp->faultCode()) {

$val = $resp->value()->scalarval();
return $val;

} else {
$errormsg = 'Fault Code: ' . $resp->faultCode() . "\n" . 'Fault Reason: ' .
$resp->faultString() . "\n";

throw new Exception ($errormsg);
}

}

class flickr_client {

protected $api_key;
protected $server;

public function __construct($api_key, $debug) {
$this->api_key = $api_key;
$this->server =
new XML_RPC_Client('/services/xmlrpc','http://api.flickr.com',80);

$this->server->setDebug($debug);
}

public function call($method,$params) {

add the api_key to $params
$params['api_key'] = $this->api_key;

build the struct parameter needed
foreach ($params as $key=>$val) {
$xrv_array[$key] = new XML_RPC_Value($val,"string");

}
$xmlrpc_val = new XML_RPC_Value ($xrv_array,'struct');

$msg = new XML_RPC_Message($method, array($xmlrpc_val));
$resp = $this->server->send($msg);

return process_xmlrpc_resp($resp);

} //call

} //class flickr_client

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 175

858X_ch07.qxd 2/4/08 2:54 PM Page 175

function search_example () {
GLOBAL $API_KEY;
$server = new XML_RPC_Client('/services/xmlrpc','http://api.flickr.com',80);
$server->setDebug(0);

$myStruct = new XML_RPC_Value(array(
"api_key" => new XML_RPC_Value($API_KEY, "string"),
"tags" => new XML_RPC_Value('flower',"string"),
"per_page" => new XML_RPC_Value('2',"string"),
), "struct");

$msg = new XML_RPC_Message('flickr.photos.search', array($myStruct));
$resp = $server->send($msg);

return process_xmlrpc_resp($resp);
}

function gettime() {

http://www.xmlrpc.com/currentTime
$server = new XML_RPC_Client('/RPC2','http://time.xmlrpc.com',80);
$server->setDebug(0);

$msg = new XML_RPC_Message('currentTime.getCurrentTime');
$resp = $server->send($msg);

return process_xmlrpc_resp($resp);

}

print "current time: ".gettime();
print "output from search_example \n" . search_example(). "\n";

$flickr = new flickr_client($API_KEY,0);

print "output from generalized Flickr client using XML-RPC\n";
print $flickr->call('flickr.photos.search',array('tags'=>'dog','per_page'=>'2'));
?>

What’s Happening on the Wire?
XML-RPC is meant to abstract away how a remote procedure call is translated into an exchange
of XML documents over HTTP so that you as a user of XML-RPC don’t have to understand the
underlying process. That’s the theory with XML-RPC and especially with SOAP, an expansive
elaboration on XML-RPC out of which it originally evolved. In practice, with the right tools and
under certain circumstances, consuming services with XML-RPC or SOAP is a very simple,
trouble-free experience.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS176

858X_ch07.qxd 2/4/08 2:54 PM Page 176

At other times, however, you’ll find yourself having to know more about the underlying
protocol than you really need to know. For that reason, in the following sections I’ll show you
techniques for making sense of what XML is actually being exchanged and how it’s being
exchanged over HTTP. This discussion is meant as an explication of XML-RPC in its own right
but also as preparation for studying the yet more complicated SOAP later in the chapter. But
first, let’s look at two tools that I use to analyze XML-RPC and SOAP: Wireshark and curl.

Using Wireshark and curl to Analyze and Formulate
HTTP Messages
Wireshark (http://www.wireshark.org/) is an open source network protocol analyzer that
runs on Windows, OS X, and Linux. With it, you can analyze network traffic flowing through
your computer, including any HTTP traffic—making it incredibly useful for seeing what’s hap-
pening when you are using web APIs (or, if you are curious, merely surfing the Web). Refer to
the Wireshark site for instructions about how to install and run Wireshark for your platform.

■Tip With Wireshark, I found it helpful to turn off the Capture Packets in Promiscuous Mode option. Also,
for studying web service traffic, I filter for only HTTP traffic—otherwise, there is too much data to view.

curl (http://curl.haxx.se/) is another highly useful command-line tool for working with
HTTP—among many other things:

curl is a command line tool for transferring files with URL syntax, supporting FTP,

FTPS, HTTP, HTTPS, SCP, SFTP, TFTP, TELNET, DICT, FILE and LDAP. curl supports SSL

certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, proxies,

cookies, user+password authentication (Basic, Digest, NTLM, Negotiate, kerberos . . .),

file transfer resume, proxy tunneling, and a busload of other useful tricks.

Go to http://curl.haxx.se/download.html to find a package for your platform. Be sure to
look for packages that support SSL—you’ll need it when you come to some examples later this
chapter. Remember in particular the following documentation:

• http://curl.haxx.se/docs/manpage.html is the man page for curl.

• http://curl.haxx.se/docs/httpscripting.html is the most helpful page in many ways
because it gives concrete examples.

To learn these tools, I suggest using curl to issue an HTTP request and using Wireshark to
analyze the resulting traffic. For instance, you can start with the following:

curl http://www.yahoo.com

to see how to retrieve the contents of a web page. To see the details about the HTTP request
and response, turn on the verbose option and make explicit what was implicit (that fetching
the content of http://www.yahoo.com uses the HTTP GET method):

curl -v -X GET http://www.yahoo.com

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 177

858X_ch07.qxd 2/4/08 2:54 PM Page 177

You can get more practice studying Wireshark and the Flickr API by performing some func-
tion in the Flickr UI or in the Flickr API Explorer and seeing what HTTP traffic is exchanged. Try
operations that don’t require any Flickr permissions, and then try ones that require escalating
levels of permissions. You can see certainly see the Flickr API being invoked and when HTTP
GET vs. HTTP POST is used by Flickr—and specifically what is being sent back and forth.

I’ll teach you more about curl in the context of the following examples.

Parsing XML-RPC Traffic
When you look at the documentation for the XML-RPC request format for Flickr
(http://www.flickr.com/services/api/request.xmlrpc.html) and for the response for-
mat (http://www.flickr.com/services/api/response.xmlrpc.html), you’ll find confirmation
that the transport mechanism is indeed HTTP (just as it for the REST request and response).
However, the request parameters and response are wrapped in many layers of XML tags. I’ll
show you how to use Wireshark and curl to confirm for yourself what’s happening when you
use XML-RPC.

Here I use Wireshark to monitor what happens when I run the Python example that uses
the flickr.photos.search method and then use curl to manually duplicate the same request
to show how you can formulate XML-RPC requests without calling an XML-RPC library per se.
Again, I’m not advocating this as a practical way of using XML-RPC but as a way of understanding
what’s happening when you do use XML-RPC.

When I ran the Python program and monitored the HTTP traffic, I saw the following
request (an HTTP POST to /services/xmlrpc/):

POST /services/xmlrpc/ HTTP/1.0

It had the following HTTP request headers:

Host: api.flickr.com
User-Agent: xmlrpclib.py/1.0.1 (by www.pythonware.com)
Content-Type: text/xml
Content-Length: 415

and the following request body (reformatted here for clarity):

<?xml version='1.0'?>
<methodCall>
<methodName>flickr.photos.search</methodName>
<params>
<param>
<value><struct>
<member>
<name>per_page</name>
<value><int>3</int></value>

</member>
<member>
<name>api_key</name>
<value><string>[API-KEY]</string></value>

</member>
<member>

CHAPTER 7 ■ EXPLORING OTHER WEB APIS178

858X_ch07.qxd 2/4/08 2:54 PM Page 178

<name>tags</name>
<value><string>flower</string></value>

</member>
</struct></value>

</param>
</params>

</methodCall>

The HTTP response (edited here for clarity) was as follows:

HTTP/1.1 200 OK
Date: Sun, 26 Aug 2007 04:33:29 GMT
Server: Apache/2.0.52
[...some cookies....]
Content-Length: 1044
Connection: close
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="utf-8" ?>
<methodResponse>
<params>
<param>
<value>
<string>
<photos page="1" pages="485823"
perpage="3" total="1457468">
<photo id="1237314286" owner="41336703@N00"
secret="372291c5f7" server="1088" farm="2"
title="250807 047" ispublic="1" isfriend="0"
isfamily="0" />
<photo id="1236382563" owner="70983346@N00"
secret="459e79fde3" server="1376" farm="2"
title="Darling daisy necklace" ispublic="1"
isfriend="0" isfamily="0" />
<photo id="1237257850" owner="39312862@N00"
secret="fa9d15f9c3" server="1272" farm="2"
title="Peperomia species" ispublic="1"
isfriend="0" isfamily="0" />
</photos>

</string>
</value>

</param>
</params>

</methodResponse>

To make sense of the interchange, it’s useful to study the XML-RPC specification
(http://www.xmlrpc.com/spec) to learn that the Flickr XML-RPC request is passing in one
struct that holds all the parameters. The request uses HTTP POST. What comes back in the
response is an entity-encoded XML <photos> element (the results that we wanted from the API),

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 179

858X_ch07.qxd 2/4/08 2:54 PM Page 179

wrapped in a series of XML elements used in the XML-RPC protocol to encapsulate the
response. This process of serializing the request and deserializing the response is what an
XML-RPC library does for you.

We can take this study of XML-RPC one more step. You can use curl (or another HTTP client)
to confirm that you can synthesize an XML-RPC request independently of any XML-RPC library
to handle the work for you. This is not a convenient way to do things, and it defeats the purpose of
using a protocol such as XML-RPC—but this technique is helpful for proving to yourself that you
really understand what is really happening with a protocol.

To wit, to call flickr.photos.search using XML-RPC, you need to send an HTTP POST
request to http://api.flickr.com/services/xmlrpc/ whose body is the same as what I pulled
out using Wireshark. The call, formulated as an invocation of curl, is as follows:

curl -v -X POST --data-binary "<?xml version='1.0' encoding='UTF-8'?>➥

<methodCall><methodName>flickr.photos.search</methodName><params><param><value>➥

<struct><member><name>per_page</name><value><int>3</int></value></member><member>➥

<name>api_key</name><value><string>[API-KEY]</string></value></member><member>➥

<name>tags</name><value><string>flower</string></value></member></struct></value>➥

</param></params></methodCall>" http://api.flickr.com/services/xmlrpc/

■Note To write curl invocations that work from the command line of Windows, OS X, and Linux, I rewrote
the XML to use single quotes to allow me to use double quotes to wrap the XML.

You can issue this request through curl to convince yourself that you are now speaking
and understanding XML-RPC responses!

An XML-RPC library is supposed to hide the details you just looked at from you. One of the
major practical problems that I have run into when using XML-RPC (and SOAP) is understand-
ing for a given language and library how exactly to formulate a request. Notice some important
lines from the examples. An essentialist rendition of the Python example is as follows:

server = ServerProxy("http://api.flickr.com/services/xmlrpc/")
args = {'api_key': API_KEY, 'tags':'flower', 'per_page':3}
rsp = server.flickr.photos.search(args)
rsp = rsp.encode('utf-8')
tree = et.XML(rsp)
print "total number of photos: %s" %(tree.get('total'))

Besides the mechanics of calling the right libraries, you had to know how to pass in the
URL endpoint of the XML-RPC server—which is usually not too hard—but also how to pack-
age up the parameters. Here, I had to use a Python dictionary, whose keys are the names of the
Flickr parameters. I then call flickr.photos.search as a method of server and get back XML.

The PHP example can be boiled down to this:

$server = new XML_RPC_Client('/services/xmlrpc','http://api.flickr.com',80);
$myStruct = new XML_RPC_Value(array(

"api_key" => new XML_RPC_Value($API_KEY, "string"),
"tags" => new XML_RPC_Value('flower',"string"),

CHAPTER 7 ■ EXPLORING OTHER WEB APIS180

858X_ch07.qxd 2/4/08 2:54 PM Page 180

"per_page" => new XML_RPC_Value('2',"string"),
), "struct");

$msg = new XML_RPC_Message('flickr.photos.search', array($myStruct));
$resp = $server->send($msg);
$val = $resp->value()->scalarval();

Again, I knew what I had to tell PHP and the PEAR::XML_RPC library, and once someone
provides you with skeletal code like I did here, it’s not hard to use. However, it has been my
experience with XML-RPC and especially SOAP that it takes a lot of work to come up with the
incantation that works. Complexity is moved from having to process HTTP and XML directly
(as you would have using the Flickr REST interface) to understanding how to express methods
and their parameters in the way a given higher-level toolkit wants from you.

SOAP
SOAP is a complicated topic of which I readily admit to having only a limited understand-
ing. SOAP and the layers of technologies built on top of SOAP—WSDL, UDDI, and the various
WS-* specifications (http://en.wikipedia.org/wiki/WS-%2A)—are clearly getting lots of atten-
tion, especially in enterprise computing, which deals with needs addressed by this technology
stack. I cover SOAP and WSDL (and leave out the other specifications) in this book because
some of the APIs you may want to use in creating mashups are expressed in terms of SOAP
and WSDL. My goal is to provide practical guidance as to how to consume such services, pri-
marily from the perspective of a PHP and Python programmer.

As with XML-RPC, SOAP and WSDL are supposed to make your life as a programmer
easier by abstracting away the underlying HTTP and XML exchanges so that web services look
a lot like making a local procedure call. I’ll start with simple examples, using tools that make
using SOAP and WSDL pretty easy to use, in order to highlight the benefits of SOAP and WSDL,
and then I’ll move to more complicated examples that show some of the challenges. Specifi-
cally, I’ll show you first how to use a relatively straightforward SOAP service (geocoder.us),
proceeding to a more complicated service (Amazon.com’s ECS AWS), and then discussing
what turns out to be unexpectedly complicated (the Flickr SOAP interface).

The Dream: Plug-and-Go Functionality Through WSDL and SOAP
As you learned in Chapter 6, the process of using the Flickr REST interface generally involves
the following steps:

1. Finding the right Flickr method to use

2. Figuring out what parameters to pass in and how to package up the values

3. Parsing the XML payload

Although these steps are not conceptually difficult, they do tend to require a fair amount
of manual inspection of the Flickr documentation by any developer working directly with
the Flickr API. A Flickr API kit in the language of your choice might make it easier because it
makes Flickr look like an object in that language. Accordingly, you might then be able to use
the facilities of the language itself to tell you what Flickr methods are available and what parame-
ters they take and be able to get access to the results without having to directly parse XML yourself.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 181

858X_ch07.qxd 2/4/08 2:54 PM Page 181

You might be happy as a user of the third-party kit, but the author of any third-party kit for
Flickr must still deal with the original problem of manually translating the logic and semantics
of the Flickr documentation and API into code to abstract it away for the user of the API kit. It’s
a potentially tedious and error-prone process. In Chapter 6, I showed you how you could use the
flickr.reflection methods to automatically list the available API methods and their parameters.
Assuming that Flickr keeps the information coming out of those methods up-to-date, there is
plenty of potential to exploit with the reflection methods.

However, flickr.reflection.getMethodInfo does not currently give us information about the
formal data typing of the parameters or the XML payload. For instance, http://www.flickr.com/
services/api/flickr.photos.search.html tells us the following about the per_page argument:
“Number of photos to return per page. If this argument is omitted, it defaults to 100. The max-
imum allowed value is 500.” Although this information enables a human interpreter to properly
formulate the per_page argument, it would be difficult to write a program that takes advantage
of this fact about per_page. In fact, it would be useful even if flickr.reflections.getMethodInfo
could tell us that the argument is an integer without letting us know about its range.

That’s where Web Services Definition Language (WSDL) comes in as a potential solution,
along with its typical companion, SOAP. There are currently two noteworthy versions of WSDL.
Although WSDL 2.0 (documented at http://www.w3.org/TR/2007/REC-wsdl20-20070626/) is a W3C
recommendation, it seems to me that WSDL 1.1, which never became a de jure standard, will
remain the dominant version of WSDL for some time (both in WSDL documents you come
across and the tools with which you will have easy access). WSDL 1.1 is documented at http://
www.w3.org/TR/wsdl.

A WSDL document specifies the methods (or in WSDL-speak operations) that are avail-
able to you, their associated messages, and how they turned in concrete calls you can make,
typically through SOAP. (There is support in WSDL 2.0 for invoking calls using HTTP without
using SOAP.) Let me first show you concretely how to use WSDL, and I’ll then discuss some
details of its structure that you might want to know even if you choose never to look in depth
at how it works.

geocoder.us
Consider the geocoder.us service (http://geocoder.us/) that offers both free noncommercial
and for-pay commercial geocoding for U.S. addresses. You can turn to the API documentation
(http://geocoder.us/help/) to learn how to use its free REST-RDF, XML-RPC, and SOAP inter-
face. There are three methods supported by geocoder.us:

geocode: Takes a U.S. address or intersection and returns a list of results

geocode_address: Works just like geocode except that it accepts only an address

geocode_intersection: Works just like geocode except that it accepts only an intersection

CHAPTER 7 ■ EXPLORING OTHER WEB APIS182

858X_ch07.qxd 2/4/08 2:54 PM Page 182

Let’s first use the interface that is most familiar to you, which is its REST-RDF interface,
and consider the geocode method specifically. To find the latitude and longitude of an address,
you make an HTTP GET request of the following form:

http://geocoder.us/service/rest/geocode?address={address}

For example, applying the method to the address of Apress:

http://geocoder.us/service/rest/geocode?address=2855+Telegraph+Ave%2C+Berkeley%2C+CA

gets you this:

<?xml version="1.0"?>
<rdf:RDF
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>
<geo:Point rdf:nodeID="aid78384162">

<dc:description>2855 Telegraph Ave, Berkeley CA 94705</dc:description>
<geo:long>-122.260070</geo:long>
<geo:lat>37.858276</geo:lat>

</geo:Point>
</rdf:RDF>

Now let’s make the same call using the SOAP interface. Instead of making the SOAP call
directly to the geocode method, let’s use the WSDL document for the service:

http://geocoder.us/dist/eg/clients/GeoCoderPHP.wsdl

■Note Because the first WSDL document (http://geocoder.us/dist/eg/clients/GeoCoder.wsdl)
referenced by geocoder.us apparently gives PHP 5 heartburn, I instead use the second WSDL document
(GeoCoderPHP.wsdl) in this chapter.

I will use the WSDL document in a variety of ways to teach you the ideal usage pattern for
WSDL, which involves the following steps:

• A SOAP/WSDL tool/library takes a given WSDL document and makes transparent the
operations that are available to you.

• For a given operation, the SOAP/WSDL tool makes it easy for you to understand the
possible input parameters and formulate the appropriate request message.

• The SOAP/WSDL tool then returns the response to you in some easy-to-parse format
and handles any faults that come up in the course of the operation.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 183

858X_ch07.qxd 2/4/08 2:54 PM Page 183

Using the oXygen XML Editor
My favorite way of testing a WSDL file and issuing SOAP calls is to use a visual IDE such as
oXygen (http://www.oxygenxml.com/). Among the plethora of XML-related technologies sup-
ported by oXygen is the WSDL SOAP Analyser. I describe how you can use it to invoke the
geocoder.us geocode operation to illustrate a core workflow.

■Note oXygen is a commercial product. You can evaluate it for 30 days free of charge. XML Spy (http://
www.altova.com/), another commercial product, provides a similar WSDL tool. I know of one open source
project that lets you visually explore a WSDL document and invoke operations: the Web Services Explorer for
the Eclipse project that is part of the Web Tools project (http://www.eclipse.org/webtools/).

When you start the WSDL SOAP Analyser, you are prompted for the URL of a WSDL file. You
enter the URL for the geocoder.us WSDL (listed earlier), and oXygen reads the WSDL file and dis-
plays a panel with four subpanels. (Figure 7-1 shows the setup of this panel.) The first subpanel
contains three drop-down menus for three types of entities defined in the WSDL file:

• Services

• Ports

• Operations

The geocoder.us WSDL file follows a pattern typical for many WSDL files: it has one service
(GeoCode_Service) tied to one port (GeoCode_Port), which is tied, through a specific binding, to
one or more operations. It’s this list of operations that is the heart of the matter if you want to
use any of the SOAP services. The panel shows three operations (geocode, geocode_address,
and geocode_intersection) corresponding to the three methods available from geocoder.us.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS184

858X_ch07.qxd 2/4/08 2:54 PM Page 184

Figure 7-1. The WSDL SOAP Analyser panel loaded with the geocoder.us WSDL

The values shown in the three other subpanels depend on the operation you select. The
four subpanels list the parameters described in Table 7-1.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 185

858X_ch07.qxd 2/4/08 2:54 PM Page 185

Table 7-1. Panels and Parameters from the WSDL Soap Analyser in oXygen

Panel Parameter Explanation

WSDL Services Drop-down menu of services (for example, GeoCode_Service)

Ports Drop-down menu of ports (for example, GeoCode_Port)

Operations Drop-down menu of operations (for example, geocode)

Actions URL For example, http://rpc.geocoder.us/service/soap/

SOAP action For example, http://rpc.geocoder.us/Geo/Coder/US#geocode

Request The body of the request (you fill in the parameters)

Response The body of the response (this is the result of the operation)

As someone interested in just using the geocode operation (rather understanding the
underlying mechanics), you would jump immediately to the sample request that oXygen
generates:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<oxy:geocode xmlns:oxy="http://rpc.geocoder.us/Geo/Coder/US/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<location>STRING</location>

</oxy:geocode>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

To look up the address of Apress, you would replace this:

<location>STRING</location>

with the following:

<location>2855 Telegraph Ave, Berkeley CA 94705</location>

and hit the Send button on the Request subpanel to get the following to show up in the
Response subpanel:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<namesp6:geocodeResponse xmlns:namesp6="http://rpc.geocoder.us/Geo/Coder/US/">
<geo:s-gensym23 xsi:type="SOAP-ENC:Array"

xmlns:geo="http://rpc.geocoder.us/Geo/Coder/US/"
SOAP-ENC:arrayType="geo:GeocoderAddressResult[1]">
<item xsi:type="geo:GeocoderAddressResult">
<number xsi:type="xsd:int">2855</number>

CHAPTER 7 ■ EXPLORING OTHER WEB APIS186

858X_ch07.qxd 2/4/08 2:54 PM Page 186

<lat xsi:type="xsd:float">37.858276</lat>
<street xsi:type="xsd:string">Telegraph</street>
<state xsi:type="xsd:string">CA</state>
<zip xsi:type="xsd:int">94705</zip>
<city xsi:type="xsd:string">Berkeley</city>
<suffix xsi:type="xsd:string"/>
<long xsi:type="xsd:float">-122.260070</long>
<type xsi:type="xsd:string">Ave</type>
<prefix xsi:type="xsd:string"/>

</item>
</geo:s-gensym23>

</namesp6:geocodeResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

There you have it. Let’s review what oXygen and a WSDL document could accomplish
for you:

• You can get a list of operations available for the services and ports defined in the WSDL
(not atypically one service and port combination).

• You are given a template for the body of the request with an indication of the data type
of what you need to fill in.

• oXygen packages up the request, issues the HTTP request, handles the response, and
presents you with the results.

To confirm that you understand the nuances of the geocode SOAP call, you can rewrite the
SOAP request as a curl invocation—once you notice the role played by the two parameters
that oXygen does pick up from the WSDL document:

• The SOAP action of http://rpc.geocoder.us/Geo/Coder/US#geocode. In SOAP 1.1, the
version of SOAP used for geocoder.us, the SOAP action is transmitted as a SOAPAction
HTTP request header.

• The URL (or location) to target the SOAP call: http://rpc.geocoder.us/service/soap/.

SOAP 1.1 AND SOAP 1.2

Ideally, one wouldn’t need to dive too much into the SOAP protocol—after all, the whole point of SOAP is to
make access to web services look like programming objects on your own desktop or server. But libraries and
services do seem to have crucial dependences on the actual version of SOAP being used (for example).

SOAP has become a W3C Recommendation. The latest version of SOAP is 1.2:

http://www.w3.org/TR/soap12-part1/

Earlier versions of SOAP are still very much in use—maybe even more so than version 1.2. Version 1.1
is specified here:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 187

858X_ch07.qxd 2/4/08 2:54 PM Page 187

Here are a few salient differences between the two specifications (the differences are described in
detail at http://www.w3.org/TR/2007/REC-soap12-part0-20070427/#L4697):

• Different namespaces for the SOAP envelope (http://www.w3.org/2003/05/soap-envelope for
version 1.2 and http://schemas.xmlsoap.org/soap/envelope/ for version 1.1)—a practical
heuristic to help spot which version of SOAP you are dealing with.

• Different use of the SOAPAction parameter for the SOAP HTTP binding. In SOAP 1.2, a SOAPAction
HTTP request header is no longer used.

• The use of an HTTP response header of Content-Type “application/soap+xml” to identify SOAP 1.2.

I point out these differences because libraries and toolsets support different versions of SOAP.

You can now replicate this call with curl:

curl -v -X POST -H "SOAPAction: http://rpc.geocoder.us/Geo/Coder/US#geocode"➥

--data-binary "<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/➥

envelope/'><SOAP-ENV:Header/><SOAP-ENV:Body><oxy:geocode xmlns:oxy=➥

'http://rpc.geocoder.us/Geo/Coder/US/' SOAP-ENV:encodingStyle='http://schemas.➥

xmlsoap.org/soap/encoding/'><location>2855 Telegraph Ave, Berkeley, CA</location>➥

</oxy:geocode></SOAP-ENV:Body></SOAP-ENV:Envelope>"➥

http://rpc.geocoder.us/service/soap/

Note that you need to know the SOAPaction header and URL of the SOAP call only if you
are trying to understand all the details of the HTTP request and response. oXygen was just
being helpful in pointing out those parameters. They, however, were not needed to fill out an
address or interpret the latitude or longitude contained in the response.

■Note If you’re wondering why I’m not using Flickr for my concrete example, Flickr does not offer a WSDL
document even though it does present a SOAP interface. I’ll return to discussing Flickr in the later section
called “The Flickr API via SOAP.”

Even without access to oXygen or the Eclipse Web Services Explorer, you can use Tomi
Vanek’s WSDL XSLT-based viewer (http://tomi.vanek.sk/index.php?page=wsdl-viewer) to
make sense of a WSDL document. For example, take a look at the results for the geocoder.us
WSDL document:

http://www.w3.org/2000/06/webdata/xslt?xslfile=http://tomi.vanek.sk/xml/➥

wsdl-viewer.xsl&xmlfile=http://geocoder.us/dist/eg/clients/GeoCoderPHP.wsdl&➥

transform=Submit

Using Python’s SOAPpy
Let’s take a look how to use the geocoder.us WSDL using the SOAPpy library in Python.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS188

858X_ch07.qxd 2/4/08 2:54 PM Page 188

■Note You can download SOAPpy from http://pywebsvcs.sourceforge.net/. Mark Pilgrim’s Dive Into
Python provides a tutorial for SOAPpy at http://www.diveintopython.org/soap_web_services/
index.html.

The following piece of Python code shows the process of creating a WSDL proxy, asking
for the methods (or operations) that are defined in the WSDL document, and then calling the
geocode method and parsing the results:

from SOAPpy import WSDL

wsdl_url = r'http://geocoder.us/dist/eg/clients/GeoCoderPHP.wsdl'
server = WSDL.Proxy(wsdl_url)

let's see what operations are supported
server.show_methods()

geocode the Apress address
address = "2855 Telegraph Ave, Berkeley, CA"
result = server.geocode(location=address)
print "latitude and longitude: %s, %s" % (result[0]['lat'], result[0]['long'])

This produces the following output (edited for clarity):

Method Name: geocode_intersection
In #0: intersection ((u'http://www.w3.org/2001/XMLSchema', u'string'))
Out #0: results ((u'http://rpc.geocoder.us/Geo/Coder/US/',

u'ArrayOfGeocoderIntersectionResult'))

Method Name: geocode_address
In #0: address ((u'http://www.w3.org/2001/XMLSchema', u'string'))
Out #0: results ((u'http://rpc.geocoder.us/Geo/Coder/US/',

u'ArrayOfGeocoderAddressResult'))

Method Name: geocode
In #0: location ((u'http://www.w3.org/2001/XMLSchema', u'string'))
Out #0: results ((u'http://rpc.geocoder.us/Geo/Coder/US/',

u'ArrayOfGeocoderResult'))

latitude and longitude: 37.858276, -122.26007

Notice the reference to XML schema types in describing the location parameter for
geocode. The type definitions come, as one expects, from the WSDL document.

The concision of this code shows WSDL and SOAP in good light.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 189

858X_ch07.qxd 2/4/08 2:54 PM Page 189

USING SOAP FROM PHP

There are several choices of libraries for consuming SOAP in PHP:

• NuSOAP (http://sourceforge.net/projects/nusoap/)

• PEAR::SOAP package (http://pear.php.net/package/SOAP)

• The built-in SOAP library in PHP 5 (http://us2.php.net/soap), which is available if PHP is installed
with the enable-soap flag

In this book, I use the PEAR::SOAP library.

Using PHP PEAR::SOAP
Let’s do the straight-ahead PHP PEAR::SOAP invocation of geocode.us. You’ll the same pattern
of loading the WSDL document using a SOAP/WSDL library, packaging up a named parameter
(location) in the request, and then parsing the results.

<?php
example using PEAR::SOAP + Geocoder SOAP search
require 'SOAP/Client.php';

let's look up Apress
$address = '2855 Telegraph Avenue, Berkeley, CA 94705'; // your Google search terms

$wsdl_url = "http://geocoder.us/dist/eg/clients/GeoCoderPHP.wsdl";

true to indicate that it is a WSDL url.
$soap = new SOAP_Client($wsdl_url,true);

$params = array(
'location'=>$address

);

$results = $soap->call('geocode', $params);

include some fault handling code
if(PEAR::isError($results)) {

$fault = $results->getFault();
print "Error number " . $fault->faultcode . " occurred\n";
print " " . $fault->faultstring . "\n";

} else {
print "The latitude and longitude for address is: {$results[0]->lat},

{$results[0]->long}";
}
?>

CHAPTER 7 ■ EXPLORING OTHER WEB APIS190

858X_ch07.qxd 2/4/08 2:54 PM Page 190

■Note I have not been able to figure out how to use PEAR::SOAP to tell me the operations that are
available for a given WSDL file.

Amazon ECS
Now that you have studied the geocoder.us service, which has three SOAP methods, each with
a single input parameter, let’s turn to a more complicated example, the Amazon E-Commerce
Service (ECS):

http://www.amazon.com/E-Commerce-Service-AWS-home-page/b?ie=UTF8&node=12738641

See the “Setting Up an Amazon ECS Account” sidebar to learn about how to set up an
Amazon ECS account.

SETTING UP AN AMAZON ECS ACCOUNT

To use the service, you need to obtain keys by registering an account (like with Flickr):

http://www.amazon.com/gp/aws/registration/registration-form.html

If you already have an account, you can find your keys again:

http://aws-portal.amazon.com/gp/aws/developer/account/index.html/?ie=UTF8&
action=access-key

You get an access key ID and a secret access key to identify yourself and your agents to AWS. You can
also use an X.509 certificate, which the Amazon interface can generate for you.

Although I focus here on the SOAP interface, ECS also has a REST interface. The WSDL for
AWS-ECS is found at

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl?

Using one of the SOAP/WSDL toolkits I presented in the previous section (for example,
oXygen, the Eclipse Web Services Explorer, or Vanek’s WSDL viewer), you can easily determine
the 20 operations that are currently defined by the WSDL document. Here I show you how to
use the ItemSearch operation.

If you use oXygen to formulate a template for a SOAP request, you’ll get the following:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<ItemSearch
xmlns="http://webservices.amazon.com/AWSECommerceService/2007-07-16">
<AWSAccessKeyId>STRING</AWSAccessKeyId>

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 191

858X_ch07.qxd 2/4/08 2:54 PM Page 191

[5 tags]
<Shared>

[40 tags]
</Shared>
<Request>

[40 tags]
</Request>

</ItemSearch>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Let’s say you wanted to look for books with the keyword flower. To create the proper
request, you’ll need to figure out which of the many tags you must keep and how to fill out the
values that you need to fill out. Through reading the documentation for ItemSearch (http://
docs.amazonwebservices.com/AWSECommerceService/2007-07-16/DG/ItemSearch.html) and
trial and error, you can boil down the request template to the following:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<ItemSearch
xmlns="http://webservices.amazon.com/AWSECommerceService/2007-07-16">
<AWSAccessKeyId>STRING</AWSAccessKeyId>
<Request>
<Keywords>STRING</Keywords>
<SearchIndex>STRING</SearchIndex>

</Request>
</ItemSearch>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You can pull together a full request by filling out your Amazon key and entering flower
and Books for the <Keywords> and <SearchIndex> into a curl invocation:

curl -H "SOAPAction: http://soap.amazon.com" -d "<?xml version='1.0'➥

encoding='UTF-8'?><SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/➥

soap/envelope/'><SOAP-ENV:Header/><SOAP-ENV:Body><ItemSearch➥

xmlns='http://webservices.amazon.com/AWSECommerceService/2007-07-16'>➥

<AWSAccessKeyId>[AMAZON-KEY]</AWSAccessKeyId><Request><Keywords>flower</Keywords>➥

<SearchIndex>Books</SearchIndex></Request></ItemSearch></SOAP-ENV:Body>➥

</SOAP-ENV:Envelope>" http://soap.amazon.com/onca/soap?Service=AWSECommerceService

to which you get something like this:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

CHAPTER 7 ■ EXPLORING OTHER WEB APIS192

858X_ch07.qxd 2/4/08 2:54 PM Page 192

<SOAP-ENV:Body>
<ItemSearchResponse
xmlns="http://webservices.amazon.com/AWSECommerceService/2007-07-16">
<OperationRequest>

[....]
</OperationRequest>
<Items>
<Request>
<IsValid>True</IsValid>
<ItemSearchRequest>
<Keywords>flower</Keywords>
<SearchIndex>Books</SearchIndex>

</ItemSearchRequest>
</Request>
<TotalResults>34489</TotalResults>
<TotalPages>3449</TotalPages>
<Item>
<ASIN>0812968069</ASIN>

<DetailPageURL>
http://www.amazon.com/gp/redirect.html%3FASIN=0812968069%26➥

tag=ws%26lcode=sp1%26cID=2025%26ccmID=165953%26location=/o/ASIN/0812968069%253F➥

SubscriptionId=0Z8Z8FYGP01Q00KF5802</DetailPageURL>
<ItemAttributes>
<Author>Lisa See</Author>
<Manufacturer>Random House Trade Paperbacks</Manufacturer>
<ProductGroup>Book</ProductGroup>
<Title>Snow Flower and the Secret Fan: A Novel</Title>

</ItemAttributes>
</Item>

[...]
</Items>

</ItemSearchResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Notice what makes this example more complicated than geocoder.us:

• There are many more operations.

• There are many more parameters, and it’s not obvious what is mandatory without
reading the documentation and experimenting.

• The XML in the request and response involve complex types. Notice that <Keywords>
and <SearchIndex> are wrapped within <Request>. This representation means you have
to understand how to get your favorite SOAP library to package up the request and han-
dle the response.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 193

858X_ch07.qxd 2/4/08 2:54 PM Page 193

Using the Python SOAPpy library, you perform the same SOAP call with the following:

amazon search using WSDL
KEY = "[AMAZON-KEY]"

from SOAPpy import WSDL

class amazon_ecs(object):
def __init__(self, key):

AMAZON_WSDL =
"http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl?"

self.key = key
self.server = WSDL.Proxy(AMAZON_WSDL)

def ItemSearch(self,Keywords,SearchIndex):
return self.server.ItemSearch(AWSAccessKeyId=self.key,Request=➥

{'Keywords':Keywords,'SearchIndex':SearchIndex})

if __name__ == "__main__":
aws = amazon_ecs(KEY)
results= aws.ItemSearch('flower','Books')
print results.Items.TotalPages, results.Items.TotalResults
for item in results.Items.Item:

print item.ASIN, item.DetailPageURL, item.ItemAttributes.Author

Notice in particular how to represent the nested parameters in this:

self.server.ItemSearch(AWSAccessKeyId=self.key,Request=➥

{'Keywords':Keywords,'SearchIndex':SearchIndex})

Also notice how to read off the nested elements in the XML response:

print results.Items.TotalPages, results.Items.TotalResults
for item in results.Items.Item:

print item.ASIN, item.DetailPageURL, item.ItemAttributes.Author

When you look at this Python code and my description of how to use oXygen to interface
with Amazon ECS via WSDL and SOAP, you might think to yourself that doing so doesn’t look
that hard. The combination of WSDL and SOAP does indeed bring some undeniable conven-
iences such as the automated discovery of what methods are available to you as a programmer.
However, my experience of SOAP and WSDL is that they are still a long way from plug-and-go
technology—at least in the world of scripting languages such as PHP and Python. It took me
a great amount of trial and error, reverse engineering, reading source code, and hunting around
to even get to the point of distilling for you the various examples of how to use SOAP and WSDL
you see here. I would have wanted to reduce using SOAP and WSDL to full-proof recipes that
hid from you what was happening underneath.

For instance—returning to the example—I was not able to able to craft a satisfactory work-
ing example of using PEAR::SOAP to call ItemSearch. Some of the issues I struggled with included
how to pass in parameters with complex types to a SOAP call, how to parse the results, and how
to debug the entire process. I’d be willing to bet that there is in fact a way to make this call work

CHAPTER 7 ■ EXPLORING OTHER WEB APIS194

858X_ch07.qxd 2/4/08 2:54 PM Page 194

with PEAR::SOAP or in some other PHP toolkit. However, if I had wanted to call this SOAP service
only for a mashup, I would likely have given up even earlier on figuring out how to make it work.

■Note It might be true that if you use Java or .NET, programming environments for which there is deep
support for SOAP and WSDL, you might have an easier time using this technology. Don’t let me discourage
you from trying those tools. I hope to find out for myself whether libraries such as Axis from the Apache Project
(http://ws.apache.org/axis/java/index.html) or the WSDL functionality in .NET do indeed make my
life as a SOAP developer easier.

The Flickr API via SOAP
The Flickr SOAP request and response formats are documented here:

http://www.flickr.com/services/api/request.soap.html
http://www.flickr.com/services/api/response.soap.html

The first thing to notice about the Flickr SOAP interface is that Flickr provides no WSDL
document to tell us how to use it. Hence, if you want to use Flickr SOAP, you need to figure out
how call it directly yourself. But why bother? Flickr has a wonderfully supported REST inter-
face that you already know how to use. If you go down the road of using the SOAP interface,
you’ll have to deal with many challenges, some of which I have already discussed.

Learning About Specific Web APIs
In the previous section, I showed you how to call web APIs that use XML-RPC and SOAP. That
still leaves many APIs that fall under the name of REST—ones that look a lot like the Flickr
REST interface. These APIs take some things we are familiar with from web browsers, such as
going to a specific URL to get back some results and submitting HTML forms to make a query,
but they have one important difference: instead of sending mostly HTML (which is directed at
human consumption), you send primarily XML, a lingua franca of computer data exchange.
For that reason, you should remind yourself of what you’ve learned from the previous chapters
as you embark on a study of other REST APIs.

In the following sections, I’ll make sense of the world of web APIs, covering how to find
out what APIs are available and then how to use a particular API. I’ll start my discussion by
introducing perhaps the single most useful website about web APIs: Programmableweb.com.
There’s a lot of information that is both readily apparent and waiting to be discovered in this
treasure trove of data.

■Note Other directories of web services that are worth exploring are http://www.xmethods.net/,
which lists publicly available SOAP services, and http://strikeiron.com/, a provider of commercial web
services that you can try for free.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 195

858X_ch07.qxd 2/4/08 2:54 PM Page 195

Programmableweb.com
Programmableweb.com, started and maintained by Jon Musser, is an excellent resource for
learning about what APIs are available, the basic parameters for the APIs, and the mashups
that use any given API. Some noteworthy sections are as follows:

• http://www.programmableweb.com/apis is the “API dashboard” that lists the latest APIs
to be registered and the most popular APIs being used in mashups.

• http://www.programmableweb.com/apilist/bycat lists APIs by categories. Understanding
the various categories that have emerged is helpful for understanding for which fields
of endeavor people are making APIs.

• http://www.programmableweb.com/apilist/bymashups lists APIs by how many times they
are used in the mashups registered at Programmableweb.com.

I highly recommend a close and periodic study of Programmableweb.com for anybody
wanting to learn about web APIs and mashups. Let me show some of the things you can learn
from the website, based both on what is directly presented on the site and on data that John
Musser has sent me. Although web APIs and corresponding mashups are rapidly changing, the
data (and derived results), accurate for August 11, 2007, demonstrates some trends that I think
will hold for a while yet.

The first thing to know is that of the 494 web APIs in the database, we get the distribution
of number of APIs by protocol supported shown in Table 7-2. Note that some APIs are multiply
represented.

Table 7-2. Number of APIs vs. Protocol in Programmableweb.com

Protocol Number of APIs with Support

REST 255

SOAP 131

XML-RPC 19

JavaScript 30

Other 16

Some other observations drawn from the database are as follows:

• Ninety-three APIs have WSDL files associated with them.

• Of the 131 APIs that support SOAP, 42 also support REST—leaving 89 that support SOAP
but not REST. Eighty-eight APIs support only SOAP.

• XML-RPC is the only choice for nine APIs.

• JavaScript is listed as the exclusive protocol for 25 APIs.

The following are my conclusions based on this data:

• REST is the dominant mode of presenting web APIs, but a significant number of APIs
exist where your only choice is SOAP.

• There are a relatively small number of APIs listing XML-RPC as the only choice of protocol.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS196

858X_ch07.qxd 2/4/08 2:54 PM Page 196

It’s therefore useful to know how to use SOAP and XML-RPC, even if they are not your first
choice.

■Note A large number of APIs list JavaScript as a protocol. I’ll cover such APIs in the next chapter.

Table 7-3 lists the top 20 APIs on Programmableweb.com by mashup count and also lists
the type of protocols supported by the API.

Table 7-3. Top 21 APIs by Mashup Count

API Name Number of Mashups Protocols Support

Google Maps 1110 JavaScript

Flickr 243 REST, SOAP, XML-RPC

Amazon E-Commerce Service 174 REST, SOAP

YouTube 149 REST, XML-RPC

Microsoft Virtual Earth 97 JavaScript

Yahoo! Maps 95 REST, JavaScript, Flash

411Sync 89 RSS input over HTTP, SOAP

eBay 89 SOAP, REST

del.icio.us 83 REST

Google Search 79 SOAP

Yahoo! Search 78 REST

Yahoo! Geocoding 66 REST

Technorati 40 REST

Yahoo! Image Search 31 REST

Yahoo! Local Search 30 REST

Last.fm 28 REST

Google home page 27 JavaScript

Google Ajax Search 24 JavaScript

Upcoming.org 21 REST

Windows Live Search 21 SOAP

Feedburner 21 REST

What can you do with this information? To learn about popular APIs, one approach would
be to go down the list systematically to figure out how each works. Indeed, through the rest of
the book, I’ll cover many of the APIs in the table. The Flickr API is the second most used API in
mashups and is a main subject throughout this book. I’ll cover the JavaScript-based maps
(first and foremost Google Maps but also Yahoo! Maps and Virtual Earth) first in Chapter 8 and
then in depth in Chapter 13. I’ll cover the Yahoo! Geocoding API extensively also in Chapter 13.
I’ll cover various search APIs (Google Search, Yahoo! Search, Yahoo! Image Search, and Windows

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 197

858X_ch07.qxd 2/4/08 2:54 PM Page 197

Live Search) in Chapter 19. Finally, I’ll cover the del.icio.us API in Chapter 14 on social book-
marking. Indeed, the fact that I cover many APIs clustered by subject matter indicates that it is
a natural way to think about APIs.

YouTube
YouTube is probably the most famous video-sharing site on the Web—and it also uses tagging as
one way of organizing content. The YouTube API is documented at http://www.youtube.com/dev.

The YouTube API supports both a REST interface and an XML-RPC interface. The
examples I give in this section use the REST interface. You can find a list of methods at http://
www.youtube.com/dev_docs.

To use the API, you need to set up your own development profile; see http://www.youtube.com/
my_profile_dev.

An interesting feature of the registration process is that you enter your own secret (instead
of having one set by YouTube). When you submit your profile information, you then get a “devel-
oper ID.” The following are some sample calls. To get the user profile for a user (for example,
rdhyee), you do an HTTP GET on the following:

http://www.youtube.com/api2_rest?method=youtube.users.get_profile&➥

dev_id={youtube-key}&user=rdhyee

YouTube will send you a response something like this:

<?xml version="1.0" encoding="utf-8"?>
<ut_response status="ok">
<user_profile>
<first_name>Raymond</first_name>
<last_name/>
<about_me/>
<age>40</age>
<video_upload_count>2</video_upload_count>
<video_watch_count>102</video_watch_count>
[....]

</user_profile>
</ut_response>

To get the list of rdhyee’s favorite videos, use this:

http://www.youtube.com/api2_rest?method=youtube.users.list_favorite_videos&➥

dev_id={youtube-key}&user=rdhyee

To get details of a video with an ID of XHnE4umovw4, use this:

http://www.youtube.com/api2_rest?method=youtube.videos.get_details&➥

dev_id={youtube-key} &video_id=XHnE4umovw4

To get videos for the tag HolidayWeekend, use this:

http://www.youtube.com/api2_rest?method=youtube.videos.list_by_tag&➥

dev_id={youtube-key}&tag=HolidayWeekend&page=1&per_page=100

There’s more to the API, but you can get a feel for how it works through these examples.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS198

858X_ch07.qxd 2/4/08 2:54 PM Page 198

■Caution Expect the YouTube API to evolve into something more like the rest of Google’s APIs: http://
code.google.com/apis/youtube/overview.html.

GData and the Blogger API
The Atom Publishing Protocol (APP), a companion to the Atom Syndication Format (Atom 1.0)
described in Chapter 2, represents the next generation of the blogging APIs. APP is currently
a draft IETF proposal:

http://tools.ietf.org/wg/atompub/draft-ietf-atompub-protocol/

which is linked from here:

http://tools.ietf.org/wg/atompub/

One of APP’s biggest supporters thus far has been Google, which has implemented GData,
which is based on Atom 1.0 and RSS 2.0 feeds, combined with APP. GData, which incorporates
Google-specific extensions, is the foundation of the APIs for many of its services, including
Google Base, Blogger, Google Calendar, Google Code Search, and Google Notebook:

http://code.google.com/apis/gdata/index.html

The API for Blogger is documented here:

http://code.google.com/apis/blogger/developers_guide_protocol.html

In the following sections, you’ll learn the basics of the API for Blogger as a way of under-
standing GData and APP in general.

Obtaining an Authorization Token
The first thing you need to have is a Google account to use Blogger. If you don’t have one, go to
the following location to create one:

https://www.google.com/accounts/NewAccount

Next, with a Google account, you obtain an authorization token. One way to do so is to fol-
low the procedure for ClientLogin (one of two Google authorization mechanisms) detailed here:

http://code.google.com/apis/blogger/developers_guide_protocol.html#client_login

Specifically, you make an HTTP POST request to the following location:

https://www.google.com/accounts/ClientLogin

The body must contain the following parameters (using the application/
x-www-form-urlencoded content type):

Email: Your Google email (for example, raymond.yee@gmail.com)

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 199

858X_ch07.qxd 2/4/08 2:54 PM Page 199

Password: Your Google password

source: A string of the form companyName-applicationName-versionID to identify your
program (for example, mashupguide.net-Chap7-v1)

service: The name of the Google service, which in this case is blogger

Using the example parameters listed here, you can package up the authorization request
as the following curl invocation:

curl -v -X POST -d "Passwd={passwd}&source=mashupguide.net-Chap7-v1&➥

Email=raymond.yee%40gmail.com&service=blogger"➥

https://www.google.com/accounts/ClientLogin

If this call succeeds, you will get in the body of the response an Auth token (of the form
Auth=[AUTH-TOKEN]). Retain the AUTH-TOKEN for your next calls.

Figuring Out Your Blogger User ID
If you don’t have a blog on Blogger.com, create one here:

http://www.blogger.com/create-blog.g

Now figure out your Blogger user ID by going to and noting the URL associated with the
View link (beside the Edit Profile link):

http://www.blogger.com/home

Your View link will be of the following form:

http://www.blogger.com/profile/{userID}

For example, my blog profile is as follows:

http://www.blogger.com/profile/13847941708302188690

So, my user ID is 13847941708302188690.

Getting a List of a User’s Blogs and a Blog’s Posts
Note that Blogger lists user blogs in a user’s profile:

http://www.blogger.com/profile/{userID}

From an API point of view, you can retrieve an Atom feed of a user’s blog here:

http://www.blogger.com/feeds/{userID}/blogs

That the list of blogs is an Atom feed and not some custom-purpose XML (such as that
coming out of the Flickr API) is useful. You can look at the feed of your blogs to pull out the
blog ID for one of your blogs. For instance, one of my blogs is entitled “Hypotyposis Redux”
and is listed in the feed with the following tag:

<id>tag:blogger.com,1999:user-354598769533.blog-5586336</id>

CHAPTER 7 ■ EXPLORING OTHER WEB APIS200

858X_ch07.qxd 2/4/08 2:54 PM Page 200

From this you can determine its blog ID of 5586336. With this blogID, you can now send
HTTP GET requests to retrieve an Atom feed of posts here:

http://www.blogger.com/feeds/{blogID}/posts/default

For example:

http://www.blogger.com/feeds/5586336/posts/default

Creating a New Blog Entry
Let’s now look at how to create a new post. A central design idea behind the Atom Publishing
Protocol and hence its derivatives—GData generally and the Blogger API specifically—is the
notion of a uniform interface based on the standard HTTP methods. At this point, it’s useful to
refer to the “Methods Definition” of the HTTP 1.1 specification (http://www.w3.org/Protocols/
rfc2616/rfc2616-sec9.html), specifically the definition for POST:

The POST method is used to request that the origin server accept the entity enclosed in

the request as a new subordinate of the resource identified by the Request-URI in the

Request-Line.

You may be surprised to read this definition of the POST method, considering, for instance,
how POST is used for every single SOAP 1.1 call bound to HTTP—whether the call is for retriev-
ing a simple piece of information, creating a new resource, or deleting it.

Let’s see how to create an HTTP POST request to create a new blog entry and confirm how
the process follows the earlier definition:

1. Create a blog entry formatted as an <entry> Atom element, something like this:

<entry xmlns='http://www.w3.org/2005/Atom'>
<title type='text'>Using Blogger to demo APP</title>
<content type='xhtml'>
<div xmlns='http://www.w3.org/1999/xhtml'>
<p>This message is being created from invoking the blogger

APP-based API.</p>
<p>This process is documented at <a href="http://code.google.com/

apis/blogger/developers_guide_protocol.html#CreatingPosts">Blogger Data
API -- Creating Posts</p>

</div>
</content>
<author>
<name>Raymond Yee</name>
<email>raymond.yee@gmail.com</email>

</author>
</entry>

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 201

858X_ch07.qxd 2/4/08 2:54 PM Page 201

2. Save the file, say with the filename blogger.message.1.xml.

3. Issue the following curl invocation to POST the contents of your file to http://
www.blogger.com/feeds/{blogID}/posts/default—which is the feed of all your entries
for the blog—to create a new entry for the blog (a “new subordinate of the resource
identified by the Request-URI”).

curl -X POST -v --data-binary "@blogger.message.1.xml" -H "Content-Type:➥

application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]"➥

http://www.blogger.com/feeds/{blogID}/posts/default

4. If things go fine, you’ll get an HTTP 201 Created code and an <entry> holding the new
post. This <entry> tells you things such as the post ID of your new entry. The response
will look like the following:

HTTP/1.1 201 Created
Content-Type: application/atom+xml; charset=UTF-8
Cache-Control: max-age=0, must-revalidate, private
Location: http://www.blogger.com/feeds/5586336/posts/default/409227349217351
7704
Content-Location: http://www.blogger.com/feeds/5586336/posts/default/4092273
492173517704
Transfer-Encoding: chunked
Date: Sat, 25 Aug 2007 14:38:49 GMT
Server: GFE/1.3
<?xml version='1.0' encoding='UTF-8'?><?xml-stylesheet href="http://www.b
logger.com/styles/atom.css" type="text/css"?><entryxmlns='http://www.w3.o
rg/2005/Atom'><id>tag:blogger.com,1999:blog-5586336.post-4092273492173517
704</id><published>2007-08-25T07:38:00.001-07:00</published><updated>2007
-08-25T07:38:49.607-07:00</updated><title type='text'>Using Blogger to de
mo APP</title><content type='html'>
 <div xmlns='http://
www.w3.org/1999/xhtml'>

<p>This message is being created from invoking the blogger APP-
based API.</p>
 <p>This process is documented
at <a href='http://code.google.com/apis/blogger/developers_guide_proto
col.html#CreatingPosts'>Blogger Data API -- Creating Posts&l
t;/p>
 </div>
 </content><link rel='al
ternate' type='text/html' href='http://hypotyposis.blogspot.com/2007_08_0
1_archive.html#4092273492173517704' title='Using Blogger to demo APP'/><l
ink rel='replies' type='applicati* Connection #0to host www.blogger.com l
eft intact* Closing connection #0

5. In this example, the POST request created a new blog entry with a post ID of
40922734921735177.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS202

858X_ch07.qxd 2/4/08 2:54 PM Page 202

Updating the Blog Entry
You can update your blog entry using an HTTP PUT request, in accordance to the HTTP 1.1
specification that states the following:

The PUT method requests that the enclosed entity be stored under the supplied Request-URI.

If the Request-URI refers to an already existing resource, the enclosed entity SHOULD be

considered as a modified version of the one residing on the origin server.

Let’s package this request for curl after first creating an updated message in the
blogger.message.2.xml file:

curl -X PUT -v --data-binary "@blogger.message.2.xml" -H "Content-Type:➥

application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]"➥

http://www.blogger.com/feeds/{blogID}/posts/default/{postID}

If you are unfamiliar with using the HTTP PUT method, you’re hardly alone. As mentioned
in Chapter 6, there is little support for it. (Remember, for instance, that the HTML forms define
the GET and POST methods.) Recognizing that PUT might not be supported by the client doing
the entry update (or that firewalls might block PUT requests), you can tunnel the PUT request
through a POST request like so:

curl -X POST -v --data-binary "@blogger.message.2.xml" -H "X-HTTP-Method-Override:➥

PUT" -H "Content-Type: application/atom+xml " -H "Authorization: GoogleLogin➥

auth=[AUTH-TOKEN]" http://www.blogger.com/feeds/{blogID}/posts/default/{postID}

Deleting a Blog Entry
You can use the HTTP DELETE method to delete an entry but send that request to the URL of
the entry itself. As a curl invocation, the request looks like this:

curl -X DELETE -v -H "Content-Type: application/atom+xml " -H "Authorization:➥

GoogleLogin auth=[AUTH-TOKEN]"➥

http://www.blogger.com/feeds/{blogID}/posts/default/{postID}

As with updating a blog entry, you can tunnel a DELETE request through an HTTP POST
request using an “X-HTTP-Method-Override: DELETE” request header.

Using the Blogger API As a Uniform Interface Based on
HTTP Methods
Now that you have seen how to use the Blogger API to retrieve feeds of blogs and blog entries,
create new blog entries, update an entry, and delete an entry, you should notice how all these
actions are performed while hewing closely to HTTP methods as they are actually defined in
the HTTP specification. This pattern of using the HTTP methods as the fundamental methods
of the API, in fact, repeats itself in all the APIs that are based on the Atom Publishing Protocol
and therefore GData. Thus, the uniform interface of GData is the full collection of standard
HTTP methods.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS 203

858X_ch07.qxd 2/4/08 2:54 PM Page 203

Summary
In this chapter, I discussed how to consume web APIs that use the XML-RPC and SOAP/WSDL
protocols. Although these protocols, especially SOAP and WSDL, are geared toward simplifying
the process for making calls to web services, they sometimes are fragile in practice. Consequently,
if you use them, you should learn how to debug them with the techniques I showed you in this
chapter.

With techniques to work with REST, XML-RPC, and SOAP web APIs in hand, you can
then start moving beyond Flickr to look at a wide range of APIs. I showed you how to use
Programmableweb.com to learn about those APIs and to draw some broad conclusions
about APIs, the protocols they use, which ones are popular, and which subject matter they
cover. I concluded this chapter with a study of the YouTube API (as an example of a simple
REST API other than Flickr) and the Blogger API (as an instance of a uniform interface inti-
mately tied to the HTTP methods). In the next chapter, you’ll study JavaScript-based APIs
and look at how to consume web APIs in the browser.

CHAPTER 7 ■ EXPLORING OTHER WEB APIS204

858X_ch07.qxd 2/4/08 2:54 PM Page 204

Learning Ajax/JavaScript
Widgets and Their APIs

In the previous two chapters, you studied web APIs, first that of Flickr and then of other appli-
cations. I showed you how to call APIs using REST, SOAP, and XML-RPC interfaces from PHP
and Python. In this chapter, I’ll begin an analysis of one extremely important context where
web APIs are used: JavaScript inside the modern web browser—the stuff called Ajax.

The term Ajax was coined as shorthand for Asynchronous JavaScript and XML. In Chapter 10,
I’ll show you some of the underlying flow of data of Ajax when you learn how to fully exercise
the Flickr API from JavaScript to create a mashup. In this chapter, I’ll teach you how to use Ajax
widgets, JavaScript-based programs created by others to express some functionality, as a way
to a study of Ajax. Along the way, you’ll learn how to use some debugging tools such as Firebug
and the JavaScript Shell that will help you make sense of these widgets and, as I’ll show you
later, the whole range of Ajax programming.

In the context of contemporary Web 2.0 development, Ajax is a big deal, particularly for
how it allows you to mash up data and services in new and easier ways. Ajax exploits the fact
that modern web browsers are programmable and that they are inherently network applica-
tions. In addition to sending static HTML to web browsers, programmers can send JavaScript
programs to run in the web browser. What can be done with this type of JavaScript-based client-
side programming?

• You can achieve more dynamic interaction without having to reload the entire web page.
This capability can be used, for instance, for drop-down menus and other widgets that
we are used to having on the desktop.

• In particular, JavaScript can be used to get data via formal and informal web APIs from
a server without having to reload the entire web page.

• Widgets can be created and deployed by other people. These widgets can be used to
combine data and services and shown to other people. (Google Maps is the single most
mashed-up API/service on the public Internet.)

205

C H A P T E R 8

■ ■ ■

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 205

JavaScript and DHTML are not new phenomena but have become extremely popular
under the banner of Ajax. Jesse James Garrett says it well:1

But seeing Ajax as a purely technological phenomenon misses the point. If anything,

Ajax is even more of a sea change for designers than it is for developers. Sure, there are

a lot of ways in which developers need to change their thinking as they make the transi-

tion from building traditional web applications to building Ajax applications. But for

those of us who design user experiences, the change brought about by Ajax is even more

profound.

This chapter concentrates on helping you use Ajax to mash up data and services by doing
the following:

• Pointing out the Ajax-based parts of Flickr and contrasting the old style of web develop-
ment that involved the reloading of an entire page to new-style development in which
more logic is pushed to the client, opening up more opportunities for integration

• Pointing out ways to see the difference between Ajax and non-Ajax apps by turning off
JavaScript in the browser

• Introducing the Yahoo! UI Library as a specific example of various JavaScript widget
libraries

• Introducing Google Maps, the single most used API as an example of a JavaScript
widget

• Using one of the JavaScript widget libraries to demonstrate how to use a widget (for
example, the TreeView widget)

• Showing how to write a basic Greasemonkey script as a way of mashing up services and
data in the browser

What You Need to Know
Ajax, along with all its attendant use of JavaScript and the modern web browser, is a rich subject,
as can be seen in the myriad of books that have been published recently on the subject. I’ll put
Ajax in the larger context of the programmable web browser. To become a master programmer
of the web browser, you should understand the following:

• Both how an ideal W3C DOM standards-compliant browser works and how various
browsers actually work in various areas: how JavaScript is implemented, object model
behavior, CSS, and events

• JavaScript-based APIs and widgets such as Google Maps—what they are and how to use
them

• Nonbrowser environments for JavaScript, such as Google Gadgets, Yahoo! Widgets, and
Adobe Acrobat

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS206

1. Ajax Hacks by Bruce Perry (O’Reilly & Associates, 2006)

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 206

• Extension mechanisms in browsers (such as Firefox add-ons)

• JavaScript and browser debugging tools such as Firebug

• JavaScript libraries: how they relate and what can be intermixed—and which ones are
tied to which web programming frameworks

• What people have done already on all these fronts using JavaScript and remixing the
browser

• How to write JavaScript and JavaScript widgets that can be reused by other people,
including cross-platform JavaScript

• What you can do in terms of mashups

Fortunately, you do not need to know all these things to merely get started.

What Difference Does Ajax Make?
To convince yourself that JavaScript is at work in web applications such as Flickr, Google
Maps, and Gmail, you can turn off JavaScript in your browser and see what changes in the
behavior of the application.

To turn off JavaScript in your browser, do the following, depending on which browser
you’re using:

• In Firefox, uncheck Tools ➤ Options ➤ Content ➤ Enable JavaScript.

• In Internet Explorer, check Tools ➤ Internet Options ➤ Security ➤ Custom Level ➤
Scripting ➤ Active Scripting ➤ Disable.

• In Opera, uncheck Tools ➤ Quick Preferences ➤ Enable JavaScript.

• In Safari, uncheck Safari ➤ Preferences ➤ Security ➤ Enable JavaScript.

Once you have JavaScript turned off, notice the following changes in Flickr and Google Maps:

• In Flickr pages for a specific photo (in other words, http://flickr.com/photos/{user-d}/
{photo-id}/), you will see the message “To take full advantage of Flickr, you should use
a JavaScript-enabled browser and install the latest version of the Macromedia Flash
Player.” All the buttons on top of the picture no longer function. Instead of clicking the
title, description, and tags to start editing them, you have to click a link (Edit Title, Descrip-
tion, and Tags) before doing so.

• Notice that some apps will gracefully support non-JavaScript-enabled browsers—
particularly Google Maps. With JavaScript turned off, you no longer see the pan and
zoom new-style maps but an old-style map that provides links to move north, south,
east, or west or to change the zoom level.

When using JavaScript, there are interesting and important issues regarding usability/
accessibility. Many computers, including mobile devices, do not use JavaScript. How should
apps gracefully deal with browsers that don’t use JavaScript? Some apps are so dependent on
JavaScript that a non-JavaScript version would look drastically different.

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS 207

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 207

Now that you have seen the effects of turning off JavaScript in the browser, be sure to turn
it back on if you want to learn how to use JavaScript-based widgets and APIs.

Learning Firebug, DOM Inspector, and
JavaScript Shell
In learning Ajax and widgets/applications based on Ajax, I recommend using Firefox, the
DOM Inspector, and the JavaScript Shell (bookmarklet) to manipulate live web pages and
widgets. This combination allows for live interaction with the little apps; you can load a run-
ning map, analyze the details of how it is working while running, and issue commands that
take immediate effect.

■Note Even if you work primarily in a web browser other than Firefox, you can still gain a tremendous
amount of insight about JavaScript programming using the Firefox-based tools.

Moreover, the right tools can help you make sense of complicated stuff such as the Browser
Object Model and the Document Object Model (DOM) by letting you interact with the browser,
test code, and so on. I will use these tools in the rest of the chapter to support this experimental/
reverse-engineering approach.

Using the DOM Inspector
The DOM Inspector allows you to look at the HTML DOM as a tree and make changes in that
DOM. The DOM Inspector comes with Firefox but is not installed by default in Windows. To
install it in Windows, you need to choose explicitly to install the DOM Inspector in the instal-
lation process. Consult the following documentation to learn how to use the DOM Inspector:

http://kb.mozillazine.org/DOM_Inspector

Remember, you can invoke the DOM Inspector by selecting Tools ➤ DOM Inspector from
the Firefox menu.

Using the Firebug Extension for Firefox
I highly recommend installing the Firefox add-on called Firebug. In many ways, Firebug is an
enhancement of the DOM Inspector. In addition to being able to view and edit the contents of
the DOM, you also get some very nice JavaScript debugging functionality.

To install this extension in Firefox, navigate to http://getfirebug.com, give permission
to Firefox to install the extensions from that domain, and then install the extension. (As with
installing all Firefox add-ons, you need to restart the browser to complete the installation.)

Figure 8-1 shows Firebug when I was using its Inspect HTML functionality to examine the
title of a Flickr photo.

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS208

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 208

Figure 8-1. Firebug applied to a Flickr photo page. (Reproduced with permission of Yahoo! Inc. ®
2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.)

Important features of Firebug include the following:

• The ability to view live source (that is, what the HTML of the DOM is at the moment,
not what the original source was).

• Instant HTML editing (you can edit the HTML in Firebug and see the changes reflected
on the page).

• You can see the request and response headers, which is invaluable during debugging.

Firebug can therefore be useful for the following tasks:

• Learning CSS by changing <style> elements and seeing the effects (for example, the
cascading process is shown, and overridden properties are struck out).

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS 209

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 209

• Tracking uses of the XMLHttpRequest object (the object, which we will see in the next
chapters, is the one often responsible for the exchange of XML or JSON by the browser).
You can use Firebug to see whether and what data is actually being loaded.

• Using inspect mode to mouse over a piece of a web page and see the corresponding HTML.

Using the JavaScript Shell
The JavaScript Shell is a bookmarklet to use in Firefox that you can find at https://www.
squarefree.com/bookmarklets/webdevel.html. A bookmarklet is a short piece of JavaScript that
you can treat like a browser bookmark but that does some function when you click it. With the
JavaScript Shell, you can run snippets of JavaScript code that will execute in the context of the
page in which you invoked the shell.

To install the JavaScript Shell, just drag it to your Links toolbar in Firefox. To invoke
the JavaScript Shell, put the page you want in the foreground, and click the JavaScript
Shell bookmarklet.

■Note In addition to the tools already mentioned, there is Firebug Lite to use with Internet Explorer, Opera,
and Safari.2 You might consider using the Venkman JavaScript Debugger.3

Working with JavaScript Libraries
Instead of programming directly for a specific browser, it is often useful to work at a higher level
of abstraction by working with a JavaScript library. There are many cross-browser differences
and fine technical details that are best left to the JavaScript specialist. JavaScript libraries typ-
ically allow you to program the browser as a generic entity rather than having to account for the
differences among browsers.

Ideally there would be one obvious choice for an excellent JavaScript library, and everyone
would use it. The current situation is that there are many JavaScript libraries, and it is not at all
obvious how they compare. For instance, Simon Willison, a well-respected web developer, wrote
that the big four are the following:4

• Dojo

• Mochikit

• Prototype/script.aculo.us

• Yahoo! UI Library (YUI)

Others have pointed out Rico (which is built on top of Protoype) and OpenLaszlo.5 In this
chapter and those that follow, I will concentrate on using YUI.

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS210

2. http://www.getfirebug.com/lite.html

3. http://www.mozilla.org/projects/venkman/

4. http://simonwillison.net/2006/Jun/26/libraries/

5. http://www.openlaszlo.org/

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 210

YUI Widgets
You can find the Yahoo UI Library at http://developer.yahoo.com/yui/ where you can read
“Yahoo! UI Library—Getting Started.”6 The best way is to learn about the library is to look
around and try the various examples. Also use the JavaScript Shell and Firebug extension to
learn how things work.

Try the pieces on the Yahoo! site (for example, the TreeView controller at http://developer.
yahoo.com/yui/examples/treeview/index.html), and enter some commands on the JavaScript
Shell. To help you out, we will walk through the use of two YUI widgets: the calendar and the
TreeView widget.

Using the YUI Calendar
The YUI Calendar component (http://developer.yahoo.com/yui/calendar/) presents a browser-
based calendar interface from which users can select one or more dates. To learn how to use it,
you can try the calendar examples:

• http://developer.yahoo.com/yui/examples/calendar/index.html (refer to the API
documentation)

• http://developer.yahoo.com/yui/docs/YAHOO.widget.Calendar.html (to get a list of
methods for the widget)

You can use the Firebug extension or JavaScript Shell to get a feel for how to program the
component:

1. Go to http://developer.yahoo.com/yui/examples/calendar/quickstart.html.

2. Click a date.

3. In the console of Firebug or the JavaScript Shell, type the following to get back the date
you selected (see Figure 8-2):

YAHOO.example.calendar.cal1.getSelectedDates()

4. Try other methods to see how the calendar works:

YAHOO.example.calendar.cal1.hide() // Hides the control
YAHOO.example.calendar.cal1.show() // Shows the control
// Sets month to February (change not visible until redrawn)
YAHOO.example.calendar.cal1.setMonth(1)
// Redraws the control using the YUI TreeView
YAHOO.example.calendar.cal1.render()

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS 211

6. http://developer.yahoo.com/yui/#start

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 211

Figure 8-2. Interacting with the Yahoo! Calendar using the JavaScript Shell. (Reproduced
with permission of Yahoo! Inc. ® 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are
trademarks of Yahoo! Inc.)

The TreeView component is a UI control that lets users interact with a tree structure (by,
for instance, expanding or collapsing branches of the tree):

http://developer.yahoo.com/yui/treeview/

In addition to reading the API documentation for the TreeView component,7 you can use
Firebug and the JavaScript Shell to experiment with the component. To do so, follow these steps:

1. Go to http://developer.yahoo.com/yui/examples/treeview/default_tree.html.

2. In the console of Firebug or the JavaScript Shell, type the following to expand and
collapse the tree, respectively:

tree.expandAll()
tree.collapseAll()

See how you can interactively learn how to use the YUI JavaScript widgets through using
Firebug and the JavaScript Shell.

Installing YUI on Your Host
To use YUI in your own applications, you should set up YUI on your own web host. I will use
a concrete example, http://examples.mashupguide.net, which is mapped to the Unix direc-
tory ~/examples.mashupguide.net. Substitute your own values. My goal is to set up YUI so that
it is accessible at http://examples.mashupguide.net/lib/yui/.

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS212

7. http://developer.yahoo.com/yui/docs/YAHOO.widget.TreeView.html

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 212

1. Download the library to your machine or your web hosting environment. Go to
http://developer.yahoo.com/yui/download/.

2. Unzip and copy the files to the right location. In my case, I unzipped and copied the
unzipped directory (which is named yui) to /home/rdhyee/examples.mashupguide.net/
lib/yui, which maps to the yui directory at http://examples.mashupguide.net/lib/yui/.
The important part of the library for runtime purposes is the yui/build directory.

With the files in your own directory, you can, for instance, look at the calendar example
on my own server:

http://examples.mashupguide.net/lib/yui/examples/calendar/quickstart.html

Learning Google Maps
Just as there are different UI elements packaged up in one of the major JavaScript libraries,
vendors have already started to create reusable JavaScript components. The most famous of
these Ajax widgets is Google Maps. In this section, we’ll look at how to embed a Google map
using the Google Maps API. The online documentation on how to get started with the maps at
the Google web site is good.8 The approach given there, one that I can certainly recommend, is
to give you source code for increasingly more complex examples, which you can copy and paste
to your own site.

Here we will set up a simple map and then use the JavaScript Shell to work with a live map
so that you can invoke a command and see an immediate response. The intended effect is that
you see the widgets as dynamic programs that respond to commands, whether that command
comes in a program or from you entering that command.

Use the Google Maps API to make a simple map:

1. Make sure you have a public web directory to host your map and know the URL of that
directory. Any Google map that uses the free, public API needs to be publicly visible.

2. Go to the sign-up page for a key to access Google Maps.9 You will need a key for any
given domain in which you host Google Maps. (It is through these keys that Google
regulates the use of the Google Maps API.)

3. Read the terms of service,10 and if you agree to them, enter the URL directory on the
host where you want to place your test file. For example, in my case, the URL is http://
examples.mashupguide.net/ch08. Write down the resultant key.

4. Copy and paste the HTML code into your own page in your web-hosting directory. You
should get something like the following (except that the code will have your API key):11

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS 213

8. http://www.google.com/apis/maps/documentation/#Introduction

9. http://www.google.com/apis/maps/signup.html

10. http://www.google.com/apis/maps/terms.html

11. http://maps.google.com/maps/api_signup?url=http%3A%2F%2Fexamples.mashupguide.net%2Fch08

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 213

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google Maps JavaScript API Example</title>
<script
src="http://maps.google.com/maps?file=api&v=2&key=[API_key]"
type="text/JavaScript"></script>

<script type="text/JavaScript">

//<![CDATA[

function load() {
if (GBrowserIsCompatible()) {
var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}
}

//]]>
</script>

</head>
<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 500px; height: 300px"></div>

</body>
</html>

5. Now make one modification to the example by removing the var keyword in front of
map to make it a global variable that is thus accessible to the JavaScript Shell. That is,
change the following:

var map = new GMap2(document.getElementById("map"));
to map = new GMap2(document.getElementById("map"));

to expose the map object to the JavaScript Shell utility.12

6. Invoke the JavaScript Shell for your map by hitting the JavaScript Shell bookmarklet in the
context of your map. Type the following code fragments, and see what happens. (Note
that another approach is to modify your code directly with these code fragments and
reload your page.) One can correlate the actions to the documentation for version 2 of the
Google Maps API.13

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS214

12. http://examples.mashupguide.net/ch08/google.map.html

13. http://www.google.com/apis/maps/documentation/reference.html#GMap2

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 214

To return the current zoom level of the map (which goes from 0 to 17, with 17 for the most
detailed), use this:

map.getZoom()

13

To obtain the latitude and longitude of the center of the map, enter the following:

map.getCenter()

(37.4419, -122.1419)

To center the map around the Campanile for UC Berkeley, use this:

map.setCenter(new GLatLng(37.872035,-122.257844), 13);

You can pan to that location instead:

map.panTo(new GLatLng(37.872035,-122.257844));

To add a small map control (to control the zoom level), use the following:

map.addControl(new GSmallMapControl())
map.addControl(new GMapTypeControl())

To add GMap keyboard navigation so that you can pan and zoom with the keyboard,
use this:

window.kh = new GKeyboardHandler(map)

[object Object]

To fully zoom out the map, use this:

map.setZoom(0)

To zoom in all the way, use the following:

map.setZoom(17)

To set the variable maptypes to an array holding three objects, use this:

maptypes = map.getMapTypes()

[object Object],[object Object],[object Object]

To get the name of the first entry in maptypes (1 corresponds to satellite, while 2 corresponds
to the hybrid map type):

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS 215

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 215

map.getMapTypes()[0].getName()

Map

To get the current map type, you can get the object and the name of that type object:

map.getCurrentMapType()

[object Object]

map.getCurrentMapType().getName()

Map

To set the map type to satellite, use the following:

map.setMapType(maptypes[1]);

You can zoom one level in and out if you are not already at the max or min zoom level:

map.zoomIn()
map.zoomOut()

To make an overlay, try the following:

point = new GLatLng (37.87309185260284, -122.25508689880371)

(37.87309185260284, -122.25508689880371)

marker = new GMarker(point)

[object Object]

map.addOverlay(marker);

To make something happen when you click the marker, type the following:

GEvent.addListener(marker, 'click', function() {
marker.openInfoWindowHtml('hello'); })

[object Object]

There are many more features to explore, such as polylines, overlays, and draggable points.
To learn more, I certainly recommend the “Google Maps API: Introduction” documentation.14

I will also return to the topic of Google Maps in Chapters 10 and 13.

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS216

14. http://www.google.com/apis/maps/documentation/#Introduction

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 216

Accessing Flickr via JavaScript
In Chapter 10, we will be building a mashup that integrates Flickr data and Google Maps
within the browser context. That is, we will need to call the Flickr API from JavaScript within
the browser (in true Ajax style). Flickr provides JSON output to its API.15

In Chapter 4, I already presented some code that reads a Flickr feed in JSON format and
renders it in HTML. In this section, I’ll show you one basic way to use this JSON data from the
Flickr API via JavaScript. Let’s jump into how it works:

1. Go to the flickr.photos.search page in the Flickr Explorer (http://www.flickr.com/
services/api/explore/?method=flickr.photos.search), set the tag parameter to flower,
and set the per_page parameter to 3 (to make for a more manageable number of photos
for now). Do not sign the call. Hit the Call Method button, and grab the REST URL
(below the results box). Substitute the api_key parameter with your own Flickr API key.
You will get something like this:

http://api.flickr.com/services/rest/?method=flickr.photos.search&➥

api_key=<API_key>&tags=flower&per_page=3

from which you get the Flickr XML output with which you are familiar from previous
chapters.

2. Let’s now study the JSON output by tacking on the parameter format=json to the
URL.16 Now you get the following (in a prettified rendition):

jsonFlickrApi({
"photos" : {

"page" : 1, "pages" : 283266, "perpage" : 3, "total" : "849797",
"photo" : [{"id" : "397677823", "owner" : "28374750@N00",
"secret" : "cab3f3db01", "server" : "124", "farm" : 1, "
title" : "DSC_0026", "ispublic" : 1, "isfriend" : 0, "isfamily" : 0}
, {

"id" : "397677820", "owner" : "28374750@N00",
"secret" : "f70cf0bb19", "server" : "174", "farm" : 1,
"title" : "red flowers", "ispublic" : 1, "isfriend" :

0, "isfamily" : 0}
, {

"id" : "397677553", "owner" : "37015070@N00",
"secret" : "7329c71748", "server" : "158", "farm" : 1,
"title" : "Rose In Vase", "ispublic" : 1, "isfriend" : 0,
"isfamily" : 0}

]}
, "stat" : "ok"}

)

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS 217

15. http://www.flickr.com/services/api/response.json.html

16. http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api-key}&tags=
flower&per_page=3&format=json

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 217

Note what is being returned: a piece of JavaScript containing the function named
jsonFlickrApi() with a single parameter, which is a JavaScript object that represents
the photos.

3. Let’s now write a bit of HTML and JavaScript to test how to write JavaScript to access
the various pieces of the Flickr response:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Flickr JSON</title>

</head>
<script>
function jsonFlickrApi(rsp) {
window.rsp = rsp;

}
</script>
<script src="http://api.flickr.com/services/rest/?method=flickr.photos.search➥

&api_key=<API_key>&tags=flower&per_page=3&format=json"></script>
</html>

You can load this page in your browser and invoke the JavaScript Shell to learn a few
key lines to access parts of the response:

props(rsp.photos)
Fields: page, pages, perpage, photo, total
rsp.photos.perpage
3
rsp.photos.photo[0].id
397694840

4. Let’s now have jsonFlickrApi() produce a display of the photos:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Flickr JSON</title>

</head>
<body>
<script>
function jsonFlickrApi(rsp) {
window.rsp = rsp;
var s = "";
// http://farm{id}.static.flickr.com/{server-id}/{id}_{secret}_[mstb].jpg
// http://www.flickr.com/photos/{user-id}/{photo-id}
s = "total number is: " + rsp.photos.photo.length + "
";

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS218

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 218

for (var i=0; i < rsp.photos.photo.length; i++) {
photo = rsp.photos.photo[i];
t_url = "http://farm" + photo.farm + ".static.flickr.com/" +
photo.server + "/" + photo.id + "_" + photo.secret + "_" + "t.jpg";

p_url = "http://www.flickr.com/photos/" + photo.owner + "/" + photo.id;
s += '' + '<img alt="'+ photo.title +
'"src="' + t_url + '"/>' + '';

}
document.writeln(s);

}
</script>
<script src="http://api.flickr.com/services/rest/?method=flickr.photos.➥

search&api_key=<API_key>&tags=flower&per_page=50&format=json"></script>
</body>

</html>

5. The previous example is simple but limited by the fact that loading JSON data immedi-
ately calls the function jsonFlickrApi(). You can customize the name of the callback
function with the jsoncallback parameter (for example, jsoncallback=MyHandler). You
can also use the nojsoncallback=1 parameter17 to return raw JSON:

{
"photos" : {

"page" : 1, "pages" : 283353, "perpage" : 3, "total" : "850057",
"photo" : [{"id" : "397750427", "owner" : "98559475@N00",
"secret" : "f59b1ae9e1", "server" : "180", "farm" : 1,
"title" : "sakura", "ispublic" : 1, "isfriend" : 0, "isfamily" : 0}
, {

"id" : "397750433", "owner" : "81222973@N00",
"secret" : "0023e79dff", "server" : "133", "farm" : 1,
"title" : "just before spring", "ispublic" : 1,
"isfriend" : 0, "isfamily" : 0}

]}
, "stat" : "ok"}

Given this information, you might be wondering why should you use the jsonFlickrApi()
callback in the first place instead of using a pattern based on the examples I showed you in
Chapter 6 of how to use PHP to interact with the Flickr API. That is, why not use JavaScript to
do the following:

1. Do an HTTP GET on this:

http://api.flickr.com/services/rest/?method=flickr.photos.search➥

&api_key={api-key}&tags=flower&per_page=3&format=json&nojsoncallback=1

2. Instantiate the response as a JavaScript object that you can then parse at your leisure.

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS 219

17. http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api-key}&tags=
flower&per_page=3&format=json&nojsoncallback=1

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 219

I will, in fact, walk you through such an approach in Chapter 10. I defer the discussion until
then because we will need to deal with security issues particular to web browsers in order to make
our examples work.

Using Greasemonkey to Access New York Times
Permalinks
Greasemonkey is an add-on for Firefox that allows you to change the behavior of web pages in
your browser. That includes creating mashups. You already saw an example of a Greasemonkey
script in Chapter 1—the Google Maps in Flickr Greasemonkey script. And here are some good
references you can use to get the best out of Greasemonkey:

• http://diveintogreasemonkey.org/

• Greasemonkey Hacks by Mark Pilgrim (O’Reilly Media, 2005)

• http://en.wikipedia.org/wiki/Greasemonkey

• http://www.greasespot.net/ (the official blog of the Greasemonkey project)

Links that show up on the New York Times online site typically expire after a week. That is,
instead of going to the article, you are given an excerpt and a chance to purchase a copy of the
article. However, in 2003, Dave Winer struck a deal with the New York Times to provide a mech-
anism to get weblog-safe permalinks to articles.18 Aaron Swartz wrote a New York Times link
generator that compiles those permalinks and makes them available for lookup via a web form
or a JavaScript bookmarklet.19 That is, you give it a URL to a New York Times article, and it will
return to you a more permanent link.

Let’s look at an example. Consider the following URL:

http://www.nytimes.com/2007/04/04/education/04colleges.html

This corresponds to the following:

http://www.nytimes.com/2007/04/04/education/04colleges.html?ex=1333339200&➥

en=3b7aac16a1ce4512&ei=5090&partner=rssuserland&emc=rss

You can see this for yourself by going to the link generator:

http://nytimes.blogspace.com/genlink?q=http://www.nytimes.com/2007/04/04/education/➥

04colleges.html

When there is no permalink for an article, you will see a different type of output from the
New York Times link generator. For example, consider the following:

http://www.nytimes.com/aponline/us/AP-Imus-Protests.html

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS220

18. http://www.scripting.com/davenet/2003/06/06/newYorkTimesArchiveAndWebl.html

19. http://nytimes.blogspace.com/genlink

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 220

This doesn’t have a permalink, as you can see from this:

http://nytimes.blogspace.com/genlink?q=http://www.nytimes.com/aponline/us/➥

AP-Imus-Protests.html

Where’s a good place to stick a UI element for the permanent link on the New York Times
page? There are lots of choices, but a good one is a toolbar with such elements as e-mail/print/
single-page/save/share.

The basic logic of the Greasemonkey script we want to write consists of the following:

1. If you are on a New York Times article, send the link to the New York Times link generator.

2. If there is a permalink (which you will know is true if the href attribute of the first
<a> tag starts with http: and not genlink), insert a new element at the end of the
<ul id="toolsList">.

Now let’s walk through the steps to get this functionality working in your own Firefox
browser installation:

1. Install the Greasemonkey extension if you don’t already have it installed.20

2. Create a new script in Greasemonkey in one of two ways:

a. You can go to http://examples.mashupguide.net/ch08/newyorktimespermalinker.
user.js and click Install.

b. Select Tools ➤ Greasemonkey ➤ New User Script, fill in Name/Namespace/
Description/Includes, and then enter the following code. (Note the use of
GM_xmlhttpRequest to find out what a more permanent link is. You will see in
Chapter 10 the logic behind xmlhttpRequest.21)

// ==UserScript==
// @name New York Times Permlinker
// @namespace http://mashupguide.net
// @description Adds a link to a "permalink" or "weblog-safe" URL
// for the NY Times article, if such a link exists
// @include http://*.nytimes.com/*
// ==/UserScript==

function rd(){

// the following code is based on the bookmarklet written by Aaron Swartz
// at http://nytimes.blogspace.com/genlink

var x,t,i,j;
// change %3A -> : and %2F -> '/'
t=location.href.replace(/[%]3A/ig,':').replace(/[%]2f/ig,'/');

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS 221

20. https://addons.mozilla.org/en-US/firefox/addon/748

21. http://wiki.greasespot.net/GM_xmlhttpRequest and http://diveintogreasemonkey.org/api/
gm_xmlhttprequest.html

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 221

// get last occurrence of "http://"
i=t.lastIndexOf('http://');

// lop off stuff after '&'
if(i>0){
t=t.substring(i);
j=t.indexOf('&');
if(j>0)t=t.substring(0,j)

}

var url = 'http://nytimes.blogspace.com/genlink?q='+t;

// send the NY Times link to the nytimes.blogspace.com service.
// If there is a permalink, then the href attribute of the first tag
// will start with 'http:' and not 'genlink'.
// if there is a permalink, then insert a new li element at the end of the
// <ul id="toolsList">.

GM_xmlhttpRequest({
method:"GET",
url:url,
headers:{
"User-Agent":"monkeyagent",
"Accept":"text/html",

},
onload:function(details) {
var s = details.responseText;
var p = /a href="(.*)"/;
var plink = s.match(p)[1];
if (plink.match(/^http:/) &&

(tl = document.getElementById('toolsList'))) {
plink = plink + "&pagewanted=all";
plinkItem = document.createElement('li');
plinkItem.innerHTML = 'PermaLink';
tl.appendChild(plinkItem);

}
}

});

}

rd();

3. What you will see now with this Greasemonkey script if you go to http://www.nytimes.com/
2007/04/04/education/04colleges.html is the new entry Permalink underneath the
Share button. The link may take a few seconds to appear while the permalink is retrieved.

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS222

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 222

Note that this Greasemonkey script is sensitive to changes in the way New York Times articles
are laid out: older articles have a different page structure and therefore need some other logic
to put the permalink in the right place.

Learning More About JavaScript and Ajax
It’s good to have some handy references on JavaScript programming while working on
Ajax-related projects:

• JavaScript, the Definitive Guide, Fifth Edition by David Flanagan (O’Reilly Media, 2006)

• Pro JavaScript Techniques by John Resig (Apress, 2006)

• Learning JavaScript by Shelley Powers (O’Reilly Media, 2007)

I’m particularly fond of Peter-Paul Koch’s web site, which has tons of useful resources:

• The general resource page.22 See also his introduction to JavaScript.23

• He has all the example scripts from his book (http://www.quirksmode.org/book/) that
you can study at http://www.quirksmode.org/book/examplescripts.html.

Summary
In this chapter, you learned about how Ajax has changed the style of programming in contem-
porary web applications. You did so by turning off JavaScript in your browser and seeing what
happens to Flickr and Google Maps. You studied the functionality of a JavaScript library (Yahoo!
UI Library) and Google Maps via the Firebug Firefox extension and the JavaScript Shell. You
also learned the basics of invoking the Flickr API in Ajax. Finally, you learned how to create
a basic Greasemonkey script that inserts a permanent link into a New York Times online article.
Although there is much more to learn concerning JavaScript and Ajax, this chapter provides
the necessary background to the following chapters.

CHAPTER 8 ■ LEARNING AJAX/JAVASCRIPT WIDGETS AND THEIR APIS 223

22. http://www.quirksmode.org/resources.html

23 http://www.quirksmode.org/js/intro.html

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 223

858Xch08FINAL.qxd 2/4/08 3:09 PM Page 224

Making Mashups

Part 3 is the heart of the book. The previous chapters explained how to work with individ-

ual APIs and widgets, which are the raw materials of mashups. In this part, Chapter 9 talks

about mashups in general and their relationship to APIs; the primary technique shown is

to use ProgrammableWeb to learn about mashups. Chapter 10 covers the nitty-gritty of

creating a mashup—using a specific example of mashing up Flickr and Google Maps. In

Chapter 11, we’ll study the tools that help you create mashups, while in Chapter 12, we’ll

look at the subject of mashup making from the point of view of API creators.

P A R T 3

■ ■ ■

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 225

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 226

227

Moving from APIs and Remixable
Elements to Mashups

Now that you understand the pieces that go into mashups (remixable elements such as a rich
URL language, tags, and feeds—all the subjects of Part 1) and APIs (the subject matter of Part 2),
this chapter teaches you how to get a feel for how mashups are created from their pieces. To
learn how to create mashups, you should study a lot of examples of mashups. In the next chap-
ter, we will work out all the technical details of how to create a specific mashup. In this chapter,
we’ll step back to look at a broad range of problems that can be addressed with mashups. I won’t
work through all the details of how to create the mashup, but by thinking about a variety of
problems—how others have created mashups to solve the problems themselves or related ones—
you can learn about how to create mashups, what’s possible, and what goes into them.

The primary technique we’ll use to learn about mashups and APIs in this chapter is to
mine ProgrammableWeb for information. ProgrammableWeb is the most useful web site for
keeping up with the world of mashups, specifically, the relationships between all the APIs and
mashups out there. It’s by no means the only resource; you can’t learn all you need from using
it alone. However, learning how to use it effectively is a great way to make sense of the world of
mashups as a whole.

To effectively understand mashup making, you should have a specific problem in mind
that you want to solve. There’s so much you can do with mashups that you will be overwhelmed
if you set out to assimilate 2,000+ mashups in ProgrammableWeb without a set purpose. In this
chapter, I will use some specific problems and show how ProgrammableWeb can help you
understand how to use mashups to solve these problems.

Specifically, I’ll cover the following situations in this chapter:

Books: Integrating my varied interactions with books through mashups

Real estate search: Tracking houses coming onto the market and comparing them to esti-
mates of worth

Travel search: Knowing when is a good time to buy airplane tickets

News: Using maps to understand current events around the world

C H A P T E R 9

■ ■ ■

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 227

Getting Oriented to ProgrammableWeb
You have already learned about ProgrammableWeb (http://www.programmableweb.com/) in
this book. In Chapter 7, I discussed what you can learn about APIs, which are the major raw
ingredients mashups, from ProgrammableWeb.

Here, I’ll show you how to use ProgrammableWeb to learn about mashups. ProgrammableWeb
is probably the most comprehensive database of web APIs and mashups and how they are
related to one another. ProgrammableWeb and this book are complementary resources to learn
about mashups. This book is focused on the nitty-gritty programming details of how to use APIs in
creating mashups, and ProgrammableWeb covers the field in breadth and keeps pace with the fast-
changing field. Note, however, that ProgrammableWeb doesn’t claim to be comprehensive:1

You list a lot of mashups on this site. Are these all the mashups there are?

No. This is a subset, or sample, of all mashups. The universe of web mashups is too large

and dynamic to be cataloged in one place. And even that assumes that there’s an agreed-

upon single definition of what a mashup is. Which there isn’t. That being said, this is

probably the most diverse and structured collection available.

One of the great features of ProgrammableWeb is that it covers APIs and mashups across
a wide range of fields. Whereas API providers often link to applications that build upon their
own APIs, ProgrammableWeb not only makes that information organized in a nice fashion,
but it also lets you see how these APIs work with other APIs, which is really not usually of
interest to any given API provider.

User-Generated Data in ProgrammableWeb
ProgrammableWeb depends deeply on user-generated profiles, as well as content entered by
the people who run ProgrammableWeb. To participate in commenting or creating mashup or
API entries, you can create an account on ProgrammableWeb here:

http://www.programmableweb.com/register

Registered users can create an entry for APIs or mashups and enter data about it here:

http://www.programmableweb.com/add

When you list a mashup at ProgrammableWeb, you can indicate what APIs are being used
by the mashup.

Can Any Directory of Mashups Keep Up?
As mashups become more commonplace, we’re going to be in a parallel situation to when
Yahoo! went from being able to list every web site in a directory to needing search engines to
crawl the Web to figure out what’s on the Web. There will be way too many web sites that will
use APIs in the future. Nonetheless, the practice you get here with the examples listed on

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS228

1. http://www.programmableweb.com/faq#PWHowMany

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 228

ProgrammableWeb will help you recognize others in the wild. Until there is such a search
engine for APIs and mashups that can automatically crawl for APIs, we will need a manual
approach such as ProgrammableWeb.

Learning About the Overall Mashup Scene
You can follow ProgrammableWeb’s own overview here:

http://www.programmableweb.com/tour

I will also highlight for you how to use it specifically to learn about mashups.
Figure 9-1 shows the portal page for mashups on ProgrammableWeb.

http://www.programmableweb.com/mashups

Figure 9-1. ProgrammableWeb Mashup Dashboard

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS 229

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 229

That page is a useful snapshot of the world of mashups that are in the ProgrammableWeb
database. Here are some statistics listed on the page (as of January 13, 2008):

• The total number of mashups listed (2,661)

• The average rate of new mashups being added to the database (the six-month average
was 3.14 per day)

I have found that this rapid growth of mashups makes it a challenge to keep up with
everything that happens, even though some trends have remained quite stable (such as the
popularity of map-based mashups).

Directory of Mashups
You can get a list of all the mashups in the database (by page) here:

http://www.programmableweb.com/mashups/directory

You can sort the list of mashups by the name of a mashup (which is the default view), the
date when the mashup’s profile was last updated, and the popularity of the mashup (the number
of page views on ProgrammableWeb for that mashup). You can view the list as text, as “descrip-
tive” (a mix of text and a thumbnail), or as a pure thumbnail view:

http://www.programmableweb.com/mashups/directory/{page}?sort={sort}&view={view}

where sort is one of name, date, or popular and where view is one of text, desc, or images.
For example:

http://www.programmableweb.com/mashups/directory/5?sort=popular&view=desc

Note that the popularity of APIs is measured by the number of mashups using that API:

http://www.programmableweb.com/popular

I like the idea of looking at the newest (if you are up on a field and want to see the latest)
and the most popular (if you are new to a field and want to get a quick glance of what the
scene is like). Comparing the newest and most popular mashups often helps to see what
trends are afoot.

Indeed, you might be able to get the best of both by viewing a list of the top “popular new
mashups” at http://www.programmableweb.com/mashups.

Using Feeds to Track Mashups
ProgrammableWeb uses techniques detailed in earlier chapters to help users not only track
mashups but to create data about mashups. For instance, you can use the following RSS 2.0
feed to track new mashups on ProgrammableWeb:

http://feeds.feedburner.com/programmableweb/mashup

There are other feeds available such as the RSS 2.0 feed for blog entries:

http://feeds.feedburner.com/ProgrammableWeb

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS230

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 230

Here is the RSS 2.0 feed for the latest APIs:

http://feeds.feedburner.com/programmableweb/apis

You will find in the ProgrammableWeb blog (http://blog.programmableweb.com/) refer-
ences to the APIs and mashup profile pages themselves. The ProgrammableWeb blog is an
excellent place to read about the latest APIs and mashups of note, and it’s also a thoughtful
commentary about what these APIs and mashups mean.

Using Tags to Describe Mashups
Tags serve in ProgrammableWeb as thumbnail descriptions of what a given mashup or API is
about. They are normalized to some degree to enable comparisons among mashups, in other
words, to find similarities and patterns. I’ll use these tags in this chapter to relate various
mashups.

Tags associated with a given mashup are user-generated. That is, the user who creates
a profile for a given mashup is allowed to use up to six tags that can be associated with the
mashup. Note the caveat on the link addition page, specifically, the admonition to “[u]se
spaces between tags, no punctuation and limit to six tags please”:

http://www.programmableweb.com/add

Also, the site will edit the entry to limit spam and ensure consistency—say, among tags.
You can see popular tags for mashups here:

http://www.programmableweb.com/mashups

Specifically, on this page you can see a pie chart of the top mashup tags for the last 14 days
and for all time; this allows you to see how the current trends may or may not be deviating
from long-term averages. Table 9-1 reproduces that information.

Table 9-1. The Percentage of Mashups in ProgrammableWeb Grouped by Tags (January 13, 2008)

Category All Last 14 Days

Mapping 40% 27%

Photo 10% n/a

Shopping 9% 12%

Video 6% 12%

RSS n/a 6%

This quick comparison attests to the long-term and short-term popularity of mapping. It
looks like video mashups are on the rise—but you have to track it more to be sure. At any rate,
if you keep an eye on the popular tags associated with mashups over time, you can get a feel
for both short-term and long-term trends.

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS 231

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 231

You can find the tag cloud of tags associated with the mashups here:

http://www.programmableweb.com/search

There you will find a short list of the top ten tags. Another worthwhile page is here:

http://www.programmableweb.com/mashups/directory

On the left side, you will find a list of the top 20 tags for mashups, along with the number of
mashups for that tag. Here’s a list of the ten most popular tags for mashups as of January 13, 2008:

• mapping

• photo

• shopping

• search

• travel

• video

• news

• sports

• realestate

• messaging

Note that the URL template to access the list of mashups by tag is as follows:

http://www.programmableweb.com/tag/{tag}

For example:

http://www.programmableweb.com/tag/mapping

You can page and sort and change views, too:

http://www.programmableweb.com/tag/{tag}/{page}?sort={sort}&view={view}

where sort is one of name, date, or popular and where view is one of text, desc, or images.
For example:

http://www.programmableweb.com/tag/mapping/2?sort=date&view=desc

Note that the tags associated with mashups are not necessarily the same as those for API
tags, though you can expect some overlap. For example:

http://www.programmableweb.com/apitag/mapping

That brings up APIs that have been tagged with mapping and brings up mashups tagged
with mapping:

http://www.programmableweb.com/tag/mapping

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS232

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 232

Note APIs are also classified in categories:

http://www.programmableweb.com/apis/directory/1?sort=category

API and Mashup Verticals
ProgrammableWeb calls out certain fields or segments with high activity as vertical markets
for special attention:

http://www.programmableweb.com/markets

As of this writing, the special vertical markets (which are correlated to popular tags but
not exactly) are as follows with upcoming markets for search, enterprise, and widgets:

• http://www.programmableweb.com/shopping

• http://www.programmableweb.com/government

• http://www.programmableweb.com/mapping

• http://www.programmableweb.com/telephony

• http://www.programmableweb.com/social

• http://www.programmableweb.com/video

If you take a look at one of these segments, you will see a dashboard (much like the main
Mashup Dashboard) focused on that segment. One helpful extra is a description of the “big
picture” for a segment, such as the one for telephony:

http://www.programmableweb.com/featured/telephony-mobile-apis-and-mashups

Why are verticals significant? That is, what does distinguishing verticals offer beyond
just looking at the top mashup tags? You shouldn’t be surprised that there would be signifi-
cant overlap between the top mashup tags and the verticals. Certain verticals (such as
government and telephony) are identified whose importance is not immediately apparent
from tag popularity.

Looking at a Specific Mashup Profile
So far we’ve looked at the directory of mashups or collections of mashups grouped by tags or
vertical markets. Let’s consider how ProgrammableWeb displays a mashup profile.

You can find a profile for a given mashup here:

http://www.programmableweb.com/mashup/{mashup-handle}

For example, the profile for the Flash Earth mashup is here:

http://www.programmableweb.com/mashup/flash-earth

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS 233

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 233

What do you find on the mashup profile page? For each mashup, you get the following:

• A description

• A screenshot

• The APIs involved in the mashup

• Any tags for the mashup

• The URL of the mashup

• When it was added and who added it

• Related mashups

• Associated comments and a rating (as a registered user, you can contribute comments
and rate the mashup)

In this case, you learn that Flash Earth is a “[z]oomable mashup of Google Maps, Virtual
Earth, and other satellite imagery through a Flash application” found here:

http://www.flashearth.com/

Tagged with the tag mashup, it involves the following APIs: Google Maps, Microsoft Virtual
Earth, NASA, OpenLayers, and Yahoo! Maps. Moreover, you learn that Flash Earth is one of the
most popular mashups on ProgrammableWeb.

In Chapter 13, you will take a closer look at online maps. Without figuring out how the
various online map APIs actually work, you can—through playing with Flash Earth—learn that
it is possible to extract tiles that make up various mapping APIs (for example, Google Maps,
Yahoo! Maps, and Microsoft Virtual Earth) and recombine them in a Flash interface. (Figuring
out exactly how it’s done is not necessarily so easy to do, though.) Flash Earth is a powerful
demonstration of what is technically possible with online maps in a mashup.

Going from a Specific API to Mashups
In the previous section, you saw how a mashup profile lists the APIs that are used in the mashup.
You can take a given API and find out all the mashups that use that API. For example, you start
with a list of the most used APIs:

http://www.programmableweb.com/apis/directory/1?sort=mashups

Then you find the profile for the Google Maps API, the most popular of all APIs in
ProgrammableWeb:

http://www.programmableweb.com/api/google-maps

From that link, you can click the Mashups link to arrive at the list of the 1,200+ mashups
registered that use the Google Maps API:

http://www.programmableweb.com/api/google-maps/mashups

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS234

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 234

Sample Problems to Solve Using Mashups
Through a number of scenarios in which I describe some problems that are particularly suited
to be solved through mashups, I’ll show how you can use ProgrammableWeb to figure out
what mashups might already exist to solve these problems. Often, there won’t be a perfect—or
even a good—solution, but the existing ones show you what is possible, what is easy to do, and
what might be difficult to do. Moreover, by using ProgrammableWeb, you can immediately see
what APIs are being used, as well as what mashups have gotten a following in the community
of ProgrammableWeb readers.

Tracking Interesting Books
One scenario is to develop a system to handle book-related information in all the ways you
might deal with books. Such a system would track books that

• you own,

• you have out from the various libraries and when they are due,

• you’ve lent to others or borrowed from others,

• you would like to read one day,

• you would buy if they dropped below a certain price,

• you’d buy from a used bookstore,

• you have just been published,

• you have just shown up your local libraries, or

• you cite in your writing.

Moreover, you probably want to keep some of this information private, some available
only to friends, and some pieces of information completely public.

For my own books, I currently use a mishmash of web sites, desktop applications, and
web applications to track books—all of which I would like to mash together:

• Amazon.com to look up and buy new books

• Amazon.com wishlists to store books that I would like to buy, borrow, or just ponder

• http://worldcatlibraries.org/ to locate the book in my local library

• The online card catalogs of my local libraries (that of Berkeley Public Library and UC
Berkeley)

• LibraryThing, a web site where I often enter books I’m reading and follow what others
are reading

• Zotero (http://zotero.org), a Firefox extension that I use to track references

• Bn.com and other online bookstores

• http://www.half.ebay.com/ to buy used books

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS 235

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 235

What would I like to a complete book mashup to do? Lots of things—but some scenarios
are as follows:

• If I place a book in my Amazon.com wishlist, I want to be informed whenever that book
becomes available at any of the bookstores for which I have borrowing privileges.

• I want to synchronize books that I have listed in Zotero and LibraryThing.

• I want the due dates of all my library books to show up on my Google Calendar.

• I want to be able to format any subset of books from anywhere into a citation for the
bibliography I’m compiling.

In some ways, the problem I’d like to solve is an elaboration of the problem I first discussed
in Chapter 1. There I talked about the LibraryLookup bookmarklet that shows you how to find
a library book in your local library catalog based on an ISBN. Here, I’d like my book informa-
tion to flow easily among all the places I am referring to books.

I don’t actually expect any existing mashup to bring them altogether—partly because
mashups generally aren’t that all-encompassing yet and partly because the mix of elements
I want mashed up is rather idiosyncratic. But let’s look at what mashups are out there, what
they bring together, and whether we can mash up the mashups themselves.

Let’s use ProgrammableWeb to help us to find possible solutions. One approach is to do
a full-text search for book among the mashup profiles, sorting the results by popularity:

http://www.programmableweb.com/mashups/directory/1?q=book&sort=popular

Another approach is to use the tags. You can look through the tag cloud here to get a sense
of popular book-related tags:

http://www.programmableweb.com/search

You’ll see a link listed to the tag books. I recommend sorting by popularity first:

http://www.programmableweb.com/tag/books/1?sort=popular

and then by date to see the latest developments among mashups tagged with books:

http://www.programmableweb.com/tag/books/1?sort=date

I recommend looking through the results and reading the descriptions of each mashup.
Try some. You’ll get a feel for the range of possibilities among book-related mashups.

Here, I’ll highlight ones that stand out in my viewing. One question to ask while looking
through the mashup profiles is, what are the important APIs involved in these mashups? It
would be nice to have ProgrammableWeb return the list of APIs involved in a given set of
mashups sorted by the number of times it is used. In this case, such a feature would make it
easy to see what the most commonly used APIs for mashups tagged with books are. However,
even with a casual glance through this:

http://www.programmableweb.com/tag/books/1?sort=popular

you’ll see several mentions of the Amazon.com E-Commerce Service API among the various
APIs:

http://www.programmableweb.com/api/amazon-ecommerce

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS236

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 236

I’m sure you won’t be surprised to see the Amazon.com web services show up in this con-
text, given Amazon.com’s prominence in two areas: online book retailing and web APIs. It’s
still helpful, though, to see how people have used the Amazon.com APIs in book-related mashups.
You can use the advanced search on ProgrammableWeb (see the “Using the Advanced Search
for Mashups and APIs” sidebar) to narrow down the list of mashups tagged with books to ones
that use the Amazon.com E-Commerce Service API:

http://www.programmableweb.com/tag/books/1?apis=Amazon+eCommerce&sort=popular

This ability to focus a search on a specific API (or a combination of APIs) in conjunction
with a specific mashup tag can often demonstrate the capabilities of an API for a specific con-
text more vividly than reading the documentation for the API!

USING THE ADVANCED SEARCH FOR MASHUPS AND APIS

You can use an advanced search form to search for mashup and API profiles. For mashups, go here:

http://www.programmableweb.com/mashups/directory

Then hit the Advanced Search link, which will then open an Advanced Search option. With the Advanced
Search option, you can specify the following:

• Up to three APIs used by the mashup (as you type the name of an API, the name will be autocompleted)

• Up to three tags associated with the mashup

• One of an optional date range when the mashup profile was created

For searching APIs, go here first:

http://www.programmableweb.com/apis/directory

Then click the Advanced Search link, which opens an Advanced Search form that lets you specify the
following:

• Up to three tags associated with the API

• A category

• A company

• A protocol (for example, REST or JavaScript)

• An optional date range when the API profile was created

Let’s now look at a few of the books-tagged mashups and how they can help in my quest to
bring together all aspects of my book-related activities.

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS 237

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 237

BlueOrganizer
BlueOrganizer is a Firefox extension that attempts to recognize when a web page is referring to
items of certain categories such as wine, music, stocks, and—most important in this context—
books:

http://www.programmableweb.com/mashup/blueorganizer

This ProgrammableWeb profile links to the URL for BlueOrganizer:

http://www.adaptiveblue.com/

specifically:

http://www.adaptiveblue.com/smartlinks_books.html

From reading the documentation for the plug-in, or actually installing it and trying it,
you’ll see that it recognizes books and gives you a button to take a variety of actions, including
the following:

• Adding the book to the Amazon.com wishlist

• Adding the book to LibraryThing or Shelfari (a LibraryThing competitor)

From studying BlueOrganizer, you can learn about web sites that might provide useful
sources of book information such as AbeBooks, which advertises an API in its affiliate program
(but you need to contact them: http://www.abebooks.com/docs/AffiliateProgram/).

GuruLib, BookBump, and Other LibraryThing Analogs
Although I am a fan of LibraryThing, I follow the development of other web sites that allow
readers to track books that they read and share that information with friends or the world. The
New York Times covered this genre here:

http://www.nytimes.com/2007/03/04/business/yourmoney/04novel.html

Although I knew about Shelfari (http://www.shelfari.com) and Goodreads (http://
www.goodreads.com) before consulting ProgrammableWeb, I learned about GuruLib and Book-
Bump from ProgrammableWeb:

• http://www.programmableweb.com/mashup/gurulib

• http://www.programmableweb.com/mashup/bookbump

One thing that keeps me from investing too heavily in these sites is the struggle of how to
move my book data in and out of any of these sites. For any given site, I look for APIs that help
in that regard as well as any feeds that might allow users to easily import and export data.

Some Conclusions About Book Mashups
Here are some things that we learned by thinking through how to create a full-featured book
mashup with the help of ProgrammableWeb:

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS238

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 238

• When it comes to book-related information, Amazon.com is a good API to start with in
regard to book searching. The API gives you access to the Amazon.com wishlist (as you
will see in Chapter 17).

• Don’t expect all APIs of interest to be listed on ProgrammableWeb. As of writing, there is
no mention of Zotero, WorldCat, and LibraryThing—even though they are all program-
mable to one degree or another.

• Lots of web sites I use don’t have APIs at all, such as Bn.com and my local library catalogs.
We are left with the question of how to deal with those sites. Should we screen-scrape
the sites?

• There are other angles that won’t be covered by looking only at ProgrammableWeb.
For example, for the latest books at my library, I have to look at http://
www.berkeley-public.org/ftlist for recent arrivals. There is no API.

Knowing When to Buy Airplane Tickets
Let’s move from tracking books to tracking plane tickets. Suppose I want to buy a round-trip
ticket between San Francisco and New York City. I know roughly when I want to travel but
have some flexibility in terms of exactly when I can leave and return (within a day or two) and
which airlines I can take. I’m planning far ahead of time to try to get the best price. However,
I really don’t want to have to leave before 8 a.m. or arrive in New York City after 9 p.m.

For a long time, it would be difficult for me as a typical consumer to be able to monitor
over periods of weeks or months airfares for trips that meet such criteria so that I could wait
for a good time to buy. However, some of the newer travel sites are giving users the ability to
perform increasingly sophisticated searches, filter results by such criteria as the time of day of
departure, and receive e-mail alerts for canned searches. Now, given that there are even travel
web sites with APIs, I’m wondering whether I could use these APIs to get closer to finding the
plane tickets at the prices I want.

We can use ProgrammableWeb to look through a collection of travel-tagged mashups:

http://www.programmableweb.com/tag/travel

John Musser wrote a recent analysis of the travel APIs:

http://blog.programmableweb.com/2007/10/29/5-travel-apis-from-comparison-to-booking/

You can search for travel-tagged APIs here:

http://www.programmableweb.com/apis/directory/1?q=travel

but if you limit the display to APIs tied to any mashup profiles (and sorting by popularity), like so:

http://www.programmableweb.com/apis/directory/1?q=travel&sort=mashups

you quickly find only two APIs at the time of writing:

• http://www.programmableweb.com/api/yahoo-travel

• http://www.programmableweb.com/api/kayak

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS 239

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 239

Since the Yahoo! Travel API is focused on travel plans made by users on the Yahoo! Travel
web site, and not on the purchase of airplane tickets, we’ll focus then on the Kayak Search API:

http://www.kayak.com/labs/api/search/

Kayak (http://www.kayak.com/) is a web site like Expedia and Travelocity that allows users
to search for flights. Given that APIs for travel sites are a new concept, I wasn’t surprised that
there were few mashups listed as using the Kayak Search API (http://www.programmableweb.com/
api/kayak/mashups). Kayak’s deals from cell phones profiled here made me think of alternate
interfaces to Kayak’s travel information:

http://www.programmableweb.com/mashup/kayak.com-deals-from-cell-phone

One mashup that I have yet to see is one of Kayak with Google Calendar. When I schedule
flights, it’s useful to see what else I have going on in my personal schedule. A Kayak/Google
Calendar mashup could present possible flights as a Google calendar that I could juxtapose
with my personal calendar. The mashup might even read my personal schedule to filter out
prospective flights to begin with. (See Chapter 15 for how to use the Google Calendar API.)

Apart from connecting Kayak to alternative interfaces such as cell phones and calendars,
a mashup of Kayak could allow you to conduct a more thorough search through the compli-
cated combinations of parameters possible when flying. I found that manually varying parameters
such as departure dates and return dates and keeping the best deals in my head got rather tir-
ing after five to ten tries. I suspect that a mashup of the Kayak Search API and a smart search
algorithm could possibly find better flights than I could find manually.

Finding That Dream House
Real estate–oriented APIs and mashups promise to make home buying a bit easier and maybe
more fun. Specifically, let’s look at how we might use a variety of web feeds and APIs to track
houses that come on the market in a given area.

You can start on ProgrammableWeb by searching for mashups tagged with realestate
and sorting the results by popularity:

http://www.programmableweb.com/tag/realestate/1?view=desc

More to the point, by searching for APIs tagged with realestate and listing them by
popularity by going here:

http://www.programmableweb.com/apitag/realestate/1?sort=mashups

you find two relevant APIs for American real estate:

• Zillow (http://www.programmableweb.com/api/zillow)

• Trulia (http://www.programmableweb.com/api/trulia)

Zillow (http://www.zillow.com/) focuses on providing estimates of home valuations
and details of properties, while also listing homes for sale and that have been recently sold.
Trulia (http://www.trulia.com/) aggregates listings of homes for sale. Note that although
the Trulia API (http://developer.trulia.com/) doesn’t currently return any individual listings,

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS240

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 240

you can use Trulia feeds to access some of the listings. For example, the following is an
RSS 2.0 feed of some of the current properties available in Berkeley, California:

http://www.trulia.com/rss2/CA/Berkeley/

Currently, I do not know of what seems to be an obvious combination—a mashup of the
Zillow and Trulia APIs, one that, for instance, would compare the sale price of houses listed for
sale on Trulia with what Zillow estimates to be the value of the house. ProgrammableWeb
doesn’t list any such mashup:

http://www.programmableweb.com/mashups/directory/1?apis=trulia%2Czillow

Something I learned by looking through the realestate mashups is that Google Base is an
interesting source of real estate data. Take a look at mashups tagged by realestate using the
Google Base API:

http://www.programmableweb.com/tag/realestate?apis=Google+Base

Mapping Breaking News
In Chapter 4, you learned how to use Yahoo! Pipes to pull together various news feeds into
a single feed. In this section, I’ll cover how to plot those current events on a map.

I often read about places in the world for which I have only the vaguest idea where they
are located. Online maps certainly make it easy to look places up now. But much like how
Housingmaps.com helps with visualizing real estate on a map, perhaps displaying news on
a map of the world could have the similar benefits.

Let’s see what ProgrammableWeb has to say about mashups of news and maps. The news
tag is a popular tag for mashups on ProgrammableWeb.

http://www.programmableweb.com/tag/news/1?view=desc

When you look through this section, you’ll see several mashups of interest:

• http://www.programmableweb.com/mashup/bbc-news-map points to a now-defunct
mashup that mapped BBC News items about the United Kingdom on a map.

• http://www.programmableweb.com/mashup/ap-national-news-google-maps points to
http://www.81nassau.com/apnews/, which displays items from a choice of Associated
Press feeds (including national news, sports, and business) on a Google map.

• http://www.programmableweb.com/mashup/mapified-rss points to http://
o.gosselin.free.fr/Projects/MapifiedRss/, which maps to Google Maps entries from
one of the preconfigured RSS feeds (for example, Reuters, Associated Press top head-
lines, or Google News) or from the URL of a feed entered the user.

Seeing these mashups reminded me how easy it is now to display feeds that contain geo-
graphic locations on a map. Let’s use Yahoo! Pipes, which you have already learned how to use
in Chapter 4. The key to georeferencing a feed so that it can be displayed on a map is the
Location Extractor Operator in Yahoo! Pipes:

http://pipes.yahoo.com/pipes/docs?doc=operators#LocationExtractor

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS 241

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 241

Another thing you need to know is that Yahoo! Pipes is able to output KML that can then
be displayed on Google Earth and Google Maps. (Chapter 13 contains more details about KML.)

I constructed a Yahoo! pipe that takes as input a URL to a feed to be georeferenced:

http://pipes.yahoo.com/raymondyee/locationextractor

The default value for this URL is that for the New York Times International News feed:

http://www.nytimes.com/services/xml/rss/nyt/International.xml

The KML output for this default feed is as follows:

http://pipes.yahoo.com/pipes/pipe.run?InputURL=http%3A%2F%2Fwww.nytimes.com%2Fservices➥

%2Fxml%2Frss%2Fnyt%2FInternational.xml&_id=cInT4D7B3BGMoxPNiXrL0A&_render=kml

or as follows:

http://tinyurl.com/yvx8qy

You can display this KML feed on a Google map, like so:

http://maps.google.com/maps?f=q&hl=en&geocode=&time=&date=&ttype=&q=http:%2F%2F➥

pipes.yahoo.com%2Fpipes%2Fpipe.run%3FInputURL%3Dhttp%253A%252F%252Fwww.nytimes.com%252F➥

services%252Fxml%252Frss%252Fnyt%252FInternational.xml%26_id%3DcInT4D7B3BGMoxPNiXrL0A%➥

26_render%3Dkml&ie=UTF8&ll=28.921631,53.4375&spn=150.976999,360&z=2&om=1

or like so:

http://tinyurl.com/yp8k2b

Since in this section we’re looking at mapping, it’s helpful to look at the mapping vertical
market coverage on ProgrammableWeb:

http://www.programmableweb.com/mapping

Summary
In this chapter, you learned about mashups and their relationships to APIs by studying a series
of specific problems for which mashups can provide useful solutions. You looked at how you
can track books, real estate, airfare, and current events by combining various APIs. You used
ProgrammableWeb to help analyze these problems.

CHAPTER 9 ■ MOVING FROM APIS AND REMIXABLE ELEMENTS TO MASHUPS242

858Xch09FINAL.qxd 2/4/08 3:10 PM Page 242

Creating Mashups of Several
Services

In previous chapters, you learned about the raw ingredients of mashups. This chapter teaches
you how to write mashups by walking you through a detailed example of mashing up Flickr
photos with Google Maps. This chapter draws upon what you have learned in previous chap-
ters. In Chapter 1, you learned about how geotagging photos started in Flickr and how people
such as Rev. Dan Catt and C.K. Yuan built tools—essentially mashups, such as Geobloggers and
GMiF—to display those geotagged photos. In Chapter 2, you learned about how such features
were baked into Flickr. In Chapter 6, you learned about how to program the Flickr API, while
in Chapter 8, you learned the basics of Ajax and how to program Google Maps. We will draw
upon all those pieces of knowledge in this chapter.

Given that you can already display Flickr photos on a Yahoo! map, why would you still
build any Flickr-map mashup? Well, you might for a number of reasons. You might have a pref-
erence for Google Maps over the default maps. Making such a mashup is an instructive process.
What better way to learn about mashups than to mash up the two most mashed up services:
GMap and Flickr?

What you learn in this chapter will be useful for other mashups. The type of mashup shown
here is an extremely common one: getting data from somewhere and putting that data on
a map. (Here, we’re not screen-scraping that data but rather getting that directly out of an API.
There are mashups that require screen-scraping, but that’s largely outside the scope of this book.)

You will also learn about the interaction of server-side and client-side programming, another
major issue in many mashups. In addition, you will learn about the central process of dealing
with impedance matching between APIs. That is, you will find how to make APIs that have dif-
ferent conceptual and implementation details fit together so that data can flow between them.
You will learn where to find the common matching points (for example, latitudes and longitudes
are common in both the Flickr API and Google Maps) and create interfaces (channel adapters)
that bridge the APIs. Finally, there is also the process of taking the work you did and then recast-
ing the same logic into a different environment.

The bulk of this chapter is devoted to writing a simple mashup of Flickr photos with
Google Maps using the Google Maps API, but we finish by creating a Flickr/Google Maps
mashup using the Google Mapplets API. Since the Mapplets API is similar but not identical to
the Google Map API, you will be able to use some of the programming you will do for Google
Maps. You’ll see how mapplets eliminate the need for server-side programming on your part;
the solution we will come up with will be a pure HTML/JavaScript combination.

243

C H A P T E R 1 0

■ ■ ■

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 243

The goals of this chapter are as follows:

• To enable you to build a significant end-to-end mashup that gives you knowledge
about building other mashups

• To cover and reinforce the materials beforehand, which was background material
building up to this mashup building

The Design
For both the Google Maps and the Google Mapplets–based mashup, you will want to let your
users search for geotagged photos in Flickr and to display them on a Google map. When the user
changes the bounding box (that is, the rectangular region of a map often defined by the coor-
dinates of the map’s southwest and northeast corners) of the map (by panning and zooming
or by changing the zoom level of the map), a new search for geotagged photos is done, and the
resulting pictures are displayed on the map.

We will build the mashups in manageable chunks:

• You’ll review what you have already learned about geotagging in Flickr and then see
how to use the Flickr API to associate locations with photos and how to find geotagged
photos.

• You’ll study how to access XML web services from the browser using the XMLHttpRequest
browser object, both natively and wrapped in the Yahoo! UI library.

• You’ll study how the security constraints on the browser necessitate a server-side proxy
for accessing web services.

• You’ll build a server-side proxy to get Flickr geotagged photos.

• You’ll work toward building a mashup of the client-side Google Maps API with the
Flickr API by first building a simple client-side framework.

• You’ll elaborate the client-side framework to translate a search for Flickr geotagged
photos into an HTML display of the results.

• You’ll transform this framework into a mashup of the Google Maps API and Flickr through
a series of steps: setting up a basic map; having the map respond to changes in the
viewport of the map; bringing together the Flickr and Google Maps into the same page,
first as independent pieces; wiring the bounding box of the Google map to be the source
of lat/long coordinates; and finally, making the pictures show up in the map.

• You’ll refactor this work into a Flickr/Google mapplet to create a pure client-side solution.

• You’ll draw conclusions about what you learned in making these mashups and see how
they can be applied to creating other mashups.

■Note Chapter 13 provides greater detail on maps and further elaborates on the core examples of this
chapter—by mashing up Flickr and Google Earth via KML.

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES244

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 244

Background: Geotagging in Flickr
As you learned in Chapter 1, geotagging in Flickr started with people using tags (specifically,
geotagged and geo:lon, geo:lat) to associate a latitude and longitude with a given photo. This
way of geotagging was very popular. Lots of people started creating geotagged photos. More-
over, programs arose to both display geotagged photos (such as GMiF and Geobloggers) and
create geotagged photos.

This approach (what I refer here as old-style geotagging), as cool as it was, was a hack. Flickr
moved to institutionalize geotagging, into what I refer to as new-style geotagging. First, Flickr cre-
ated the framework of machine tags to clean up the clutter. Clearly, there was a desire for
developers (spurred on by serving users) to add extra metadata to Flickr photos. The result
was that data meant for machine consumption was pushed into tags, which were geared more
for people manually sticking in descriptions. Flickr decided to take tags of the following form
and make them into machine tags:

namespace:predicate=value

For example, the geo:lat= and geo:lon= tags have become machine tags. This means they
are not displayed by default in the UI. Rather, a user needs to click the “Show machine tags”
link to see these machine tags. (The thinking is that machine tags weren’t really for human
consumption—so why display them?)

Let’s consider a geotagged photo that we already looked at in Chapter 1 (“Campanile in
the Fog”):

http://flickr.com/photos/raymondyee/18389540/

You can see the relevant geotags under Tags by clicking “Show machine tags” to reveal this:

geo:lon=-122.257704
geo:lat=37.8721

You can use the Flickr API to get at these regular and machine tags. Remember that Flickr
geotagging was based originally on the geotagged tag and tags of the form geo:lon=[LONGITUDE]
and geo:lat=[LATITUDE] that became machine tags. For example, to use the Flickr API to look
up the tags for the photo whose ID is 18389540, you issue the following HTTP GET request:

http://api.flickr.com/services/rest/?method=flickr.tags.getListPhoto➥

&api_key={api_key}&photo_id=18389540

whose response is as follows:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photo id="18389540">
<tags>
<tag id="29475-18389540-11787" author="48600101146@N01"

authorname="Raymond Yee" raw="campanile" machine_tag="0">campanile</tag>
<tag id="29475-18389540-1700" author="48600101146@N01"

authorname="Raymond Yee" raw="geotagged" machine_tag="0">geotagged</tag>
<tag id="29475-18389540-10860922" author="48600101146@N01"

authorname="Raymond Yee" raw="geo:lon=-122.257704"
machine_tag="1">geo:lon=122257704</tag>

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 245

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 245

<tag id="29475-18389540-10860930" author="48600101146@N01"
authorname="Raymond Yee" raw="geo:lat=37.8721"
machine_tag="1">geo:lat=378721</tag>

<tag id="29475-18389540-88988" author="48600101146@N01"
authorname="Raymond Yee" raw="UC Berkeley"
machine_tag="0">ucberkeley</tag>

<tag id="29475-18389540-9233381" author="48600101146@N01"
authorname="Raymond Yee" raw="mashupguide"
machine_tag="0">mashupguide</tag>

</tags>
</photo>

</rsp>

■Note You might wonder why you get machine tags for latitude and longitude since using geo:lat and
geo:lon has been superceded. I’m showing this technique for historic interest and also because it’s still
used by older pieces of software (such as the Google Maps in Flickr Greasemonkey script that uses old-style
geotagging).

With new-style geotagging, support for geotagging was built into the core of Flickr (geo-
information became a first-class citizen of the Flickr data world). Each photo can optionally
be associated with a location (that is, a latitude and longitude) and permissions about who
can see this location.

There are some major advantages of the new-style geotagging:

• You can search for photos in a given bounding box. There was no way to do so with
regular tags unless you crawled a whole bunch of geotagged photos and built your own
database of those photos and their locations and built geosearching on top of that data-
base. Flickr does that for you.

• You can control the visibility of the location independently of that photo (that is, the
photo can be visible but not the location). In the old-style geotagging, if the photo is
visible, then its tags are also visible, thus rendering any geo:lat/geo:lon visible.

• The new style is the official way to do geotagging, whereas the old style never had offi-
cial support. Along with it being the official way comes a lot of supporting features: the
Flickr map, a link to a map for any georeferenced photo, and so on.

By setting a location, you give a photo a latitude, longitude, and accuracy (1–16): world
level equals 1, country equals approximately 3, and street equals approximately 16. The default
accuracy is 16. Permissions are the values for four parameters: is_public, is_contact, is_friend,
and is_family (0 or 1). (See Chapter 2 for a discussion of the permission system in Flickr.) There
are five methods under flickr.photos.geo: getting, setting, deleting the location of a given photo
(flickr.photos.geo.getLocation, flickr.photos.geo.setLocation, and flickr.photos.geo.
removeLocation), and getting and setting the permission (flickr.photos.geo.getPerms and
flickr.photos.geo.getPerms).

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES246

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 246

You’ll notice that for the following, in addition to using the old-style geotagging in the
example photo, I am also using the new-style geotagging:

http://flickr.com/photos/raymondyee/18389540/

Since this photo is public, anyone can use flickr.photos.geo.getLocation to access the
photo’s latitude and longitude. (All the other geo.* methods require authorization.) Let’s use
the API to get the location. Issue an HTTP GET request on this:

http://api.flickr.com/services/rest/?method=flickr.photos.geo.getLocation
&api_key={api_key}&photo_id=18389540

You will get the following:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photo id="18389540">
<location latitude="37.8721" longitude="-122.257704" accuracy="16">
<locality>Oakland</locality>
<county>Alameda</county>
<region>California</region>
<country>United States</country>

</location>
</photo>

</rsp>

For the other methods, it’s easier to demonstrate using a Flickr API kit that helps you with
the Flickr authentication process (which is covered in detail in Chapter 6). I’ll now display some
code to show how to use Python to manipulate a photo’s location and geopermission. Here,
flickr.client is an authenticated instance of the Flickr client using Beej’s Python Flickr API
(http://flickrapi.sourceforge.net/).

Let’s retrieve the location of the photo:

>>> rsp = flickr.client.photos_geo_getLocation(photo_id=18389540)

Now let’s remove the location of the photo:

>>> rsp = flickr.client.photos_geo_removeLocation(photo_id=18389540)

Let’s write the location back to the photo:

>>> rsp = flickr.client.photos_geo_setLocation(photo_id=18389540,lat=37.8721,
lon=-122.257704,accuracy=16)

In addition to reading and writing the location and geopermissions of an individual photo,
you can use the Flickr API to search for photos that have an associated location. You do so by
using the flickr.photos.search method (the one to which you were introduced in Chapter 6),
documented here:

http://www.flickr.com/services/api/flickr.photos.search.html

To do a search for geotagged photos, you add the search parameters of the following form:

bbox=lon0,lat0,lon1,lat1

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 247

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 247

Here lon0,lat0 and lon1,lat1 are the longitude and latitude of the southwest and northeast
corners of the bounding box, respectively. Note that you can also use the accuracy parameter
to specify the minimum accuracy level you demand of the specified locations.

Let’s consider the example of searching for photos around Berkeley in a bounding box
with the following parameters:

SW: 37.81778516606761, -122.34374999999999
NE: 37.92619056937629, -122.17208862304686

The following will get the first page of all the publicly available geotagged photos in Flickr,
including photos of all accuracies (with this call, you can get at the total number of such photos):

http://api.flickr.com/services/rest/?api_key={api_key}&method=flickr.photos.search➥

&bbox=-180%2C-90%2C180%2C90&min_upload_date=820483200&accuracy=1

You can get the first page of photos with a bounding box around the UC Berkeley campus:

http://api.flickr.com/services/rest/?api_key={api_key}&method=flickr.photos.search➥

&bbox=-122.34374999999999%2C+37.81778516606761%2C+-122.17208862304686➥

%2C+37.92619056937629&min_upload_date=820483200&accuracy=1

The Flickr API doesn’t like unqualified searches for geotagged photos. That is, you can’t just,
say, search for photos in a certain bounding box—you need to use at least one other search
parameter to reduce the strain on the Flickr database caused by unqualified searches. Here
I’m using the min_upload_date parameter to convince Flickr to give some results.

Background: XMLHttpRequest and Containing
Libraries
In the previous chapters, especially Chapters 6 and 7, I concentrated on showing you how to
make web service requests using server-side languages such as PHP and Python. In this section,
I will show you how to make HTTP requests from JavaScript in the browser. The key piece of
technology is the XMLHttpRequest (XHR) object (or XHR-like objects in Internet Explorer). I will
outline the basics of XHR, covering briefly how to use XHR in the raw and then in the form of
a library (specifically the YUI Connection Manager) that abstracts the details of XHR for you.

Using XMLHttpRequest Directly
The XHR object is an API for JavaScript for transferring XML and other textual data between the
(client-side) browser and a server. There are differences in naming the object between Internet
Explorer and the other browsers. Moreover, there are subtle issues that are easiest to handle by
using a good wrapper around XHR, such as the Yahoo! Connection Manager.

Even though we will be using the Yahoo! Connection Manager to access XHR, it’s still useful
to look at how to use XHR before relying on a library. Drawing from Peter-Paul Koch’s descrip-
tion of XHR at http://www.quirksmode.org/js/xmlhttp.html and noting that the following
proxies an RSS feed of weather in the 94720 ZIP code (see the discussion after the code for an
explanation of the script) . . .

http://examples.mashupguide.net/ch10/weather.php?p=94720

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES248

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 248

then I present the following, which shows a typical usage of XHR to read the RSS feed:

http://examples.mashupguide.net/ch10/xhr.html

This extracts and displays an HTML excerpt from the feed:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>xhr.html</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8" >
<script type="text/javascript">
//<![CDATA[

// based on http://www.quirksmode.org/js/xmlhttp.html

var XMLHttpFactories = [
function () {

xhr = new XMLHttpRequest(); xhr.overrideMimeType('text/xml'); return xhr;
},
function () {return new ActiveXObject("Msxml2.XMLHTTP")},
function () {return new ActiveXObject("Msxml3.XMLHTTP")},
function () {return new ActiveXObject("Microsoft.XMLHTTP")}

];

function getXmlHttpRequest() {
var xmlhttp = false;
for (var i=0;i<XMLHttpFactories.length;i++) {
try {
xmlhttp = XMLHttpFactories[i]();

}
catch (e) {
continue;

}
break;

}
return xmlhttp;

}

function writeResults() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
resultsDiv = document.getElementById('results');
//alert(xmlhttp.responseText);
var response = xmlhttp.responseXML;
resultsDiv.innerHTML =

response.getElementsByTagName('description')[1].firstChild.nodeValue;

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 249

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 249

}

}

function load() {

// http://examples.mashupguide.net/ch10/weather.php?p=94720
xmlhttp = getXmlHttpRequest();
if (xmlhttp) {
zip = "94720";
url = "weather.php?p=" + zip;
xmlhttp.open('GET', url, true);
xmlhttp.onreadystatechange = writeResults;
xmlhttp.send(null);

}

}

//]]>
</script>

</head>
<body onload="load()" >
<!-- retrieve -->
<div id="results"></div>
</body>

</html>

Note the following:

• The code attempts to instantiate XHR by trying various ways to do so until it succeeds—
or finally fails if none of the methods works.

• Through the use of the following:

xmlhttp.onreadystatechange = writeResults;

the writeResults() method is the callback for the HTTP GET request. That is, XHR feeds
writeResults with its state (xmlhttp.readyState). A typical usage pattern is for the
callback routine to wait until the call is complete (xmlhttp.readyState == 4) and for
the return of an HTTP response code of 200 (to indicate a successful call).

• xmlhttp.responseXML returns the body of the HTTP response in the form of an XML DOM.

Using the YUI Connection Manager
The main goal of this section is to again use JavaScript to call the Flickr API to get photos from
a given bounding box. In the previous section, you learned how to use XHR directly; here, I show
you how to use a library that wraps XHR: the Yahoo! UI (YUI) Library’s Connection Manager,
which is documented here:

http://developer.yahoo.com/yui/connection/

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES250

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 250

The official examples page for the Connection Manager is here:

http://developer.yahoo.com/yui/examples/connection/index.html

Let’s look at the weather example provided by the YUI:

http://developer.yahoo.com/yui/examples/connection/weather.html

Our ultimate goal is to use the Connection Manager to hook up the Flickr API. Instead of
jumping directly to that goal, I’ll first explain the weather example. The server-side part is rela-
tively easy to understand, thus letting you concentrate on the XHR part of the example. The
example is built in with the YUI download, and therefore you can immediately see an example
of a client-side JavaScript invocation of the Yahoo! weather web service.

Enter a ZIP code, and hit Get Weather RSS. The web page uses XHR (wrapped by the Con-
nection Manager) to retrieve an RSS 2.0 feed for the ZIP code, parses the weather information,
and displays it on the page. Note that this happens without a page reload—remember that is
what XHR (and Ajax) can do for you.

One thing to notice about weather.html is that its JavaScript code invokes assets/weather.php
running from the same server. That is, if you have a version of the YUI example loaded on
examples.mashupguide.net:

http://examples.mashupguide.net/lib/yui/examples/connection/weather.html

you’ll see that it calls the following:

http://examples.mashupguide.net/lib/yui/examples/connection/assets/weather.php

What does weather.php do?
A quick study shows that weather.php takes the ZIP code (that is, 94720), does an HTTP

GET request on the Yahoo! Weather API (http://developer.yahoo.com/weather/), and echoes
the feed back.

For example, suppose you make the following request:

http://examples.mashupguide.net/lib/yui/examples/connection/assets/weather.php?➥

p=94720

The script echoes back the following:

http://xml.weather.yahoo.com/forecastrss?p=94720

This will be something of the following form:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<rss version="2.0" xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"
xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
<channel>
<title>Yahoo! Weather - Berkeley, CA</title>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/Berkeley__CA/➥

*http://weather.yahoo.com/forecast/94720_f.html</link>
<description>Yahoo! Weather for Berkeley, CA</description>
<language>en-us</language>
<lastBuildDate>Mon, 05 Nov 2007 12:53 pm PST</lastBuildDate>
<ttl>60</ttl>

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 251

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 251

<yweather:location city="Berkeley" region="CA" country="US"/>
<yweather:units temperature="F" distance="mi" pressure="in" speed="mph"/>
<yweather:wind chill="62" direction="300" speed="10"/>
<yweather:atmosphere humidity="65" visibility="1287" pressure="30.03"

rising="2"/>
<yweather:astronomy sunrise="6:39 am" sunset="5:06 pm"/>

<item>
<title>Conditions for Berkeley, CA at 12:53 pm PST</title>
<geo:lat>37.87</geo:lat>
<geo:long>-122.3</geo:long>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/Berkeley__CA/➥

*http://weather.yahoo.com/forecast/94720_f.html</link>
<pubDate>Mon, 05 Nov 2007 12:53 pm PST</pubDate>
<yweather:condition text="Fair" code="34" temp="62"

date="Mon, 05 Nov 2007 12:53 pm PST"/>
<description><![CDATA[

Current Conditions:

Fair, 62 F

Forecast:

Mon - Sunny. High: 69 Low: 46

Tue - Partly Cloudy. High: 70 Low: 47

<a href="http://us.rd.yahoo.com/dailynews/rss/weather/Berkeley__CA/➥

*http://weather.yahoo.com/forecast/94720_f.html">
Full Forecast at Yahoo! Weather

(provided by The Weather Channel)

]]></description>

<yweather:forecast day="Mon" date="05 Nov 2007" low="46" high="69"
text="Sunny" code="32"/>

<yweather:forecast day="Tue" date="06 Nov 2007" low="47" high="70"
text="Partly Cloudy" code="30"/>

<guid isPermaLink="false">94720_2007_11_05_12_53_PST</guid>
</item>

</channel>
</rss>

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES252

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 252

Building a Server-Side Proxy
In the previous section, you learned how to use XHR to talk to a local weather.php file that in
turn calls the Yahoo! Weather API. You might wonder why XHR doesn’t go directly to the Yahoo!
Weather API. It turns out that because of cross-domain security issues in the browser, you can’t
use the XHR object to make a request to a server that is different from the originating server of
the JavaScript code. That would apply to the Flickr API as it does to the Yahoo! Weather API. To
get around this issue, you will need a little help from a server-side proxy in the form of a PHP
script whose job it is to take a tag and bounding box as input, call the Flickr API to get photos,
and return that in XML or JSON to the calling script.

I’ll show you how to write a server-side proxy to the Flickr API to get geotagged photos,
but first I’ll prove to you that you can’t use XHR to go directly to the Yahoo! Weather API.

What Happens with XHR and Direct API Calls?
Let’s see why weather.html can’t just call Yahoo! directly. You can find out what happens by
running the following code, which instead of calling the local weather.php goes directly to
http://xml.weather.yahoo.com/forecastrss?94720:1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Direct connect</title>
<script type="text/javascript" src="/lib/yui/build/yahoo/yahoo.js"></script>
<script type="text/javascript" src="/lib/yui/build/event/event.js"></script>
<script type="text/javascript"

src="/lib/yui/build/connection/connection.js"></script>
</head>
<body>
<div id="status"></div>
<script>
div = document.getElementById('status');

var handleSuccess = function(o){

function parseHeaders(headerStr){

var headers = headerStr.split("\n");
for(var i=0; i < headers.length; i++){
var delimitPos = headers[i].indexOf(':');
if(delimitPos != -1){
headers[i] = "<p>" +
headers[i].substring(0,delimitPos) + ":"+
headers[i].substring(delimitPos+1) + "</p>";

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 253

1. http://examples.mashupguide.net/ch10/direct.connect.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 253

}
return headers;
}

}

if(o.responseText !== undefined){
div.innerHTML = "Transaction id: " + o.tId;
div.innerHTML += "HTTP status: " + o.status;
div.innerHTML += "Status code message: " + o.statusText;
div.innerHTML += "HTTP headers: " + parseHeaders(o.getAllResponseHeaders);
div.innerHTML += "Server response: " + o.responseText;
div.innerHTML += "Argument object: property foo = " + o.argument.foo +

"and property bar = " + o.argument.bar;
}

}

var handleFailure = function(o){
if(o.responseText !== undefined){
div.innerHTML = "Transaction id: " + o.tId + "";
div.innerHTML += "HTTP status: " + o.status + "";
div.innerHTML += "Status code message: " + o.statusText + "";

}
}

var callback =
{
success:handleSuccess, failure: handleFailure,
argument: { foo:"foo", bar:"bar" }

};

var sUrl = "http://xml.weather.yahoo.com/forecastrss?p=94720";
var request = YAHOO.util.Connect.asyncRequest('GET', sUrl, callback);

</script>
<div id="status"></div>

</body>
</html>

If you try to run this, you will get a JavaScript error. In Firefox, if you look in the Firefox
error console, you’ll see the following:

Error: uncaught exception: Permission denied to call method XMLHttpRequest.open

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES254

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 254

The main lesson here is that XHR lets you access URLs only from the same domain—for
security reasons. Let’s prove that by making a new HTML file in the same directory as a local
copy of weather.php. This security issue, and the workaround by the server-side proxy, is
explained here:

http://developer.yahoo.com/javascript/howto-proxy.html

In case you are still skeptical, you can change the JavaScript in your HTML to access
weather.php from this:

var sUrl = "http://xml.weather.yahooapis.com/forecastrss?p=94720";

to this:

var sUrl = "./weather.php?p=94720";

When you load weather.proxy.html,2 you no longer get the error. Instead, you get infor-
mation about the weather—that means communication is happening between your JavaScript
and the Yahoo! weather system. Using Firebug, you can actually see the RSS embedded in the
<div>—but that’s not very nice. Let’s now move toward getting Flickr information.

Building a Server-Side Script for Geolocated Photos
Based on what you just learned, you now know that you need to get results about Flickr geo-
tagged photos from the Flickr API into the browser using XHR. Hence, you’ll need a server-side
proxy for bridging any client-side script with Flickr. That’s the aim of this section.

As an exercise, I recommend you write this code yourself before studying the solution pre-
sented. Think about how weather.php works and how you can use flickr.photos.search to look
for geotagged photos. You can imagine a PHP script that gives access to the full range of input
parameters for flickr.photos.search in searches of public photos and returns the search results
in a variety of useful formats. You can find a list of the input parameters for flickr.photos.search
here:

http://www.flickr.com/services/api/flickr.photos.search.html

A script that I wrote to serve as a server-side proxy for flickr.photos.search is flickrgeo.php.
You can run the script here:

http://examples.mashupguide.net/ch10/flickrgeo.php

The code is listed here:

http://examples.mashupguide.net/ch10/flickrgeo.php.txt

Moreover, you will find a complete listing of the code in Chapter 13, including a descrip-
tion of how it handles KML and KML network links (which is beyond what is covered here). In
this section, I’ll describe the overall structure of flickrgeo.php and discuss some example usage.

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 255

2. http://examples.mashupguide.net/ch10/weather.proxy.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 255

With several exceptions, all the parameters for flickr.photos.search are also parameters
for flickrgeo.php:

• user_id

• tags

• tag_mode

• text

• min_upload_date

• max_upload_date

• min_taken_date

• max_taken_date

• license

• sort

• privacy_filter

• accuracy

• safe_search

• content_type

• machine_tags

• machine_tag_mode

• group_id

• place_id

• extras

• per_page

• page

There are three differences between the parameters for flickr.photos.search and for
flickrgeo.php. First, the api_key is hardwired for flickrgeo.php. Second, instead of using the
single bbox parameter from flickr.photos.search to specify the bounding box for geotagged
photos, flickrgeo.php takes four parameters: lat0, lon0, lat1, and lon1 where lat0, lon0 and
lat1, lon1 are, respectively, the southwest and northeast corners of the bounding box. Hence,
the value of the bbox parameter for flickr.photos.search is {lon0},{lat0},{lon1},{lat1}.

Second, instead of using the format parameter for Flickr API methods, which takes one of
rest (the default value), xml-rpc, soap, json, or php, flickrgeo.php uses an o_format parameter
to control the output of the script. These are the values recognized by the script:

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES256

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 256

• rest returns the default (rest) output from the Flickr API.

• json returns the JSON output from the Flickr API.

• html returns an HTML form and list of photos.

• kml returns the search results as KML (see Chapter 13 for more details).

• nl returns the results as a KML network link (see Chapter 13 for more details).

If the o_format is not set or is equal to html, then you want to return the HTML form and
a display of the photos. If the o_format is rest, return the default output from the Flickr API
(rest). If it’s json, you want to return the JSON output with no callback.

For example, a sample invocation of this script shows the first page of geotagged photos
tagged with cat from all over the world:

http://examples.mashupguide.net/ch10/flickrgeo.php?tags=cat&lat0=-90&lon0=-180&lat1=➥

90&lon1=180&page=1&per_page=10&o_format=html

If you change the o_format to json, you get JSON output:

http://examples.mashupguide.net/ch10/flickrgeo.php?tags=cat&lat0=-90&lon0=-180&lat1=➥

90&lon1=180&page=1&per_page=10&o_format=json

This script generates a simple user interface so that you can test the input parameters.
That is, you can use the html interface to see what photos are coming back and then switch
the output to json, rest, kml, or nl to be used in your server-side proxy. Much of the code is
devoted to generating KML and KML network links, functionality used in Chapter 13. There’s
also some other convenience functionality: automatic form generation, error checking, and
some useful default values for the bbox parameter. Again, consult Chapter 13 for more details.

Building a Simple Client-Side Frame
You now have flickrgeo.php, a server-side proxy for talking to Flickr. Before you turn your atten-
tion to directly connecting Google Maps with Flickr, I’ll remind you about two basic interactions
between the DOM and JavaScript:

• Reading and writing DOM elements, <div> elements, and form elements

• Handling simple events to connect form input and displaying calculations

Reading and Writing Elements
In this section, I will remind you how to do some basic things in browser-based JavaScript.
Specifically, I’ll review how to manipulate certain DOM elements. This section will seem trivial
to experienced JavaScript developers, but the example provides a starting point for the rest of
the chapter.

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 257

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 257

To that end of learning some basic JavaScript techniques, create the following HTML file:3

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Dom Play</title>

</head>
<body>
<div id="container"></div>

</body>
</html>

Fire up the JavaScript Shell and the Firebug extension to follow what happens when you
type the following commands:

document

[object HTMLDocument]

div = document.getElementById('container')

[object HTMLDivElement]

div.innerHTML = 'hello';

hello

Notice that the word hello shows up on the web page now. You’ve just used JavaScript to
write to the DOM, specifically hello to the innerHTML of the <div> element with the ID of
container.

The next step is to write an example with an input box and a submit button. When you hit
submit, the calc_square() JavaScript function calculates the square of the number and updates
the result box (the answer span). Start with the following, though we’ll leave the calc_square()
function empty for now:4

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES258

3. http://examples.mashupguide.net/ch10/dom.html

4. http://examples.mashupguide.net/ch10/square1.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 258

<head>
<title>Squaring the input(square1.html)</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

</head>
<body>
<script type="text/javascript">
//<![CDATA[
function calc_square() {
}

//]]>
</script>
<form action="#" onsubmit="calc_square(); return false;">
<label>Input a number:</label>
<input type="text" size="5" name="num" value="0" />
<input type="submit" value="Square it!" />

</form>
<p>The square of the input is: 0</p>

</body>
</html>

In the JavaScript Shell, try the following pieces of code:

document

[object HTMLDocument]

document.forms[0].innerHTML

<label>Input a number:</label><input size="5" name="num" value="0" type="text">
<input value="Square it!" type="submit">

document.forms[0].elements[0].value

0

Change the value in the text box, and try it again to see the new value reflected (note num
is the ID of the <input> element):

document.forms[0].num.value

8

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 259

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 259

The following gets you the <answer> element:

span.document.getElementById('answer')

[object HTMLSpanElement]

Finally, this will fill in 16 to the <answer> element:

span.document.getElementById('answer').innerHTML = 16

16

Handling Simple Events to Connect Form Input and Display
Calculations
Next, you’ll want to figure out how to programmatically submit the form (you’ll use this logic
later). Instead of having to hit the submit button, you will create a method that responds to the
button submission event. Remember, in the previous example, it is the job of the calc_square()
method (which was left empty) to read the input, calculate the square of the input, and write
the answer to the answer box. Let’s fill in calc_square with something like this:5

<script type="text/javascript">
//<![CDATA[
function calc_square() {

var n = document.forms[0].num.value;
document.getElementById('answer').innerHTML = n*n;

}
//]]>
</script>
<form action="#" onsubmit="calc_square(); return false;">
<label>Input a number:</label>
<input type="text" size="5" name="num" value="0" />
<input type="submit" value="Square it!" />

</form>
<p>The square of the input is: 0</p>
<script type="text/javascript">
//<![CDATA[
document.forms[0].num.onchange = calc_square; //register an event

//]]>
</script>

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES260

5. http://examples.mashupguide.net/ch10/square2.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 260

Hooking the Client-Side Framework to Flickr
Now that you’ve constructed some simple JavaScript code to read form elements and do a cal-
culation in response to a button submission event, you’re ready to wire up a form to use XHR
to access the flickrgeo.php server-side proxy. That is, you’ll let the user fill in new values and
do the form submission by JavaScript. Once the user hits Go!, the script returns a URL to use
flickrgeo.php to search for geotagged photos. We’ll build up the example in three steps:

1. Translate the form parameters into a query to flickrgeo.php.

2. Use XHR to do the request to flickrgeo.php and display the resulting JSON response.

3. Translate that JSON into HTML for display.

Let’s start with the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>flickrgeo.1.html</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

</head>
<body>
<script type="text/javascript">
//<![CDATA[
function get_pictures() {
/*
We're aiming for the following:
flickrgeo.php?tags=flower&lat0=-90&lon0=-180&lat1=90&lon1=180&page=1➥

&per_page=10&o_format=json
*/
}
//]]>
</script>
<form action="#" onsubmit="get_pictures(); return false;">
<label>Search for photos with the following tag:</label>
<input type="text" size="20" name="tag" value="flower" />
<label> located at: lat0,lon0,lat1,lon1:</label>
<input type="text" size="10" name="lat0" value="-90.0" />
<input type="text" size="10" name="lon0" value="-180.0" />
<input type="text" size="10" name="lat1" value="90.0" />
<input type="text" size="10" name="lon1" value="180.0" />
<label>at page</label>
<input type="text" size="4" name="page" value="1" />
<label>with</label>
<input type="text" size="3" name="per_page" value="1" />
<label> per page.</label>
<button type="submit">Go!</button>

</form>

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 261

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 261

<div id="pics"></div>
</body>

</html>

Writing a URL for Querying flickrgeo.php
Your goal is to figure out how to fill in get_pictues() to translate the input parameters from
the form into a URL of the correct form. Here’s one possible approach:6

<script type="text/javascript">
//<![CDATA[
function get_pictures() {
// flickrgeo.php?tags=flower&lat0=-90&lon0=-180&lat1=90&lon1=180&page=1&per_page
// =10&o_format=json
var s = "";
f = document.forms[0].getElementsByTagName('input'); // get all input fields
for (i = 0; i < f.length; i++)
if (i < f.length - 1) {
s = s + f[i].name + "=" + escape(f[i].value) + "&";

} else {
s = s + f[i].name + "=" + escape(f[i].value);

}
var url = "flickrgeo.php?" + s + "&o_format=json";
document.getElementById('pics').innerHTML = "URL";

}
//]]>
</script>

The get_pictures function iterates through all the <input> tags in the form, extracting the
name and value of each tag, out of which to create a URL (with parameters) to flickrgeo.php.
This URL is an HTTP GET request for JSON-formatted results for the given parameters.

Using XHR via the YUI Connection Manager to Read the JSON
The next step is to actually grab the JSON that is available at the URL. Using what you learned
earlier (in the section “What Happens with XHR and Direct API Calls”), let’s use the YUI Con-
nection Manager to call flickrgeo.php and display the raw JSON:7

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>flickrgeo.2.html</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<script type="text/javascript" src="/lib/yui/build/yahoo/yahoo.js"></script>

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES262

6. http://examples.mashupguide.net/ch10/flickrgeo.1.html

7. http://examples.mashupguide.net/ch10/flickrgeo.2.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 262

<script type="text/javascript" src="/lib/yui/build/event/event.js"></script>
<script type="text/javascript" src="/lib/yui/build/connection/connection.js">
</script>

</head>
<body>
<script type="text/javascript">
//<![CDATA[

var handleSuccess = function(o){

div = document.getElementById('pics');
div.innerHTML = ""; // blank out the div

if(o.responseText !== undefined){

div.innerHTML += "Server response: " + o.responseText + "
";
}

}

var handleFailure = function(o){
if(o.responseText !== undefined){

alert("failure");
}

}

var callback =
{
success:handleSuccess, failure: handleFailure, argument: {}

};

function get_pictures() {
// flickrgeo.php?tags=flower&lat0=-90&lon0=-180&lat1=90&lon1=180&page=1&per_page
// =10&o_format=json
var s = "";
f = document.forms[0].getElementsByTagName('input'); // get all input fields
for (i = 0; i < f.length; i++)
if (i < f.length - 1) {
s = s + f[i].name + "=" + escape(f[i].value) + "&";

} else {
s = s + f[i].name + "=" + escape(f[i].value);

}
var url = "flickrgeo.php?" + s + "&o_format=json";
var request = YAHOO.util.Connect.asyncRequest('GET', url, callback);

}
//]]>

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 263

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 263

</script>
<form action="#" onsubmit="get_pictures(); return false;">

<label>Search for photos with the following tag:</label>
<input type="text" size="20" name="tags" value="flower" />
<label> located at: lat0,lon0,lat1,lon1:</label>
<input type="text" size="10" name="lat0" value="-90.0" />
<input type="text" size="10" name="lon0" value="-180.0" />
<input type="text" size="10" name="lat1" value="90.0" />
<input type="text" size="10" name="lon1" value="180.0" />
<label>at page</label><input type="text" size="4" name="page" value="1" />
<label>with</label>
<input type="text" size="3" name="per_page" value="1" /><label> per page.</label>
<button type="submit">Go!</button>

</form>
<div id="pics"></div>

</body>
</html>

Note what was added:

• <script> elements to include the relevant parts of the Yahoo! UI Library to enable the
use of the Connection Manager.

• The definition of callback functions (handleSuccess and handleFailure), which are ref-
erenced by the callback object, to handle successful and failed calls, respectively, to
flickrgeo.php. If the call is successful, the JSON output from flickrgeo.php is written
into the <div id="pics"></div>.

• A call to the Yahoo! Connection Manager in the line var request = YAHOO.util.Connect.
asyncRequest('GET', url, callback);. Remember that an HTTP GET request is made
to url and the HTTP response is fed to the functions contained in the callback object.

Converting the JSON to HTML
The next step is to convert the JSON input to HTML so that you can use it to display the pho-
tos. Note how you can use eval() to convert the JSON coming back from Flickr to a JavaScript
object because you trust the source of this JSON. An alternative to eval() is JSON stringify().8

Here’s some code:9

<body>
<script type="text/javascript">
//<![CDATA[

function rspToHTML(rsp) {
var s = "";

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES264

8. http://www.json.org/js.html

9. http://examples.mashupguide.net/ch10/flickrgeo.3.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 264

// http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}_[mstb].jpg
// http://www.flickr.com/photos/{user-id}/{photo-id}
s = "total number is: " + rsp.photos.photo.length + "
";

for (var i=0; i < rsp.photos.photo.length; i++) {
photo = rsp.photos.photo[i];
t_url = "http://farm" + photo.farm + ".static.flickr.com/" + photo.server +
"/" + photo.id + "_" + photo.secret + "_" + "t.jpg";

p_url = "http://www.flickr.com/photos/" + photo.owner + "/" + photo.id;
s += '' + '<img alt="'+ photo.title + '"src="' +
t_url + '"/>' + '';

}
return s;

}

var handleSuccess = function(o){
div = document.getElementById('pics');
div.innerHTML = ""; // blank out the div

if(o.responseText !== undefined){
div.innerHTML += "Server response: " + o.responseText + "
";

//let's deposit the response in a global variable
//so that we can look at it via the shell.
window.response = o.responseText;
window.rsp = eval('(' + o.responseText + ')');
div.innerHTML = rspToHTML(window.rsp);

}
}

var handleFailure = function(o){
...

}

var callback =
{
...

};

function get_pictures() {

...
}
//]]>
</script>
<form action="#" onsubmit="get_pictures(); return false;">
...

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 265

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 265

</form>
<div id="pics"></div>

</body>

You now have a client-side form that uses XHR to query the Flickr API, get back results in
JSON, convert the JSON to HTML, and insert that HTML into the page—without a page reload
(see Figure 10-1). The next steps are to integrate these results with Google Maps—the work of
the next section.

Figure 10-1. Results of flickrgeo.3.html. Geotagged photos are displayed as HTML in response
to the XHR request.

Mashing Up Google Maps API with Flickr
You now have all the pieces needed to finish up the Flickr and Google Maps mashup. Here’s
a step-by-step walk-through of the big steps:

1. Set up a basic Google map.

2. Have the map respond to changes in the viewport of the map.

3. Bring together Flickr and GMap into the same HTML page by combining the code into
one file—the two pieces are just together but don’t interact.

4. Wire up the bounding box of the Google map to be the source of the lat/long coordinates.

5. Write the coordinates into the lat0/lon0 and lat1/lon1 boxes.

6. Make the pictures show up in the map.

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES266

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 266

Setting Up a Basic Google Map
To start with, let’s just get a simple Google map set up by using the Google Maps API (which
you learned about in Chapter 8):

1. Make sure you have the Google Maps key needed for your domain. The domain I have
is http://examples.mashupguide.net/ch10. You can calculate the corresponding API key:

http://www.google.com/maps/api_signup?url=http%3A%2F%2Fexamples.mashup➥

guide.net%2Fch10

2. Copy the following code, substituting your key, to get a map centered on UC Berkeley
with the size, map-type control, and keyboard handlers (you can use the arrow keys to
control the map):10

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google Maps JavaScript API Example</title>
<script src="http://maps.google.com/maps?file=api&v=2&key=➥

[API_KEY]"
type="text/javascript"></script>

<script type="text/javascript">

//<![CDATA[

function load() {
if (GBrowserIsCompatible()) {
var map = new GMap2(document.getElementById("map"));
window.map = map;
map.setCenter(new GLatLng(37.872035,-122.257844), 13);
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());

}
}

//]]>
</script>

</head>
<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 800px; height: 600px"></div>

</body>
</html>

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 267

10. http://examples.mashupguide.net/ch10/gmap.1.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 267

Making the Map Respond to Changes in the Viewport of the Map
The next thing to pull off is to have the map respond to changes in the viewport of the map
(that is, when the user has panned or zoomed the map). The mechanism to use is Google
Maps events:

http://www.google.com/apis/maps/documentation/#Events_overview

You can get a list of supported events here:

http://www.google.com/apis/maps/documentation/reference.html#GMap2

The relevant event we need here is the moveend event, the one that is fired once the view-
port of the map has stopped changing (as opposed to the move event, which is fired during the
changing of the viewport). To see this event in action, load the Google map you just created
and use the JavaScript Shell to add a listener for the moveend event:

onMapMoveEnd = function () {alert("You moved or zoomed the map");}

function () { alert("You moved or zoomed the map"); }

GEvent.addListener(map,'moveend', onMapMoveEnd);

[object Object]

With that event listener added, every time you finish panning or zooming the map, an
alert box pops up with the message “You moved or zoomed the map.”

Let’s now write some code that displays the bounding box in a <div> element, updating
this information every time the map is moved. We are doing this as a stepping-stone to feed-
ing the bounding box information to flickrgeo.php. Here’s the code:11

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>gmap.2.html</title>
<script src="http://maps.google.com/maps?file=api&v=2&key=[API_KEY]"
type="text/javascript"></script>

<script type="text/javascript">

//<![CDATA[

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES268

11. http://examples.mashupguide.net/ch10/gmap.2.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 268

function updateStatus() {
var div = document.getElementById('mapinfo');
div.innerHTML = map.getBounds();
return (1);

}

function onMapMove() {

updateStatus();
}

function onMapZoom(oldZoom, newZoom) {

updateStatus();
}

function load() {
if (GBrowserIsCompatible()) {
var map = new GMap2(document.getElementById("map"));
window.map = map;
map.setCenter(new GLatLng(37.872035,-122.257844), 13);
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
window.kh = new GKeyboardHandler(map);

GEvent.addListener(map,'moveend',onMapMove);
GEvent.addListener(map,'zoomend',onMapZoom);
updateStatus();

}
}

//]]>
</script>

</head>

<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 800px; height: 600px"></div>
<div id="mapinfo"></div>

</body>
</html>

Bringing Together the Flickr and GMap Code
At this point, you are now ready to bring together the Flickr elements (the input form hooked
up to flickrgeo.php) and the Google map. The first thing to do is to display the two parts on
the same page without having them interact. Getting things displaying side by side ensures
that you have the proper dependencies worked out. Once you get there, then you can wire the

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 269

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 269

two pieces together. The first thing to do is to copy and paste code from your Flickr code and
GMap code into one file. Here is one possible way to do it:

http://examples.mashupguide.net/ch10/gmapflickr1.html

Wiring Up the Bounding Box of the Google Map
Let’s get some interaction going between the Flickr parts and the Google map, now that they
are contained in the same HTML page. Let’s wire up the bounding box of the Google map to
be the source of the lat/long coordinates. Now, when you move or zoom the Google map, the
new coordinates are written into the form elements (the lat0/lon0 and lat1/lon1 boxes) for the
Flickr search.12

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>gmapflickr.2.html</title>
<script src="http://maps.google.com/maps?file=api&v=2&key=[API_KEY]"
type="text/javascript"></script>

<script type="text/javascript">

//<![CDATA[

function updateStatus() {
var div = document.getElementById('mapinfo');
div.innerHTML = map.getBounds();

document.forms[0].lat0.value = map.getBounds().getSouthWest().lat();
document.forms[0].lon0.value = map.getBounds().getSouthWest().lng();
document.forms[0].lat1.value = map.getBounds().getNorthEast().lat();
document.forms[0].lon1.value = map.getBounds().getNorthEast().lng();

get_pictures();
}

function onMapMove() {
updateStatus();

}

function onMapZoom(oldZoom, newZoom) {
updateStatus();

}

function load() {

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES270

12. http://examples.mashupguide.net/ch10/gmapflickr2.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 270

...
}

//]]>
</script>
<script type="text/javascript" src="/lib/yui/build/yahoo/yahoo.js"></script>
<script type="text/javascript" src="/lib/yui/build/event/event.js"></script>
<script type="text/javascript"

src="/lib/yui/build/connection/connection.js"></script>
<script type="text/javascript">
//<![CDATA[
function rspToHTML(rsp) {
var s = "";
// http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}_[mstb].jpg
// http://www.flickr.com/photos/{user-id}/{photo-id}
s = "total number available is: " + rsp.photos.total + "
";

for (var i=0; i < rsp.photos.photo.length; i++) {
photo = rsp.photos.photo[i];
t_url = "http://farm" + photo.farm + ".static.flickr.com/" + photo.server +
"/" + photo.id + "_" + photo.secret + "_" + "t.jpg";

p_url = "http://www.flickr.com/photos/" + photo.owner + "/" + photo.id;
s += '' + '<img alt="'+ photo.title + '"src="' +
t_url + '"/>' + '';

}
return s;

}

var handleSuccess = function(o){

...
}

}

var handleFailure = function(o){

...
}

var callback =
{
...

};

function get_pictures() {

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 271

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 271

...
}
//]]>
</script>

</head>

<body onload="load()" onunload="GUnload()">
<form action="#" onsubmit="get_pictures(); return false;">
<label>Search for photos with the following tag:</label>
<input type="text" size="20" name="tags" value="flower" />
<label> located at: lat0,lon0,lat1,lon1:</label>
<input type="text" size="10" name="lat0" value="-90.0" />
<input type="text" size="10" name="lon0" value="-180.0" />
<input type="text" size="10" name="lat1" value="90.0" />
<input type="text" size="10" name="lon1" value="180.0" />
<label>at page</label><input type="text" size="4" name="page" value="1" />
<label>with</label>
<input type="text" size="3" name="per_page" value="1" />
<label> per page.</label>
<button type="submit">Go!</button>

</form>
<div id="pics"></div>
<div id="map" style="width: 800px; height: 600px"></div>
<div id="mapinfo"></div>
</body>

</html>

Note that as soon as the page is loaded, the load function is called, which in turn calls
updateStatus. The result is a search for photos using the starting parameters in the form. That
is, geotagged photos tagged with flower are retrieved and displayed. You can change the start-
ing photos by changing the default value for the <input> element to tags.

Making the Pictures Show Up in the Map
In this section, you’ll complete the wiring between the Flickr results and the map. I’ll show you
how to display the images in the list on the map. This is done by creating markers for each of
the photos and adding those markers as overlays to the map. That involves generating HTML
to put into the markers.

I’ll remind you how to add overlays to a Google map using the API:

point = new GLatLng (37.87309185260284, -122.25508689880371);
marker = new GMarker(point);
map.addOverlay(marker);

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES272

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 272

Here’s the code with the new stuff in bold (see Figure 10-2):13

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>gmapflickr.html</title>
<script src="http://maps.google.com/maps?file=api&v=2&key=[API_KEY]"
type="text/javascript"></script>

<script type="text/javascript">

//<![CDATA[
// set up a blank object to hold markers that are added to the map
markersInMap = {}

function updateStatus() {
var div = document.getElementById('mapinfo');
div.innerHTML = map.getBounds();

document.forms[0].lat0.value = map.getBounds().getSouthWest().lat();
document.forms[0].lon0.value = map.getBounds().getSouthWest().lng();
document.forms[0].lat1.value = map.getBounds().getNorthEast().lat();
document.forms[0].lon1.value = map.getBounds().getNorthEast().lng();

get_pictures();
}

// Creates a marker at the given point with the given msg.
function createMarker(point, msg) {
var marker = new GMarker(point);
GEvent.addListener(marker, "click", function() {
marker.openInfoWindowHtml(msg);

});
return marker;

}

function photos_to_markers(rsp) {

// loop through the photos
for (var i=0; i < rsp.photos.photo.length; i++) {
var photo = rsp.photos.photo[i];
// check whether marker already exists

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 273

13. http://examples.mashupguide.net/ch10/gmapflickr.html

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 273

if (!(photo.id in markersInMap)) {
var point = new GLatLng (photo.latitude, photo.longitude);
var msg = photo.title + "
" + genPhotoLink(photo);
map.addOverlay(createMarker(point, msg));
markersInMap[photo.id] = ""; // don't know what to store so far.

}
}

}

function onMapMove() {
updateStatus();

}

function onMapZoom(oldZoom, newZoom) {
updateStatus();

}

function load() {

...
}

//]]>
</script>
<script type="text/javascript" src="/lib/yui/build/yahoo/yahoo.js"></script>
<script type="text/javascript" src="/lib/yui/build/event/event.js"></script>
<script type="text/javascript"

src="/lib/yui/build/connection/connection.js"></script>
<script type="text/javascript">
//<![CDATA[

function genPhotoLink(photo) {
var t_url = "http://farm" + photo.farm + ".static.flickr.com/" +
photo.server + "/" + photo.id + "_" + photo.secret + "_" + "t.jpg";

var p_url = "http://www.flickr.com/photos/" + photo.owner + "/" + photo.id;

return '' + '<img alt="'+ photo.title + '"src="' +
t_url + '"/>' + '';

}

function rspToHTML(rsp) {

...
}

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES274

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 274

var handleSuccess = function(o){
div = document.getElementById('pics');
div.innerHTML = ""; // blank out the div

if(o.responseText !== undefined){
//let's deposit the response in a global variable
//so that we can look at it via the shell.
window.response = o.responseText;
window.rsp = eval('(' + o.responseText + ')');
div.innerHTML = rspToHTML(window.rsp);
photos_to_markers(window.rsp);

}
}

var handleFailure = function(o){

...
}

var callback =
{
...

};

function get_pictures() {

...
}
//]]>
</script>

</head>

<body onload="load()" onunload="GUnload()">
<form action="#" onsubmit="get_pictures(); return false;">
<label>Search for photos with the following tag:</label>
<input type="text" size="20" name="tags" value="flower" />
<label> located at: lat0,lon0,lat1,lon1:</label>
<input type="text" size="10" name="lat0" value="-90.0" />
<input type="text" size="10" name="lon0" value="-180.0" />
<input type="text" size="10" name="lat1" value="90.0" />
<input type="text" size="10" name="lon1" value="180.0" />
<label>at page</label><input type="text" size="4" name="page" value="1" />
<label>with</label>
<input type="text" size="3" name="per_page" value="1" />
<label> per page.</label>

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 275

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 275

<button type="submit">Go!</button>
</form>

<div id="pics"></div>
<div id="map" style="width: 800px; height: 600px"></div>
<div id="mapinfo"></div>
</body>

</html>

Figure 10-2. The Flickr Google Maps mashup

This is just a beginning of a mashup between Flickr geotagged photos and Google Maps.
Some ideas for elaborating this mashup include the following:

• Refining the look and feel of the mashup (including removing <div id="mapinfo">,
which currently displays the bounding box of the map)

• Dealing with the fact that clicking a marker and its consequent window opening moves
the map

• Clustering photos that are at the same location (as is done in the Flickr map interface)

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES276

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 276

Google Mapplet That Shows Flickr Photos
In addition to the Google Maps API, which allows a developer to embed Google Maps on
a third-party site, Google recently introduced Google Mapplets as a way of adding extensions
to Google Maps directly as little applications that run in a side panel. (Any mapplet you install
and turn on interacts with the same map. For example, if you are using a mapplet for display-
ing flower shops and another one that displays restaurants, the resulting Google map shows
both flower shops and restaurants.) You can find developer information here:

http://www.google.com/apis/maps/documentation/mapplets/

In this section, I’ll show you how to create a basic mapplet to display Flickr geotagged
photos. Mapplets are a combination of JavaScript and HTML, embedded in an XML file. The
methods you use are similar but not identical to those found in the Google Maps API, and there’s
no need to write any server-side components. The Mapplets API provides wrappers for XHR that
talk to the Google servers (which in turn act like server-side proxies that we wrote in PHP).

You can find the source for a mapplet that allows users to search for Flickr pictures of
a certain tag here:

http://examples.mashupguide.net/ch10/flickr.mapplet.xml

Add the mapplet to your collection of maps. (See “Adding a Google Mapplet to Your
Google My Maps.”)

ADDING A GOOGLE MAPPLET TO YOUR GOOGLE MY MAPS

1. Go to http://maps.google.com/, and log in to Google Maps if you are not already logged in.

2. Click the My Maps tab.

3. Click Browse the Directory button or link.

4. Click the Add by URL link to the right of the Search Google Maps Content button.

5. Enter the URL of the mapplet source (for example, http://examples.mashupguide.net/ch10/
flickr.mapplet.xml), and hit the Add button.

6. Click Back to Google Maps.

7. Now you should now see on the My Maps tab under Created by Others a map called “Flickr Geotagged
Photos.” You can use the check box to turn it off and on.

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 277

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 277

Figure 10-3 shows the mapplet in action.

Figure 10-3. The Flickr Google Maps mapplet mashup

The source is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Module>
<ModulePrefs title="Flickr Geotagged Photos"

description="Show Flickr photos"
author="Raymond Yee"
author_email="raymondyee@mashupguide.net"
height="150">

<Require feature="sharedmap"/>
</ModulePrefs>
<Content type="html"><![CDATA[

<script>

var map = new GMap2();
var border = null;

function genPhotoLink(photo) {
var t_url = "http://farm" + photo.farm + ".static.flickr.com/" + photo.server +
"/" + photo.id + "_" + photo.secret + "_" + "t.jpg";

var p_url = "http://www.flickr.com/photos/" + photo.owner + "/" + photo.id;

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES278

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 278

return '' + '<img alt="'+ photo.title + '"src="' +
t_url + '"/>' + '';

}

// Creates a marker at the given point with the given msg.
function createMarker(point, msg) {
var marker = new GMarker(point);
GEvent.addListener(marker, "click", function() {
marker.openInfoWindowHtml(msg);

});
return marker;

}

function createMarkerAndDiv (point,msg) {
var marker, e, anchors, alink

marker = createMarker(point, msg);
e = document.createElement("div");

e.innerHTML = msg + "Show
"
anchors = e.getElementsByTagName('a')
alink = anchors[anchors.length-1];
alink.onclick = function(){marker.openInfoWindowHtml(msg);}

return [marker,e];
}

function cb(s) {
var rsp = eval('(' + s + ')');
var marker, e

// clear the photos
map.clearOverlays();

// add border
map.addOverlay(border);

var pdiv = document.getElementById("pictures");
pdiv.innerHTML = "Total number available is: " + rsp.photos.total + "
";;

// put the pictures on the map
for (var i=0; i < rsp.photos.photo.length; i++) {

var photo = rsp.photos.photo[i];

var point = new GLatLng (photo.latitude, photo.longitude);
var msg = photo.title + "
" + genPhotoLink(photo);

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 279

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 279

md = createMarkerAndDiv(point,msg);
marker = md[0];
e=md[1];

map.addOverlay(marker);
pdiv.appendChild(e);

}
}

function get_pictures() {
var API_KEY = "[API_KEY]";
fForm = document.getElementById('FlickrForm');

map.getBoundsAsync(function(bounds) {
var lat0 = bounds.getSouthWest().lat();
var lon0 = bounds.getSouthWest().lng();
var lat1 = bounds.getNorthEast().lat();
var lon1 = bounds.getNorthEast().lng();

// add polyline to mark the search boundaries
border = new GPolygon([
new GLatLng(lat0, lon0),
new GLatLng(lat1, lon0),
new GLatLng(lat1, lon1),
new GLatLng(lat0,lon1),
new GLatLng(lat0,lon0)

], "#ff0000", 2);

var url = "http://api.flickr.com/services/rest/?method=flickr.photos.search" +
"&api_key=" + API_KEY +
"&bbox=" + lon0 + "%2C" + lat0 + "%2C" + lon1 + "%2C" + lat1 +
"&per_page=" + fForm.per_page.value +
"&page=" + fForm.page.value +
"&format=json&nojsoncallback=1&extras=geo";

var tagValue = fForm.tag.value;
// search by tag only if the box is not blank.
if (tagValue.length) {
url = url + "&tags=" + fForm.tag.value;

} else {
url = url + "&min_upload_date=820483200";

}

_IG_FetchContent(url, cb);

} //anonymous function
); //map.getBoundsAsync

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES280

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 280

} //get_pictures

</script>

<form action="#" onsubmit="get_pictures(); return false;" id="FlickrForm">
<p>Search for photos with the following tag:
<input type="text" size="20" name="tag" value="flower">
at page <input type="text" size="4" name="page" value="1"> with
<input type="text" size="3" name="per_page" value="10"> per page.
<button type="submit">Go!</button></p>

</form>
<div id="pictures"></div>

]]></Content>
</Module>

A few words about the logic of this code:

• This code is compact partly because the _IG_FetchContent() method makes accessing
the Flickr API fairly straightforward because you can code the URL directly to the Flickr
API instead of having to create your own server-side proxy (such as flickrgeo.php).

• Mapplets do not provide much room to display content in the sidebar. Hence, the map-
plet can be better optimized to make use of the small space.

Summary
In this chapter, you learned how to create a mashup of two different APIs, the Flickr API and
the Google Maps API, to display geotagged Flickr photos on a Google map. After reviewing
geotagging in Flickr, you learned how to access XML web services using the XMLHttpRequest
browser object (XHR) and deal with security constraints in the browser by creating server-side
proxies to access web services. You then looked at how to use flickrgeo.php, a server-side proxy
to search photos in Flickr. You then set up a simple client-side framework that we transformed
one step at a time into a mashup between Flickr and Google Maps. Finally, you refactored that
work into a Flickr/Google mapplet to create a pure client-side solution.

Although this chapter focused on Flickr and Google Maps, what you learned in this chapter
can be generalized for other mashups. For instance, you’ll continue to see repeated interactions
between server-side and client-side components. Building mashups in controlled steps, adding
functionality one piece at a time, is a good way to work. Frameworks such as Google Mapplets
let you write widgets in HTML and JavaScript by providing server-side proxies to access web
services from other parties (such as the _IG_FetchContent() method in Google Mapplets).

When creating mashups, you are often faced with issues of “impedance matching”—that
is, how to translate information from one source into a form that is usable by the consumer of
that information. In this chapter, we focused on extracting geocoding information from Flickr
and then translating it for use by Google Maps. Data flow went the other way too: how to get
the viewport of the Google map to define the bounding box for a query for geotagged photos in
Flickr. You will see the need to deal with impedance matching throughout the rest of the book.

CHAPTER 10 ■ CREATING MASHUPS OF SEVERAL SERVICES 281

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 281

858Xch10FINAL.qxd 2/4/08 3:12 PM Page 282

283

Using Tools to Create Mashups

In the previous chapters, we focused on creating mashups through combining a number of
technologies: XML, PHP, JavaScript, Python, and so on. As you’ve seen, creating mashups takes
some amount of skill and knowledge. Can specialized tools make it easier to create mashups?
In this chapter, I’ll introduce several mashup-making tools and show the basics of how to use
a few of them. My goal in this chapter is to pick ones that are popular, useful, and illustrative
of some important issues or trends.

The focus of this chapter will be on using the Google Mashup Editor (GME) (in conjunc-
tion with Yahoo! Pipes) to build a Flickr/Google Maps mashup; it’s like the one you saw in
Chapter 10, but this one will show you how mashup-making tools make it easier (or different)
from straight-up PHP and JavaScript programming, which you saw in Chapter 10. Specifically,
this chapter includes the following:

• A tutorial on the GME

• A way of comparing mashup-making tools with the straight-up programming you did
in previous chapters

I’ll briefly describe some other tools (Microsoft Popfly, Dapper, and others). By essentially
re-creating the Flickr/Google Maps mashup using the GME and Yahoo! Pipes, you’ll see what
mashup tools get you and what they don’t get you.

C H A P T E R 1 1

■ ■ ■

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 283

The Problem Mashup Tools Solve
With a mashup-oriented mind-set in which you prize being able to integrate data and services
(because integration brings value), you care about how to introduce new things that can be
well integrated with the stuff you already use, without a high cost (in learning or effort to make
those bridges).

Currently, creating mashups takes a lot of work to knit APIs together. You’ve already seen
that work in the previous chapters and will see it again in the chapters that follow. APIs are
similar to one another, but they are all somewhat different. One day, perhaps, you’ll be able to
mash up different APIs the same way that you can surf from one web site to another and make
sense of them all. It may never be that easy, but it should be easier than how it is today.

Case in point: although WSDL is not perfect, something like WADL (roughly WSDL for
RESTful APIs) would be really helpful in alleviating the syntactic complications of connecting
stuff, if not exactly making autosemantic connections possible.

Another major problem is that getting data to work together from different APIs requires
translating among them. RDF promises to be a close-to-universal data representation. I have
always thought there is some merit to the semantic web stack, at the bottom of which is RDF.
Hence, I’m keeping an eye on RDF and other semantic web tools. I can certainly believe that if
more and more data were expressed in RDF, things would connect better. RDF is, however,
not a panacea. (That’s why I think a study of the SIMILE project (http://simile.mit.edu) is
a practical way to start looking at semantic web technology.)

Specifically, when you use a new API, you want to minimize the type of new learning; you
want the API to be similar to what you’ve already seen before. I think of the DRY (“don’t repeat
yourself”) principle: it’s nice to not have to tackle the same thing repeatedly—solve it once,
run it anywhere. For example, if you write code to access the Flickr API in one language and in
one framework, wouldn’t it be nice to be able to not have to redo that code when you have
another need? That’s the ideal anyway.

Tools and services can help you reach these goals. The key aspect of good tools is that they
simplify the routine stuff and let you concentrate on the essence of the problem. There are
always trade-offs, however—and we’ll look at them as we look at the various tools.

What You Are Making in This Chapter
As mentioned, the focus of this chapter will be using the GME in conjunction with Yahoo! Pipes
to build a Flickr/Google Maps mashup. Let’s first look at the final product that I will show you
how to build step by step. Doing so will teach you about the GME and Yahoo! Pipes (when you load
the mashup, you will be asked to log in using your Google e-mail address because this app
requires authentication):

http://mashup-raymond-yee-flickrfeed4.googlemashups.com/

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS284

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 284

This mashup displays geotagged photos on a Google map. There are two tabs: Search and
Saved Results. Let’s consider the Search tab (see Figure 11-1). Upon loading, the map is set to
Berkeley, California—and recent geotagged photos around that area are loaded in a list form
and also displayed on a Google map. Remember that when you use the Flickr API to search for
geotagged photos, you need to specify a geographic region (a bounding box) in which you are
searching for photos. This mashup map shows a rectangle to denote this search bounding box.

Figure 11-1. The Search tab of the Flickr/Google Maps mashup

When you enter a tag, a search is done on geotagged photos with the specified tag within
the current bounding box of the map. Up to 100 results are loaded at a time; you can page
through the photos.

Notice that there is a Copy Selected button. You can select a photo and hit that button,
which saves the selected photo to your saved entries feed, which you can then see on the Saved
Results tab (see Figure 11-2). On this second tab, you find a list of the Flickr photos that you
have saved in addition to a map showing the locations of the saved photos. You’ll also see a Delete
Selected button that lets you remove a selected photo from your feed of saved entries.

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 285

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 285

Figure 11-2. The Saved Results tab of the Flickr/Google Maps mashup

Now let’s build this mashup step by step.

Making the Mashup: A Step-by-Step Example
In this section, you will be redoing and extending Chapter 10’s Flickr/Google Maps mashup.
First you’ll see how to reproduce the example, and then you’ll extend it because of the data
persistence that is possible with the GME. One of the distinctive elements of the GME is its
ability to persist data with feeds, which is an elegant approach. It allows for the extensibility of
data elements in an easy-to-fashion way (for example, you’ll see that there’s no need to prede-
fine a data schema).

Even though this chapter is about mashup tools in general, I will use the GME and Yahoo!
Pipes first and then survey a few others. Yahoo! Pipes has been out for a while and has proven
itself to be very useful. Though the GME is a new product, it is a promising one, backed also by
a big company. There are similarities but also important differences with Yahoo! Pipes; the two
are actually complementary, as I will show in the extended example of this chapter. That example
will cover the following:

• Familiarizing yourself with the GME

• Reading and displaying a feed

• Introducing a custom template

• Using Yahoo! Pipes to access the Flickr API

• Displaying Flickr photos using <gm:map>

• Adding JavaScript to update the feed parameters and give the coordinates of the map

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS286

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 286

• Learning how to persist feeds and use tabs

• Making the final product

Familiarizing Yourself with the Google Mashup Editor
The GME (http://editor.googlemashups.com/editor) is a browser-based environment that
makes it easier to create mashups that are hosted on Google.

You can find documentation on how to use the GME here:

http://code.google.com/gme/

The GME is targeted at programmers familiar with HTML, CSS, and JavaScript, and it is
a programming environment. You can intermix browser-side techniques in HTML, CSS, and
JavaScript with GME tags. This combination is compiled into web pages (with HTML, CSS,
and JavaScript) that run on modern browsers—the GME tags are converted into JavaScript.

■Note As this book goes to press, the Google Mashup Editor is still under closed beta.

You don’t have to use the browser-based editor to use the GME. See the sidebar “Using
Subversion (SVN) to Access Your Project” to learn about accessing your code via SVN.

You should keep the tag reference located at the following URL handy while programming
with the GME:

http://editor.googlemashups.com/docs/reference.html

Contrast the GME to Yahoo! Pipes. The GME is a text-based programming environment,
while Yahoo! Pipes is a visual programming environment.

The first step is to save a new project and give it a display title (for example, “Flickr on
Google Maps”) and a single-word/lowercase string for a project name (flickrgmap). Look at
the starter code for index.gml for a new project:

<gm:page title="My App" authenticate="false">

</gm:page>

The next step is to customize it to have it say something like this:

<gm:page title="Flickr Photos on Google Maps" authenticate="false">

<!--
Displaying Flickr Photos on a Google Map
@author: Raymond Yee
-->

<h1>Flickr Photos</h1>

</gm:page>

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 287

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 287

After you have copied and pasted the previous code, I suggest just getting familiar with
the environment. That is, hit Save, and enter a display name and project name. Then hit Test
to see your basic application compile; you’ll be brought to the Sandbox tab to see the applica-
tion run.

Reading and Displaying a Feed (Simple Template)
The GME makes it easy to read and write Atom and RSS feeds. Let’s get a Flickr Atom or RSS
feed flowing into the GME. Go to the Feed Browser tab in the GME; in the list of GData feeds,
you can choose from the Test feed (which you can use to test your code), the Remote Feed
feed, and the Google Base feed.

■Note Currently, the GME is unable to read in XML data other than RSS and Atom 2.0 feeds. You can use
Yahoo! Pipes to convert XML to RSS 2.0, which can in turn be processed by GME.

Let’s give it a feed of geotagged photos from Flickr Central:

http://api.flickr.com/services/feeds/geo/?g=34427469792@N01➥

&lang=en-us&format=rss_200

Use the Feed Browser tab’s Remote Feed to read it in and see how the RSS 2.0 feed is con-
verted to Atom 1.0. The native format for the GME is Atom 1.0, but the GME can accept RSS 2.0
and Atom 1.0. Feeding the RSS 2.0 feed to the GME Feed Browser tab shows how feeds are con-
verted to Atom 1.0, and you refer to the data elements in the Atom format. For example, the
GME makes extensive use of GPath, a small subset of XPath expressions, to refer to specific
elements or attributes in a feed.1 For instance, the GPath expression atom:title will return the
title of an RSS item, which has been converted to an Atom element.

Let’s create a simple GME application that reads and displays the feed, using a <gm:list>
tag to specify the URL of the feed. You tell GME how to display this feed by using a template. In
the next section, I’ll show you how to create a custom template. In this section, you’ll use one
of the built-in templates (specifically simple) to display the feed, as shown here:

<gm:page title="Flickr Photos on Google Maps" authenticate="false">

<!--
Displaying Flickr Photos on a Google Map
@author: Raymond Yee
-->

<h1>Flickr Photos</h1>

<gm:list id="flickrList" template="simple"
data="http://api.flickr.com/services/feeds/geo/?g=34427469792@N01

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS288

1. http://code.google.com/gme/docs/data.html#xpath

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 288

&lang=en-us&format=rss_200"
pagesize="10"/>

</gm:page>

Note the types of built-in templates: simple (which lists only the title of each entry), task
(which displays a check box to mark a task as done, the due date, and the priority), and blog
(which is a template particularly suited to feeds coming from blogs).

Introducing a Custom Template
Now let’s use <gm:template> to customize how the feed is displayed—specifically to get the
image in the list:

<gm:page title="Flickr Photos on Google Maps" authenticate="false">

<!--
Displaying Flickr Photos on a Google Map
@author: Raymond Yee
-->

<h1>Flickr Photos</h1>

<gm:list id="flickrList" template="flickrTemplate"
data="http://api.flickr.com/services/feeds/geo/?g=34427469792@N01&lang=➥

en-us&format=rss_200" pagesize="10"/>

<gm:template id="flickrTemplate">
<table class="blue-theme" style="width:50%">
<tr repeat="true">
<td style="padding-bottom:10px">
<gm:text ref="atom:title"/>

<gm:html ref="atom:summary"/>

location: (<gm:text ref="geo:Point/geo:lat"/>,

<gm:text ref="geo:Point/geo:long"/>)

</td>
</tr>

</table>
</gm:template>

</gm:page>

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 289

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 289

You can see the code here:

http://mashup-raymond-yee-flickrfeed1.googlecode.com/svn/trunk/index.gml

And you can run the app here:

http://mashup-raymond-yee-flickrfeed1.googlemashups.com/

Note the following about this template:

• There are built-in CSS classes; this example uses blue-theme.

• This example uses <tr repeat="true"> to repeat a <tr> for each Atom entry. This is
useful because there is no need to write a loop explicitly.

• The template for each entry displays the text of the title (<gm:text ref="atom:title">)
and the HTML in the summary (<gm:html ref="atom:summary"/>).

• See how you can get at the geotag of each entry through the GPath entries geo:Point/
geo:lat and geo:Point/geo:long. You can use the Feed Browser tab to help you figure
out the XPath by hovering over the element you want to access.

USING SUBVERSION (SVN) TO ACCESS YOUR PROJECT

Instead of using the browser-based editor to edit your code, you can use Subversion (http://en.wikipedia.
org/wiki/Subversion_(software)) to download and check in your edits. You will find basic documen-
tation of how to use SVN in the context of the GME here:

http://code.google.com/support/bin/answer.py?answer=76145&topic=11689

Each mashup project you create with the GME generates a separate project hosted by Google Code. To
find a list of these projects on Google Code, visit the following URL:

http://code.google.com/hosting/

Click Settings to get your Google Code password, which you need for Subversion. Click the My Profile
tab to go to your list of projects. In my case, the My Profile tab leads to the following:

http://code.google.com/u/raymond.yee/

Consider a specific project. One project I created through GME is available here:

http://code.google.com/p/mashup-raymond-yee-flickrfeed2/

You can browse the code here:

http://mashup-raymond-yee-flickrfeed2.googlecode.com/svn/

The code index.gml for the project is available here:

http://mashup-raymond-yee-flickrfeed2.googlecode.com/svn/trunk/index.gml

Note that, by default, the code you produce using GME is licensed under an Apache 2.0 license. You can
change it on the Administer tab:

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS290

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 290

http://code.google.com/p/mashup-raymond-yee-flickrfeed2/admin

You can find instructions for using SVN to check out the code here:

http://code.google.com/p/mashup-raymond-yee-flickrfeed2/source

Once your code is checked out, you use your favorite desktop editor instead of being confined to editing
source through a web browser. Moreover, it’s also easier to edit many files simultaneously rather than depend-
ing on the browser-based editor in which you can currently edit only one file at a time.

Using Yahoo! Pipes to Access Flickr
The GME needs RSS 2.0 or Atom—and cannot read XML feeds in general. Yahoo! Pipes, on the
other hand, can be used to read XML in general and emit RSS 2.0. The Flickr API doesn’t cur-
rently output RSS 2.0 and Atom 1.0, but rather its own custom XML (although as we learned in
Chapter 4, there is an extensive selection of feeds from Flickr).

Here I’ll show you a Yahoo! Pipe that is created to be an interface to flickr.photos.search.
That is, you can input the same parameters as you can to flickr.photos.search, but instead
of getting Flickr XML, you get RSS 2.0. Here’s the pipe I generated:

http://pipes.yahoo.com/raymondyee/flickr_photos_search

You can also find it here:

http://pipes.yahoo.com/pipes/pipe.info?_id=YG9eZGWO3BGukZGJTqoASA

The parameters for this pipe are similar to the flickrgeo.php server-side proxy that you
wrote for Chapter 10 (and will see again in Chapter 13). The parameters are almost the same
as the parameters you’ll find for flickr.photos.search with the following exceptions:

• This pipe handles only unauthenticated searches.

• Instead of bbox to denote the bounding box, the pipe uses lat0,lon0,lat1,lat1.

• There is no use of a format or o_format parameter (as for flickrgeo.php) since the pipe
controls the output.

• The pipe has some default parameters to search for geotagged photos around down-
town Berkeley, California.

As to how to create this pipe, refer to the tutorial on pipes in Chapter 4. I’ll mention a few
possibly tricky parts here. (You can check out the source of the pipe on the Yahoo! Pipes site.)
First, you need to create a text input or number input for each of the parameters (this process
is a bit tedious given there are 24 input parameters).

To convert the Flickr XML to RSS 2.0, you can use several loops:

• A loop to create an item.image_prefix for each item. The item.image_prefix is used as
the first part of a URL to point to Flickr images of various sizes.

• A second loop to create item.image_small_URL by concatenating item.image_prefix
with _s.

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 291

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 291

• A third loop to calculate and assign item.link—a link to the Flickr page of the photo.

• A fourth loop to calculate and assign item.description, which holds HTML for the
small square version of the Flickr photo.

Note that the last two loops are the ones that directly affect the translation of the Flickr
XML to RSS 2.0. Finally, the pipe uses the Location Extractor module 2 to extract the longitude
and latitude from the Flickr results into <geo:lat> and <geo:long> for each photo.

Using the default parameters with RSS 2.0 output, here’s the code:

http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJTqoASA&_render=rss➥

&api_key={api_key}&extras=geo&lat0=37.817785166068&lat1=37.926190569376&lon0=➥

-122.34375&lon1=-122.17208862305&min_upload_date=820483200&per_page=10

If you wanted KML output, you’d use the following:

http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJTqoASA&_render=kml

RETAINING NONCORE RSS 2.0 ELEMENTS IN YAHOO! PIPES

I was hoping that the RSS 2.0 feed emitted by the pipe would retain nonstandard elements calculated by the
pipe (for example, <image_prefix>) that would make calculating the URL for various image sizes more
straightforward. It turns out that the RSS 2.0 feed doesn’t have this information—although the JSON feed
does indeed contain the extra parameters.

http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJTqoASA&_render=➥

json&api_key={api_key}&extras=geo&lat0=37.817785166068&lat1=37.926190569376&➥

lon0=-122.34375&lon1=-122.17208862305&min_upload_date=820483200&per_page=10

One way to solve this problem is to write a web service in PHP to transform the JSON to RSS 2.0 with
extension elements—but that defeats the purpose of trying to make this stuff easier.3

Displaying Flickr Photos Using <gm:map>
Remember that the overall goal in this iteration is to display the Flickr photos on a Google
map. Now that you have access to the Flickr API (via the pipe you just created), you can
change the source of Flickr photos to the pipe that accesses flickr.photos.search as the
source of images:

http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJTqoASA&_render=rss➥

&api_key={api_key}&extras=geo&lat0=37.817785166068&lat1=37.926190569376&lon0=➥

-122.34375&lon1=-122.17208862305&min_upload_date=820483200&per_page=100

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS292

2. http://pipes.yahoo.com/pipes/docs?doc=operators#LocationExtractor

3. http://discuss.pipes.yahoo.com/Message_Boards_for_Pipes/threadview?m=tm&bn=pip-
DeveloperHelp&tid=2513&mid=2517&tof=-1&rt=2&frt=2&off=1

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 292

Here the parameters to the pipe are hard-coded; later I’ll show you how to construct
a form to let a user change the parameters.

I’ll first show you the resultant code for this iteration and then explain the pieces:

<gm:page title="Flickr Photos on Google Maps" authenticate="false">

<!--
Displaying Flickr Thumbnails on a Google Map (hardwired parameters)
@author: Raymond Yee
-->

<h1>Flickr Photos</h1>

<gm:list id="flickrList" template="flickrTemplate"
data="http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJTqoAS➥

A&_render=rss&api_key=e81ef8102a5160154ef4662adcc9046b&extras=geo&lat0=37.817785➥

166068&lat1=37.926190569376&lon0=-122.34375&lon1=-122.17208862305&min_upload_➥

date=820483200&per_page=100" pagesize="10">
<gm:handleEvent event="select" src="flickrMap"/>

</gm:list>

<gm:map id="flickrMap" style="border:solid black 1px" control="large"
maptypes="true" data="${flickrList}" latref="geo:lat" lngref="geo:long"
infotemplate="FlickrMapDetailsTemplate" height="600">

<gm:handleEvent event="select" src="flickrList"/>
</gm:map>

<!-- flickrTemplate -->

<gm:template id="flickrTemplate" class="blue-theme">
<div style="float:left; width:85px" repeat="true">
<gm:html ref="atom:summary"/>

</div>
<br style="clear:both"/>
<gm:pager/>

</gm:template>

<!-- FlickrMapDetailsTemplate -->

<gm:template id="FlickrMapDetailsTemplate">
<div >
<gm:link ref="atom:link[@rel='alternate']/@href" labelref="atom:title" />

<gm:html ref="atom:summary"/>

Lat: <gm:text ref="geo:lat"/>

Long: <gm:text ref="geo:long"/>

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 293

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 293

</div>
</gm:template>

</gm:page>

I published this app at the following location:

http://mashup-raymond-yee-flickrfeed2.googlemashups.com/

You’ll see how I changed the data attribute in <gm:list> to point to the new source of
data. In addition, I revised <gm:template> to use <div> instead of a <table> and to display only
the thumbnail. Moreover, I added a <gm:pager/> to enable the user to page through the images
ten at a time.

Next, you use a <gm:map> element to instantiate a map:

<gm:map id="flickrMap" style="border:solid black 1px" control="large"
maptypes="true" data="${flickrList}" latref="geo:lat" lngref="geo:long"
infotemplate="FlickrMapDetailsTemplate" height="600">

<gm:handleEvent event="select" src="flickrList"/>
</gm:map>

Note how the parameters for <gm:map> are constructed:

• The data attribute (set to ${flickrList}, which is the ID of your <gm:list>) makes the
tie to the input data source defined in the <gm:list> element.

• The latref and lngref attributes are the XPath (or in the parlance of the GME, the GPath)
expressions relative to a feed entry to get at the latitude and longitude. (You can use the
Feed Browser tab to determine this quantity.)

• The <gm:handleEvent> tells the map to respond to a select event from the flickrList.
That is, when a user clicks a photo in the <gm:list>, the corresponding marker on the
map pops open.

• In a fashion similar to the template for the Flickr thumbnails, you can create a template
to control how the bubbles on the map are displayed.

Note in general how this declarative approach replaces having to write a lot of HTML and
JavaScript. Indeed, the mashup we created in Chapter 10 doesn’t have this interaction between
the display of thumbnails and the markers on the map.

Adding JavaScript to the Mashup
The goals of the next pass of development are as follows:

• Pass a subset of the parameters (instead of having hard-coded parameters) to Yahoo!
Pipes.

• Let the user set the bounding box of the search, and draw a bounding box on the map
to indicate this bounding box.

Before jumping into doing this, you might want to consult the sidebar “Introducing
Custom JavaScript into the GME.”

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS294

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 294

INTRODUCING CUSTOM JAVASCRIPT INTO THE GME

Before I try to introduce a new element (in this case some JavaScript event handling) into the main code I’m
working on, I often like to write a little side program to test this idea. The following is a simple program that
involves an input form and a submission event, reminiscent of a simple example from Chapter 10 (http://
examples.mashupguide.net/ch10/square2.html):

<gm:page title="Squaring Input and Flickr feed" authenticate="false">
<!--
Introducing custom JavaScript into a GME mashup

-->

<form action="#" onsubmit="calc_square(); return false;">
<label>Input a number:</label>
<input type="text" size="5" name="num" value="4" />
<input type="submit" value="Square it!" />

</form>

<p>The square of the input is: 16</p>

<gm:list id="flickrList" template="flickrTemplate"
data="http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJTqoA➥

SA&_render=rss&api_key={api_key}&extras=geo➥

&lat0=37.817785166068&lat1=37.926190569376&lon0=-122.34375&lon1=-122.17208862305➥

&min_upload_date=820483200&per_page=100"
pagesize="10" />

<!-- flickrTemplate -->

<gm:template id="flickrTemplate" class="blue-theme">
<div>

<gm:html ref="atom:summary"/>

<gm:pager/>

</div>
</gm:template>

<script type="text/javascript">
//<![CDATA[
function calc_square() {

var n = document.forms[0].num.value;
document.getElementById('answer').innerHTML = n*n;

}

document.forms[0].num.onchange = calc_square; //register an event

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 295

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 295

//]]>
</script>

</gm:page>

When you run this code, you’ll see that a lot of the JavaScript techniques for event handling can be
directly interspersed with the GME tags.

You can find the code I created to accomplish these goals here:

http://mashup-raymond-yee-flickrfeed3.googlecode.com/svn/trunk/index.gml

You can run the code here:

http://mashup-raymond-yee-flickrfeed3.googlemashups.com/

Here’s the code:

<gm:page title="Flickr Photos on Google Maps" authenticate="false"
onload="init_data();">

<!--
Displaying Flickr Thumbnails on a Google Map
@author: Raymond Yee
-->

<h1>Flickr Photos</h1>

<form action="#" onsubmit="update_feed(); return false;">
<label>Input tags:</label><input type="text" size="30" name="tags" value="" />
<input type="submit" value="Update feed" />

</form>

<p>URL of current feed: .</p>

<gm:list id="flickrList" template="flickrTemplate" pagesize="10">
<gm:handleEvent event="select" src="flickrMap"/>

</gm:list>

<gm:map id="flickrMap" style="border:solid black 1px" control="large"
maptypes="true" data="${flickrList}" latref="geo:lat" lngref="geo:long"
infotemplate="FlickrMapDetailsTemplate" height="600">

<gm:handleEvent event="select" src="flickrList"/>
</gm:map>

<!-- flickrTemplate -->

<gm:template id="flickrTemplate" class="blue-theme">
<div style="float:left; width:85px" repeat="true">

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS296

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 296

<gm:html ref="atom:summary"/>
</div>
<br style="clear:both"/>
<gm:pager/>

</gm:template>

<!-- FlickrMapDetailsTemplate -->

<gm:template id="FlickrMapDetailsTemplate">
<div >
<gm:link ref="atom:link[@rel='alternate']/@href" labelref="atom:title" />

<gm:html ref="atom:summary"/>

Lat: <gm:text ref="geo:lat"/>

Long: <gm:text ref="geo:long"/>

</div>
</gm:template>

<script type="text/javascript">
//<![CDATA[
function update_feed() {

var tags = document.forms[0].tags.value;

// let's get the bounds of the map
var flickrMap = google.mashups.getObjectById('flickrMap');

var bounds = flickrMap.getBounds();
var lat0 = bounds.getSouthWest().lat();
var lon0 = bounds.getSouthWest().lng();
var lat1 = bounds.getNorthEast().lat();
var lon1 = bounds.getNorthEast().lng();

update_feed0 (tags,lat0,lon0,lat1,lon1);

} // update_feed

function update_feed0(tags,lat0,lon0,lat1,lon1) {

var flickrList = google.mashups.getObjectById('flickrList');
var flickrMap = google.mashups.getObjectById('flickrMap');
var url = 'http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJ➥

TqoASA&_render=rss&api_key=e81ef8102a5160154ef4662adcc9046b&extras=geo&min_➥

upload_date=820483200&per_page=100' + '&tags=' + escape (tags) + "&lat0="➥

+ lat0 + "&lon0=" + lon0 + "&lat1=" + lat1 + "&lon1=" + lon1;

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 297

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 297

// clear the old overlays (I'm doing this to get rid of the boundary

flickrMap.getMap().clearOverlays();

document.getElementById('current_tags').innerHTML =
"Feed Link";

flickrList.setData(url);
flickrList.setPage(0); // reset the pager

// now draw a bounding box

border = new GPolygon([
new GLatLng(lat0, lon0),
new GLatLng(lat1, lon0),
new GLatLng(lat1, lon1),
new GLatLng(lat0,lon1),
new GLatLng(lat0,lon0)
], "#ff0000", 2);

flickrMap.getMap().addOverlay(border);

} // update_feed0

function init_data() {

var lat0=37.817785166068;
var lat1=37.926190569376
var lon0=-122.34375;
var lon1=-122.17208862305;

update_feed0("",lat0,lon0,lat1,lon1);

} // init_data

//]]>
</script>

</gm:page>

The code in bold was what changed from the previous code. Recall that the overall goal of
this iteration is to go from a hard-coded Flickr search with a set of hard-coded parameters to
a search that uses the map to determine the bounding box and also that allows the user to spec-
ify the Flickr tag on which to search. To implement this functionality, you can add an HTML
form to accept input tags. You also create the function update_feed() to respond to a form
submission in the following ways:

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS298

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 298

• Calculates the appropriate URL to the Yahoo! Pipes to search for geotagged Flickr photos
that match the tags and are found in the given bounding box. The init_data() method,
which sets the initial location for the map, calls update_feed(), which in turn calculates
the URL to Yahoo! Pipes and uses the setData(url) method of the <gm:list> to load
the data.

• Draws a bounding box on the map to mark the current search area.

How to Persist Feeds and Use Tabs
The next major task to try is the data persistence aspects of the GME. In this section, you’ll
learn how to create a simple database, specifically, a feed to save Flickr images that a user finds
interesting. These feeds persist between sessions. (That is, when users log out and return to
the mashup, they can find their saved results as they left them.) You will learn also how to copy
data from one feed to another. Finally, you will learn how to use the tab support in the GME.

Specifically, I’ll show you how to build a mashup that has two tabs. The first tab (Search)
shows Flickr images from a hard-coded feed. Each photo is displayed with a button to let a user
copy the image to a feed of saved photos. The second tab (Saved Results) displays this feed of
saved photos.

The code I wrote to implement this design, which can be found here:

http://mashup-raymond-yee-tabs0.googlecode.com/svn/trunk/index.gml

is shown here:

<gm:page title="Tabs0" authenticate="true">
<!--
Load the feeds in one tab and allow to copy selected entries to a data source
in another tab
-->

<gm:tabs target="myContainer"/>

<gm:container id="myContainer"
style="padding:3px;border:1px solid #369;width:600px;">

<gm:section id="sectionFlickrSearch" title="Search">
<gm:list id="myList" template="flickrTemplate"

data="http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJTqoA➥

SA&_render=rss&extras=geo&lat0=37.817785166068&lat1=37.926190569376&lon0=-122.34375&➥

lon1=-122.17208862305&min_upload_date=820483200&per_page=10" pagesize="10"/>
</gm:section>

<gm:section id="sectionSavedEntries" title="Saved Results">
<gm:list id="savedEntries" data="${user}/crud"

template="savedEntryTemplate" />
</gm:section>

</gm:container>

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 299

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 299

<gm:template id="flickrTemplate">
<table class="blue-theme" style="width:50%">

<tr repeat="true">
<td style="padding-bottom:10px">
<gm:text ref="atom:title"/>

<gm:html ref="atom:summary"/>

location: (<gm:text ref="geo:lat"/>, <gm:text ref="geo:long"/>)

<input type="button" value="Copy" onclick="copy_this(this)" />

</td>
</tr>

</table>
</gm:template>

<gm:template id="savedEntryTemplate">
<div>Your saved entries</div>
<table class="blue-theme" style="width:50%">

<tr repeat="true">
<td style="padding-bottom:10px">
<gm:text ref="atom:title"/>

<gm:html ref="atom:summary"/>

location: (<gm:text ref="geo:lat"/>, <gm:text ref="geo:long"/>)

<gm:editButtons deleteonly="true" />

</td>
</tr>

</table>
</gm:template>

<script type="text/javascript">
//<![CDATA[

function copy_this(DOMElement) {
var entry = google.mashups.getEntryForElement(DOMElement);
var myList = google.mashups.getObjectById('myList');
var savedEntries = google.mashups.getObjectById('savedEntries');
savedEntries.getData().addEntry(entry);

}

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS300

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 300

//]]>
</script>

</gm:page>

You can run this mashup here:

http://mashup-raymond-yee-tabs0a.googlemashups.com/

Let’s look at how this code works:

• Three tags are used to create the two tabs. A <gm:tabs> tag is used to instantiate a set of
tabs, with a target attribute pointing to a <gm:container> element that in turn holds
a <gm:section> for each tab.4

• The copy_this() function is invoked when the Copy button corresponding to a thumbnail
is clicked. This function identifies the feed entry matching the selected DOM element
and copies the element to the feed whose ID is savedEntries.

• The authenticate attribute of the <gm:page> element is set to true, so users must sign in
to a Google account to use the application.

Once a user creates a collection, you can access the resulting feeds. See the instructions here:

http://code.google.com/support/bin/answer.py?answer=76140&topic=11689

The generic URL of a user feed is as follows:

{PUBLISHED_MASHUP_NAME}.googlemashups.com/feeds/public/user/{USER_EMAIL}/➥

<STRIPE_NAME>

STRIPE_NAME is essentially an identifier for a feed. In the case of our mashup, the feed of
my saved entries is available here:

http://mashup-raymond-yee-tabs0a.googlemashups.com/feeds/public/user/raymond.yee➥

%40gmail.com/crud

The following relative URL—relative to the logged-in user, that is—also works:

http://mashup-raymond-yee-tabs0a.googlemashups.com/feeds/user/crud

This feed works only from a browser with the right credentials (that is, cookies from
a logged-in user in a browser).

■Note When writing GME feeds, keep in mind that the maximum number of entries in a custom feed is
1000.

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 301

4. http://code.google.com/gme/docs/samples.html#tabs

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 301

Changing the Selection and Deletion Process for the Photos
The previous code attaches a copy button to each image. In this section, you’ll rewrite the
code to switch to showing small thumbnails horizontally and to have a Copy Selected button
on the Search tab. Similarly, let’s add a Delete Selected button to the Saved Results tab.

The code for the new version, available from here:

http://mashup-raymond-yee-tabs1.googlecode.com/svn/trunk/index.gml

is as follows:

<gm:page title="Tabs1" authenticate="true">
<!--
Load the feeds in one tab and allow to copy selected entries to a data source
in another tab
-->

<gm:tabs target="myContainer"/>

<gm:container id="myContainer" style="padding:3px;border:1px solid #369;">

<gm:section id="sectionFlickrSearch" title="Search">
<gm:list id="flickrList" template="flickrTemplate"

data="http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJTqoAS➥

A&_render=rss&api_key=e81ef8102a5160154ef4662adcc9046b&extras=geo&lat0=37.8177851660➥

68&lat1=37.926190569376&lon0=-122.34375&lon1=-122.17208862305&min_upload_date=820483➥

200&per_page=100"
pagesize="10" />

<input type="button" value="Copy Selected" onclick="copy_selected()" />
</gm:section>

<gm:section id="sectionSavedEntries" title="Saved Results">
<gm:list id="savedEntries" data="${user}/crud"

template="savedEntryTemplate" />
<input type="button" value="Delete Selected" onclick="delete_selected()" />

</gm:section>

</gm:container>

<!-- flickrTemplate -->

<gm:template id="flickrTemplate" class="blue-theme">
<div style="float:left; width:85px" repeat="true">
<gm:html ref="atom:summary"/>

</div>
<br style="clear:both"/>
<gm:pager/>

</gm:template>

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS302

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 302

<!-- savedEntryTemplate -->

<gm:template id="savedEntryTemplate">
<div>Your saved entries</div>
<div style="float:left; width:85px" repeat="true">
<gm:html ref="atom:summary"/>
</div>
<br style="clear:both"/>
<gm:pager/>

</gm:template>

<script type="text/javascript">
//<![CDATA[

// figure what is the currently selected entry and copy that over
function copy_selected() {

var flickrList = google.mashups.getObjectById('flickrList');
var entry = flickrList.getSelectedEntry();
if (entry) {
var savedEntries = google.mashups.getObjectById('savedEntries');
savedEntries.getData().addEntry(entry);

}

} // copy_selected

function delete_selected() {

var savedEntries = google.mashups.getObjectById('savedEntries');
var entry = savedEntries.getSelectedEntry();
if (entry) {
savedEntries.getData().removeEntry(entry);

}

} // delete_selected

//]]>
</script>

</gm:page>

You can run the new code here:

http://mashup-raymond-yee-tabs1.googlemashups.com/

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 303

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 303

The key changes to the code are as follows:

• Switching from a vertical to a horizontal template and adding a single Save Selected
button and Delete Selected button to the tabs—instead of having a separate button for
each photo entry

• Adding the appropriate event handlers (copy_selected() and delete_selected())

The Final Product: Showing the Saved Entries on a Map
You are now ready to create the final product with the GME. You can do so by embedding the
search and display of geotagged Flickr photos on a Google map from here:

http://mashup-raymond-yee-tabs1.googlemashups.com/

with the overall framework of two tabs to hold search results and saved entries:

http://mashup-raymond-yee-flickrfeed3.googlemashups.com/

The final product is at http://mashup-raymond-yee-flickrfeed4.googlemashups.com/.
The code is at http://mashup-raymond-yee-flickrfeed4.googlecode.com/svn/trunk/

index.gml; it’s as follows:

<gm:page title="Flickr Photos on Google Maps" authenticate="true"
onload="init_data();">

<!--
Displaying Flickr Thumbnails on a Google Map (flickrfeed4)
@author: Raymond Yee
-->

<gm:tabs target="myContainer"/>

<gm:container id="myContainer" style="padding:3px;border:1px solid #369;">

<!-- searchFlickrSearch section
-->

<gm:section id="sectionFlickrSearch" title="Search">

<h1>Flickr Photos</h1>

<form action="#" onsubmit="update_feed(); return false;">
<label>Input tags:</label>
<input type="text" size="30" name="tags" value="" />
<input type="submit" value="Update feed" />

</form>

<p>URL of current feed: .</p>

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS304

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 304

<gm:list id="flickrList" template="flickrTemplate" pagesize="10">
<gm:handleEvent event="select" src="flickrMap"/>

</gm:list>
<input type="button" value="Copy Selected" onclick="copy_selected()" />

<gm:map id="flickrMap" style="border:solid black 1px" control="large"
maptypes="true" data="${flickrList}" latref="geo:lat"
lngref="geo:long"
infotemplate="FlickrMapDetailsTemplate" height="600">

<gm:handleEvent event="select" src="flickrList"/>
</gm:map>

</gm:section>

<!-- sectionSavedEntries -->

<gm:section id="sectionSavedEntries" title="Saved Results">

<gm:list id="savedEntries" data="${user}/crud" template="savedEntryTemplate"
/>

<input type="button" value="Delete Selected" onclick="delete_selected()" />

<gm:map id="flickrMap2" style="border:solid black 1px" control="large"
maptypes="true" data="${savedEntries}" latref="geo:lat"
lngref="geo:long"
infotemplate="FlickrMapDetailsTemplate" height="600">

<gm:handleEvent event="select" src="savedEntries"/>
</gm:map>

</gm:section>

</gm:container>

<!-- flickrTemplate -->

<gm:template id="flickrTemplate" class="blue-theme">
<div style="float:left; width:85px" repeat="true">
<gm:html ref="atom:summary"/>

</div>
<br style="clear:both"/>
<gm:pager/>

</gm:template>

<!-- FlickrMapDetailsTemplate -->

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 305

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 305

<gm:template id="FlickrMapDetailsTemplate">
<div >
<gm:link ref="atom:link[@rel='alternate']/@href" labelref="atom:title" />

<gm:html ref="atom:summary"/>

Lat: <gm:text ref="geo:lat"/>

Long: <gm:text ref="geo:long"/>

</div>
</gm:template>

<!-- savedEntryTemplate -->

<gm:template id="savedEntryTemplate">
<div>Your saved entries</div>
<div style="float:left; width:85px" repeat="true">
<gm:html ref="atom:summary"/>
</div>
<br style="clear:both"/>
<gm:pager/>

</gm:template>

<script type="text/javascript">
//<![CDATA[
function update_feed() {

var tags = document.forms[0].tags.value;

// let's get the bounds of the map
var flickrMap = google.mashups.getObjectById('flickrMap');

var bounds = flickrMap.getBounds();
var lat0 = bounds.getSouthWest().lat();
var lon0 = bounds.getSouthWest().lng();
var lat1 = bounds.getNorthEast().lat();
var lon1 = bounds.getNorthEast().lng();

update_feed0 (tags,lat0,lon0,lat1,lon1);

} // update_feed

function update_feed0(tags,lat0,lon0,lat1,lon1) {

var flickrList = google.mashups.getObjectById('flickrList');
var flickrMap = google.mashups.getObjectById('flickrMap');

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS306

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 306

var url =
'http://pipes.yahoo.com/pipes/pipe.run?_id=YG9eZGWO3BGukZGJTqoASA&_render=➥

rss&api_key=e81ef8102a5160154ef4662adcc9046b&extras=geo&min_upload_date=820483200&➥

per_page=100'
+ '&tags=' + escape (tags) + "&lat0=" + lat0 + "&lon0=" + lon0
+ "&lat1=" + lat1 + "&lon1=" + lon1;

// clear the old overlays (I'm doing this to get rid of the boundary)

flickrMap.getMap().clearOverlays();

document.getElementById('current_tags').innerHTML =
"Feed Link";

//a lert('flickrList' + flickrList);
// alert('url' + url);

flickrList.setData(url);
flickrList.setPage(0); // reset the pager

// now draw a bounding box

border = new GPolygon([
new GLatLng(lat0, lon0),
new GLatLng(lat1, lon0),
new GLatLng(lat1, lon1),
new GLatLng(lat0,lon1),
new GLatLng(lat0,lon0)
], "#ff0000", 2);

flickrMap.getMap().addOverlay(border);

} // update_feed0

function init_data() {

var lat0=37.817785166068;
var lat1=37.926190569376
var lon0=-122.34375;
var lon1=-122.17208862305;

update_feed0("",lat0,lon0,lat1,lon1);

} // init_data

// figure what is the currently selected entry and copy that over
function copy_selected() {

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 307

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 307

var flickrList = google.mashups.getObjectById('flickrList');
var entry = flickrList.getSelectedEntry();
if (entry) {
var savedEntries = google.mashups.getObjectById('savedEntries');
savedEntries.getData().addEntry(entry);

}

} // copy_selected

function delete_selected() {

var savedEntries = google.mashups.getObjectById('savedEntries');
var entry = savedEntries.getSelectedEntry();
if (entry) {
savedEntries.getData().removeEntry(entry);

}

} // delete_selected

//]]>
</script>

</gm:page>

■Note When writing your first apps, you might wonder why the data doesn’t persist between sessions.
Publish your mashup first.

At this point, you have a mashup that covers much of the GME’s capabilities, and you can
continue developing this mashup. Some possible further steps include the following:

• You could incorporate the GME’s annotation support, which would allow users to add tags
and ratings to feed entries (http://code.google.com/gme/docs/data.html#annotations).

• You could create a better input form to let a user enter any of the input parameters that
can be fed to the Yahoo! pipe. It would be nice to have collapsible input boxes for a stream-
lined interface. Connecting the GME to some nice Ajax widget libraries would be helpful.

• You could minimize redundancy by packaging reusable code into modules. Currently,
GME files cannot include other GME files. Once the GME lets programmers create
reusable modules, you can then rewrite the mashups in this chapter to pull out com-
mon features in different tabs.

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS308

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 308

Analysis of Trade-Offs in Using GME and
Yahoo! Pipes
Now that you have created mashups of Flickr and Google Maps using both specialized mashup
tools (a combination of the GME and Yahoo! Pipes) and general-purpose web programming
techniques (PHP and JavaScript), let’s compare these two approaches. First, consider that the
GME and Yahoo! Pipes provide the following to you as a developer:

• Hosting is provided; you don’t need to use your own server.

• Instead of PHP and JavaScript, you program only in JavaScript. This can be considered
an advantage in that you don’t have to know PHP to use the GME and Yahoo! Pipes.
Google and Yahoo! are doing the server-side proxying for you.

• You don’t need to register for separate API keys for Google Maps to use the maps.

• You get access to a Subversion interface, to issue tracking, and to the other features of
Google Code, which is used to host the GME code.

• Both the GME and Yahoo! Pipes make it easier to see what others are building; hence,
they promote the sharing of tips, ideas, and code.

There are, of course, trade-offs you make by using the GME, Yahoo! Pipes, and possibly
other third-party tools:

• Each tool generally presents a new framework to learn. Some are easier to learn than
others, often by building on what you are likely to know from other contexts. However,
there is always something new to learn.

• Sometimes the abstractions used by a given tool are not quite what you want. For
instance, the central data exchange format is Atom feeds, which can be either an apt
simplification or a burdensome limitation.

• Having your application hosted on the GME or Yahoo! Pipes means revealing your data
and code to Google or Yahoo!

• The identity and branding of your mashup will be associated with Google or Yahoo!

• You become dependent on the infrastructure of Google and Yahoo! Lock-in could
become a problem.

There are a couple of things that it would be nice to get from Yahoo! Pipes and the GME:

• Being able to host your code on your own server. If Google were one day to let you compile
GME code into HTML and JavaScript that could then be modified and run independently
of the GME, that would increase GME’s attractiveness to many developers and users.

• GME does not have the ability to read in information other than RSS and Atom feeds.
Right now, Yahoo! Pipes fills that niche well—by using pipes to read in XML and then
converting it to feeds, you can then process that data in GME. However, the GME being
able to process XML beyond RSS and Atom would be a useful feature.

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 309

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 309

I think a measure of success for tools such as the GME and Yahoo! Pipes is the degree to
which they let you easily build applications for a specific purpose; and these are applications
that you don’t even mind throwing away after a single use because they were so easy to write.
By this measure, the GME and Yahoo! Pipes moves you toward tools to create such apps. I think
that the GME and Yahoo! Pipes makes it easier for programmers to create certain types of
mashups, though it’s not so clear whether they open up mashup development for a nonpro-
gramming audience.

Other Mashup Tools
Many other tools are designed to help in creating mashups. There are so many mashup tools
to look at—more than I can do justice to here. Table 11-1 lists a number of them along with
a brief description and a URL for how you can learn more. Some use browser-based interfaces,
while others are desktop tools. Some focus on specific aspects of creating mashups, while oth-
ers aim to be a unifying framework.

Table 11-1. Other Mashup Tools

Name Description URL

Apatar Open source software designed for http://www.apatar.com/product.html
business users and programmers to
integrate data sources and formats

BEA AquaLogic Browser-based tools for authoring http://www.bea.com/framework.
Pages web pages and web applications jsp?CNT=index.jsp&FP=/content/

products/aqualogic/pages/

Bungee Connect Browser-based environment for http://www.bungeelabs.com/
building web applications

Chickenfoot Firefox extension (similar to http://groups.csail.mit.edu/uid/
Greasemonkey) that allows users to chickenfoot/index.php
write scripts to “manipulate web
pages and automate web browsing”

Coghead Browser-based GUI for creating and http://www.coghead.com/
hosting business applications

CoScripter Firefox extension “that automates the http://services.alphaworks.ibm.com/
process of recording and playing coscripter/browse/about
back processes”

Dapper Browser-based GUI for producing http://www.dapper.net
screen-scrapers that output Atom,
RSS, Google Maps, and other formats

Data Mashups Browser-based GUI to create custom http://datamashups.com/
Online Service business applications, especially for

mashing up data and web services

Denodo data A platform focused on creating new http://www.denodo.com/
mashup business services by integrating

existing data

Extensio A platform for data extraction, http://www.extensio.com/
integration, and delivery

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS310

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 310

Name Description URL

Intel Mash Maker A experimental research project for http://mashmaker.intel.com/
enabling the easy creation of
mashups (“mashups for the masses”)

JackBe Presto Software to let users “create, consume, http://jackbe.com/resources/
Enterprise Edition and customize enterprise mashups” download.php

Marmite A research prototype of a mashup http://www.cs.cmu.edu/~jasonh/
creation tool for nonprogrammers projects/marmite/

Microsoft Popfly A browser mashup tool whose http://popfly.ms
drag-and-drop widgets have some
similarity to Yahoo! Pipes but that
puts more of an emphasis on
presentation gadgets

Openkapow Desktop software for creating bots http://openkapow.com/
hosted by openkapow

Potluck The mashup-making tool for SIMILE, http://simile.mit.edu/potluck
a research project focused on the
application of the semantic Web for
manipulating digital assets

Proto Desktop mashups, especially for http://www.protosw.com/
business intelligence applications

QEDWiki A browser-based interface for http://services.alphaworks.ibm.com/
creating mashups qedwiki/

RSSBus Tools to “generate, manage, http://rssbus.com/
orchestrate, and pipeline RSS feeds”

Serena Mashup Software for creating business http://www.serena.com/mashups/
Composer mashups testdrive.html

StrikeIron SOA An add-on to enable easy access to http://strikeiron.com/tools/tools_
Express for Excel web services from within soaexpress.aspx

Microsoft Excel

WSO2 Mashup An open source platform for creating http://wso2.org/projects/mashup
Server and deploying “web services mashups”

Summary
Several tools are available that make it easier to create mashups. In this chapter, you explored
the topic primarily by using a combination of two such tools, the Google Mashup Editor and
Yahoo! Pipes, to create a mashup of geotagged Flickr photos and Google Maps. By creating this
mashup in a number of manageable steps, you learned how to use the GME and incorporate
Yahoo! Pipes. Moreover, by comparing the process used in this chapter to that used in the pre-
vious chapter, you get to see some of the advantages and trade-offs involved in using mashup
tools instead of general-purpose web programming techniques.

CHAPTER 11 ■ USING TOOLS TO CREATE MASHUPS 311

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 311

858Xch11FINAL.qxd 2/4/08 3:13 PM Page 312

Making Your Web Site Mashable

This chapter is a guide to content producers who want to make their web sites friendly to
mashups. That is, this chapter answers the question, how would you as a content producer
make your digital content most effectively remixable and mashable to users and developers?

Most of this book is addressed to creators of mashups who are therefore consumers of
data and services. Why then should I shift in this chapter to addressing producers of data and
services? Well, you have already seen aspects of APIs and web content that make it either eas-
ier or harder to remix, and you’ve seen what makes APIs easy and enjoyable to use. Showing
content and data producers what would make life easier for consumers of their content pro-
vides useful guidance to service providers who might not be fully aware of what it’s like for
consumers.

The main audience for the book—as consumers (as opposed to producers) of services—
should still find this chapter a helpful distillation of best practices for creating mashups. In some
ways, this chapter is a review of Chapters 1–11 and a preview of Chapters 13–19. Chapters 1–11
prepared you for how to create mashups in general. I presented a lot of the technologies and
showed how to build a reasonably sophisticated mashup with PHP and JavaScript as well as
using mashup tools. Some of the discussion in this chapter will be amplified by in-depth dis-
cussions in Chapters 13–19. For example, I’ll refer to topics such as geoRSS, iCalendar, and
microformats that I discuss in greater detail in those later chapters. Since I don’t assume that
you will have read any of those chapters, I will give you enough context in this chapter to under-
stand the points I’m making.

Specifically, in this chapter, I will outline what content producers can do in two major
categories:

• Ways in which they can make their web sites and content mashable without even pro-
ducing a formal API

• Ways in which they can shape their API (features that are friendly to mashups)

Before content producers can decide how to act on any of this advice, they need to consider
how remixability fits in with what they’re trying to accomplish. We look at some of these issues first.

■Tip For detailed notes on how to create, run, and maintain an API from the perspective of a seasoned
API creator, please consult Chapter 11 of Building Scalable Web Sites (O’Reilly Media, 2006), written by
Cal Henderson of Flickr.

313

C H A P T E R 1 2

■ ■ ■

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 313

Why Make Your Web Site Mashable?
To decide on how remixable you want to make your content, you need to understand what
you want to accomplish. There is a wide range of interest with respect to making APIs. Some
content producers (such as Amazon, Google, and Yahoo!) set out to develop a platform and
therefore invest huge amounts of effort in creating an API. Others are interested in making
things convenient for users of their content and create an API if it’s not too difficult. Other
content producers want to work actively against any remixing of their content. The course of
action you take as a content producer will certainly depend heavily on your level of interest in
the mashability of your content to others as well as the resources you have at your disposal to
create an API.

Here are some arguments for why you might want to make your content remixable (in
other words, why it’s good not only for content users but also for you as a content producer):

• With a good API, developers and users can extend what you provide. Look at how the
vast majority of the API kits for Flickr are developed by third parties rather than Flickr.

• Third-party developers can develop applications you haven’t even thought of or are
too busy to create. (I’d say geotagging is a huge example of this for Flickr—it opened up
a whole new vein of activity for Flickr.)

• APIs appeal to users who are concerned about lock-in and want to use their content in
places other than your web site.

• Many users are starting to expect to have APIs; as a result, having an API is a selling
point to prospective users.

• With an API, you might be able to extend your presence and point others to you (for
example, Flickr photos are distributed all over the Web, but they all link back to Flickr).
Indeed, Flickr is the platform for photo sharing on the Web. But Flickr’s attribution
requirement (in other words, the photos served from Flickr need to link back to Flickr)
keeps Flickr from being commoditized as a file-hosting service.

• If the API is of sufficient economic value to your users, it is possible to charge for using
your API.

• In some cases, you might be able to create something like Amazon.com, which as
a platform for e-commerce takes a cut of purchases built on top of its platform.

• Making your data more open is contributing to the common goals of the entire Web.

Using Techniques That Do Not Depend on APIs
Without creating a formal API for your web site, you can nonetheless make things friendly for
mashups while creating a highly usable site for your users.

Use a Consistent and Rich URL Language
Chapter 2 analyzed the URL language of Flickr and showed how its highly addressable, granular,
transparent, and persistent URL language opens up a lot of opportunities to mash up content

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE314

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 314

from Flickr merely by exploiting Flickr’s URL structures. The human-readable, transparent
URLs of Flickr lets developers link deeply into the fabric of the web site, even in the absence of
formal documentation. The fact that Flickr works hard to keep the URLs permanent allows
mashup creators to depend on the URLs to keep working. Granular URLs give mashups very
fine-grained access and control over resources at Flickr. You will learn in Chapter 14 how these
same qualities make it possible to use a social bookmarking system such as del.icio.us to book-
mark content from Flickr. Hence, developing your own web site with a rich URL language avails
your content to similar mashup techniques.

Moreover, the discipline of creating a consistent and human-readable URL structure ben-
efits you as a content producer. It forces you to abstract the interface of your application (for
example, the URL structures) from your back-end implementation, thus making your web site
more maintainable and flexible.

Use W3C Standards to Develop Your Web Site
The use of good standards helps bring clarity to your web design, especially standards that insist
on separating concerns (such as content from design). For instance, disentangling formatting
from the markup and sticking it into CSS has a side benefit for mashup folks of producing con-
tent that is clearly laid out. Even generating well-formed XHTML (instead of tag-soup HTML)
would be a huge boon since it allows for more error-free scraping of data. All this makes things
more parsable even in the absence of explicit XML feeds.

Pay Attention to Web Accessibility
An accessible site lets more people access your content. You might be required by law to make
your web site accessible to people with disabilities (see http://section508.gov/). Even if you
aren’t legally obliged to produce accessible content, adhering to modern web design such as
producing valid (X)HTML naturally contributes to producing better accessibility. The end prod-
uct of increased accessibility (for example, clean separation of content from style) is more
mashable than nonaccessible sites.

Consider Allowing Users to Tag Your Content
Tagging provides a lightweight way for users to interact with and label and annotate content.
As I demonstrated in Chapter 3, those tags can be the basis of simple mashups. There are some
tricky issues to consider when you create a system for tagging—for example, how to incorpo-
rate multiple words and what to do about singular vs. plural tags. There is no universally accepted
way to do this, so you need to weigh the possibilities (I covered some in Chapter 3). Having
a strategy for multilingual tags is helpful (in other words, how to handle Unicode).

Consider also whether you have built enough structure to allow the hacking of tags. Could
a user have jump-started geotagging as was done in Flickr with your site? Do you have some-
thing equivalent to machine tags?

Make Feeds Available
In Chapter 4, you learned about syndication feeds, their syntax, and how they can be used to rep-
resent your content in different formats to be exported to other applications. Feeds are becoming
ubiquitous on the Web—they’re the closest thing to the lingua franca of data exchange. Users by

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE 315

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 315

and large are beginning to expect feeds to be available from web sites. Users like syndication; they
spend more time away from your site than on yours. Feeds let people access data from your site
in their preferred local context (such as a feed reader). Moreover, there is a whole ecosystem built
around feeds. By producing feeds, your data becomes part of that ecosystem.

Creating feeds out of your web site should be very high on a priority list. In fact, depending
on what systems you are using to publish, you might already be generating them (for example,
weblogs or many content management systems). By virtue of pushing your photos to Flickr,
YouTube, and many other social sharing systems, you have the option of autogenerating feeds.

Feeds sound intimidating, but don’t worry. You can start small and grow them. You might
have a single feed for the most recent content. See how that works for you. Then you can consider
generating feeds throughout your system. (Remember that Flickr has an extensive selection
of feeds.)

If you need to programmatically generate feeds, they represent a good place to start in the
business of generating XML. You might ask which feed type to generate. Ideally, you should
generate many types like Flickr does, which takes little effort. That is possible if you have
an abstract model of the data that you then format for different format types by writing a tem-
plate for each format. If you don’t want to go through that effort, then Atom 1.0 is a good place
to start. Atom 1.0 is now recognized by lots of feed aggregators. It’s also a good stepping-stone
toward building an API. (You would have the Atom Publishing Protocol, covered in Chapter 7,
and GData as good prior art to start.) Moreover, Atom feeds can flow into Yahoo! Pipes and the
Google Mashup Editor (GME). RSS 2.0 wouldn’t be far behind in my priority list. Also, if you
want to get a start on experimenting with RDF and the semantic Web, a good place to start is
to produce RSS 1.0.

Let’s return briefly to the issue of the feed ecosystem. As you have seen, Yahoo! Pipes and
the GME use feeds natively. The Flickr API puts out many formats (as you saw in Chapter 6)
but not RSS 2.0 or Atom, although there are many Flickr feeds. You saw in Chapter 11 that even
with the extensive number of Flickr feeds to access the Flickr API, I still had to convert Flickr XML
to RSS 2.0, which I did with Yahoo! Pipes. That conversion made the data available to the GME.

As a final note, try using feed autodiscovery to enable easier access to feeds by users (which
was discussed in Chapter 4).

Finally, be friendly to extensions to feeds. Remember that RSS 2.0, Atom 1.0, and RSS 1.0
are all extensible. Make use of this extensibility. If your system consumes feeds that have
extensions, don’t strip them out.

Make It Easy to Post Your Content to Blogs and Other Web Sites
In Chapter 5, you learned about how blogs can be integrated with web sites such as Flickr.
Flickr’s Blog button allows users to post a photo to a weblog. Moreover, the Flickr All Sizes but-
ton makes it easy for users to embed a photo into a blog or other web site by providing HTML
fragments that they readily copy and paste elsewhere. In a similar fashion, YouTube provides
HTML to embed a video, and Google provides HTML to embed its maps and calendars. You as
a content producer can emulate the practice of making it easy to post your content to other sites
while linking back to your own web site, where the content originates. In addition to facilitating
the flow of content from your web site, you track comments originating from other web sites
through a variety of linkback mechanisms. (See Chapter 5 for more information.)

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE316

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 316

Encourage the Sharing of Content with Explicit Licenses
Licensing digital content clears away important barriers to creating mashups with that content.
In your web site, you should allow users to explicitly set the licensing of content and data to
use, such as the Creative Commons licenses do, for instance. Set defaults that encourage
sharing, but always give your users the choice to change those defaults. Build functionality to
enable users to search and browse content according to a license.

As you learned in Chapter 2, Flickr is a good model here. Flickr has done a huge amount to
promote open content specifically licensed through a Creative Commons license. That users can
explicitly tie a Creative Commons license to a piece of content has been a tremendous enabler
for remixing. If you don’t give a mechanism for your users to assert a certain license, there might
be too much ambiguity around the reuse of content. Even if you don’t have granular control over
the licensing of content on the site, it’s very helpful to have a global statement about intellectual
property issues. That is, some content producers license an entire site in a certain way. For
example, the Wikipedia is licensed under GFDL:

http://en.wikipedia.org/wiki/Wikipedia:Copyrights

Freebase is licensed under CC-By:

http://www.freebase.com/signin/licensing

In Chapter 2, we discussed the barriers to screen-scraping. If you don’t have an API but
don’t mind your users accessing your data, consider creating some bot-friendly terms of
service (ToS).

Develop Extensive Import and Export Options for User Content
The more ways you have to get data in and out of an application, the better. Ideally, you would
support protocols and data formats that would help your users. As a bonus, let your users embed
their data hosted on your site somewhere else on the Web (for example, through a JavaScript
badge). Super-flexible badges can be used themselves to access data for mashups and can hint
at the existence of a feature-rich API.

Study How Users Remix Your Content and Make It Easier to Do So
Be prepared to be surprised by how people might use and reuse your content. See how people
are using your content, and make it easier to do so. The primary example I have in mind here
is when people started to hack the Google Maps API. Google, instead of stopping those people,
actually formalized the API.

At the least, if you don’t want to develop an API, when you see people use your web site in
unusual ways, you should think about what’s really go on and whether to make it easier to carry
out this reuse.

Creating a Mashup-Friendly API
Some web APIs are easier than others to use for creating mashups. In the following sections,
I’ll give advice to content producers aiming to make their APIs friendlier for consumption.

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE 317

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 317

Learn From and Emulate Other APIs
You can learn a lot from studying what other API providers are doing. That’s why this book is
useful; you will learn about what API makers are doing—at least from the outside.

What are some great examples to study? Flickr is a good one obviously. Recently, I’ve come
to appreciate the Google documentation as being really good too. It has a lot of copy-and-paste
code, plenty of getting-started sections, and the API references. Often there are API kits in a num-
ber of languages; of course, a lot of time and energy went into creating this documentation.

Moreover, if you are a little player, consider making your API look a lot like those of the big
players. For example, 23hq.com, a photo-sharing site, decided to mimic Flickr’s API instead of
developing its own:

http://www.23hq.com/doc/api/

That enabled Dan Coulter to support that API in addition to Flickr’s API in phpFlickr:

http://phpflickr.com/phpFlickr/README.txt

If 23hq.com had built its own API, it would not be able to leverage the work of the much-
larger Flickr development community.

Whether the creator of an API is flattered or irritated by the sincere imitation of the API by
other players surely depends on context. Consumers of the API, however, will be all too happy
to not have to learn yet another API to access essentially the same functionality from different
web sites.

Keep in Mind Your Audiences for the API
You need to consider two distinct audiences when deploying a public API. The first is the direct
audience for the API; this is the developer community, which includes those who will directly
program against your API. The second is the indirect audience for the API but perhaps a direct
audience for your web site: the possible audience for those third-party applications. Remem-
ber that although you have a direct audience in the developers, you are ultimately trying to
reach the second, potentially much larger, audience.

Make Your API Easy to Learn
Good documentation of the features, the API, data formats, and any other aspect of the web
site makes it much easier to understand and recombine its data and functionality. You should
clearly document the input and output data expected. Do you provide pointers to schemas or
ways to validate data? Documentation reduces the amount of guesswork involved. Moreover,
it brings certainty to whether a function you uncover through reverse engineering is an official
feature or an undocumented hack that has no guarantee of working for any length of time.

Why, for instance, do I recommend people using the Flickr API as a starting point (and
maybe for the long term)?

• It’s well-documented and has structures that make it easy to learn, such as the Flickr
API Explorer at http://www.flickr.com/services/api/explore/?method=flickr.photos.
(I don’t know of any documentation for APIs that is as clear as this. You can try a query
and see it happen.)

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE318

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 318

• It has lots of code samples.

• It has toolkits that implement the API in your favorite language. Flickr is ahead of the
game here with more than ten language-specific implementations of the Flickr API.

The Flickr API Explorer is excellent and should be more widely emulated. It lets you
invoke a method in the browser and see the response. The documentation lists not only the
methods but also the input parameters and error codes. The great thing is that you can read
the documentation and try something. Moreover, the Flickr API Explorer shows you a URL
coming out of the REST API that you can copy and paste elsewhere.

Test the Usability of Your API
Use the techniques from Chapters 7 and 8 to remix your own site to see how mashable your
site is and how well your API works. Review Chapter 11, and read in the feeds from your site
into Yahoo! Pipes or the Google Mashup Editor.

You might be using your own APIs in an Ajax interface—but it’s helpful to think like
a mashup creator who is coming to your site for the first time and who will use more generic
tools to analyze your site. It’s interesting to see how your site looks from that point of view.

You can go further by extrapolating techniques from usability testing (http://www.useit.com/
alertbox/20000319.html) to testing your API, instead of the UI of your web site. For instance,
you could recruit a group of developers and give them a problem to be solved using your API.
See what these developers actually do. Make changes to your API in response to feedback.

Build a Granular, Loosely Coupled Architecture So That Creating
an API Serves You As Much As It Does Others
A public API for your web site does not have to be something you build only for others. Rather,
it can be the natural outcome of creating a scalable and adaptable web site. One architec-
tural pattern that has proven effective in creating such web sites—that of service-oriented
architectures—is to decompose functionality into independent, fine-grained components
(called services) that can then be stitched together to create applications. By defining clear
interfaces among the services, one can change the internal workings of individual services
while minimizing the effect on other services and applications that consume those services. It
is this loose coupling of the components that makes the whole web site scalable.

With a set of granular services in place, you as a content producer have the building blocks
of a public API. You can always start with a private API—which many Ajax interfaces demand.
That way, you can decide to roll out a public API. (For instance, you use Firebug to study how
the Flickr API is often being called by Ajax parts of the Flickr interface.)

If you decide to go for an API, make APIs an integral part of your site. The fact that the sys-
tem depends on the APIs ensures that the APIs aren’t just throwaway parts of the system. This
provides assurance that the API is an integral part of the system.

For more insight into how service orientation benefits Amazon.com, which is a major
consumer of its own services, read an interview with Werner Vogels, CTO of Amazon.com:

http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=388

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE 319

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 319

Embrace REST But Also Support SOAP and XML-RPC If You Can
From Chapters 6 and 7, you know that REST is much easier for your users to get started with.
(Amazon S3 in Chapter 16 provides another concrete case study of REST.) The use of REST and
not just SOAP or XML-RPC lowers the barrier to entry. With REST, you can see results in the web
browser without having to invoke a SOAP client (which is bound to be less available than
a web browser). There’s a strong argument to be made that by building a good RESTful human
web API, you are already building a good API:

http://blog.whatfettle.com/2007/01/11/good-web-apis-are-just-web-sites/

However, if your primary developer audience is oriented toward enterprise development and
is equipped with the right tooling, you might have to prefer SOAP/WSDL over REST. Remember
that SOAP without WSDL isn’t that useful. And if you do SOAP, be strictly observant of the version
you are using.

Again, if you build an abstraction layer underneath, you might be able to handle multiple
transport protocols. Your favorite programming frameworks might autogenerate REST or SOAP
interfaces for your web application.

Consider Using the Atom Publishing Protocol As a Specific
Instantiation of REST
If you build Atom 1.0 feeds, you’re already on the road to building an API. Recall that there’s
plenty of prior art to be studied in the Google GData APIs if you want to go down this road.
(Chapter 7 has a study of GData; Chapter 15 on the Google Calendar API is another study of
GData.)

Encourage the Development of API Kits: Third Party or In-House
It’s nice to have both the raw XML web services and the language-specific API kits. In theory,
according to the argument of REST or the SOAP/WSDL camp folks, having the right web
services should obviate the need for language-specific API kits. My own experience is the
opposite. Sure, the Google GData APIs (see Chapters 7, 8, and 10) are RESTful, but having
PHP and Python libraries is very useful. Even with WSDL, a language-specific API kit is
handy.

Ideally you would have API packets for every possible language. Of course this is not
practical—and not even the largest companies such as Google provide that many API kits. The
priority is to have a good well-documented API. After that, I would say if you can put out an API
kit in the language that you use in-house, that’s already a great service. Google puts out API kits
for its in-house languages. Microsoft puts out API kits in the languages it supports. Beyond that
you need to talk to your potential developers and see what’s important to them. (It’s nice to have
API kits that cover a range of languages.) Remember you don’t have to develop all the API kits
yourself—Flickr doesn’t develop that many but provides a place to publicize them and promotes
those API kits in the community of developers.

If you can provide both, it’s nice to have a server-side language API kit and JavaScript API
kit for client-side access.

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE320

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 320

Support Extensive Error Reporting in Your APIs
Note that for better or worse, it’s very easy for developers to ignore error handling. You have to
encourage them to handle errors. It starts with having good documentation of errors.

I’m of mixed minds about whether to embed the error in the XML body or as an HTTP
response code. HTTP error codes are a standard way of dealing with errors, but it’s not neces-
sarily the easiest thing for new developers to understand. At any rate, in SOAP you can do fault
handling in the fault code of the SOAP body. In XML-RPC, it’s dealt with in the error body. I might
suggest that even if you put error codes in the response body that you use the HTTP error codes
as a starting point to build your own error response functionality.

■Note The specification for the latest version of SOAP (1.2) now provides guidance on how to use the vari-
ous 2xx, 3xx, 4xx HTTP status codes.1

Accept Multiple Formats for Output and Input
It’s nice to have multiple ways of getting content in and out of an application. For example,
Flickr has many ways to upload photos: the web interface, the desktop Uploadr, the API, and
e-mail. Even so, some people have requested FTP and some type of mass downloading. Flickr
doesn’t offer FTP capabilities, but some people have worked to simulate it:

http://blog.wired.com/monkeybites/2007/06/upload_to_flick.html

For calendaring, you’ll see the use of iCalendar and CSV in Chapter 15. In Chapter 13,
you’ll see how the proliferation of KML and geoRSS has been a boon.

Support UI Functionality in the API
As a consumer of APIs, I advocate support for all the elements available to users in the UI—
and then some. It’s frustrating for mashup creators to not be able to do something in the API
that is clearly allowed by the user interface. There are sometimes good reasons to not enable
certain actions in the API—but apart from such reasons, having a complete API is really help-
ful. As you saw in Chapter 6, there is a strong overlap between the capabilities of the Flickr API
and the UI. There are some discrepancies between the API and UI—they got close but not an
exact alignment.

Include a Search API for Your Own Site
You might consider adding an API to specifically enable searching of your web site. See
Chapter 19 for how OpenSearch can then be used to integrate your web site’s search func-
tionality in other frameworks.

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE 321

1. http://www.w3.org/TR/2007/REC-soap12-part2-20070427/#http-reqbindwaitstate

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 321

Version Your API
APIs, like all programming artifacts, are likely to change. Instead of having only one version of
your API that can change, support multiple versioning of your API. That doesn’t mean you will
have to support every version indefinitely. Publishing a timeline for when you plan to retire
a specific version of your API and documenting changes between versions allows the consumers
of your API to make an orderly transition and adapt to changes in your API. Flickr doesn’t explic-
itly version its API; for an example of an API with support of multiple versions, see the following:

http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=118

Foster a Community of Developers
A vibrant and active community makes a lot of mashup work practical. When making mashups,
there are things that are theoretically possible to do—if you had the time, energy, and resources—
but are practically impossible for you as an individual to pull off. A community of developers
means that there are other people to work with, lots of examples of what other people have
done, and often code libraries that you can build upon.

Don’t Try to Be Too Controlling in Your API
You should have a clear ToS for the API—see Chapter 6 for a discussion of the ToS for the Flickr
API. Don’t try to be too controlling of your API. For instance, you might be tempted to forbid
a user of your API from combining data from your site with that of other sites, such as those of
your competitors. That’s very much against the spirit of mashups and is likely to antagonize your
developers. I would argue that asking a user of your API to reference your web site is a good
balance between the interests of the API consumer and API producer.

There are a lot of issues when it comes to establishing a policy for your API—but one is worthy
of special consideration is that of commercial use. It’s not uncommon to make a basic distinction
between the commercial and noncommercial use of an API, especially if you are not charging for
the noncommercial use of an API. It’s useful to reflect on how Flickr and others handle the distinc-
tion in the context of your own business model. Remember, though, that it’s sometimes tricky to
distinguish between commercial and noncommercial use; you will need to set up a process to make
such a distinction.

Consider Producing a Service-Level Agreement (SLA)
A service-level agreement formally spells out the level of service a user can expect from a serv-
ice and the remedies for failures to meet the expected level of service. It’s debatable whether
most SLAs are of much practical use. What I really want is perfectly reliable service. Can any
remedy offered by most service providers adequately compensate for disappointing that desire?

Nonetheless, as a user, I find that a thoughtfully constructed SLA reassuring because it
gives me a sense of the level of reliability to expect from a service provider. A specific measura-
ble target of performance is likely better than none at all. As an example, Amazon.com recently
introduced an SLA for its S3 service:

http://www.amazon.com/b?ie=UTF8&node=379654011

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE322

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 322

Help API Users Consume Your Resources Wisely
Encourage the users of your API to consume compute cycles and bandwidth parsimoniously—
most developers will want to cooperate. Document your expectations on the limits you set for
the total volume or rate of API calls. Error messages from your API to indicate the throttling of
API calls are very useful to consumers of an API.

When developing an API, it’s not unusual for you to issue keys to developers. However,
tracking usage by the key alone is sometimes insufficient to manage the level of usage—keys
are often leaked. You might track API usage based on a combination of key and originating IP
address.

Both server- and client-side caching help with the performance of an API. You will want to
help the users of your API to cache results properly. It’s extremely useful to have APIs that tell
you when something has been updated and to return changes in the state of the data since
a given time.

Consider Open Sourcing Your Application
If you want to open up your site to deeper remixability, you might even publish the source for
your web site. Users will then have the option of studying the source directly should reverse
engineering—or reading the relevant documentation—not give you the answers they need.

Easy-to-Understand Data Standards
The use of open data standards by content producers and consumers is a good thing, but it’s
hard for someone outside a field of endeavor to understand what those standards are and
exactly how important they are. (For instance, it doesn’t take a lot of time working with online
calendars to grasp that iCalendar is an important standard, but it did take me some study to
grasp how central it really is.) Hence, it is helpful if for every subject you could find a simple,
clear articulation of the standards for a given field. In the absence of a clear consensus about
what the relevant standards are, a trustworthy and clear-headed outline of the main contenders
and the perceived strengths and weaknesses would be really helpful to an outsider or newbie.

The Cover Pages (http://xml.coverpages.org/) hosted by OASIS is the closest thing to
such a resource that I’ve seen:

OASIS provides the Cover Pages as a public resource to document and encourage the use of

open standards that enhance the intelligibility, quality, and longevity of digital information.

Complementing a wide use of open standards is a concerted effort to generate API kits
that comprehensively and accurately interpret these standards. For example, as you’ll see in
Chapter 15 in the discussion iCalendar, it’s hard to tell how good any given API kit is at inter-
preting and creating that data format.

Moreover, the presence of good validators and schemas for any data formats would be
extremely helpful to mashup developers. For example, the early days of working with KML
were hard because there was so much trial and error with writing something and then feeding

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE 323

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 323

it to Google Earth to see whether it would work. With good validators in place, data producers
can debug their data without less experimentation. Some examples of useful validators are as
follows:

• http://feedvalidator.org/, which helps with KML as well as RSS and Atom feeds
(remember Chapter 4)

• W3C validators (http://validator.w3.org/ and http://jigsaw.w3.org/css-validator/)
to check on the validity of (X)HTML and CSS, respectively

Summary
This chapter presented a series of techniques for making a web site more mashable. After
explaining why content producers would want to make their data and services remixable,
I then presented some techniques that do not depend on creating a formal API. The heart
of creating a mashable web site is producing an API that is friendly to developers. I presented
techniques for creating such an API, drawing from what you learned from the process of
creating mashups in various contexts.

CHAPTER 12 ■ MAKING YOUR WEB SITE MASHABLE324

858Xch12FINAL.qxd 2/4/08 3:14 PM Page 324

Exploring Other
Mashup Topics

Now that you’ve had some experience of the anatomy of a mashup and come to grips with

some specifics, this part will apply what you’ve learned to a range of different APIs and

technologies. We’ll examine a different category in each chapter, starting with online

maps in Chapter 13 and moving onto social bookmarking, online calendars, online storage,

office documents, microformats, and searches.

P A R T 4

■ ■ ■

858X_ch13.qxd 2/4/08 3:15 PM Page 325

858X_ch13.qxd 2/4/08 3:15 PM Page 326

327

Remixing Online Maps and 3D
Digital Globes

It would be difficult to overstate the importance of maps in the course of human civilization.
Maps help us place ourselves in a spatial context with regard to everything else on the planet.
With the advent of the Web, we have been able to access online maps, which have proven to
be both useful and fascinating. There are many practical daily uses for these maps, including
getting driving directions, locating a restaurant in the neighborhood, thinking of places to go
for travel. Online maps let us explore parts of the world in new ways too. Moreover, maps pro-
vide an intuitive conceptual and visual metaphor/space for connecting other things; as part of
our cultural development, we have all developed a strong intuition for maps.

It is no wonder then that online maps have been used extensively in many mashups. One
reason for this extensive activity is that contemporary online maps are designed for easy cus-
tomization. In this chapter, you will learn how to customize maps. It is an exciting time for
web-based mapping, and we really are only at the beginning of developing this immersive
space. Add the Global Positioning System (GPS), more immersive systems/platforms such as
Google Earth and Second Life, ubiquitous computing, and GPS devices, and we’re going to get
amazing stuff.

■Note We’re good at reading maps, and we know how things on maps are related to each other. We’re
used to adding dots and drawing lines. Hence, it’s not much of a stretch for us to add other things—dots,
lines, pictures, and even more abstract data to maps. Things that are located in space have a natural spot on
maps. That’s what I mean by saying that maps are a powerful metaphor.

The goal of this chapter is to introduce how to use some leading systems for remix purposes
(Google Maps, Yahoo! Maps, Microsoft Maps, MapQuest, and Google Earth), looking for com-
monalities and differences. A potential framing question, technically, is how to write a wrapper
so that one can substitute one system for another—and I will tell you about a couple of such
efforts. However, most people want to use just one of these maps and do some easy customiza-
tion; hence, I will show how you can do that. Each system has strengths, and it’s useful to be able
to interchange information among them without much effort. Obviously, I will not attempt to
exhaust this very rich subject, but I’ll provide you with a strong starting point to build on.

C H A P T E R 1 3

■ ■ ■

858X_ch13.qxd 2/4/08 3:15 PM Page 327

In this chapter, I will cover the following:

• I’ll describe how to use the APIs of the major map providers, such as Google Maps,
Yahoo! Maps, and Microsoft’s Live Search Maps.

• I’ll describe how you can make web-based maps without programming.

• I’ll describe declarative approaches to working with maps, such as creating KML and
GeoRSS and CSV.

• I’ll teach you the fundamentals of KML and how to do some basic programming of
Google Earth.

• I’ll show you how to create a mashup of Flickr, Google Earth, and Google Maps using KML.

To learn more about the subject of online maps, please read the following:

• Beginning Google Maps Applications with PHP and Ajax: From Novice to Professional by
Michael Purvis, Jeffrey Sambells, and Cameron Turner (Apress, 2006)

• Beginning Google Maps Applications with Rails and Ajax: From Novice to Professional by
Andre Lewis, Michael Purvis, Jeffrey Sambells, and Cameron Turner (Apress, 2007)

The Number of Online Maps
The capability of individual users to make web-based digital maps has been rapidly increasing
over the past several years. Online maps have evolved quickly from maps with only predefined
purposes (for example, driving directions) to increasingly customizable platforms. That is, we
are close to having map-making for the masses—Geographic Information System (GIS) for
dummies (so to speak).

Perhaps the most dramatic revelation of the capabilities of what would later be known
as Ajax was the emergence of Google Maps in February 2005.1 It was a watershed event for
all web apps and showed that it was possible to have highly interactive apps on a large scale.
(Yes, people had been using JavaScript for menus but not for shipping a substantial amount
of real-time data.) In the area of maps, this event marked the beginning of what I will refer to
as new-style online maps as opposed to old-style online maps (which are an endangered species
it would seem; even MapQuest has switched over to Ajax-type maps). By old-style online
maps, I mean non-JavaScript-powered maps—ones in which moving around or zooming
means reloading the page.

The most obvious aspect of the new-style maps is the substantial increase in interactivity
(with the fluid drag-and-drop capabilities, instead of clicking and waiting for a page reload).
However, hackers quickly realized that the Ajax technology also allowed Google Maps to be
extended to new purposes.2 Apps that showed up included Housingmaps.com. These apps,
however, involved the extensive reverse engineering of Google Maps; the techniques that emerged
could break anytime, and the whole enterprise was of questionable legality and longevity.

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES328

1. http://en.wikipedia.org/wiki/Google_maps and http://www.adaptivepath.com/publications/
essays/archives/000385.php

2. http://www.oreillynet.com/etel/blog/2005/05/hackers_tap_into_the_functiona.html

858X_ch13.qxd 2/4/08 3:15 PM Page 328

What Google did was then smart and novel: it released an API to formalize and regulate the
usage of its maps, transforming Google Maps mashups into legitimate business. Google really
did transform the whole endeavor of GIS through Google Maps by making online maps acces-
sible to and customizable by the masses. Competitors soon followed. Yahoo!, Microsoft, and
eventually MapQuest all went new-style, with the release of not only Ajax implementations but
APIs to boot.

Examples of Map-Based Mashups
Before we figure out how to make map-based mashups, it’s handy to look at a number of exam-
ples to understand what is possible. As discussed in Chapter 1, there are many map-based
mashups, including Housingmaps.com, Chicagocrime.org, and the 1,000+ map-based mashups
listed on Programmableweb.com (http://www.programmableweb.com/tag/mapping). Here are
some specific examples:

• http://tutorlinker.com/ connects tutors to students via a mapping interface.

• http://flashearth.com is a mashup of various major online map services displayed
through a Flash interface.

Programmableweb.com lists Google Maps as by far the most popular API used in mashups.
Mapping as a category is very popular. Yahoo! Maps and Microsoft’s Live Search Maps are also
in the top ten.

Making Maps Without Programming
In this chapter, I’ll show you how to create online maps without any programming before we
jump into programming online maps. Then I’ll show you how to use Mapbuilder.net as an
example of a third-party authoring tool for Google Maps before discussing the functionality
available directly in Google Maps and Virtual Earth for making custom maps. Along the way,
I’ll explain how you can transform a collection from Yahoo! Local into CSV format that you can
send to Mapbuilder.net.

Mapbuilder.net
The scenario I’ll focus on in this chapter is building a map with dots pointing to a list of places
for which you have addresses in the United States. We will look at more sophisticated scenarios
later.

Let’s see how much of a Google map you can build without any programming. For the first
two years after Google Maps was released, there was no built-in user functionality to create
custom maps. You could use the Google Maps API to create custom maps, but that’s beyond the
skill or energy level of most users. Andriy Bidochko built Mapbuilder.net, a free service to let
users create Google and Yahoo! Maps with custom markers through an interface that does not
require knowledge of JavaScript. In this section, I’ll show you how to use Mapbuilder.net as an
easy way to create your own map.

In April 2007, Google introduced the My Maps feature into its online maps. Moreover,
Microsoft’s Live Search Maps has similar collection-making functionality in its maps. That the
big players have incorporated functionality that allows its end users to create maps beyond

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 329

858X_ch13.qxd 2/4/08 3:15 PM Page 329

locating a single location or displaying driving directions between two points is validation of
the map builder concept. I also describe how to use those functions.

What are some sites built using Mapbuilder.net? Drawing from the list of featured maps,3

I see ones like Edinburgh Pub Guide.4 Note some have been heavily used in commercial con-
texts: the most popular of all time for Mapbuilder.net-built maps5 is the “Find a Distributor”
map for Pacific Wireless.6

Mapbuilder.net How-To
The following are the step-by-step instructions for how to create a map using Mapbuilder.net:

1. Sign up for an account.7

2. Click the New Map link.8 (Note that the map name must contain only letters, numbers,
underscores, and dashes.)

3. You can create a dot in one of two ways:

a. Start typing addresses to add (under Location Search & Quick Navigation).

b. Click the map to indicate a spot’s location.

4. When you add a new dot, it will be flashing. Click any marker on the map to update its
information or delete it (using the Update or Delete button). Remember to hit the Add
button to save the location.

5. Use the Save Center, Zoom, MapType button located on the map to save the center of
your map, zoom level, and map type (regular map, satellite, hybrid) as well. (You will
have to adjust the scale and center of the map by using the zoom control and dragging
the mouse to fit your taste; the default is not that helpful.)

6. Click the Preview link (located at the upper right) to take a look at the map.

7. To embed the map on your own site as a Google map, click the Source Code link, and
copy the displayed code to your own site. (You will need to enter the appropriate API
key in the code. See the “Google Maps API” section later in this chapter for how to get
a key.) Note that you can use the options listed under Map Controls and Map Implemen-
tation to set other options for the map, including getting access to code to create a Yahoo!
Map version of your map.

With a bit of futzing and by doing a series of searches on Yahoo! Local for addresses,
I created “Some of my favorite bookstores around Berkeley,”9 as hosted on Mapbuilder.net.
I also embedded the map elsewhere using both Yahoo! Maps and Google Maps:

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES330

3. http://www.mapbuilder.net/About.php

4. http://www.imkblue.pwp.blueyonder.co.uk/index.html

5. http://www.mapbuilder.net/Popular.php?OP=ALL

6. http://www.pacwireless.com/distributor-locations.shtml

7. http://www.mapbuilder.net/SignUp.php

8. http://www.mapbuilder.net/Map.Add.php

9. http://www.mapbuilder.net/users/rdhyee/9329

858X_ch13.qxd 2/4/08 3:15 PM Page 330

• “Some bookstores I like” (Google version),10 kept up-to-date via JavaScript injection11

• “Some bookstores I like” (Yahoo! version)12

Overall, I recommend Mapbuilder.net as a way to quickly build custom Google maps or
Yahoo! maps or as a way to get started learning the APIs.13

Google My Maps
In addition to Mapbuilder.net, consider using Google’s built-in My Maps functionality to create
a custom Google map, which is documented here:

http://local.google.com/support/bin/answer.py?hl=en&answer=68480

I created a Google map with the same three bookstores as the previous example. I could
either show the map hosted under the Google domain here:

http://maps.google.com/maps/ms?f=q&hl=en&geocode=&ie=UTF8&msa=0➥

&msid=116029721704976049577.0000011345e68993fc0e7&z=14&om=1

or embed it elsewhere by copying and pasting HTML for an embeddable iframe to generate
the following, for example:14

http://examples.mashupguide.net/ch13/embedded.GMap.html

There are some major advantages of using My Maps. It’s well integrated into Google Maps
with its Search the Map functionality for looking up addresses and the Find Businesses option
for locating businesses by name. If a marker comes up in your search results, you can click the
Save to My Maps link to save the location on one of your custom maps. In addition, My Maps
also lets you edit the markers and draw lines and polygons on your maps. Altogether, Google
My Maps goes a long way to letting end users create custom maps (based on Google Maps, of
course) without knowing JavaScript.

From a mashup point of view, you should know that you can generate a KML version of one of
any of the maps produced by My Maps. The msidparameter of the Google Maps URL holds an iden-
tifier for a My Map–produced map (for example, 116029721704976049577.0000011345e68993fc0e7
for the map I produced). A URL of this format:

http://maps.google.com/maps/ms?f=q&msa=0&output=kml&msid={my-map-id}

such as the following:

http://maps.google.com/maps/ms?f=q&msa=0&output=kml➥

&msid=116029721704976049577.0000011345e68993fc0e7

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 331

10. http://examples.mashupguide.net/ch13/SomeBookstoresGMap.html

11. For an explanation of how to use JavaScript injection, see http://www.mapbuilder.net/Map.
Implemenation.php.

12. http://examples.mashupguide.net/ch13/SomeBookstoresYMap.html

13. I ran into one snag: I wasn’t able to delete a certain point using Firefox 1.5.0.7 on Windows XP no mat-
ter what I did. I finally deleted the point by logging in to Mapbuilder.net using Opera.

14. http://local.google.com/support/bin/answer.py?answer=72644

858X_ch13.qxd 2/4/08 3:15 PM Page 331

returns a KML version of the map. As I describe in greater detail later in this chapter, KML (an
XML vocabulary for displaying geospatial information) lets you easily parse details of the map.

A Mashup Opportunity: Mapping Yahoo! Local Collections
Yahoo! Local makes it easy to make collections of places, but it does not allow easy mapping of
those places. For instance, I assembled a collection of bookstores around Berkeley,15 but the
Yahoo! interface does not allow me to easily map those bookstores. In this section, we will cre-
ate this by transforming one data format to another (specifically, transforming the addresses
of stores selling used books offered in the XML that comes from the Yahoo! Local API into CSV,
which is understood by Mapbuilder.net). There are two steps to this, which I will cover in more
detail in the following sections:

1. Get information out via the Yahoo! Local API.

2. Transform the collection appropriately (XML to CSV) to feed into Mapbuilder.net.

Getting XML Out of Yahoo! Local via getCollection
We will use the getCollection method of the Yahoo! Local web service, which “enables you to
get detailed information about a collection created with Yahoo! Local collections, through
a REST-like API.”16 So, how do we use it?

The base URL is as follows:

http://collections.local.yahooapis.com/LocalSearchService/V1/getCollection

There are four parameters, as shown in Table 13-1.

Table 13-1. getCollection Parameters

Parameter Description of Parameter Value of the Parameter

appid Application ID raymondyee.net

collection_id ID of the collection to be retrieved 1000014156

output Output type Unspecified, thus returning the default
of XML

callback Callback function Unspecified

In other words, we can formulate the following query:

http://collections.local.yahooapis.com/LocalSearchService/V1/getCollection?➥

appid={app-id}&collection_id=1000014156

■Tip You can get your Yahoo! addid at https://developer.yahoo.com/wsregapp/index.php.

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES332

15. http://local.yahoo.com/collections?cid=1000014156

16. http://developer.yahoo.com/local/V1/getCollection.html

858X_ch13.qxd 2/4/08 3:15 PM Page 332

This request returns the code shown in Listing 13-1.

Listing 13-1. XML for a Collection from Yahoo! Local

<?xml version="1.0" encoding="UTF-8" ?>
<Result id="1000014156" xmlns="urn:yahoo:travel"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="unknown">

<Title>bookstores around Berkeley</Title>
<Description>some of my favorite bookstores around Berkeley.</Description>
<CreatedTime>2006-10-24 13:29:40</CreatedTime>
<Username>Raymond Yee</Username>
<CommentCount>0</CommentCount>
<Item>
<Address>
<Address1>2476 Telegraph Ave</Address1>
<Address2 />
<City>Berkeley</City>
<State>CA</State>
<PostalCode>94704</PostalCode>

</Address>
<id>21518795</id>
<Title>Moe's Books</Title>
<CreatedTime>2006-10-24 13:29:41</CreatedTime>
<Description>
* The Bay Area's Largest Selection of Used Scholarly Books

</Description>
<Url>

http://local.yahoo.com/details?id=21518795&stx=&csz=Berkeley+CA&
ed=xoDOxa160SyYoswS6OvDhQk64pj4Q8RHG5PQhcSqprzxVT6mDHMezwfQ2U244pugG4LDSdibA78iSw--

</Url>
<type>Retail Shopping</type>
<Category>Used & Rare Bookstores</Category>
<Photo />
<Tag />
<Phone>(510) 849-2087</Phone>

</Item>
<Item>
<Address>
<Address1>1730 4th St</Address1>
<Address2 />
<City>Berkeley</City>
<State>CA</State>
<PostalCode>94710</PostalCode>

</Address>
<id>21512172</id>
<Title>Cody's Books</Title>
<CreatedTime>2006-10-24 14:07:28</CreatedTime>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 333

858X_ch13.qxd 2/4/08 3:15 PM Page 333

<Description />
<Url>

http://local.yahoo.com/details?id=21512172&stx=&csz=Berkeley+CA&
ed=3uqWba160SzFEqntYzu46yunejqBEmJnCBEi_I7QbD68sZTEVRYl4WkOGEf6alVIaEB3</Url>

<type>Retail Shopping</type>
<Category>Bookstores</Category>
<Photo />
<Tag />
<Phone>(510) 559-9500</Phone>

</Item>
<Item>
<Address>
<Address1>6060 El Cerrito Plz</Address1>
<Address2 />
<City>El Cerrito</City>
<State>CA</State>
<PostalCode>94530</PostalCode>

</Address>
<id>21414999</id>
<Title>Barnes & Noble Booksellers</Title>
<CreatedTime>2006-10-24 14:07:56</CreatedTime>
<Description />
<Url>

http://local.yahoo.com/details?id=21414999&stx=&csz=El+Cerrito+CA&
ed=Fo51gq160Sy24fPx_u7IvyZen3kxQq5wR9ZOi_Aos2J.pPlJ75D_th3K2MHtNCWF_V5k_n0q62ssy3I-

</Url>
<type>Retail Shopping</type>
<Category>Bookstores</Category>
<Photo />
<Tag />
<Phone>(510) 524-0087</Phone>

</Item>
</Result>

Transforming the Yahoo! Local XML into CSV for Mapbuilder.net
Our goal is to convert the XML data from Listing 13-1 into CSV. There are various techniques
you could consider to do this. One way is to write a PHP script that takes a collection ID and
outputs CSV, as shown in Listing 13-2.17

Listing 13-2. PHP Script to Convert Yahoo! Local XML to CSV

<?php

function getResource($url){
$chandle = curl_init();

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES334

17. http://examples.mashupguide.net/ch13/yahooCollectionToCSV.php

858X_ch13.qxd 2/4/08 3:15 PM Page 334

curl_setopt($chandle, CURLOPT_URL, $url);
curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
$result = curl_exec($chandle);
curl_close($chandle);
return $result;

}

// get a collection_id
//default to my own
$cid = isset($_REQUEST['cid']) ? $_REQUEST['cid'] : "1000014156";

$url = ➥

"http://collections.local.yahooapis.com/LocalSearchService/V1/getCollection?➥

appid=[app-id]&collection_id=". urlencode($cid);
$feed = getResource($url);
$xml = simplexml_load_string($feed);

//header("Content-Type:text/csv");
$out = fopen('php://output', 'w');

$header = array("Caption","Street Address","City","State","Zip");
fputcsv($out, $header);

foreach ($xml->Item as $item) {
$caption = $item->Title;
$street_address = $item->Address->Address1;
$city = $item->Address->City;
$state = $item->Address->State;
$zip = $item->Address->PostalCode;
fputcsv($out, array($caption,$street_address,$city,$state,$zip));

}

fclose($out);
?>

With this code in hand, we can generate a CSV file that we can feed to Mapbuilder.net:

http://examples.mashupguide.net/ch13/yahooCollectionToCSV.php?cid=1000014156

To try this, we can go to our collections here:

http://local.yahoo.com/userreviews?target=p0TJ1rUjf64lpQPwpZGZmXVTOyaM➥

&rvwtype=COLLECTION

and pull out collection ID numbers to feed to the script to generate the CSV:

Caption,"Street Address",City,State,Zip
"Moe's Books","2476 Telegraph Ave",Berkeley,CA,94704

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 335

858X_ch13.qxd 2/4/08 3:15 PM Page 335

"Cody's Books","1730 4th St",Berkeley,CA,94710
"Barnes & Noble Booksellers","6060 El Cerrito Plz","El Cerrito",CA,94530

We can then take the CSV and feed it to Mapbuilder.net to create our map.

■Note You might say that writing such a script gets you only CSV and you still have to manually create
a map with Mapbuilder.net—and you’re right. Later, we’ll transform this collection into formats that are
easier to work with in terms of generating maps.

Collection Building in Microsoft’s Live Search Maps
For Microsoft’s Live Search Maps (http://local.live.com), powered by Microsoft’s Virtual
Earth, the story is a bit more complicated. Live Search Maps has excellent collection-building
facilities. I was surprised how easy it was to look up bookstores and save them to collections
and then to see those bookstores on the map all within the Microsoft map environment. If you
make a collection public, anyone can access it here:

http://maps.live.com/?v=2&cid={collection-id}&encType=1

For example:

http://maps.live.com/?v=2&cid=74B8FFD299EDD840!106&encType=1

Moreover, you are able to get a GeoRSS representation of a Live Search Maps collection
here:

http://maps.live.com/GeoCommunity.aspx?action=retrieverss&mkt=en-us➥

&cid={collection-id}

As you will see later in the chapter, GeoRSS is an XML vocabulary for embedding geo-
graphic information into RSS and Atom feeds. For a preview of what GeoRSS is, you can look
at the following URL, which is shown in Listing 13-3.18

http://maps.live.com/GeoCommunity.aspx?action=retrieverss➥

&mkt=en-us&cid=74B8FFD299EDD840!10

Listing 13-3. GeoRSS of a Map from Microsoft’s Live Search Maps

<rss version="2.0" xmlns:georss="http://www.georss.org/georss"
xmlns:gml="http://www.opengis.net/gml"
xmlns:Cml2GeoRssHelper="urn:Cml2GeoRssHelper">
<channel>
<title>Bookstores around Berkeley</title>
<description>An example for mashupguide.net</description>
<link>http://local.live.com/?v=2&cid=74B8FFD299EDD840!106</link>
<pubDate>Wed, 29 Aug 2007 23:32:51 GMT</pubDate>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES336

18. The file is cached at http://examples.mashupguide.net/ch13/ve.bookstores.georss.xml.

858X_ch13.qxd 2/4/08 3:15 PM Page 336

<item>
<title>Moe's Books</title>
<link>http://local.live.com/?v=2&cid=74B8FFD299EDD840!106</link>
<guid>74B8FFD299EDD840!128</guid>
<pubDate>Wed, 29 Aug 2007 23:32:18 GMT</pubDate>
<description>
<div style="padding:4px;"> 2476 Telegraph Ave, Berkeley, CA
</div>

</description>
<georss:point>37.865523 -122.258492</georss:point>

</item>
<item>
<title>Barnes & Noble Booksellers</title>
<link>http://local.live.com/?v=2&cid=74B8FFD299EDD840!106</link>
<guid>74B8FFD299EDD840!112</guid>
<pubDate>Sat, 06 Jan 2007 16:47:10 GMT</pubDate>
<description>
<div style="padding:4px;"> 6060 El Cerrito Plz, El Cerrito, CA
</div>

</description>
<georss:point>37.899299 -122.300926</georss:point>

</item>
<item>
<title>Cody's Books</title>
<link>http://local.live.com/?v=2&cid=74B8FFD299EDD840!106</link>
<guid>74B8FFD299EDD840!107</guid>
<pubDate>Wed, 25 Oct 2006 01:27:14 GMT</pubDate>
<description>
<div style="padding:4px;"> 1730 4th St, Berkeley, CA 94710
</div>

</description>
<georss:point>37.870975 -122.301021</georss:point>

</item>
</channel>

</rss>

Notice that each of the three bookstores is now associated with a georss:point
element containing the latitude and longitude of the place (georss corresponds to the http://
www.georss.org/georss namespace). For example, the element for Moe’s Books is as follows:

<georss:point>37.865523 -122.258492</georss:point>

Notice a crucial difference between the GeoRSS originating from Live Search Maps and
the XML of Yahoo! Local: the former contains the latitude and longitude of the bookstores,
whereas the latter contains the addresses. We’ll return to studying the implications of these
differences later in the chapter.

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 337

858X_ch13.qxd 2/4/08 3:15 PM Page 337

Summary of Making Maps Without Programming
What can you conclude from these exercises? Mapbuilder.net is not so easy to use if you want
to create a lot of markers but you don’t already have those addresses laid out as CSV-formatted
data. It would be nice to use a service like Yahoo! Local to pull up addresses and then pass the
data into Mapbuilder.net. Live.local.com is surprisingly easy to use for building maps, but it’s
not easy to extract address information to create maps on competing map services. Google My
Maps allows you to search for businesses and make maps of those results if you are content to
make a Google map based on Google business data. Remember, however, that you can get
a representation of the maps you make with Google My Maps as KML, which you can reuse
elsewhere.

Data Exchange Formats
Before you study the details of specific APIs, you should understand the formats used to get data
in and out of maps. Sometimes you can make a map by formatting what you want to place on
a map in the right format. You already saw this approach in the previous section where I showed
you how to transform the Yahoo! Local collection XML into CSV to feed to Mapbuilder.net. In the
following sections, I’ll examine some common data formats for online maps:

• CSV

• Microformats and other metatags

• GeoRSS

• KML

CSV
CSV stands for comma-separated values. It is a simple and widely supported format across
many operating systems and applications. For tabular data, it is conceptually simpler and more
compact than XML. In the case of Mapbuilder.net, you can upload the data for a set of markers
using CSV format. For each marker, you can specify the caption, street address, city, state, and
ZIP code. Mapbuilder.net can then geocode the addresses (that is, calculate the latitude and
longitude of the address) to place them on a map. The built-in geocoding functionality of
Mapbuilder.net is a major convenience for users.

For example, you can use a simple use of CSV by Geocoder.us (a service to convert U.S.
addresses to latitude and longitude). The following:

http://rpc.geocoder.us/service/csv?address=2855+Telegraph+Ave.,+Berkeley,+CA

returns this:

37.858276,-122.260070,2855 Telegraph Ave,Berkeley,CA,94705

Microformats and Metatags for HTML
Some web sites have taken to embedding geographic information in HTML. As I will dis-
cuss in Chapter 18, microformats are little parcels of structured data that are seamlessly
embedded in web pages—making them easily parsed by computer programs so that the

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES338

858X_ch13.qxd 2/4/08 3:15 PM Page 338

data can be reused in other contexts. There are two relevant microformats in this context:
geo and adr.

Consider the case of geotagged photos in Flickr, specifically the example I have already
used in this book:

http://www.flickr.com/photos/raymondyee/18389540/

in which you will see the use of both the geo and adr microformats as instantiated in the follow-
ing pieces of HTML, respectively:

37.8721
-122.257704

<li id="li_location" class="Stats adr">
[....]
Oakland, California
[....]

■Caution Although the latitude and longitude are correct, the placement of the address in Oakland,
California, is inaccurate unless Berkeley is being subsumed as part of Oakland. This inaccuracy doesn’t take
away from the syntactic correctness of the adr example.

You might notice also the use of two metatags that embed the latitude and longitude cor-
responding to the photo. The ICBM <meta> tag, which in this case is as follows, is documented
at http://geourl.org/add.html:

<meta name="ICBM" content="37.8721, -122.257704">

You can learn more about the geo.position metatag, such as the following:

<meta name="geo.position" content="37.8721; -122.257704">

at http://geotags.com/geo/. Both the <meta> tags (located in the <head> section) are used to
associate a latitude and longitude with a web page as a whole.

GeoRSS
GeoRSS (http://georss.org/) is a way of embedding location information within RSS 2.0, RSS 1.0,
Atom 1.0, and potentially other XML formats. GeoRSS seems to be a standard—or at least an
emerging one. In GeoRSS, you can represent points, lines, boxes, and polygons. Let’s look in
more detail at how to work with points.

GeoRSS is conceptually simple, but you might get confused by the fact that there are at least
four ways to encode GeoRSS points in XML. The first two are the recommended encodings going
forward, while the second set of two are considered legacy formats that are nonetheless widely
used and therefore recommended for support. I list them here with examples:

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 339

858X_ch13.qxd 2/4/08 3:15 PM Page 339

• The GeoRSS GML encoding (http://georss.org/gml) wraps the gml:pos element in
a gml:Point element within georss:where—where the gml prefix corresponds to http://
www.opengis.net/gml and the georss prefix corresponds to http://www.georss.org/georss:

<georss:where>
<gml:Point>
<gml:pos>37.8721 -122.257704</gml:pos>

</gml:Point>
</georss:where>

• The GeoRSS Simple encoding (http://georss.org/simple) uses a single georss:point
element to contain the latitude and longitude, where georss corresponds to the same
namespace as for the GeoRSS GML encoding (that is, http://www.georss.org/georss):

<georss:point>37.8721 -122.257704</georss:point>

• The W3C Basic Geo encoding (http://georss.org/w3c) uses geo:Point to wrap the
geo:lat and geo:long elements—where the geo namespace prefix refers to
http://www.w3.org/2003/01/geo/wgs84_pos#._gml:

<geo:Point>
<geo:lat>37.8721 </geo:lat>
<geo:long>-122.257704</geo:long>
</geo:Point>

• A common variant of the previous, which I call here the Compact W3C Basic Geo encoding,
drops the enclosing geo:Point:

<geo:lat>37.8721</geo:lat>
<geo:long>-122.257704</geo:long>

If you refer to Listing 13-3, you will note that the Live Search Maps collection uses the
GeoRSS Simple encoding. Let’s also look at Flickr GeoFeed, which you can currently get for
a given user here:

http://api.flickr.com/services/feeds/geo/?id={user-nsid} &lang=en-us&format=rss_200

For example, the GeoFeed for Rev. Dan Catt (the driving force behind Flickr geotagging) is
as follows:

http://api.flickr.com/services/feeds/geo/?id=35468159852@N01&lang=en-us➥

&format=rss_200

You can also get a GeoFeed for a given Flickr group here:

http://api.flickr.com/services/feeds/geo/?g={group-nsid} &lang=en-us&format=rss_200

For example, the GeoFeed for the FlickrCentral group is as follows:

http://api.flickr.com/services/feeds/geo/?g=34427469792@N01&lang=en-us➥

&format=rss_200

Studying the GeoFeeds, you’ll notice the use of two GeoRSS encodings, the GeoRSS Simple
and W3C Basic Geo encodings, within the GeoFeeds:

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES340

858X_ch13.qxd 2/4/08 3:15 PM Page 340

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmlns:media="http://search.yahoo.com/mrss/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
xmlns:georss="http://www.georss.org/georss">
<channel>

[....]
<item>
<title>maybe not</title>
<link>http://www.flickr.com/photos/solidether/1270523097/</link>
[....]
<georss:point>51.269057 12.345714</georss:point>
<geo:Point>
<geo:lat>51.269057</geo:lat>
<geo:long>12.345714</geo:long>

</geo:Point>
[....]

</item>
[....]

</channel>
</rss>

Yahoo!’s Use of GeoRSS and Yahoo! YMaps Extensions
When you read Yahoo!’s documentation at the following locations about its support for
GeoRSS, you might get confused by the conflation of its own set of extensions to RSS 2.0
that use YMaps (corresponding to http://api.maps.yahoo.com/Maps/V1/AnnotatedMaps.xsd
or http://api.maps.yahoo.com/Maps/V2/AnnotatedMaps.xsd—depending on which API you
are using):

• http://developer.yahoo.com/maps/simple/V1/reference.html (for the Yahoo! Maps
Simple API)

• http://developer.yahoo.com/maps/georss/index.html (for its Ajax API)

There are a whole bunch of tags, but I’ll focus here on the ones for marking up addresses:
<ymaps:Address>, <ymaps:CityState>, <ymaps:Zip>, and <ymaps:Country> to denote an address
associated with an <item>.

The Yahoo! Simple API19 lets you pass in the URL of an RSS 2.0 feed that has Compact
W3C Basic Geo encoding and Yahoo!-specific extensions. See, for instance, the example given
in the Yahoo! documentation:

http://api.maps.yahoo.com/Maps/V1/annotatedMaps?appid=YahooDemo➥

&xmlsrc=http://developer.yahoo.com/maps/sample.xml

This ability to use a mix of Geo and YMaps extensions reflects the ability of Yahoo! Maps
to do the geocoding for you: you can still place a point on a map without knowing the latitude

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 341

19. http://developer.yahoo.com/maps/simple/V1/reference.html

858X_ch13.qxd 2/4/08 3:15 PM Page 341

and longitude as long as you have an address that you can mark up with the appropriate ymaps
tag. (We will look later at how to call on services to do explicit geocoding.) However, you must
not conflate the YMaps extension with GeoRSS—they are not the same. For instance, I don’t
know of any applications outside of Yahoo! Maps that supports the YMaps extensions.

Let’s look at a working example of how to use the YMaps extension. Recall that you can
use the Yahoo! Local API to get the XML for a collection here:

http://collections.local.yahooapis.com/LocalSearchService/V1/getCollection?➥

appid={app-id}&collection_id={collection-id}

For example, the following is the URL for the collection of bookstores that I have assembled:

http://collections.local.yahooapis.com/LocalSearchService/V1/getCollection?➥

appid={appp-id}&collection_id=1000014156

I have cached the results of the API call here:

http://examples.mashupguide.net/ch13/bookstores.yahoo.local.xml

You can convert this XML to RSS 2.0 with the YMaps extension either by hand or by using
some XSLT code that I wrote for that purpose. What you get, which is cached here:

http://examples.mashupguide.net/ch13/yahoo.local.to.georss.xsl

is the following:

<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:yahoo="urn:yahoo:travel"
xmlns:ymaps="http://api.maps.yahoo.com/Maps/V1/AnnotatedMaps.xsd"
xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
version="2.0">

<channel>
<title>bookstores around Berkeley</title>
<link>http://local.yahoo.com/collections?cid=1000014156</link>
<description>some of my favorite bookstores around Berkeley.</description>
<item>

<title>Moe's Books</title>
<link>http://local.yahoo.com/details?id=21518795&stx=➥

&csz=Berkeley+CA&ed=xoDOxa160SyYoswS6OvDhQk64pj4Q8RHG5PQhcSqprzxVT6mDHMezwfQ➥

2U244pugG4LDSdibA78iSw--</link>
<description>
* The Bay Area's Largest Selection of Used Scholarly Books

</description>
<ymaps:Address>2476 Telegraph Ave</ymaps:Address>
<ymaps:CityState>Berkeley, CA</ymaps:CityState>
<ymaps:Zip>94704</ymaps:Zip>
<ymaps:Country>US</ymaps:Country>

</item>
<item>

<title>Cody's Books</title>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES342

858X_ch13.qxd 2/4/08 3:15 PM Page 342

<link>http://local.yahoo.com/details?id=21512172&stx=➥

&csz=Berkeley+CA&ed=3uqWba160SzFEqntYzu46yunejqBEmJnCBEi_I7QbD68sZTEVRYl4WkO➥

GEf6alVIaEB3</link>
<description/>
<ymaps:Address>1730 4th St</ymaps:Address>
<ymaps:CityState>Berkeley, CA</ymaps:CityState>
<ymaps:Zip>94710</ymaps:Zip>
<ymaps:Country>US</ymaps:Country>

</item>
<item>

<title>Barnes & Noble Booksellers</title>
<link>http://local.yahoo.com/details?id=21414999&stx=➥

&csz=El+Cerrito+CA&ed=Fo51gq160Sy24fPx_u7IvyZen3kxQq5wR9ZOi_Aos2J.pPlJ75D_th➥

3K2MHtNCWF_V5k_n0q62ssy3I-</link>
<description/>
<ymaps:Address>6060 El Cerrito Plz</ymaps:Address>
<ymaps:CityState>El Cerrito, CA</ymaps:CityState>
<ymaps:Zip>94530</ymaps:Zip>
<ymaps:Country>US</ymaps:Country>

</item>
</channel>

</rss>

■Tip You can use the W3C XSLT services to perform online XSLT transformations at http://www.w3.org/
2001/05/xslt and http://www.w3.org/2005/08/online_xslt/ (for XSLT 2.0).

Go to the following URL to see the rendition of the location data in version 1 of Yahoo! Maps:

http://api.maps.yahoo.com/Maps/V1/annotatedMaps?appid={app-id}➥

&xmlsrc=http://examples.mashupguide.net/ch13/bookstores.georsss.xml

You can also pass the geocoded RSS 2.0 to the Ajax Yahoo! Maps.20 One way to see this
functionality at work is to follow these steps:

1. Adapt code from one of the Yahoo! examples21 by centering it on the UC Berkeley cam-
pus and using your own Yahoo! API key.22

2. Bring up that example. Invoke the JavaScript Shell on it,23 and type the following to load
the RSS file (with the YMaps extensions) into the map:

map.addOverlay(➥

new YGeoRSS('http://examples.mashupguide.net/ch13/bookstores.georsss.xml'));

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 343

20. http://developer.yahoo.com/maps/georss/index.html

21. http://developer.yahoo.com/maps/ajax/V3/ajaxexample1.html

22. http://examples.mashupguide.net/ch13/yahoo.map.berkeley.html

23. http://www.squarefree.com/shell/, a technique introduced in Chapter 8.

858X_ch13.qxd 2/4/08 3:15 PM Page 343

■Caution If you plan to feed GeoRSS to the Yahoo! Maps APIs, use the Compact W3C Basic Geo encoding
since that’s the encoding implied by the documentation for Yahoo! Maps. Moreover, you may find the error
messages from the Yahoo! Maps Simple API to be rather terse. I have found using Feedvalidator.org to be
useful in debugging my GeoRSS.

GeoRSS in Virtual Earth
Virtual Earth also has the capacity to handle GeoRSS files using any of the four encodings,
according to this:

http://dev.live.com/virtualearth/sdk/Ref/HTML/WorkingWithLayers.htm

Now we should be able to feed that file to Virtual Earth. Making a slight modification to
some sample code24 to read a cached version of my own Flickr GeoFeed,25 I come up with the
following demo code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title></title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<script src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=5">
</script>
<script>

var map = null;
var layerid=1;

function GetMap()
{

map = new VEMap('myMap');
map.LoadMap();

}

function AddMyLayer(type)
{

var l = new VEShapeLayer();
var txtSource = document.getElementById('txtSource');
var veLayerSpec =
new VEShapeSourceSpecification(type, txtSource.value, l);

map.ImportShapeLayerData(veLayerSpec, onFeedLoad);
}

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES344

24. http://msdn2.microsoft.com/en-us/library/bb429606.aspx

25. http://examples.mashupguide.net/ch13/flickr.geofeed.xml

858X_ch13.qxd 2/4/08 3:15 PM Page 344

function onFeedLoad(feed)
{

feed0 = feed;
alert('RSS or Collection loaded. There are '+feed.GetShapeCount()+

' items in this list.');
}

</script>
</head>
<body onload="GetMap();">
<div id='myMap' style="position:relative; width:400px; height:400px;"></div>
<input id="txtSource" type="text" value="flickr.geofeed.xml" name="txtSource">
<input id="loadFeed" type="button" value="Load RSS"

onclick="AddMyLayer(VEDataType.GeoRSS);">
</body>

</html>

This is available here:

http://examples.mashupguide.net/ch13/virtualearth.flickrgeofeed.v5.html

KML
Keyhole Markup Language (KML) “is an XML grammar and file format for modeling and storing
geographic features such as points, lines, images, and polygons for display in Google Earth,
Google Maps, and Google Maps for mobile.”26 Google’s backing of KML makes it an important
format for the exchange of geographic information.

KML has moved beyond its use in Google Earth alone. For instance, you can display KML
files and export search results and one of your My Maps from Google Maps in KML. Other appli-
cations are beginning to support KML. For instance, you can get KML coming out of Yahoo!
Pipes;27 also, there is support for KML in Feed Validator.28 KML is being shepherded through
a standards process.29 Google is advising people to use KML so that its geosearch can index
KML—in KML 2.2, there is an <attribution> element. Google apparently will also index GeoRSS.

I’ll cover the syntax KML in greater detail in the “Google Earth and KML” section. It’s help-
ful, nonetheless, to see a simple example of a KML document so that you have something
concrete to bounce off of:

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.1">
<Placemark id="berkeley">
<description>Berkeley, CA</description>
<name>Berkeley</name>
<Point>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 345

26. http://earth.google.com/kml/

27. http://blog.pipes.yahoo.com/2007/05/02/pipes-adds-interactive-yahoo-maps-kml-support-and-
more/

28. http://googleearthuser.blogspot.com/2007/05/feed-validator.html

29. http://geotips.blogspot.com/2007/04/kml-ogc.html

858X_ch13.qxd 2/4/08 3:15 PM Page 345

<coordinates>-122.257704,37.8721,0</coordinates>
</Point>

</Placemark>
</kml>

Interoperability Among Formats: GeoRSS vs. KML
In commenting on the Where 2.0 conference, Benjamin Christen wrote this: “There are two
important XML schemas covered today at Where 2.0—GeoRSS and KML.30 Can we get these
two formats—and others of importance—to work together?”31 Mikal Maron provides an
intriguing portrait of the relationship among various formats:32

There are of course other geodata formats in use, which deserve a look as alternatives to

GeoRSS. KML is used in Google Earth, and loads of data layers have been published by an

active community. However, KML is very tied to its application, with features specifically

aimed for 3D spinny globes, and the spec is controlled by a single organization. GPX, for

data interchange between GPS units, is again very tied to specifics of GPS units. GML is

a feature-rich vocabulary for encoding geographic information, but its complexity has

been daunting for unversed developers and its proper use misunderstood. GML is similar

to RDF, defining a number of primitive objects that can be assembled into profiles for

particular purposes. In fact, a GML profile for GeoRSS is a result of the new standard.

Not surprisingly, Maron was involved in such interoperability efforts as MGeoRSS, an
extension that “integrates basic GeoRSS support directly into Google Maps.”33 Someone from
Google might have been listening to him—in March 2007, Google added native support for
GeoRSS to its maps.

We’re at a point now that since both GeoRSS and KML are getting a good amount of traction,
some good interconversion utilities between them would be timely.

Creating Maps by API Programming
In the following sections, I will discuss the APIs of various popular online services, specifically,
Google, Yahoo!, and Microsoft. In the previous section, I discussed data formats with an eye
to making maps without any (or much) programming. In the following sections, we will do
a bit of programming.

I’ll now summarize what these maps can do in general. The four covered here all allow you
to do the following:

• Embed an Ajax-based map, to which you can add custom locations with pop-up windows

• Geocode addresses (translate an address to latitude and longitude), at least for U.S. and
Canadian addresses

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES346

30. http://www.oreillynet.com/conferences/blog/2006/06/georss_and_kml.html

31. http://www.ogleearth.com/2006/05/georss_is_here.html is a good summary of some of the issues.

32. http://xtech06.usefulinc.com/schedule/paper/56

33. http://brainoff.com/gmaps/mgeorss.html

858X_ch13.qxd 2/4/08 3:15 PM Page 346

• Show the maps at various zoom levels and of various types (road, aerial, or hybrid)

• Add lines to the maps to represent features such as driving directions

With a bit of copying and pasting, you can get working examples of each of the maps. You
can then modify them incrementally. Using the DOM Inspector and the JavaScript Shell, you can
even make changes to live working examples within the browser. I will also use those mecha-
nisms to highlight important capabilities and functions of the maps.

Google Maps API
Let’s look at the Google Maps API. We will start with how to embed a Google map using the
Google Maps API. The online documentation on how to get started with the maps at the Google
web site is good.34

We’ll set up a simple map and then use the JavaScript Shell to work with a live map so that
you can invoke a command and see an immediate response. The intended effect is that you see
the widgets as dynamic programs that respond to commands, whether that command comes
in a program or from you entering the commands one by one.

■Note This tutorial on the Google Maps API is essentially the same as that in Chapter 8 and is repeated
here for your convenience.

Getting Started with Google Maps and the JavaScript Shell

We will use the Google Maps API to make a simple map:

1. Make sure you have a public web directory to host your map and know the URL of that directory. Any Google
map that uses the free, public API needs to be publicly visible.

2. Go to the sign-up page for a key to access Google Maps.35 You will need a key for any given domain in which
you host Google Maps. (It is through these keys that Google regulates the use of the Google Maps API.)

3. Read the terms of service,36 and if you agree to them, enter the URL directory on the host that you want to
place your test file. For example, in my case, the URL is http://examples.mashupguide.net/ch13/.
Note that key.

4. Copy and paste the HTML code into your own page on your web-hosting directory. You should get something
like my own example:37

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 347

34. http://www.google.com/apis/maps/documentation/#Introduction

35. http://www.google.com/apis/maps/signup.html

36. http://www.google.com/apis/maps/terms.html

37. http://www.google.com/maps/api_signup?url=http%3A%2F%2Fexamples.mashupguide.net%2Fch13%2F

858X_ch13.qxd 2/4/08 3:15 PM Page 347

<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google Maps JavaScript API Example</title>
<script src="http://maps.google.com/maps?file=api&v=2&key=<API_KEY>"
type="text/javascript"></script>

<script type="text/javascript">

//<![CDATA[

function load() {
if (GBrowserIsCompatible()) {
var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}
}

//]]>
</script>

</head>
<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 500px; height: 300px"></div>

</body>
</html>

5. Now make one modification to the example by removing the var keyword in front of map to make it a global
variable that is thus accessible to the JavaScript Shell. That is, change this:

var map = new GMap2(document.getElementById("map"));

to the following:

map = new GMap2(document.getElementById("map"));

to expose the map object to the JavaScript Shell utility.38

6. Invoke the JavaScript Shell for your map by hitting the JavaScript Shell bookmarklet in the context of your
map. Type the code fragments in the following steps, and see what happens. (Note that another approach is
to modify your code directly with these code fragments and reload your page.) These actions use version 2
of the Google Maps API.39

7. To return the current zoom level of the map (which goes from 0 to 17, with 17 being the most detailed), type
the following command (the response from the JavaScript Shell is shown right after the code):

map.getZoom()

13

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES348

38. http://examples.mashupguide.net/ch13/google.map.1.html

39. http://www.google.com/apis/maps/documentation/reference.html#GMap2

858X_ch13.qxd 2/4/08 3:15 PM Page 348

8. To obtain the latitude and longitude of the center of the map, do this:

map.getCenter()

(37.4419, -122.1419)

9. To center the map around the Campanile for UC Berkeley, use this:

map.setCenter(new GLatLng(37.872035,-122.257844), 13);

10. You can pan to that location instead:

map.panTo(new GLatLng(37.872035,-122.257844));

11. To add a small map control (to control the zoom level), run these two commands:

map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());

12. To turn GMap keyboard navigation on, use this:

window.kh = new GKeyboardHandler(map);

[object Object]

13. To fully zoom out the map, use this:

map.setZoom(0)

14. To zoom in all the way (maximum zoom level may go from 15 to 17), do this:

map.setZoom(17)

15. To set the variable maptypes to an array holding three objects, use this:

maptypes = map.getMapTypes()

[object Object],[object Object],[object Object]

16. To get the name of the first entry in maptypes, use this:

map.getMapTypes()[0].getName()40

Map

17. To get the current map type, you can get the object and the name of that type object:

map.getCurrentMapType()

[object Object]

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 349

40. 1 corresponds to satellite, while 2 corresponds to the hybrid map type.

858X_ch13.qxd 2/4/08 3:15 PM Page 349

map.getCurrentMapType().getName()

Map

18. To set maptype to satellite, do this:

map.setMapType(maptypes[1]);

19. You can zoom one level in and out if you are not already at the max or min zoom level:

map.zoomIn();
map.zoomOut();

20. To make an overlay, try this:

point = new GLatLng (37.87309185260284, -122.25508689880371);

(37.87309185260284, -122.25508689880371)

marker = new GMarker(point);

[object Object]

map.addOverlay(marker);

21. To make something happen when you click the marker, do this:

GEvent.addListener(marker, 'click', function() {
marker.openInfoWindowHtml('hello'); });

[object Object]

22. To add a new layer of pins from a GeoRSS feed, use this:

map.addOverlay(new GGeoXml('http://api.flickr.com/services/feeds/geo/➥

?id=48600101146@N01&lang=en-us&format=rss_200'));

There are many more things to explore, such as polylines and overlays and draggable points. To learn more, I cer-
tainly recommend the “Google Maps API: Introduction” document.41 Note that “this documentation is designed for
people familiar with JavaScript programming and object-oriented programming concepts. You should also be
familiar with Google Maps from a user’s point of view.”

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES350

41. http://www.google.com/apis/maps/documentation/#Introduction

858X_ch13.qxd 2/4/08 3:15 PM Page 350

Yahoo! Maps API
The Yahoo! Maps can be programmed with its API. You can find the core documentation, “Yahoo!
Maps Web Services: Introducing the Yahoo! Maps APIs,” on the Yahoo! web site.42 As I described
in the previous sections, the Simple API43 is useful to get started with because the declarative
approach does not involve any JavaScript programming but creates only the right XML file.

■Note If you want to learn about the Flash APIs for Yahoo! Maps, which are outside the scope of this book,
please refer to the official documentation at http://developer.yahoo.net/maps/flash/index.html.

Getting Started with Yahoo! Maps and the JavaScript Shell

In this exercise, I will present a step-by-step introduction to the Ajax APIs for Yahoo! Maps:44

1. Apply for a Yahoo! application key.45 You are told not to use the appid for the example code in the Yahoo!
documentation (which is YahooDemo).

2. Copy and paste the following code for your web site:46

<html>
<head>
<script type="text/javascript"

src="http://api.maps.yahoo.com/ajaxymap?v=3.0&appid=<API_Key>"></script>
<style type="text/css">
#mapContainer {
height: 500px;
width: 80%;
}

</style>
</head>

<body>
<div id="mapContainer"></div>
<script type="text/javascript">
// Create a lat/lon object
var myPoint = new YGeoPoint(37.4041960114344,-122.008194923401);
// Create a map object
var map = new YMap(document.getElementById('mapContainer'));
// Display the map centered on a latitude and longitude
map.drawZoomAndCenter(myPoint, 3);

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 351

42. http://developer.yahoo.net/maps/

43. http://developer.yahoo.net/maps/simple/index.html

44. http://developer.yahoo.net/maps/ajax/index.html

45. https://developer.yahoo.com/wsregapp/index.php

46. I have my code at http://examples.mashupguide.net/ch13/yahoo.map.simple.1.html.

858X_ch13.qxd 2/4/08 3:15 PM Page 351

// Add map type control
map.addTypeControl();

// Set map type to either of: YAHOO_MAP_SAT YAHOO_MAP_HYB YAHOO_MAP_REG
map.setMapType(YAHOO_MAP_SAT);

//Get valid map types,
//returns array [YAHOO_MAP_REG, YAHOO_MAP_SAT, YAHOO_MAP_HYB]
var myMapTypes = map.getMapTypes();

</script>
</body>
</html>

3. Invoke the JavaScript Shell for your map by hitting the JavaScript Shell bookmarklet in the context of your
map. Type the code fragments in the following steps, and see what happens. (If you don’t use your own map,
try the JavaScript Shell on the example on the Yahoo! web site.)47

4. To get the zoom level, use this:

map.getZoomLevel()

3

5. To get the center location, specifically, the latitude and longitude, use this:

map.getCenterLatLon()

[object Object]

props(map.getCenterLatLon())

Fields: Lat, Lon
Methods of prototype: distance, equal, getRad, greater, middle, pointDiff,
setgeobox, valid

map.getCenterLatLon().Lat

37.4041960114344

map.getCenterLatLon().Lon

-122.008194923401

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES352

47. http://developer.yahoo.com/maps/ajax/V3/ajaxexample1.html

858X_ch13.qxd 2/4/08 3:15 PM Page 352

6. To set the zoom level (15 for largest scale, 1 for most zoomed in), use this:

map.setZoomLevel(15)
map.setZoomLevel(1)

7. To move the map to a new center (in this case, the UC Berkeley campus), do this:

p = new YGeoPoint(37.87309185260284, -122.25508689880371)

[object Object]

map.panToLatLon(p)

8. To add some navigation and zoom controls, use this:

map.addPanControl();
map.addZoomLong();

9. To add a marker, labeled H, use the following:

marker = new YMarker(p);

[object Object]

marker.addLabel("H");
map.addOverlay(marker);

10. To make a click event invoke a pop-up, use this:

function onSmartWinEvent() {var words = "Yeah Yahoo maps!"; ➥

marker.openSmartWindow(words); }
YEvent.Capture(marker, EventsList.MouseClick, onSmartWinEvent);

11. To add a marker to a specific address, in this case, 2195 Hearst Ave, you can use either of the following
three alternatives:

map.addMarker("2855 Telegraph Ave, Berkeley, CA");

or

map.addOverlay(new YMarker("2855 Telegraph Ave, Berkeley, CA "));

or

marker = new YMarker("2855 Telegraph Ave, Berkeley, CA ");
marker.addLabel("Apress");
map.addOverlay(marker);
marker.reLabel("hello");

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 353

858X_ch13.qxd 2/4/08 3:15 PM Page 353

12. To add a GeoRSS feed (that uses either the Yahoo! YMaps extensions or the Compact W3C Basic Geo encoding)
to the map, use this:

map.addOverlay(new YGeoRSS('http://examples.mashupguide.net/ch13/➥

bookstores.georsss.xml'));

These examples do not exhaust the Yahoo! Ajax API, which has features such as polylines and more complete
overlay functionality.

Microsoft’s Live Search Maps/Virtual Earth
Microsoft’s Live Search Maps, the company’s latest offering in online maps, has gone by quite
a few other names (Windows Live Map and Windows Live Local). The name of the service is
also not to be confused with Virtual Earth, the name Microsoft has given to the technology
that “powers” Live Search Maps. None of this technology is to be confused with MSN Maps,
also run by Microsoft.48

The Virtual Earth Map control is an Ajax widget, well documented at the following locations:

• The official central place for the Microsoft Virtual Earth docs.49

• The Virtual Earth Interactive SDK50 is a great place to learn about Virtual Earth because
it combines a live demo with relevant source code and links to the reference documen-
tation. (Think of it as a counterpart to the Flickr API Explorer.)

Getting Started with Virtual Earth and the JavaScript Shell

1. Copy and paste the following code (this is the simplest piece of code given at the Virtual Earth Interactive SDK):51

<html>
<head>

<title>ve.map.1.html</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<script src="http://dev.virtualearth.net/mapcontrol/v5/mapcontrol.js">
</script>
<script>
var map = null;

function GetMap()
{

map = new VEMap('myMap');
map.LoadMap();

}

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES354

48. http://mappoint.msn.com/

49. http://dev.live.com/virtualearth

50. http://dev.live.com/virtualearth/sdk/

51. http://examples.mashupguide.net/ch13/ve.map.1.html

858X_ch13.qxd 2/4/08 3:15 PM Page 354

</script>
</head>
<body onload="GetMap();">

<div id="myMap"
style="position:relative; width:400px; height:400px;"></div>

</body>
</html>

2. Invoke the JavaScript Shell for your map by hitting the JavaScript Shell bookmarklet in the context of your
map. Type the code fragments in the following steps, and see what happens.

3. To get the zoom level, use this:

map.GetZoomLevel()

4

4. To zoom in and out, use this:

map.ZoomIn();
map.ZoomOut();

5. To get the style of the map, use this:

map.GetMapStyle()

r

6. To set the map style (a = aerial, r = road, h = hybrid, and o = bird’s-eye), use this:

map.SetMapStyle('a');

3D Aspects of Virtual Earth

One cool distinguishing feature of the Virtual Earth is its 3D mode, accessible via JavaScript. This 3D mode is akin
to wrapping Google Earth functionality into Google Maps. The 3D mode is available if you are running Firefox or
Internet Explorer version 6 or 7 on Windows and have the appropriate 3D add-ons installed. The requirements are
documented here:

http://msdn2.microsoft.com/en-us/library/bb429547.aspx

Continuing the exercise, you can put the map into 3D mode with the following command in the JavaScript Shell:

map.SetMapMode(VEMapMode.Mode3D);

Remember to use the Virtual Earth Interactive SDK (http://dev.live.com/virtualearth/sdk/) to learn
about the other capabilities in Virtual Earth, including working with shapes and driving directions.

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 355

858X_ch13.qxd 2/4/08 3:15 PM Page 355

Geocoding
A common task in using online maps is to geocode addresses—that is, converting street addresses
to the corresponding latitude and longitude. In the following sections, I will walk through the
basics of geocoding in Yahoo!, Google, Geocoder.us, and Virtual Earth maps, which is enough to get
you started. For the following examples, I use the address of Apress, which is 2855 Telegraph Ave.,
Berkeley, CA.

■Caution There are subtleties that I won’t go in detail about: the precision and accuracy of the APIs,
dealing with ambiguities in the addresses, and which geocoder is best for a given geographic location.

Yahoo! Maps
Yahoo! provides a REST geocoding method here:

http://developer.yahoo.com/maps/rest/V1/geocode.html

whose base URL is http://api.local.yahoo.com/MapsService/V1/geocode and whose parameters
include the appid to identify your application and two ways of identifying the address:

• A combination of street, city, state, and zip:

http://api.local.yahoo.com/MapsService/V1/geocode?appid={app-id}➥

&street=2855+Telegraph+Ave.&city=Berkeley&state=CA

• location, which is free text that consists of one string that holds a combination of street,
city, state, and zip. The location string has priority for determining the placement of this:

http://api.local.yahoo.com/MapsService/V1/geocode?appid={app-id}➥

&location=2855+Telegraph+Ave.%2C+Berkeley%2C+CA

When you use these two methods to geocode the location of the Apress office, you get the
same result. Using street, city, and state returns this:

<?xml version="1.0"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:maps"
xsi:schemaLocation="urn:yahoo:maps

http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">
<Result precision="address">
<Latitude>37.858377</Latitude>
<Longitude>-122.259171</Longitude>
<Address>2855 TELEGRAPH AVE</Address>
<City>BERKELEY</City>
<State>CA</State>
<Zip>94705-1128</Zip>
<Country>US</Country>

</Result>
</ResultSet>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES356

858X_ch13.qxd 2/4/08 3:15 PM Page 356

Note the following characteristics of the output:

• You get the same results with the two methods in this case.

• You can compare the output address and the input address to make sure the geocoder
is interpreting the address the way you think it should be.

• The default output format is XML when no output parameter is specified.

• You get the latitude and longitude in the <Latitude> and <Longitude> elements,
respectively.

A good way to see how the API behaves is to try various parameters. See what happens in
the following cases:

• Specify only city=Berkeley to get several results corresponding to the cities that go by
the name of Berkeley.52

• Use the output=php option to get serialized PHP.53

• Enter a nonexistent street address for a given city.54

Geocoder.us
Geocoder.us provides a free gecoding service for U.S. addresses. Refer to Chapter 7 for a detailed
discussion of the REST and SOAP interfaces to the Geocoder.us API, which is documented here:

http://geocoder.us/help/

Let’s calculate the latitude and longitude for the Apress office with different aspects of the
Geocoder.us service:

• The Geocoder.us user interface, invoked with this:

http://geocoder.us/demo.cgi?address=2855+Telegraph+Ave.%2C+Berkeley%2C+CA

shows that the latitude and longitude of the address is the following:

(37.858276, -122.260070)

• The CSV interface, invoked with this:

http://rpc.geocoder.us/service/csv?address=2855+Telegraph+Ave.%2C+Berkeley%2C+CA

returns the following:

37.858276,-122.260070,2855 Telegraph Ave,Berkeley,CA,94705

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 357

52. http://api.local.yahoo.com/MapsService/V1/geocode?appid={app-id}&city=Berkeley

53. http://api.local.yahoo.com/MapsService/V1/geocode?appid={app-id}&location=350+5th+Ave,
+New+York,+NY&output=php

54. http://api.local.yahoo.com/MapsService/V1/geocode?appid={app-id}&location=350000+main+Street,
+Berkeley,+CA

858X_ch13.qxd 2/4/08 3:15 PM Page 357

• The REST interface, through this:

http://geocoder.us/service/rest/?address=2855+Telegraph+Ave.%2C+Berkeley%2C+CA

returns the following:

<?xml version="1.0"?>
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<geo:Point rdf:nodeID="aid33483656">
<dc:description>2855 Telegraph Ave, Berkeley CA 94705</dc:description>
<geo:long>-122.260070</geo:long>
<geo:lat>37.858276</geo:lat>

</geo:Point>
</rdf:RDF>

Notice the use of the W3 Basic Geo encoding for the latitude and longitude in the
response.

Google Geocoder
The Google Geocoder provides two interfaces: a REST interface and a JavaScript-accessible
interface:

http://www.google.com/apis/maps/documentation/#Geocoding_Examples

I’ll cover each in turn.

REST Interface
We’ll first look at the REST method, whose base URL is http://maps.google.com/maps/geo and
whose parameters are as follows:

• q is the address to geocode.

• key is your API key.55

• output is the format of the output—one of xml, kml, csv, or json.

Let’s look at some example output. The xml and kml output for 2855 Telegraph Ave.,
Berkeley, CA, produces the same body (listed next) but different Content-Type headers
(“text/xml” and “application/vnd.google-earth.kml+xml”), respectively:56

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES358

55. You can get your key at http://www.google.com/apis/maps/signup.html.
ABQIAAAAdjiS7YH6Pzk2Nrli02b5xxR10RG5t-vK3TwPKbpNUO2c5sYb4RTmySs_TEFzYvlZrCaYJKlmTzJ5lA is the
key for http://examples.mashupguide.net/ch13/.

56. http://maps.google.com/maps/geo?q=2855+Telegraph+Ave.%2C+Berkeley%2C+CA.&output=xml&key=
ABQIAAAAdjiS7YH6Pzk2Nrli02b5xxR10RG5t-vK3TwPKbpNUO2c5sYb4RTmySs_TEFzYvlZrCaYJKlmTzJ5lA

858X_ch13.qxd 2/4/08 3:15 PM Page 358

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.0">
<Response>
<name>2855 Telegraph Ave., Berkeley, CA.</name>
<Status>
<code>200</code>
<request>geocode</request>

</Status>
<Placemark id="p1">
<address>2855 Telegraph Ave, Berkeley, CA 94705, USA</address>
<AddressDetails Accuracy="8" xmlns="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0">
<Country>
<CountryNameCode>US</CountryNameCode>
<AdministrativeArea>
<AdministrativeAreaName>CA</AdministrativeAreaName>
<SubAdministrativeArea>
<SubAdministrativeAreaName>Alameda</SubAdministrativeAreaName>
<Locality>
<LocalityName>Berkeley</LocalityName>
<Thoroughfare>
<ThoroughfareName>2855 Telegraph Ave</ThoroughfareName>

</Thoroughfare>
<PostalCode>
<PostalCodeNumber>94705</PostalCodeNumber>

</PostalCode>
</Locality>

</SubAdministrativeArea>
</AdministrativeArea>

</Country>
</AddressDetails>
<Point>
<coordinates>-122.259310,37.858517,0</coordinates>

</Point>
</Placemark>

</Response>
</kml>

■Caution Even though the XML output does include a </Placemark> element, which is valid KML, the
</Response> element in the output precludes the output from being valid KML.

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 359

858X_ch13.qxd 2/4/08 3:15 PM Page 359

Here is the json output for convenient use in JavaScript:57

{"name":"2855 Telegraph Ave., Berkeley, CA.","Status":{"code":200,"request":
"geocode"},"Placemark":[{"id":"p1","address":"2855 Telegraph Ave, Berkeley,
CA 94705, USA","AddressDetails":{"Country":{"CountryNameCode":"US",
"AdministrativeArea":{"AdministrativeAreaName":"CA","SubAdministrativeArea":
{"SubAdministrativeAreaName":"Alameda","Locality":{"LocalityName":"Berkeley",
"Thoroughfare":{"ThoroughfareName":"2855 Telegraph Ave"},"PostalCode":
{"PostalCodeNumber":"94705"}}}}},"Accuracy": 8},"Point":{"coordinates":
[-122.259310,37.858517,0]}}]}

JavaScript Interface
As for the JavaScript methods available in the Google mapping system, consult the documen-
tation provided by Google,58 which points to using the GClientGeocoder object. You can use
the JavaScript Shell to see this object in action:

1. Open the simple Google map from the previous section.59

2. In the JavaScript Shell, set up the address and an instance of GClientGeocoder:

address = "2855 Telegraph Ave., Berkeley, CA"

2855 Telegraph Ave., Berkeley, CA

geocoder = new GClientGeocoder();

[object Object]

3. Compose a call to GClientGeocoder.getLatLng, which takes an address and a callback
function, which in turn takes the point geocoded from the address:

geocoder.getLatLng(address, function(point) {
if (!point) {
alert(address + " not found");}

else {
map.setCenter(point, 13);
var marker = new GMarker(point);
map.addOverlay(marker);
marker.openInfoWindowHtml(address);

}
}

);

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES360

57. http://maps.google.com/maps/geo?q=2855+Telegraph+Ave.%2C+Berkeley%2C+CA.&output=json&key=
ABQIAAAAdjiS7YH6Pzk2Nrli02b5xxR10RG5t-vK3TwPKbpNUO2c5sYb4RTmySs_TEFzYvlZrCaYJKlmTzJ5lA

58. http://www.google.com/apis/maps/documentation/#Geocoding_JavaScript

59. http://examples.mashupguide.net/ch13/google.map.1.html

858X_ch13.qxd 2/4/08 3:15 PM Page 360

If you get rid of the whitespace in the function, you can easily invoke it in the
JavaScript Shell:

geocoder.getLatLng(address, function(point) {
if (!point) { alert(address + " not found");}
else {
map.setCenter(point, 13);
var marker = new GMarker(point);
map.addOverlay(marker);
marker.openInfoWindowHtml(address);

}
});

4. You will then see that Google Maps adds an overlay marking 2855 Telegraph Ave.,
Berkeley, CA (as shown in Figure 13-1).

Figure 13-1. Invoking the JavaScript Google Geocoder with the JavaScript Shell

Virtual Earth
Virtual Earth provides geocoding functionality in the VEMap.Find method of version 5 of
the Virtual Earth SDK,60 which takes two parameters: a location string and a callback function.
Let’s illustrate this at work with the JavaScript Shell:

1. Open the basic Virtual Earth example.61

2. Let’s create a callback function that pops up an alert with the latitude/longitude of the
found locations:

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 361

60. http://msdn2.microsoft.com/en-US/library/bb429645.aspx

61. http://examples.mashupguide.net/ch13/ve.map.1.html

858X_ch13.qxd 2/4/08 3:15 PM Page 361

function onFoundResults (ShapeLayer,FindResult,Place,HasMore) {
html = "";
for (x=0; x<Place.length; x++) {
html = html + Place[x].LatLong + "";

}
alert (html);

}

3. In the JavaScript Shell, type the following:

address = "2855 Telegraph Ave., Berkeley, CA"

2855 Telegraph Ave., Berkeley, CA

function onFoundResults (ShapeLayer,FindResult,Place,HasMore) {
html = "";
for (x=0; x<Place.length; x++) {html = html + Place[x].LatLong + "";}
alert (html);

}
map.Find(null,address,null,null,null,null,null,null,null,null,
onFoundResults);

■Note The last line with the many null parameters might look surprising, but it is an officially recommended
invocation from http://msdn2.microsoft.com/en-us/library/bb545008.aspx.

4. You will see an alert that pops up the latitude and longitude of the address.

I packaged this logic in a simple example:62

<html>
<head>
<title>VE Map showing VEMap.Find (ve.map.find.html)</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<script src="http://dev.virtualearth.net/mapcontrol/v5/mapcontrol.js"></script>
<script>
var map = null;

function onFoundResults (ShapeLayer,FindResult,Place,HasMore) {
html = "";
//alert("Place: " + Place);

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES362

62. http://examples.mashupguide.net/ch13/ve.map.find.html

858X_ch13.qxd 2/4/08 3:15 PM Page 362

for (x=0; x<Place.length; x++) {
html = html + Place[x].LatLong + "";

}
alert (html);

}

function GetMap()
{

map = new VEMap('myMap');
map.LoadMap();

address = "2855 Telegraph Ave., Berkeley, CA";
map.Find(null,address,null,null,null,null,null,null,null,

null, onFoundResults);
}
</script>

</head>
<body onload="GetMap();">
<div id='myMap' style="position:relative; width:400px; height:400px;"></div>

</body>
</html>

Geocoding Non-U.S. Addresses
As I have implied in my previous examples, the Google, Yahoo!, Microsoft, and Geocoder.us
geocoders are built to handle American addresses. What if you want to geocode street-level
addresses in other countries? It would be great to have a single geocoding API that would return
a reliable latitude and longitude for an address from anywhere in the world. That service
doesn’t currently exist. Here, however, are some starting points to geocoding addresses from
around the world:

• The Google geocoder can geocode addresses in countries listed here:

http://code.google.com/support/bin/answer.py?answer=62668&topic=12266

The list currently includes Austria, Australia, Belgium, Brazil, Canada, The Czech
Republic, Denmark, Finland, France, Germany, Hong Kong, Hungary, India, Ireland,
Italy, Japan, Luxembourg, The Netherlands, New Zealand, Poland, Portugal, Singapore,
Spain, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. Note
the caveat that the accuracy of the results can vary per country.

• The best list I could find for Yahoo!’s coverage is here:

http://ylocalblog.com/blog/2007/05/16/yahoo-maps-global-rollout-gets-a-new-look-➥

%e2%80%93-and-a-new-platform/

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 363

858X_ch13.qxd 2/4/08 3:15 PM Page 363

This blog entry lists the following countries in Western Europe as having “complete
coverage”: Austria, Belgium, Denmark, Finland, Germany, Great Britain, Luxembourg,
Netherlands, Ireland, Norway, Portugal, Spain, Sweden, Switzerland, France, and Italy.

• Consult the following for lists of other geocoders:

http://groups.google.com/group/Google-Maps-API/web/resources-non-google-➥

geocoders
http://mapki.com/wiki/FAQs#Geocoding

Google Earth and KML
Google Earth (http://earth.google.com/) is a virtual globe, which means it is a desktop envi-
ronment that simulates the three-dimensional aspects of the earth. It runs on Windows, Mac OS X,
and Linux. Google Earth is a cool application, rightfully described as immersive. There are other
virtual globes,63 but I wouldn’t be surprised if Google Earth remains the dominant virtual globe
platform for geodata sharing.64

Google Earth is also a great mashup platform. What makes it so?

• The three-dimensional space of a planet is an organizing framework that is easy to
understand—everyone knows his or her place in the world, so to speak.

• KML—the XML data format for getting data in and out of Google Earth is easy to read
and write.

• There are other APIs to Google Earth, including a COM interface in Windows and an
AppleScript interface in Mac OS X.

Displaying and Handling KML As End Users
I introduced KML earlier in the chapter but reserved a full discussion of it in the context of
Google Earth. The main reason for this organizational choice is that although KML is steadily
growing beyond its origins as the markup language for Keyhole, the precursor to Google Earth,
the natural home for KML remains Google Earth. Google Earth is the fullest user interface for
displaying and interacting with KML. You can also use it to create KML. At the same time, since
Google Earth is not the only tool for working with KML, I’ll describe some useful tips for using
those other tools.

A good and fun way to start with KML is to download and install Google Earth and to use
it to look at a variety of KML files. Here are some sources of KML:

• The Google Earth Gallery (http://earth.google.com/gallery/index.html)

• The Google Earth Community (http://bbs.keyhole.com/ubb/ubbthreads.php/Cat/0)

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES364

63. http://en.wikipedia.org/wiki/Virtual_globe

64. http://www.technologyreview.com/read_article.aspx?ch=specialsections&sc=personal&id=17537
makes the argument that Google Earth will be exactly that dominant platform.

858X_ch13.qxd 2/4/08 3:15 PM Page 364

It turns out that Google Maps and Flickr are also great sources of KML. After walking you
through a specific example to demonstrate the mechanics of interacting with KML, I will describe
how to get KML out of Flickr and Google Maps—and how to use Google Maps to display KML.

Let me walk you through the mechanics with one example:

http://maps.google.com/maps/ms?f=q&hl=en&geocode=&ie=UTF8&msa=0➥

&msid=116029721704976049577.0000011345e68993fc0e7&z=14&om=1
http://maps.google.com/maps/ms?f=q&msa=0&output=kml&msid=116029721704976049577.➥

0000011345e68993fc0e7

Downloading KML into Google Earth

1. Make sure you have Google Earth installed. You can download it from here:

http://earth.google.com/

2. After you have installed Google Earth, learn how to navigate the interface. At the least, you should get com-
fortable with typing addresses or business names, causing the Google interface to go to those places. Also
learn how to use the Save to My Places functionality to create collections of individual items and how to
change the properties of individual items, including the latitude, longitude, icon, and view of the item. Finally,
you should be to be able to get KML corresponding to the collection.65 With the KML in hand and an under-
standing of what a collection looks like in Google Earth, you are in a good position not only to read KML but
also to write KML.

3. The classic way that most Google Earth users interact with KML is through clicking a link that causes a KML
file to be downloaded and fed into Google Earth. (I’ll cover the technical mechanism for how that happens
later in the chapter.) Here, I’ll walk through one such example of a KML file that you can download.

Go to the map of bookstores I created with Google My Maps:

http://maps.google.com/maps/ms?f=q&msa=0&msid=116029721704976049577.➥

0000011345e68993fc0e7&z=14&om=1

4. Click the KML link, which is as follows:

http://maps.google.com/maps/ms?f=q&om=1&ie=UTF8&msa=0&output=nl➥

&msid=116029721704976049577.0000011345e68993fc0e7

5. If your browser and Google Earth are set up in the typical configuration (in which Google Earth is registered
to handle files with a Content-Type header of “application/vnd.google-earth.kml+xml”), you will be
prompted to let Google Earth open the downloaded KML. If you accept, the collection of points representing
the bookstores is loaded into Temporary Places. Double-clicking the link of the collection spins the markers
into view in Google Earth. See Figure 13-2 to see the Google Maps collection displayed in Google Earth.

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 365

65. To start with, you should know the default locations of your stored KML files: C:\Documents and
Settings\[USERNAME]\Application Data\Google\GoogleEarth\myplaces.kml (Win32) and ~/Library/
Google Earth/myplaces.kml (OS X).

858X_ch13.qxd 2/4/08 3:15 PM Page 365

Figure 13-2. A Google Maps collection displayed in Google Earth

Now that you have downloaded a KML file into Google Earth, let’s look at other tools that
are useful for your study of KML.

Google Maps As a KML Renderer
You can use Google Maps to display the contents of a KML file. The easiest way to do so is to
go to the Google Maps page (http://maps.google.com) and enter the URL of the KML file as
though it were an address or other search term. Such a query results in the following URL:

http://maps.google.com?q={kml-url}

For example, feeding the KML for the bookstore map back into Google Maps, we get the
following:

http://maps.google.com/maps?q=http:%2F%2Fmaps.google.com%2Fmaps%2Fms%3Ff%3Dq%26om%3D➥

1%26ie%3DUTF8%26msa%3D0%26output%3Dnl%26msid%3D116029721704976049577.0000011345e6899➥

3fc0e7

I have found using Google Maps to be an incredibly useful KML renderer. First, you can
test KML files without having access to Google Earth. Second, you can let others look at the
content of KML files without requiring them to have Google Earth installed. You should be
aware, however, of two caveats in using Google Earth to render KML:

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES366

858X_ch13.qxd 2/4/08 3:15 PM Page 366

• Google Maps does not implement KML in total—so don’t expect to replace Google
Earth with Google Maps for working with KML.

• Google Maps caches KML files that you render with it. That is, if you are using Google
Maps to test the KML that you are changing, be aware that Google Maps might not be
reading the latest version of your KML file.

KML from Flickr
You can now use Flickr to learn more about KML. Currently, although there’s no official
documentation, you can refer to Rev. Dan Catt’s weblog entry to learn some of the details
about getting KML out of Flickr:

http://geobloggers.com/archives/2007/05/31/flickr-kml-and-a-stroll-down-memory-lane/

The following KML feeds contain at most 20 entries. You have two choices about the format
to use:

• format=kml_nl for the KML network link that refreshes periodically to show the latest
photos. (I will discuss the KML <NetworkLink> element in a moment.)

• format=kml for the static KML that contains the data about the locations.

So, anywhere I write format=kml_nl, you can substitute format=kml.
When you are looking at these feeds, it’s helpful to remember that in addition to using

Google Earth as a KML viewer, you can use Google Maps, which I find very convenient. Just
drop the URL for the KML file into the search box for Google Maps, and you can have the KML
file displayed in Google Maps. For instance, you can take the KML for the 20 most recent geo-
tagged photos in Flickr, like so:

http://api.flickr.com/services/feeds/geo/?format=kml_nl

and drop it into Google Maps, which you can access here:

http://maps.google.com/maps?q=http:%2F%2Fapi.flickr.com%2Fservices%2Ffeeds%2Fgeo%2F%➥

3Fformat%3Dkml_nl

Currently, you can get a KML feed for an individual user with this:

http://api.flickr.com/services/feeds/geo/?id={user-nsid}&format=kml_nl

For example, here’s the feed for Rev. Dan Catt:

http://api.flickr.com/services/feeds/geo/?id=35468159852@N01&format=kml_nl

You can get the KML feed for a group here:

http://api.flickr.com/services/feeds/geo/?g={group-nsid}&format=kml_nl

For example, here’s the KML feed for the Flickr Geotagging group:

http://api.flickr.com/services/feeds/geo/?g=94823070@N00&format=kml_nl

You can get KML feeds for a tag, such as flower:

http://api.flickr.com/services/feeds/geo/&tags=flower&format=kml_nl

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 367

858X_ch13.qxd 2/4/08 3:15 PM Page 367

You can get KML feeds for locations. Here are some examples:

http://api.flickr.com/services/feeds/geo/us/?format=kml_nl
http://api.flickr.com/services/feeds/geo/us/ca/berkeley/?format=kml_nl
http://api.flickr.com/services/feeds/geo/uk/london/?format=kml_nl
http://api.flickr.com/services/feeds/geo/ca/on/toronto/?format=kml_nl
http://api.flickr.com/services/feeds/geo/FR/%C3%8Ele-de-France/Paris?format=kml_nl
http://api.flickr.com/services/feeds/geo/cn/beijing/?format=kml_nl
http://api.flickr.com/services/feeds/geo/cn/%E5%8C%97%E4%BA%AC/?format=kml_nl

Note that the last two links are both for Beijing ().
You can do a combined search on a user, location, and tags. For example, to get Raymond

Yee’s photos in Berkeley, California, tagged with flower, use this:

http://api.flickr.com/services/feeds/geo/us/ca/berkeley/?id=48600101146@N01➥

&tags=flower&format=kml_nl

■Caution Look for official documentation on KML in Flickr to see how it evolves beyond its early beginnings.

KML
Although KML at its heart is a simple dialect of XML, Google is steadily adding features to do
more and more through KML. The home for KML documentation is here:

http://code.google.com/apis/kml/documentation/

Don’t overlook the file of KML samples that the documentation refers to, because the
examples are very useful:

http://code.google.com/apis/kml/documentation/KML_Samples.kml

You can have these rendered in Google Maps:

http://maps.google.com/maps?q=http%3A%2F%2Fkmlscribe.googlepages.com%2F➥

SamplesInMaps.kml

The goal in this section is to get you started with how to read and write KML. Let’s start
with a simple example of KML that contains a single <Placemark> element, whose associated
<Point> element is located at the Campanile of the UC Berkeley campus:66

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.1">
<Placemark id="berkeley">
<description>Berkeley, CA</description>
<name>Berkeley</name>
<Point>
<coordinates>-122.257704,37.8721,0</coordinates>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES368

66. http://examples.mashupguide.net/ch13/berkeley.simple.kml

858X_ch13.qxd 2/4/08 3:15 PM Page 368

</Point>
</Placemark>

</kml>

The <Point> element defines the position of the placemark’s name and icon. You can read
the file into Google Earth to display it or use Google Maps to render it:

http://maps.google.com/maps?q=http:%2F%2Fexamples.mashupguide.net%2Fch13%2F➥

berkeley.simple.kml

You can validate the KML using the techniques described here:

http://googlemapsapi.blogspot.com/2007/06/validate-your-kml-online-or-offline.html

For instance, you can feed to the file to Feedvalidator.org, which validates KML (in addition
to RSS and Atom feeds):

http://feedvalidator.org/check.cgi?url=http%3A%2F%2Fexamples.mashupguide.net%2F➥

ch13%2Fberkeley.simple.kml

Using your favorite XML validator, you can also validate the KML against the XML Schema
for KML 2.1 located here:

http://code.google.com/apis/kml/schema/kml21.xsd

Adding a View to a Placemark: LookAt and Camera
The previous KML document defined a specific point for positioning the placemark’s name
and icon but did not specify a viewpoint for the placemark. Given that you can zoom around
the virtual globe from many angles, you won’t be surprised that KML allows you to define
a viewpoint associated with a placemark. There are two ways to do so: the <LookAt> element
and the <Camera> element (defined in KML 2.2 and later). You will find excellent introductory
documentation for these two elements here:

http://code.google.com/apis/kml/documentation/cameras.html

Here I use a series of examples to illustrate the central difference between <LookAt> and
<Camera>: <LookAt> specifies the viewpoint in terms of the location being viewed, whereas <Camera>
specifies the viewpoint in terms of the viewer’s location and orientation. I have gathered the
examples in a single KML file:

http://examples.mashupguide.net/ch13/berkeley.campanile.evans.kml

which you can view through Google Earth or Google Maps here:

http://maps.google.com/maps?f=q&hl=en&geocode=&q=http:%2F%2Fexamples.mashupguide.net➥

%2Fch13%2Fberkeley.campanile.evans.kml&ie=UTF8&ll=37.872507,-122.257565➥

&spn=0.006581,0.01133&z=17&om=1

or here:

http://tinyurl.com/38oawy

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 369

858X_ch13.qxd 2/4/08 3:15 PM Page 369

I recommend loading the KML into Google Earth and in Google Maps so that you can
follow along. See Figure 13-3 for how this KML file looks in Google Maps. Notice that there are
three <Placemark> elements for two buildings: the Campanile, which sits almost due south of
Evans Hall, and Evans Hall, both on the UC Berkeley campus.

Figure 13-3. KML for the Campanile and Evans Hall in Google Maps

The first placemark is placed at the Campanile and uses a <LookAt> element to specify
a viewpoint for the Campanile (see Figure 13-4 for a rendering of this placemark in Google Earth):

<Placemark id="Campanile">
<name>Campanile</name>
<description><![CDATA[Campanile viewed from the South, using <LookAt> (range=200,

tilt=45, heading=0)]]></description>
<LookAt>
<longitude>-122.257704</longitude>
<latitude>37.8721</latitude>
<altitude>0</altitude>
<altitudeMode>relativeToGround</altitudeMode>
<range>200</range>
<tilt>45</tilt>
<heading>0</heading>

</LookAt>
<Point>
<coordinates>-122.257704,37.8721,0</coordinates>

</Point>
</Placemark>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES370

858X_ch13.qxd 2/4/08 3:15 PM Page 370

Figure 13-4. View of the Campanile in Google Earth defined by the <LookAt> element

In addition to the <Point> element, which specifies a marker to click for the placemark,
the KML defines a point of focus whose latitude and longitude are 37.8721 and -122.257704
and whose altitude is 0 meters (relative to the ground). The distance between this point of
focus and the viewer is specified in meters by the range element. (In this example, the virtual
camera of the viewpoint is 200 meters away from the point.) Two further parameters control
the orientation the viewpoint:

• tilt specifies the angle of the virtual camera relative to an axis running perpendicular to
the ground. In other words, 0 degrees means you are looking straight down at the ground;
90 degrees means you’re looking at the horizon. In the case of our example, tilt is
45 degrees, which you can pick out from Figure 13-4. (tilt is limited to the range of 0 to
90 degrees.) Note that the default value is 0 degrees, which is, in fact, the only value that is
supported in Google Maps.

• heading (which ranges from 0 to 360 degrees) specifies the geographic direction you are
looking at. Zero degrees, the default value, means the virtual camera is pointed north.
In this example, heading is indeed 0—we are looking at the Campanile from the south.
We can see Evans Hall to the north. In Google Maps, the rendered heading is fixed to
0 degrees—north is always up.

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 371

858X_ch13.qxd 2/4/08 3:15 PM Page 371

Now let’s consider a second placemark, which appears as Figure 13-5 when rendered in
Google Earth:

<Placemark id="Evans">
<name>On the roof of Evans Hall Looking at Campanile</name>
<description><![CDATA[Looking south from Evans to Campanile, using <Camera>

(heading=180, tilt=90, roll=0)]]></description>
<Camera>
<longitude>-122.2578687854004</longitude>
<latitude>37.87363451913904</latitude>
<altitude>50</altitude>
<altitudeMode>relativeToGround</altitudeMode>
<heading>180</heading>
<tilt>90</tilt>
<roll>0</roll>

</Camera>
<Point>
<coordinates>-122.2578687854004,37.87363451913904,0</coordinates>

</Point>
</Placemark>

Figure 13-5. View of the Campanile in Google Earth defined by the <Camera> element

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES372

858X_ch13.qxd 2/4/08 3:15 PM Page 372

You set up the <Camera> element by specifying the location and orientation of the viewer
instead of the point of focus. The latitude/longitude for the camera corresponds to Evans Hall,
a point north of the Campanile. The altitude (50 m) is roughly roof height for Evans Hall. Let’s
look at the three angles that are part of a <Camera> element definition:

• heading is set to 180 degrees, meaning the virtual camera is pointing south. Thus, the
Campanile is in view.

• tilt is set to 90 degrees, meaning it is looking parallel to the ground. (In contrast to the tilt
for <LookAt>, which is constrained to a value between 0 and 90 degrees, the tilt for <Camera>
can go from 0 to 180 degrees.) It can even be negative, which results in an upside-down
view. This difference in the range for tilt allows a <Camera> element to be aimed at the sky,
whereas a <LookAt> element could at most be aimed at the horizon but not above it.

• roll is set to 0 degrees, which is the default value. You can look at the third placemark
defined here:

http://examples.mashupguide.net/ch13/berkeley.campanile.evans.kml

in which roll is 45 degrees to get a sense of the effect that roll has on a view (refer to
Figure 13-6 to see the third placemark).

Figure 13-6. View of the Campanile in Google Earth defined by the <Camera> element
with a 45-degree roll

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 373

858X_ch13.qxd 2/4/08 3:15 PM Page 373

The final KML file uses a folder to group the three <Placemark> elements, and it associates
a <LookAt> element for the folder to give the folder a view.

Programming Google Earth via COM and AppleScript
In addition to controlling Google Earth through the user interface or through feeding it KML,
you can also program Google Earth. In Windows, you can do so through the COM interface
and on Mac OS X via AppleScript.67 Little information is publicly available for these APIs. In
the following sections, I’ll show you some small samples to get you started and to show you
some of the capabilities of the API.

COM Interface
You can find documentation of the COM interface to Google Earth here:

http://earth.google.com/comapi/index.html

The following is a small sample Python snippet (running on Windows with the Win32
extension) to load the previous KML example, highlight each of the placemarks, and render
their respective views in turn. Note that the code uses the OpenKmlFile method to read a local
file so that it can then get features using the GetFeatureByHref method.

demonstrate the Google Earth COM interface

import win32com.client
ge = win32com.client.Dispatch("GoogleEarth.ApplicationGE")

fn = r'D:/Document/PersonalInfoRemixBook/examples/ch13/berkeley.campanile.evans.kml'
ge.OpenKmlFile(fn,True)

features = ['Campanile', 'Evans', 'Evans_Roll']

for feature in features:s
p = ge.GetFeatureByHref(fn + "#" + feature)
p.Highlight()
ge.SetFeatureView(p,0.1)
raw_input('hit to continue')

The following is a Python code example to demonstrate the use of SetCameraParams to set the
current view of Google Earth. Notice how the parameters correspond to those of the <LookAt>
element. At some point, perhaps, the Google Earth COM interface will support the parameters
corresponding to the <Camera> element in KML.

demonstrate the Google Earth COM interface

import win32com.client
ge = win32com.client.Dispatch("GoogleEarth.ApplicationGE")

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES374

67. http://www.ogleearth.com/2006/09/google_earth_fo_6.html

858X_ch13.qxd 2/4/08 3:15 PM Page 374

send to UC Berkeley Campanile
lat = 37.8721
long = -122.257704

#altitude in meters
altitude = 0

http://earth.google.com/comapi/earth_8idl.html#5513db866b1fce4e039f09957f57f8b7
AltitudeModeGE { RelativeToGroundAltitudeGE = 1, AbsoluteAltitudeGE = 2 }
altitudeMode = 1

#range in meters; tilt in degrees, heading in degres
range = 200
tilt = 45
heading = 0 # aka azimuth

#set how fast to send Google Earth to the view
speed = 0.1

ge.SetCameraParams(lat,long,altitude,altitudeMode,range,tilt,heading,speed)

AppleScript Interface to Google Earth
In Mac OS X, you would use AppleScript to control Google Earth or something like appscript,
an Apple event bridge that allows you to write Python scripts in place of AppleScript:

http://appscript.sourceforge.net/

Here’s a little code segment in AppleScript to get you started—it will send you to the
Empire State Building:

tell application "Google Earth"
activate
set viewInfo to (GetViewInfo)
set dest to {latitude:57.68, longitude:-95.4, distance:1.0E+5,

tilt:90.0, azimuth:180}
SetViewInfo dest speed 0.1

end tell

This moves the view to 57.68 N and 95.4 degrees W.
Using appscript, the following Python script also steers Google Earth in Mac OS X:

#!/Library/Frameworks/Python.framework/Versions/Current/bin/pythonw
from appscript import *
ge = app("Google Earth")
#h = ge.GetViewInfo()
h = {k.latitude: 36.510468818615237, k.distance: 5815328.0829986408,➥

k.azimuth: ➥

10.049582258046936, k.longitude: -78.864908202209094, k.tilt:➥

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 375

858X_ch13.qxd 2/4/08 3:15 PM Page 375

3.0293063358608456e-14}
ge.SetViewInfo(h,speed=0.5)

Mapstraction and OpenLayers
In this chapter, I’ve covered how to use some of the major mapping APIs: Google Maps, Yahoo!,
MapQuest, and Microsoft. It would be convenient to be able to not worry about the differences
among the maps and easily switch among the various maps. That’s the promise of a mapping
abstraction library such as Mapstraction (http://mapstraction.com). We’ll have to wait and
see how and whether it is widely used to gauge the library’s effectiveness.

Along a different vein is OpenLayers (http://www.openlayers.org/), which is defined as
follows:

A pure JavaScript library for displaying map data in most modern web browsers, with

no server-side dependencies. OpenLayers implements a (still-developing) JavaScript API

for building rich web-based geographic applications, similar to the Google Maps and

MSN Virtual Earth APIs, with one important difference—OpenLayers is free software,

developed for and by the open source software community.

You can try OpenLayers in FlashEarth (http://www.flashearth.com/). Go to the site, and
select OpenLayers. You might have to zoom out sufficiently to see any tiles (for example, go to
http://www.flashearth.com/?lat=38.417308&lon=-122.271821&z=9.9&r=0&src=ol). You can also
check out other examples in the OpenLayers gallery at http://www.openlayers.org/gallery/.

An Integrative Example: Showing Flickr Pictures
in Google Earth
In this section of this chapter, I’ll walk you through an example that mashes up Flickr, Google
Earth, and Google Maps. Specifically, I’ll show you how to query Flickr for public geotagged
photos and convert the response to KML that can then be channeled to either Google Earth or
Google Maps.

You can see the program that combines this functionality here:

http://examples.mashupguide.net/ch13/flickrgeo.php

And you can see the PHP code here:

http://examples.mashupguide.net/ch13/flickrgeo.php.txt

The flickrgeo.php script described in this chapter is the same code as that in Chapter 10.

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES376

858X_ch13.qxd 2/4/08 3:15 PM Page 376

What you will see is a basic HTML form aimed at a user who already understands the
parameters for the flickr.photos.search method (http://examples.mashupguide.net/
ch13/flickrgeo.php). There are two differences between the parameters used for Flickrgeo
and the Flickr API:

• The bbox parameter used by the Flickr API is broken out into four individual parameters
for Flickrgeo: lat0, lon0 for the southwest corner and lat1, lon1 for the northeast
corner of the bounding box. This approach will be familiar to you from Chapter 10,
which focuses in detail on how to query Flickr for geotagged photos.

• Flickrgeo has an o_format parameter to set the requested output. Recognized values are
html (for the simple user interface), rest (to return the Flickr API in REST format), json
(to return the results as JSON), nl (to return a KML NetworkLink), and kml (to return the
photo data as KML). The appropriate value for format is passed to flickr.photos.search.

When the Flickrgeo form loads, o_format is set by default to html so that you can use the
form to enter some values and see some search results rendered as HTML. For example, the
following:

http://examples.mashupguide.net/ch13/flickrgeo.php?user_id=48600101146%40N01&tags=➥

&text=&lat0=37.817785166068&lon0=-122.34375&lat1=37.926190569376&lon1=-122.17208862305➥

&page=1&per_page=10&min_upload_date=820483200&extras=geo&o_format=html

or

http://tinyurl.com/2nbjbb

displays my public geotagged photos in the Berkeley area. You can change o_format to json and
rest to get JavaScript and XML versions of this data, respectively; Flickrgeo just passes back the
data that comes from Flickr.

If you set o_format to kml, you get the results as a KML feed. For example, here’s a KML
feed of my public geotagged photos in the Berkeley area:

http://examples.mashupguide.net/ch13/flickrgeo.php?user_id=48600101146%40N01&tags=➥

&text=&lat0=37.817785166068&lon0=-122.34375&lat1=37.926190569376&lon1=-122.17208862305&➥

page=1&per_page=10&min_upload_date=820483200&extras=geo&o_format=kml

or

http://tinyurl.com/36hu2j

which you can see on Google Maps (see Figure 13-7):68

http://maps.google.com/maps?f=q&hl=en&geocode=&q=http:%2F%2Fexamples.mashupguide.net➥

%2Fch13%2Fflickrgeo.php%3Fuser_id%3D48600101146%2540N01%26tags%3D%26text%3D%26lat0%➥

3D37.817785166068%26lon0%3D-122.34375%26lat1%3D37.926190569376%26lon1%3D-122.17208862305➥

%26page%3D1%26per_page%3D10%26min_upload_date%3D820483200%26extras%3Dgeo%26o_format%➥

3Dkml&ie=UTF8&z=14&om=1

or

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 377

68. http://tinyurl.com/2fmhh5

858X_ch13.qxd 2/4/08 3:15 PM Page 377

Figure 13-7. Flickr photos displayed in Google Maps via a KML feed

If you set o_format to nl, you get a KML NetworkLink that enables you to use Google
Earth to interact with Flickrgeo. That is, if you change your viewpoint on Google Earth,
Google Earth will send to Flickrgeo the parameters of your new viewpoint to get pictures
for that new viewpoint.

Hence, Flickrgeo does four major tasks to pull off the mashup:

1. Querying Flickr for geotagged photos

2. Converting Flickr results from a single flickr.photos.search into the corresponding
KML

3. Generating a KML NetworkLink to feed your actions in Google Earth to Flickrgeo

4. Knitting together the various possibilities for o_format into one script

For the first topic, I refer you to Chapter 10 for a detailed discussion and remind you that
the essential point is that you use the bbox parameter to specify a bounding box, add geo to the
extras parameter to get the latitude and longitude, and set a minimum upload time to some-
thing like 820483200 (for January 1, 1996 Pacific Time) to coax some photos from the API when
you are not searching on tags or text.

For the final topic, you can see the logic of what is done by studying the source code. Next
I’ll discuss the topics of KML NetworkLink and generating KML from flickr.photos.search
results.

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES378

858X_ch13.qxd 2/4/08 3:15 PM Page 378

KML NetworkLink
So far I have shown you how to write a KML document and render it with Google Earth and
Google Maps. In many situations, including the mashup I create here, it’s extremely helpful to
get information flowing from Google Earth back to the program that generated the KML in the
first place. Foremost among that data would be the current viewpoint of the user. If you as the
generator of the KML know the region that the user is focused on, you can generate data that
would be visible in that viewpoint.

That’s the purpose of the <NetworkLink> element in KML. Here I’ll show you how to use it
by example. Load the following into Google Earth:

http://examples.mashupguide.net/ch13/hello.world.networklink.kml

You will see a pin appear in the middle of your current viewpoint announcing the current
time. If you click the pin, you’ll see a list of parameters corresponding to the current viewpoint.
If you change the viewpoint and wait a couple of seconds, the pin is refreshed to be located in
the center of the new viewpoint. How does this happen?

Let’s look first at this:

http://examples.mashupguide.net/ch13/hello.world.networklink.kml

which is the following:

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<NetworkLink>
<flyToView>0</flyToView>
<name>Hello World</name>
<open>1</open>
<visibility>1</visibility>
<Link>
<href>http://examples.mashupguide.net/ch13/hello.world.networklink.php</href>
<viewRefreshMode>onStop</viewRefreshMode>
<viewRefreshTime>2</viewRefreshTime>➥

<viewFormat>bboxWest=[bboxWest]&bboxSouth=[bboxSouth]&bboxEast=[bboxEast]➥

&bboxNorth=[bboxNorth]&lookatLon=[lookatLon]&lookatLat=[lookatLat]➥

&lookatRange=[lookatRange]&lookatTilt=[lookatTilt]&lookatHeading=➥

[lookatHeading]&lookatTerrainLon=[lookatTerrainLon]&lookatTerrainLat=➥

[lookatTerrainLat]&lookatTerrainAlt=[lookatTerrainAlt]&cameraLon=[cameraLon]➥

&cameraLat=[cameraLat]&cameraAlt=[cameraAlt]&horizFov=[horizFov]➥

&vertFov=[vertFov]&horizPixels=[horizPixels]&vertPixels=[vertPixels]➥

&terrainEnabled=[terrainEnabled]</viewFormat>
</Link>

</NetworkLink>
</kml>

A KML NetworkLink defines how often refreshing occurs or the conditions under which it
happens. I’ll discuss what a refresh actually does in the next paragraph. There are two modes of
refreshing that can be specified in a NetworkLink. The first, based on time, uses the <refreshMode>
and <refreshInterval> elements. With those tags, you can, for instance, set a refresh to happen

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 379

858X_ch13.qxd 2/4/08 3:15 PM Page 379

every ten seconds. For the KML I present here, I use refreshing based on changes in the viewpoint,
which are parameterized by two tags: <viewRefreshMode> and <viewRefreshTime>. If you consult
the KML documentation, you’ll see that one choice for <viewRefreshMode> is onStop—which means
a refresh event happens once the viewpoint stops changing for the amount of time specified by the
<viewRefreshTime> element—in this case two seconds.

So, what happens during a refresh event? Google Earth does an HTTP GET request on the
URL specified by the href element with parameters specified in the <viewFormat> element,
which contains something akin to a URI template. That is, Google Earth substitutes the values
that correspond to the viewpoint at the time of the refresh event for the value templates such
as [bboxWest], [bboxSouth], [bboxEast], and so on. Consult the documentation for a compre-
hensive list of parameters supported in KML. The template I specify here has the complete
current list of parameters. Note that there is no requirement that the parameter names match
the naming scheme given by Google. In fact, you should match the parameter names to the
ones recognized by the script specified by the href element.

Let’s now turn to the script here:

http://examples.mashupguide.net/ch13/hello.world.networklink.php

to see how the HTTP GET request is processed. Here’s the PHP code:

<?php
// get the time
$timesnap = date("H:i:s");

// for clarity, place each coordinate into a clearly marked bottom-left
// or top-right variable

$bboxWest = isset($_GET['bboxWest']) ? $_GET['bboxWest'] : "-180.0";
$bboxSouth = isset($_GET['bboxSouth']) ? $_GET['bboxSouth'] : "-90.0";
$bboxEast = isset($_GET['bboxEast']) ? $_GET['bboxEast'] : "180.0";
$bboxNorth = isset($_GET['bboxNorth']) ? $_GET['bboxNorth'] : "90.0";

// calculate the approx center of the view -- note that this is inaccurate
// if the user is not looking straight down
$userlon = (($bboxEast - $bboxWest)/2) + $bboxWest;
$userlat = (($bboxNorth - $bboxSouth)/2) + $bboxSouth;

$response = '<?xml version="1.0" encoding="UTF-8"?>';
$response .= '<kml xmlns="http://earth.google.com/kml/2.2">';
$response .= '<Placemark>';
$response .= "<name>Hello at: $timesnap</name>";

calculate all the parameters

$arg_text = "";
foreach ($_GET as $key => $val) {
$arg_text .= "{$key}:{$val}
";

}

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES380

858X_ch13.qxd 2/4/08 3:15 PM Page 380

$description_text = $arg_text;
$description = "<![CDATA[{$description_text}]]>";
$response .= "<description>{$description}</description>";

$response .= '<Point>';
$response .= "<coordinates>$userlon,$userlat,0</coordinates>";
$response .= '</Point>';
$response .= '</Placemark>';
$response .= '</kml>';
set $myKMLCode together as a string
$downloadfile="myKml.kml"; # give a name to appear at the client
header("Content-disposition: attachment; filename=$downloadfile");
header("Content-Type: application/vnd.google-earth.kml+xml; charset=utf8");
header("Content-Transfer-Encoding: binary");
header("Content-Length: ".strlen($response));
header("Pragma: no-cache");
header("Expires: 0");
echo $response;
?>

hello.world.networklink.php reads all the parameters that are passed to it and displays
them to the user. This is accomplished by generating the KML for a <Placemark> element with
a <description> element with all the parameters.

Let’s return to how I use the KML NetworkLink in flickrgeo.php. In that script, I needed
to generate <NetworkLink> elements that looked like this:

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<NetworkLink>
<flyToView>0</flyToView>
<name>Pictures from Flickr</name>
<description>
<![CDATA[<a href='http://examples.mashupguide.net/ch13/flickrgeo.php?

text=stop+sign&page=1&per_page=10&min_upload_date=820483200&extras=geo%2Clicense
%2Cowner_name%2Cicon_server%2Ctags&o_format=html'>Search Something Different]]>

</description>
<open>1</open>
<visibility>1</visibility>
<Link>
<href>http://examples.mashupguide.net/ch13/flickrgeo.php?

text=stop+sign&page=1&per_page=10&min_upload_date=820483200
&extras=geo&o_format=kml</href>

<viewRefreshMode>onStop</viewRefreshMode>
<viewRefreshTime>3</viewRefreshTime>

<viewFormat>lat0=[bboxSouth]&lon0=[bboxWest]&lat1=[bboxNorth]
&lon1=[bboxEast]</viewFormat>

</Link>
</NetworkLink>

</kml>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 381

858X_ch13.qxd 2/4/08 3:15 PM Page 381

This is a <NetworkLink> element for generating refreshable KML on photos that match
a full-text search for stop sign. Notice how the viewpoint is passed from Google Earth to
http://examples.mashupguide.net/ch13/flickrgeo.php by the viewFormat element:

lat0=[bboxSouth]&lon0=[bboxWest]&lat1=[bboxNorth]&lon1=[bboxEast]

Generating the KML for the Photos
The following excerpt of KML shows the structure of the KML that flickrgeo.php generates to
display the photos in Google Earth or Google Maps (I have put some KML elements in bold
that I have yet to introduce.):

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
<Style id="118550863">
<IconStyle>
<Icon>
<href>http://farm1.static.flickr.com/56/118550863_1b8f5a26aa_s.jpg</href>
</Icon>

</IconStyle>
</Style>
[....]
<Folder>
<name>Flickr Photos</name>
<description>Total Number of Photos available: 72&nbsp;<➥

a href='http://examples.mashupguide.net/ch13/flickrgeo.php?➥

user_id=48600101146%40N01&lat0=37.75976100792328&lon0=-122.➥

4470955684774&lat1=37.95649244418595&lon1=-122.1471302328438➥

&page=1&per_page=10&min_upload_date=820483200&extras=geo%2Clicense➥

%2Cowner_name%2Cicon_server%2Ctags&o_format=kml'>KML&nbsp;<➥

a href='http://maps.google.com?q=http%3A%2F%2Fexamples.mashupguide.net%2F➥

ch13%2Fflickrgeo.php%3Fuser_id%3D48600101146%2540N01%26lat0%3D37.75976100792328%26➥

lon0%3D-122.4470955684774%26lat1%3D37.95649244418595%26lon1%3D-122.➥

1471302328438%26page%3D1%26per_page%3D10%26min_upload_date%3D820483200%26extras%3D➥

geo%252Clicense%252Cowner_name%252Cicon_server%252Ctags%26o_format%3Dkml'>GMap➥

</description>
<Placemark>
<name>shrink wrap car</name>
<description>
<![CDATA[

]]>
</description>
<LookAt>
<longitude>-122.300915</longitude>
<latitude>37.898562</latitude>
<altitude>0</altitude>
<altitudeMode>relativeToGround</altitudeMode>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES382

858X_ch13.qxd 2/4/08 3:15 PM Page 382

<range>2000</range>
<tilt>0</tilt>
<heading>0</heading>

</LookAt>
<styleUrl>#118550863</styleUrl>
<Point>
<coordinates>-122.300915,37.898562,0</coordinates>

</Point>
</Placemark>
[....]

</Folder>
</Document>

</kml>

Note the following features of the KML:

• There is a <Placemark> element for each photo, whose name element holds the title for
the photo. In the <description> element is HTML for the medium-sized version of the
photo. The latitude and longitude, drawn from the geo information provided by Flickr,
goes into two places: the coordinates element for the <Point> element and a <LookAt>
view.

• Each <Placemark> element is tied to a <Style> element to generate custom icons for
each photo. The icon is the square version of the Flickr photo. The association is made
through the <styleUrl> element.

• There is a <Folder> element that groups all the <Placemark> elements. The <description>
element for the <Folder> element contains links to the KML itself and to a Google Map
showing this KML. These links provide you with a way of getting hold of what you are
seeing in Google Earth.

The flickrgeo.php Code
Here’s an edited listing of the flickrgeo.php code:

<?php
flickrgeo.php
copyright Raymond Yee, 2007
http://examples.mashupguide.net/ch13/flickrgeo.php

xmlentities substitutes characters in $string that can be expressed
as the predefined XML entities.

function xmlentities ($string)
{ return str_replace (

array ('&', '"', "'", '<', '>'),
array ('&' , '"', ''' , '<' , '>'),
$string);

}

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 383

858X_ch13.qxd 2/4/08 3:15 PM Page 383

converts an associative array representing form parameters
and values into the request part of a URL.

function form_url_params($arg_list, $rid_empty_value=TRUE) {
$list = array();

foreach ($arg_list as $arg => $val) {
if (!($rid_empty_value) || (strlen($val) > 0)) {

$list[] = $arg . "=" . urlencode($val);
}
}
return join("&",$list);

}

a simple wrapper around flickr.photos.search for public photos.
It deals a request for either the Flickr REST or JSON formats

class flickrwrapper {
protected $api_key;

public function __construct($api_key) {
$this->api_key = $api_key;

}

generic method for retrieving content for a given URL.
protected function getResource($url){
$chandle = curl_init();
curl_setopt($chandle, CURLOPT_URL, $url);
curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
$result = curl_exec($chandle);
curl_close($chandle);

return $result;
}

returns an HTTP response body and headers
public function search($arg_list) {
attach API key
$arg_list['api_key'] = $this->api_key;

attach parameters specific to the format request, which is either JSON or REST.
$format = $arg_list["format"];
if ($format == "rest") {
$url = "http://api.flickr.com/services/rest/?method=flickr.photos.search&" .

form_url_params($arg_list);
$rsp = $this->getResource($url);

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES384

858X_ch13.qxd 2/4/08 3:15 PM Page 384

$response["body"] = $rsp;
$response["headers"] = array("Content-Type"=>"application/xml");
return $response;

} elseif ($format == "json") {
$arg_list["nojsoncallback"] = 1;
$url = "http://api.flickr.com/services/rest/?method=flickr.photos.search&" .

form_url_params($arg_list);
$rsp = $this->getResource($url);
$response["headers"] = array("Content-Type"=>"text/javascript");
$response["body"] = $rsp;
return $response;

}
} // search

} //flickrwrapper

class flickr_html {

generates a simple form based on the parameters
and values of the input associative array $arg_array
uses $path as the target of the form's action attribute

public function generate_form($arg_array, $path) {
$form_html = "";
foreach ($arg_array as $arg => $default) {
$form_html .= <<<EOT

{$arg}:<input type="text" size="20" name="{$arg}" value="{$default}">

EOT;

}

$form_html = <<<EOT
<form action="{$path}" method="get">
{$form_html}

<input type="submit" value="Go!">
</form>
EOT;

return $form_html;
} //generate_form

generates a simple HTML representation of the results of flickr.photos.search
public function html_from_pics($rsp) {

$xml = simplexml_load_string($rsp);
#print_r($xml);
#var_dump($xml);
$s = "";
$s .= "Total number of photos: " . $xml->photos['total'] . "
";

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 385

858X_ch13.qxd 2/4/08 3:15 PM Page 385

http://www.flickr.com/services/api/misc.urls.html
http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}.jpg
foreach ($xml->photos->photo as $photo) {
$farmid = $photo['farm'];
$serverid = $photo['server'];
$id = $photo['id'];
$secret = $photo['secret'];
$owner = $photo['owner'];
$thumb_url =
"http://farm{$farmid}.static.flickr.com/{$serverid}/{$id}_{$secret}_t.jpg";

$page_url = "http://www.flickr.com/photos/{$owner}/{$id}";
$image_html= "";
$s .= $image_html;

}
return $s;

}
} // flickr_html

a class to handle conversion of Flickr results to KML

class flickr_kml {

helper function to create a new text node with $string that is wrapped by an
element named by $childName -- and then attach the whole thing to $parentNode.
allow for a namespace to be specified for $childName

protected function attachNewTextNode($parentNode,
$childName,$childNS="",$string="") {

$childNode = $parentNode->appendChild(new DOMElement($childName,$childNS));
$childNode->appendChild(new DOMText($string));
return $childNode;

}

create the subelements for Style
/*
e.g.,
<Style id="118550863">
<IconStyle>
<Icon>
<href>http://farm1.static.flickr.com/56/118550863_1b8f5a26aa_s.jpg</href>

</Icon>
</IconStyle>

</Style>
*/

protected function populate_style($style,$photo) {
$id = $photo['id'];
$farmid = $photo['farm'];

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES386

858X_ch13.qxd 2/4/08 3:15 PM Page 386

$serverid = $photo['server'];
$secret = $photo['secret'];
$square_url =
"http://farm{$farmid}.static.flickr.com/{$serverid}/{$id}_{$secret}_s.jpg";

$id_attr = $style->setAttributeNode(new DOMAttr('id', $id));
$iconstyle = $style->appendChild(new DOMElement("IconStyle"));
$icon = $iconstyle->appendChild (new DOMElement("Icon"));
$href = $this->attachNewTextNode($icon,"href","",$square_url);

return $style;
}

converts the response from the Flickr photo search ($rsp),
the arguments from the original search ($arg_array),
the $path of the script to KML

public function kml_from_pics($arg_array, $path, $rsp) {

$xml = simplexml_load_string($rsp);
$dom = new DOMDocument('1.0', 'UTF-8');
$kml = $dom->appendChild(new DOMElement('kml'));
$attr = $kml->setAttributeNode(new DOMAttr('xmlns',

'http://earth.google.com/kml/2.2'));
$document = $kml->appendChild(new DOMElement('Document'));

See http://www.flickr.com/services/api/misc.urls.html
Remember http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}.jpg
syntax for URLs

parameters for LookAt -- hard-coded in this instance
$range = 2000;
$altitude = 0;
$heading =0;
$tilt = 0;

make the <Style> elements first
foreach ($xml->photos->photo as $photo) {
$style = $document->appendChild(new DOMElement('Style'));
$this->populate_style($style,$photo);

}

now make the <Placemark> elements -- but tuck them under one Folder
in the Folder, add URLs for the KML document and how to send
the KML document to Google Maps

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 387

858X_ch13.qxd 2/4/08 3:15 PM Page 387

$folder = $document->appendChild(new DOMElement('Folder'));
$folder_name_node = $this->attachNewTextNode($folder,"name","","Flickr Photos");
$kml_url = $path . "?" . form_url_params($arg_array,TRUE);
$description_string = "Total Number of Photos available: {$xml->

photos['total']}" . " KML";
$description_string .= " <a href='" . "http://maps.google.com?q=" .

urlencode($kml_url) . "'>GMap";
$folder_description_node = $this->

attachNewTextNode($folder,"description","",$description_string);

loop through the photos to convert to a Placemark KML element
foreach ($xml->photos->photo as $photo) {
$farmid = $photo['farm'];
$serverid = $photo['server'];
$id = $photo['id'];
$secret = $photo['secret'];
$owner = $photo['owner'];
$thumb_url =
"http://farm{$farmid}.static.flickr.com/{$serverid}/{$id}_{$secret}_t.jpg";

$med_url =
"http://farm{$farmid}.static.flickr.com/{$serverid}/{$id}_{$secret}.jpg";

$page_url = "http://www.flickr.com/photos/{$owner}/{$id}";
$image_html= "";
$title = $photo['title'];
$latitude = $photo['latitude'];
$longitude = $photo['longitude'];

$placemark = $folder->appendChild(new DOMElement('Placemark'));

place the photo title into the <name> KML element
$name = $this->attachNewTextNode($placemark,"name","",$title);

drop the title and thumbnail into description and wrap in CDATA
to work around encoding issues
$description_string = "{$image_html}";
$description = $placemark->appendChild(new DOMElement('description'));
$description->appendChild($dom->createCDATASection($description_string));

$lookat = $placemark->appendChild(new DOMElement('LookAt'));
$longitude_node = $this->attachNewTextNode($lookat,"longitude","",$longitude);
$latitude_node = $this->attachNewTextNode($lookat,"latitude","",$latitude);
$altitudeNode = $this->attachNewTextNode($lookat,"altitude","",$altitude);
$altitudeMode =
$this->attachNewTextNode($lookat,"altitudeMode","","relativeToGround");

$rangeNode = $this->attachNewTextNode($lookat,"range","",$range);
$tiltNode = $this->attachNewTextNode($lookat,"tilt","",$tilt);
$headingNode = $this->attachNewTextNode($lookat,"heading","",$heading);

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES388

858X_ch13.qxd 2/4/08 3:15 PM Page 388

$styleurl = $this->attachNewTextNode($placemark, "styleUrl","","#".$id);

$point = $placemark->appendChild(new DOMElement('Point'));
$coordinates_string = "{$longitude},{$latitude},{$altitude}";
$coordinates =
$this->attachNewTextNode($point,"coordinates","",$coordinates_string);

}
return $dom->saveXML();

}

generate a network link based on the user search parameters ($arg_list)
and the $path to this script
public function generate_network_link ($arg_list, $path) {

look through the $arg_list but get rid of lat/long and blanks
unset ($arg_list['lat0']);
unset ($arg_list['lat1']);
unset ($arg_list['lon0']);
unset ($arg_list['lon1']);

$arg_list['o_format'] = 'kml'; //set to KML
$url = $path . "?" . form_url_params($arg_list,TRUE);
$url = xmlentities($url);

generate a description string to guide user
to reparameterizing the network link
$arg_list['o_format'] = 'html';
$url2 = $path . "?" . form_url_params($arg_list,TRUE);
$description = "Search Something Different";

$nl = <<<EOT
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<NetworkLink>
<flyToView>0</flyToView>
<name>Pictures from Flickr</name>
<description><![CDATA[{$description}]]></description>
<open>1</open>
<visibility>1</visibility>
<Link>
<href>{$url}</href>
<viewRefreshMode>onStop</viewRefreshMode>
<viewRefreshTime>3</viewRefreshTime>
<viewFormat>lat0=[bboxSouth]&lon0=[bboxWest]&lat1=[bboxNorth]

&lon1=[bboxEast]</viewFormat>
</Link>

</NetworkLink>

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 389

858X_ch13.qxd 2/4/08 3:15 PM Page 389

</kml>
EOT;

return $nl;
}

} // flickr_kml

this class translates what comes in on the URL and from form values
to parameters to submit to Flickr

class flickr_view {

this function filters $_GET passed in as $get by parameters
that are in $defaults
only parameters named in $defaults are allowed -- and if that value isn't set in
$get, then this function passes back the default value

public function form_input_to_user_inputs($get,$defaults) {
$params = array();
foreach ($defaults as $arg => $default_value) {
$params[$arg] = isset($get[$arg]) ? $get[$arg] : $default_value;

}
return $params;

}

translate the user inputs to the appropriate ones for Flickr.
for example -- fold the latitudes and longitude coordinates into bbox
get rid of o_format for Flickr

public function user_inputs_to_flickr_params($user_inputs) {
$search_params = $user_inputs;

$o_format = $user_inputs["o_format"];
unset ($search_params["o_format"]);

if (($o_format == "json") || ($o_format == "rest")) {
$search_params["format"] = $o_format;

} else {
$search_params["format"] = "rest";

}

#recast the lat and long parameters in bbox

$bbox = "{$search_params['lon0']},{$search_params['lat0']},
{$search_params['lon1']},{$search_params['lat1']}";

$search_params['bbox'] = $bbox;
unset($search_params['lon0']);
unset($search_params['lon1']);

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES390

858X_ch13.qxd 2/4/08 3:15 PM Page 390

unset($search_params['lat0']);
unset($search_params['lat1']);

return $search_params;
} // user_inputs_to_flickr_params

} //flickr_view

// API key here
$api_key = "[API-KEY]";

a set of defaults -- center the search around Berkeley by default
and any geotagged photo in that bounding box.
BTW, this script needs at least geo in extras.
min_upload_date corresponds to Jan 1, 1996 (Pacific time)
$default_args = array(
"user_id" => '',
"tags" => '',
"tag_mode" => '',
"text" => '',
"min_upload_date" => '820483200',
"max_upload_date" => '',
"min_taken_date" => '',
"max_taken_date" => '',
"license" => '',
"sort" => '',
"privacy_filter" => '',
"lat0" => 37.81778516606761,
"lon0" => -122.34374999999999,
"lat1" => 37.92619056937629,
"lon1" => -122.17208862304686,
"accuracy" => '',
"safe_search" => '',
"content_type" => '',
"machine_tags" => '',
"machine_tag_mode" => '',
"group_id" => '',
"place_id" => '',
"extras" => "geo",
"per_page" => 10,
"page" => 1,
"o_format" => 'html'

);

calculate the path to this script as a URL.
$path = "http://" . $_SERVER['SERVER_NAME'] . $_SERVER['PHP_SELF'];

instantiate the Flickr wrapper and the view object
$fw = new flickrwrapper($api_key);

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 391

858X_ch13.qxd 2/4/08 3:15 PM Page 391

$fv = new flickr_view();

get the parameters that have been submitted to it.
$user_inputs = $fv->form_input_to_user_inputs($_GET,$default_args);
$search_params = $fv->user_inputs_to_flickr_params($user_inputs);

see what the requested format is
$o_format = $user_inputs["o_format"];

if the user is looking for a network link,
calculate the Networklink KML and return it
with the appropriate Content-Type for KML

if ($o_format == 'nl') {
$fk = new flickr_kml();
header("Content-Type:application/vnd.google-earth.kml+xml");
$downloadfile="flickr.kml"; # give a name to appear at the client
header("Content-disposition: attachment; filename=$downloadfile");
print $fk->generate_network_link($user_inputs,$path);
exit();

}

If the user is looking instead for JSON, REST, HTML, or KML, we query Flickr

$response = $fw->search($search_params);

If the request is for JSON or REST,
just pass back the results of the Flickr search
if (($o_format == "json") || ($o_format == "rest")) {
foreach ($response["headers"] as $header => $val) {
header("{$header}:{$val}");

}
print $response["body"];

if the request is for HTML or KML, do the appropriate transformations.

} elseif ($o_format == "html") {

now translate to HTML
$fh = new flickr_html();
header("Content-Type:text/html");
print $fh->generate_form($user_inputs, $_SERVER['PHP_SELF']);
print $fh->html_from_pics($response["body"]);

} elseif ($o_format == "kml") {

$fk = new flickr_kml();
header("Content-Type:application/vnd.google-earth.kml+xml");

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES392

858X_ch13.qxd 2/4/08 3:15 PM Page 392

$downloadfile="flickr.kml"; # give a name to appear at the client
header("Content-disposition: attachment; filename=$downloadfile");
print $fk->kml_from_pics($user_inputs, $path, $response["body"]);

}
?>

Summary
The online mapping arena is changing very quickly, and I obviously am not able to cover the
details of all these changes. Nonetheless, here’s what I believe will be the long-term trends in
this area:

• You’ll see a migration of many features found in typical full-fledged GIS system—for
example, shading of layers—into programmable web applications.

• Not surprisingly, you’ll see the platform players (such as Google Maps) incorporate
functionality that started off as extensions to the platform into the platform itself. For
example, sites such as Mapbuilder.net provided a user interface for building a Google
(or Yahoo!) map before Google made it easier to build a Google map via its My Maps
functionality. Google’s My Maps doesn’t exactly duplicate Mapbuilder.net, but it’s
bound to win a major audience by virtue of its tight integration with Google Maps.

• You will see increased merging in 2D and 3D representations of the globe. As you’ve
already seen in this chapter, Microsoft’s Live Search Maps has both 3D and 2D views.
You can use KML as a way of moving data between Google Earth and Google Maps.
KML is finding support from competitors to Google such Yahoo!’s Flickr and Yahoo!
Pipes.

• We’re going to see more native support of GPS devices as they become ubiquitous.

Here are some references where you can find more information:

• Beginning Google Maps Applications with PHP and Ajax: From Novice to Professional
(Apress, 2006)

• Beginning Google Maps Applications with PHP and Ajax: From Novice to Professional
(Apress, 2006)

• Google Maps Hacks: Tips & Tools for Geographic Searching and Remixing (O’Reilly, 2006)

• Hacking Google Maps and Google Earth (Wiley, 2006)

• Web Mapping Illustrated: Using Open Source GIS Toolkits (O’Reilly, 2005)

• Mapping Hacks: Tips & Tools for Electronic Cartography (O’Reilly, 2005)

• Google Mapki69 (a great wiki and source of information on Google Maps)

CHAPTER 13 ■ REMIXING ONLINE MAPS AND 3D DIGITAL GLOBES 393

69. http://mapki.com/wiki/Main_Page

858X_ch13.qxd 2/4/08 3:15 PM Page 393

858X_ch13.qxd 2/4/08 3:15 PM Page 394

Exploring Social Bookmarking
and Bibliographic Systems

One of the fundamental challenges of using the Web is keeping found things found, whether
it be at the basic level of simple URLs or other digital content such as images and data sets.
Social bookmarking has arisen to be a popular solution to this problem. According to “7 things
you should know about social bookmarking,”1 social bookmarking “is the practice of saving
bookmarks to a public Web site and ‘tagging’ them with keywords.” A specific type of reference
is a bookmark or favorite, which is a URL stored by the user. You can try to manage these URLs
in the browser by storing them as favorites or bookmarks. Social bookmarking involves storing
one’s references online and making bookmarking a collaborative process.

There are several reasons for using social bookmarking:

• To keep track of interesting items (URLs) you find on the Web in the hopes you will be
able to find them again. This process is nicely described as “keeping found things
found” by the words of a research project.2

• To have basic metadata or citation information about bookmarks, including metadata
about the item so that you can cite the item and tell others about these items.

• To find materials that are similar to what you already have. The ability to find more and
related materials is a major reason for the existence of social bookmarking. You can cer-
tainly save bookmarks in your own browser. Of course, you can just copy down the URL,
paste it in a Word document, and drop the document in an e-mail message, but doing
so either keeps this information to yourself or keeps it to just a select group of friends.
Social bookmarks put the focus on sharing bookmarks with others so that others can
find and learn from you. Tagging is widely used to forge connections among disparate
sources. (Think about applying this to all we talked about in Chapter 3.)

Social bookmarking is an area in flux. At http://www.irox.de/file_download/3 you can
find a helpful chart (from 2006) comparing features of 19 systems. Wikipedia also has a list of

395

C H A P T E R 1 4

■ ■ ■

1. http://www.educause.edu/ir/library/pdf/ELI7001.pdf

2. http://kftf.ischool.washington.edu/

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 395

social bookmarking sites,3 but it’s difficult to keep track of the many sites that come and go.
A list that is reasonably up-to-date (last updated April 16, 2007) lists 200+ sites.4

Social bookmarking is of further interest in the context of this book because of the
extensibility/remixability being built into these systems. Social bookmarks also lend insight
into other systems. For instance, del.icio.us, the granddaddy of social bookmarking sites, is
generally credited with kicking off the latest wave of social, or folksonomic, tagging, which has
taken many Web 2.0 sites by storm.

This chapter does the following:

• Provides an overview of the social bookmarking landscape

• Walks through a select set of social bookmarking systems: del.icio.us, Yahoo!’s MyWeb 2.0,
and Connotea

• Walks through the APIs, focusing in detail on del.icio.us (which is influential and the
model for other social bookmarking sites) and then comparing it to those of Yahoo! and
Connotea

• Discusses how you can use the del.icio.us API to enhance Flickr through a mashup of
the two web sites

The Social Bookmarking Scene
As mentioned, there are a lot of social bookmarking sites. A reasonable approach is to focus on
del.icio.us, the one to which all other social bookmarking systems are compared. Moreover,
del.icio.us has an API, and there is much to learn from it.

Here are some other social bookmarking sites I will mention and examine briefly:

• Yahoo! MyWeb 2.0 and Bookmarks because Yahoo! is pursuing these properties despite
already owning del.icio.us. Functionally, Yahoo! MyWeb allows you to store pages and to
use the Yahoo! identity network, a major social network.

• Connotea is a more scholarly social bookmarking site. Connotea is backed up by Nature
Publishing, and therefore it’s likely to have some longevity.

Using Programmableweb.com to Examine the Popularity of APIs
A good way to figure out what to focus on is to see what is listed on Programmableweb.com—
and to focus on the systems that actually have APIs. Go to the following location, and look for
services that are in the Bookmarks category:

http://www.programmableweb.com/apilist/bycat

As of August 11, 2007, they are as follows:

• del.icio.us

• Simpy

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS396

3. http://en.wikipedia.org/wiki/List_of_social_software#Social_bookmarking

4. http://3spots.blogspot.com/2006/01/all-social-that-can-bookmark.html

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 396

• Blogmarks

• Scribble

• Shadows

• Jots

• Rrove

• OnlyWire

• linkaGoGo

• Ma.gnolia

Table 14-1 sorts them by mashup count.5

Table 14-1. A Summary of Bookmarking APIs*

API Description Category Mashups

del.icio.us Social bookmarking Bookmarks 83

Ma.gnolia Social bookmarking service Bookmarks 4

Shadows Social bookmarking and community Bookmarks 2

Simpy Social bookmarking Bookmarks 1

Rrove Social bookmarking for places; create and share maps Bookmarks 1

Jots Social bookmarking Bookmarks 1

* Table generated on August 11, 2007

The fact that del.icio.us has an order of magnitude more mashup activity than the rest of
bookmark services combined is why we’re focusing on del.icio.us.

del.icio.us
del.icio.us is the granddaddy of social bookmarking sites; in fact, it’s the site that kicked off the
whole folksonomic craze. Its web site is at http://del.icio.us/.

The main objects of importance in del.icio.us are bookmarks, that is, URLs. You can asso-
ciate tags with a given URL. You can look at an individual’s collection of URLs and the tags they
use. Let’s look again at the URL structures by browsing through the site and noting the corre-
sponding URLs.

You can look at the public bookmarks for a specific user (for example, for rdhyee) by
using this:

http://del.icio.us/rdhyee

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 397

5. http://www.programmableweb.com/apilist/bymashups

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 397

You can see all the bookmarks tagged NYTimes by rdhyee by using this:

http://del.icio.us/rdhyee/NYTimes

You can see all the URLs that people have tagged with NYTimes by using this:

http://del.icio.us/tag/NYTimes

And you can see just the popular ones by using this:

http://del.icio.us/popular/NYTimes

Here are today’s popular items:

http://del.icio.us/popular/

Or here are just the fresh popular ones:

http://del.icio.us/popular/?new

Now, correlating a URL to a del.icio.us page is a bit trickier. Consider the following URL:

http://harpers.org/TheEcstasyOfInfluence.html

You can reference this from del.icio.us here:

http://del.icio.us/url/53113b15b14c90292a02c24b55c316e5

How do you get 53113b15b14c90292a02c24b55c316e5 from http://harpers.org/
TheEcstasyOfInfluence.html? Answer—it’s an md5 hash. In Python the following yields
53113b15b14c90292a02c24b55c316e5:

md5.new("http://harpers.org/TheEcstasyOfInfluence.html").hexdigest().

Note that the following does work:

http://del.icio.us/url?url=http://harpers.org/TheEcstasyOfInfluence.html

It redirects to this location:

http://del.icio.us/url/53113b15b14c90292a02c24b55c316e5

Using the del.icio.us API
From the documentation for the API (http://del.icio.us/help/api/) you can learn the
following:

• All del.icio.us API calls must be sent over HTTPS.

• All calls require HTTP-Auth—that means there are no API keys per se, but all API calls
are tied to a specific user account.

• You need to watch for the 503 HTTP error (which would mean that your calls are being
throttled and that you need to slow down the rate of your calls).

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS398

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 398

■Note This implies you can work on your own del.icio.us references but not on others unless they give you
their credentials. All API calls to del.icio.us are made in the context of a specific user. There are no unauthen-
ticated calls as there are on Flickr.

There are four major sections of the API:6

Update: Check to see when a user last posted an item.

Tags: Get a list of tags, and rename them.

Posts: Get a list of posts, add, and delete.

Bundles: Get bundles, create, and delete.

In the following sections, I’ll give you a flavor of the capabilities of the del.icio.us API, but
I won’t comprehensively document it.

Update
You can find the documentation for the update method here:

http://del.icio.us/help/api/update

The update method tells you the last time a user updated his posts.
Let’s look at three ways to work through various methods listed in the API. The first is to

use a web browser, while the second and third use curl. Let’s use the update method as an
example:

• With a web browser, go to the following location, and when prompted, enter your
del.icio.us username and password:

https://api.del.icio.us/v1/posts/update

• With curl, you would run the following where USER and PASSWORD are your username
and password:

curl -u USER:PASSWORD https://api.del.icio.us/v1/posts/update

• Finally, you can embed the username and password into the URL:

curl "https://{user}:{password}@api.del.icio.us/v1/posts/update"

In any of these cases, if your username and password are correct, you should get
a response like the following:

<?xml version='1.0' standalone='yes'?>
<update time="2007-04-29T22:49:55Z" />

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 399

6. http://del.icio.us/help/api/

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 399

■Note For the following examples, we will use the second method only.

Tags
To get the complete list of tags used by a user and the number of times a given tag is used,
use this:

curl -u USER:PASSWORD https://api.del.icio.us/v1/tags/get

To rename the tag FEDORA to fedora, use this:

curl -u USER:PASSWORD "https://api.del.icio.us/v1/tags/rename?old=FEDORA&new=Fedora"

Posts
The posts method has several submethods: get, recent, all, dates, and delete.7

The get Submethod

You can use the get submethod with the optional parameters tag, dt (for the date in
CCYY-MM-DDThh:mm:ssZ format), and url to return posts matching the arguments:

https://api.del.icio.us/v1/posts/get?

For example, to get posts with the tag mashup, use this:

curl -u USER:PASSWORD https://api.del.icio.us/v1/posts/get?tag=mashup

You can use this submethod to figure out the number of times an article has been posted.
Consider the following scenario. Say you’ve posted the following URL to del.icio.us:

http://www.ala.org/ala/acrl/acrlissues/future/changingroles.htm

and want to track the number of times it has been posted to del.icio.us. You do so through this:

curl -u USER:PASSWORD https://api.del.icio.us/v1/posts/get?➥

url=http://www.ala.org/ala/acrl/acrlissues/future/changingroles.htm

which returns the following:

<?xml version="1.0" standalone="yes"?>
<posts dt="2007-04-26" tag="" user="rdhyee">
<post href="http://www.ala.org/ala/acrl/acrlissues/future/changingroles.htm"

description="ALA | Changing Roles of Academic and Research Libraries"
hash="fa5be4b4401acf147ff6c8634b55cdda" others="49"
tag="library2.0 libraries academic future" time="2007-04-26T19:45:56Z"/>

</posts>

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS400

7. http://del.icio.us/help/api/posts

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 400

The others attribute in the post tag gives 49, which means that 49 users have added the
URL to their collection of bookmarks.

If I don’t have the URL in the library, it returns this:

<?xml version='1.0' standalone='yes'?>
<posts dt="" tag="" user="rdhyee">
</posts>

You need to add a URL to your library to inquire about a given URL in the API. Another
way to calculate the number of users who have a given URL in their collection of bookmarks is
to note the number of rdf:item elements in the RSS feed for the URL. As I describe in a moment,
you can access the RSS feed for a given URL here:

http://del.icio.us/rss/url?url={url}

For example:

http://del.icio.us/rss/url?url=http://www.ala.org/ala/acrl/acrlissues/future/➥

changingroles.htm

The major advantages of this method are that you don’t need to authenticate yourself to
access the RSS feed and that you don’t need to have the URL in your own set of bookmarks.

The recent Submethod

The recent submethod returns a list of the user’s recent posts (up to 100), filtered by the
optional arguments tag and count:

https://api.del.icio.us/v1/posts/recent?

For example, the following returns the last five posts:

curl -u USER:PASSWORD https://api.del.icio.us/v1/posts/recent?count=5

The all Submethod

The all submethod returns all your posts. You are advised to use this call sparingly (since it
can generate a lot of data) and use the update function to see whether you need to do this call
at all. You can filter by tag, such as in the following call (to get all posts with the tag architecture):

curl -u USER:PASSWORD https://api.del.icio.us/v1/posts/all?tag=architecture

The add Submethod

You can use add to add posts to del.icio.us. It has two required parameters:

• &url (required) is the URL of the item.

• &description (required) is the description of the item.

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 401

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 401

The rest of its parameters are optional:

• &extended (optional) is notes for the item.

• &tags (optional) is tags for the item (space delimited).

• &dt (optional) is a date stamp of the item (with the format CCYY-MM-DDThh:mm:ssZ). It
requires a literal T and Z as in ISO8601 at http://www.cl.cam.ac.uk/~mgk25/iso-time.html.
This is an example: 1984-09-01T14:21:31Z.

• &replace=no (optional) doesn’t replace post if the given URL has already been posted.

• &shared=no (optional) makes the item private.

Let’s set the description to be ALA | Changing Roles of Academic and Research Libraries
and the tags to library 2.0 academic ACRL technology:

curl -u USER:PASSWORD "https://api.del.icio.us/v1/posts/add?➥

url=http://www.ala.org/ala/acrl/acrlissues/future/changingroles.htm➥

&description=ALA+%7C+Changing+Roles+of+Academic+and+Research+Libraries➥

&tags=library+2.0+academic+ACRL+technology"

This command returns this:

<?xml version='1.0' standalone='yes'?>
<result code="done" />

The dates Submethod

The dates submethod returns a list of dates, along with the number of posts for each date. You
can optionally filter the search with a tag.

For instance, the following:

curl -u USER:PASSWORD https://api.del.icio.us/v1/posts/dates?tag=mashup

returns something like this:

<?xml version='1.0' standalone='yes'?>
<dates tag="mashup" user="rdhyee">
<date count="1" date="2007-09-20" />
<date count="1" date="2007-05-28" />

[...]
</dates>

The delete Submethod

To delete a post with a given URL, issue the following GET:

curl -u USER:PASSWORD "https://api.del.icio.us/v1/posts/delete?➥

url={url}"

If the action is successful, then the result will be as follows:

<?xml version='1.0' standalone='yes'?>
<result code="done" />

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS402

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 402

Bundles
When using del.icio.us, you may quickly accumulate many tags. Bundles allow you to group
tags into organizational sets, which you can manipulate through the del.icio.us API. I’ll now
illustrate how to use the API to control bundles through some examples.

The following request retrieves all the bundles for a user:

curl -u USER:PASSWORD https://api.del.icio.us/v1/tags/bundles/all

To create a bundle called Google to group the tags GoogleMaps and GoogleEarth, you can
issue the following command:

curl -u USER:PASSWORD "https://api.del.icio.us/v1/tags/bundles/set?➥

bundle=Google&tags=GoogleMaps+GoogleEarth"

You can delete the Google bundle with this:

curl -u USER:PASSWORD "https://api.del.icio.us/v1/tags/bundles/delete?➥

bundle=Google"

RSS and JSON
In addition to the API, you can get RSS 1.0 feeds from del.icio.us:

http://del.icio.us/help/rss

Don’t overlook them in your del.icio.us mashup work. Currently, the API returns informa-
tion about the bookmarks of the authenticating user only. The RSS feeds, on the other hand,
give you public information about bookmarks and how they are used by all users. Accessing
RSS feeds does not require any authentication. However, you should observe the admonition
to not access any given RSS feed more than once every 30 minutes.

The del.icio.us "hotlist" is at:

http://del.icio.us/rss/

The most recent postings (that have at least two posters) is here:

http://del.icio.us/rss/recent

Popular posts are here:

http://del.icio.us/rss/popular

You can get recent postings by a user here:

http://del.icio.us/rss/{user}

The RSS feed for a given tag is here:

http://del.icio.us/rss/tag/{tag}

For example, to get the RSS feed for the tag mashup, use this:

http://del.icio.us/rss/tag/mashup

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 403

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 403

You can get a feed for posts that are tagged with both mashup and computer using this:

http://del.icio.us/rss/tag/mashup+computer

You can a feed for a specific tag and user using this:

http://del.icio.us/rss/{user}/{tag}

For example:

http://del.icio.us/rss/rdhyee/mashup+computer

Finally, you can track the history of postings for a given URL here:

http://del.icio.us/rss/url?url={url}

For example:

http://del.icio.us/rss/url?url=http://www.ala.org/ala/acrl/acrlissues/future/➥

changingroles.htm

You can track this feed also here:

http://del.icio.us/rss/url/fa5be4b4401acf147ff6c8634b55cdda

noting that fa5be4b4401acf147ff6c8634b55cdda is the md5 hash of http://www.ala.org/
ala/acrl/acrlissues/future/changingroles.htm.

Several RSS feeds are not in the official documentation. Posting for a user’s subscription is
available here:

http://del.icio.us/rss/subscriptions/{user}

A feed of a user’s network (which has private information) is accessible here:

http://del.icio.us/rss/network/{user}?private={private-key}

where the private-key is discoverable through the del.icio.us user interface for the authenti-
cated user. Similarly, a feed for the “links for me” feature is here:

http://del.icio.us/rss/for/{user}?private={private-key}

In addition to these RSS feeds, you can get some feeds in JSON format, which is convenient
for JavaScript programming:

http://del.icio.us/help/json/

There are JSON analogs to the RSS feeds to get a user’s list of posts and list of tags and
details about the posting history for a given URL. Moreover, there are JSON feeds that present
information about a user’s social network that’s not available in the RSS feeds:

• A listing of the names of people in a user’s network at http://del.icio.us/feeds/json/
network/{user}. That is, the list of people being tracked by the user.

• A user’s fans at http://del.icio.us/feeds/json/fans/{user}. That is, the list of people
tracking the user.

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS404

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 404

With these JSON feeds, you can visualize the graph of social networks in del.icio.us such
as done by the tools here:

http://www.twoantennas.com/projects/delicious-network-explorer/

Third-Party Tools for del.icio.us
You can find a useful reference for what others have done with the del.icio.us API here:

http://del.icio.us/help/thirdpartytools

Of the various tools, I find useful these three useful:

• The official Firefox add-on for del.icio.us (http://del.icio.us/help/firefox/extension),
which enables you to access your bookmarks and tags from a browser sidebar.

• MySQLicious (http://nanovivid.com/projects/mysqlicious/), a PHP library for copy-
ing your del.icio.us bookmarks to a MySQL database. You download the code and follow
the instructions. What you end up with is a MySQL database containing all the data for
your bookmarks. The documentation says PHP 4—but it works for PHP 5 in my experience.

• freshDel.icio.us (http://freshdelicious.googlepages.com/), a utility to check your links
and prune your bookmarks.

Third-Party API Kits
Here are some of the third-party API kits listed at http://del.icio.us/help/thirdpartytools:

• PHPDelicious (http://www.ejeliot.com/pages/5).

• Pydelicious (http://code.google.com/p/pydelicious/).

• Cocoalicious (a Cocoa del.icio.us client for Mac OS X that might be a good desktop tool).

• When it comes time to mirror del.icio.us to a local database, you can look at MySQLicious
for “del.icio.us to MySQL mirroring.”

To give you a sense of how PHPDelicious works, the following is the code to crawl
through your bookmarks and tag each bookmark with the hostname of the URL (for example,
host:www.nytimes.com). Once you have such tags, you can look at all of your bookmarks from
a specific domain.

<?php
a file storing DELICIOUS_USER and DELICIOUS_PASSWORD
include("delicious.cred.php");
require_once('php-delicious/php-delicious.inc.php');

$del_obj = new PhpDelicious(DELICIOUS_USER, DELICIOUS_PASSWORD);

get all your bookmarks (and check for errors in the request)
#$aPosts = $del_obj->GetAllPosts();

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 405

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 405

if (!$aPosts = $del_obj->GetAllPosts()){

echo $del_obj->LastError(), $del_obj->LastErrorString();
exit();

}

go through them and extract the hostname.
set a limit for the number of links the program does -- for debugging

$maxcount = 5;
$count = 0;

$hosts = array();

foreach ($aPosts as $post) {

$count += 1;
if ($count > $maxcount) {
break;

}

$url = $post['url'];
$tags = $post['tags'];

$url_parts = parse_url($url);
$host = $url_parts['host'];

make a new tag
$host_tag = "host:" . $host;
echo $url, " ", $host_tag, "\n";

add the post with the new tag
parameters of a post

$sUrl = $post['url'];
$aTags = $post['tags'];

add host_tag to it
$aTags[] = $host_tag;

track hosts that we are seeing
if (isset($hosts[$host_tag])) {
$hosts[$host_tag] += 1;

} else {
$hosts[$host_tag] = 1;

}

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS406

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 406

$sDescription = $post['desc'];
$sNotes = $post['notes'];
$sDate = $post['updated'];
$bReplace = true;
echo $sUrl, $sDescription, " ", $sNotes, " ", $sDate, " ", $bReplace;
print_r (array_unique($aTags));
print "\n";
if ($del_obj->AddPost($sUrl, $sDescription, $sNotes, array_unique($aTags), $sDate,

$bReplace)) {
print "added $sUrl successfully\n";

} else {
print "problem in adding $sUrl\n";

}
}
?>

To give you a flavor for Pydelicious, the following is a code snippet to delete all bookmarks
with a certain tag (in this example, FlickrFavorite):

USER = '[USER]'
PASSWORD = '[PASSWORD]'

import pydelicious
pyd = pydelicious.apiNew(USER,PASSWORD)

posts = pyd.posts_all(tag='FlickrFavorite')
for post in posts['posts']:

print post['href'], "\n"
pyd.posts_delete(post['href'])

Yahoo! Bookmarks and MyWeb
Yahoo!’s social bookmarking system is worth looking at because Yahoo! is a big company
(with tons of users) that is adamant about getting heavily into the folksonomic space (by
buying del.icio.us and Flickr, for instance). Yahoo!’s MyWeb 2.0 certainly has attractive fea-
tures, including the ability to save web pages. In addition to del.icio.us, Yahoo! also has two
other bookmarking services:

• http://bookmarks.yahoo.com/

• http://myweb2.search.Yahoo.com/

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 407

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 407

The relationship between the various Yahoo!-owned services is a bit confusing. The fol-
lowing is according to an explanation by one Yahoo! employee involved with the various
bookmarking systems:8

• Yahoo! Bookmarks is for personal bookmarking, while del.icio.us is for social bookmarking.

• Yahoo! is extending the social bookmarking platform built for MyWeb to store the data
for Yahoo! Bookmarks and soon del.icio.us. This will allow for seamless migration from
one service to another while preserving existing bookmarks.

• MyWeb and Yahoo! Bookmarks share the same back-end database. In other words, they
are two interfaces to the same underlying data.

Let’s look at using the API documentation (http://developer.yahoo.com/search/myweb/).
The following are the three calls currently available in the API (yahooid=rdhyee&appid=
mashupguide.net):

• To the list of a user’s (rdhyee) tags, use this:9

http://api.search.yahoo.com/MyWebService/V1/tagSearch?➥

appid=mashupguide.net&yahooid=rdhyee&results=50

• To do a search for URLs with a certain tag (mashup), use this:

http://search.yahooapis.com/MyWebService/V1/urlSearch?➥

appid=mashupguide.net&tag=mashup

• You can search for tags related to the given tag (for example, mashup) using this:10

http://search.yahooapis.com/MyWebService/V1/relatedTags?➥

appid=mashupguide.net&tag=mashup&results=50

Unfortunately, there’s currently no method in the API to add bookmarks to one’s collection.

Connotea
Connotea is an academically oriented social bookmarking system that is run by Nature Pub-
lishing and that specializes in scientific literature:

http://www.connotea.org/

You can find the documentation for the Connotea API here:

http://www.connotea.org/wiki/WebAPI

I should distinguish between a bookmark and a post in Connotea terminology. A book-
mark is a URL along with corresponding metadata, such as the title and md5 hash of the URL.
A post represents an event: the adding of a bookmark to a specific user’s library. Accordingly,

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS408

8. http://www.techcrunch.com/2006/10/24/Yahoo!-bookmarks-enters-21st-century/#comment-297657

9. http://developer.yahoo.com/search/myweb/V1/tagSearch.html

10. http://developer.yahoo.com/search/myweb/V1/relatedTags.html

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 408

a post contains metadata about the name of the user, the tags the user has assigned to the
bookmark, and the date of the event. A bookmark may belong to many users, but a post is tied
to one and only one user. You can access the bookmarks in a given user’s library here:

http://www.connotea.org/user/{user}

For example, you can find the bookmarks of Timo Hannay, the publishing director of
Nature.com, here:

http://www.connotea.org/user/timo

There are some major conceptual similarities between the Connotea API and the del.icio.us
API. For instance, both require authentication. However, in the Connotea API, you can access
other users’ posts.

To see whether the Connotea API recognizes your username/password combination, issue
the following request:

curl -v -u USER:PASSWORD http://www.connotea.org/data/noop

Let’s look next at how to get data from Connotea. You do so by forming the URL that con-
catenates four parts:

• The base URL of http://www.connotea.org/data

• An indicator of the type of data you want (bookmarks, tags, or posts), that is, /bookmarks
or /tags or an empty string, which means posts

• Filters, any part of which is optional, specified in order by user, tag, date, and uri (that
is, /user/{username}/tag/{tagname}/date/{YYYY-MM-DD}/uri/{uri-or-hash})

• Optional text search parameter, number of results to return, and number to start at
(that is, ?q={free-text-string}&num={number-of-results}&start={starting-index})

Let’s look at some specific examples.
To get tags for timo, use this:

curl -u USER:PASSWORD http://www.connotea.org/data/tags/user/timo

In contrast to the del.icio.us API, you can get the tags of other users.
To get all the bookmarks for user timo, issue the following call:

curl -u USER:PASSWORD http://www.connotea.org/data/bookmarks/user/timo

To get the posts for user timo, issue the following call:

curl -u USER:PASSWORD http://www.connotea.org/data/user/timo

You can compare how a given URL is described as a bookmark and as a post in the two
calls to see the differences between what posts and bookmarks are. A bookmark contains
information about a given URI, its title, and which users have included (or “posted”) it into
their own libraries:

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 409

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 409

<dcterms:URI rdf:about="http://jdupuis.blogspot.com/2007/07/interview-with-timo-➥

hannay-head-of-web.html">
<link>http://jdupuis.blogspot.com/2007/07/interview-with-timo-hannay-head-of-➥

web.html</link>
<dc:title>Confessions of a Science Librarian: Interview with Timo Hannay, Head ➥

of Web Publishing, Nature Publishing Group</dc:title>
<tag>npg</tag>
<postedBy>timo</postedBy>
<postedBy>bk66</postedBy>
<postedBy>andi70</postedBy>
<postedBy>marchitelli</postedBy>
<postedBy>darrenjones</postedBy>
<postedBy>hjaqu001</postedBy>
<postedBy>duncan</postedBy>
<postedBy>bgood</postedBy>
<postedBy>bonnieswoger</postedBy>
<postCount>8</postCount>
<hash>07ccdc14de0e2efee719e55c22a223b5</hash>
<bookmarkID>1047762</bookmarkID>
<created>2007-07-04T07:29:21Z</created>
<updated>2007-08-14T22:00:50Z</updated>
<firstUser>timo</firstUser>

<citation>
<rdf:Description>
<citationID>465002</citationID>
<prism:title>Interview with Timo Hannay, Head of Web Publishing, Nature ➥

Publishing Group</prism:title>
<foaf:maker>
<foaf:Person>
<foaf:name>John Dupuis</foaf:name>

</foaf:Person>
</foaf:maker>
<dc:date>2007-07-03T00:00:00Z</dc:date>
<journalID>433043</journalID>
<prism:publicationName>Confessions of a Science Librarian
</prism:publicationName>

</rdf:Description>
</citation>

<rdfs:seeAlso rdf:resource="http://www.connotea.org/data/uri/07ccdc14de0e2efee71➥

9e55c22a223b5" /> <!-- GET this URI to retrieve further information -->
</dcterms:URI>

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS410

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 410

In addition to having some overlapping metadata, the corresponding post tells you when
the given URL was put into the user’s library:

<Post rdf:about="http://www.connotea.org/user/timo/uri/07ccdc14de0e2efee719e55c22➥

a223b5">
<title>Interview with Timo Hannay, Head of Web Publishing, Nature Publishing ➥

Group</title>
<dc:subject>npg</dc:subject>
<userBookmarkID>504437</userBookmarkID>
<dc:creator>timo</dc:creator>
<private>0</private>
<created>2007-07-04T07:30:01Z</created>
<updated>2007-08-09T11:33:43Z</updated>
<uri>
<dcterms:URI
rdf:about="http://jdupuis.blogspot.com/2007/07/interview-with-timo-hannay-➥

head-of-web.html">
<dc:title>Confessions of a Science Librarian: Interview with Timo Hannay, Head ➥

of Web Publishing, Nature Publishing Group</dc:title>
<link>http://jdupuis.blogspot.com/2007/07/interview-with-timo-hannay-head-of-➥

web.html</link>
<hash>07ccdc14de0e2efee719e55c22a223b5</hash>
<citation>
<rdf:Description>
<citationID>465002</citationID>
<prism:title>Interview with Timo Hannay, Head of Web Publishing, Nature ➥

Publishing Group</prism:title>
<foaf:maker>
<foaf:Person>
<foaf:name>John Dupuis</foaf:name>

</foaf:Person>
</foaf:maker>
<dc:date>2007-07-03T00:00:00Z</dc:date>
<journalID>433043</journalID>
<prism:publicationName>Confessions of a Science Librarian
</prism:publicationName>

</rdf:Description>
</citation>

</dcterms:URI>
</uri>

</Post>

To get bookmarks that timo has tagged with chemistry, use this:

curl -u USER:PASSWORD http://www.connotea.org/data/bookmarks/user/timo/tag/chemistry

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 411

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 411

To add a URL to your collection, do an HTTP post to this location:

http://www.connotea.org/data/add

with the mandatory parameters uri and tags and optional parameters such as usertitle,
description, myworks, private, and comment. For instance:

curl -v -u USER:PASSWORD --data-binary "uri=http://www.ala.org/ala/acrl/acrlissues/➥

future/changingroles.htm&tags=library2.0+academic+ACRL+technology&description=ALA+%7➥

C+Changing+Roles+of+Academic+and+Research+Libraries&usertitle=Changing+Roles+of+Acad➥

emic+and+Research+Libraries" http://www.connotea.org/data/add

To edit an existing post (for example, to change the description), use this:

curl -v -u USER:PASSWORD --data-binary "uri=http://www.ala.org/ala/acrl/acrlissues/➥

future/changingroles.htm&tags=library2.0+academic+ACRL+technology&usertitle=Essay%3A➥

+Changing+Roles+of+Academic+and+Research+Libraries" ➥

http://www.connotea.org/data/edit

To delete the post by its URL, use this:

curl -v -u USER:PASSWORD --data-binary "uri=http://www.ala.org/ala/acrl/acrlissues/➥

future/changingroles.htm" http://www.connotea.org/data/remove

A Flickr and del.icio.us Mashup
In this section, I’ll return to an idea I first wrote about in Chapter 3—demonstrating how you
can create a mashup using the del.icio.us API to enhance the functionality of Flickr. There are
many ways to organize the photos that you own in Flickr: you can tag them, put them in sets
and collections, and send them to specific groups. With photos that belong to others, you have
a lot fewer options. Generally, you’re limited to making a photo a favorite. (If a photo has been
placed into a group pool, you as a member of that group are able to tag the photo.) Moreover,
you can’t make any groupings of photos within Flickr that contain both your own photos and
those of others. You can’t “favorite” your own photos, and you can’t place other users’ photos
in your sets. (You can say that group pools are an exception, but the owner of the photo has to
send the photo to the pool.)

You can use del.icio.us to increase your ability to annotate Flickr photos and to intermix
your own photos with those of others. A nice supporting feature of del.icio.us is that Flickr
photos that are bookmarked in del.icio.us are shown with a thumbnail of the image—making
deli.cio.us a simple photo display mechanism.

To use del.icio.us to track and annotate Flickr photos, you have to bookmark the photo.
For bookmarking individual photos, you can simply use the same del.icio.us bookmarklets
you would use to bookmark any other URL. However, if you have a large number of Flickr pho-
tos to manage with del.icio.us, it’s more convenient to programmatically bookmark the photos.

Here I demonstrate how to send your Flickr favorites into del.icio.us so that you set your
own tags and descriptions for the photos. The following code uses phpFlickr (see Chapter 6)
and PHPDelicious:

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS412

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 412

<?php

This PHP script pushes a Flickr user's favorites into a del.icio.us account

a function for appending two input strings separated by a comma.
function aconcat ($v, $w)
{

return $v . "," . $w;
}

read in passwords for Flickr, the MySQL cache for phpFlickr, and del.icio.us
include("flickr_key.php");
include("mysql_cred.php");
include("delicious.cred.php");

use phpFlickr with caching
require_once("phpFlickr/phpFlickr.php");

$api = new phpFlickr(API_KEY, API_SECRET);
$db_string =
"mysql://" . DB_USER . ":" . DB_PASSWORD. "@" . DB_SERVER . "/". DB_NAME;

$api->enableCache(
"db", $db_string, 10

);

instantiate a del.icio.us object via the phpDelicious library
require_once('php-delicious/php-delicious.inc.php');
$del_obj = new PhpDelicious(DELICIOUS_USER, DELICIOUS_PASSWORD);

$username = 'Raymond Yee';

if ($user_id = $api->people_findByUsername($username)) {
$user_id = $user_id['id'];

} else {
print 'error on looking up $username';
exit();

}

#print $user_id;

get a list of the user's favorites (public ones first)
http://www.flickr.com/services/api/flickr.favorites.getPublicList.html

allow a maximum number of photos to be copied over -- useful for testing.
$maxcount = 2;
$count = 0;

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 413

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 413

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS414

set the page size and the page number to start with
$per_page = 500;
$page = 1;

loop over the pages of photos and the photos within each page

do {

if (!$photos = $api->favorites_getPublicList($user_id,"owner_name,last_update,tags",
$per_page, $page)) {

echo "Problem in favorites_getPublicList call: ", $api->getErrorCode(), " ",
$api->getErrorMsg();
exit();

}

$max_page = $photos['pages'];

foreach ($photos['photo'] as $photo) {

$count += 1;
if ($count > $maxcount) {
break;

}

echo $photo['id'], "\n";

Map Flickr metadata to del.icio.us fields

use the URL of the context page as the del.icio.us URL
$sUrl = "http://www.flickr.com/photos/$photo[owner]/$photo[id]/";

copy the photo title as the del.icio.us description
$sDescription = $photo['title']. " (on Flickr)";

set del.icio.us note to empty
$sNotes = '';

use the default date of now.
$sDate = '';

replace previous del.icio.us posts with this URL
$bReplace = true;

copy over the tags and add FlickrFavorite
$aTags = split(' ', $photo['tags']);
$aTags[] = 'FlickrFavorite';

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 414

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS 415

echo $sUrl, $sDescription, " ", $sNotes, " ", array_reduce($aTags, "aconcat") ,
" ", $sDate, " ", $bReplace;
print "\n";

if ($del_obj->AddPost($sUrl, $sDescription, $sNotes, $aTags, $sDate, $bReplace)) {
print "added $sUrl successfully\n";

} else {
print "problem in adding $sUrl\n";

}

} // foreach

$page += 1;

} while (($page <= $max_page) && ($count <= $maxcount)) // do

?>

When you run this script, you will see something akin to Figure 14-1.

Figure 14-1. Mashup of Flickr favorites and deli.cio.us. (Reproduced with permission of Yahoo!
Inc. ® 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.)

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 415

Once you have your Flickr favorites in del.icio.us, you can use all the del.ico.us functional-
ity to manipulate them; for example, you can edit the tags (which have been copied over from
Flickr), title, and description of a photo—something you couldn’t do directly to the Flickr photos
you don’t own. In addition, you can use tags to group pictures—whether they are your own or
someone else’s.

These are some ways in which you can expand the functionality of the script presented
here:

• You can use the del.icio.us API to help you gather your groups of Flickr photos by their
del.icio.us tags and present them as slide shows.

• You can change the script to push all of a user’s favorites instead of just the public
favorites.

• In addition to favorites, you can add any individual photo or group of your own photos
or any arbitrary Flickr aggregation of photos to del.icio.us.

• You can keep favorites synchronized between Flickr and del.icio.us.

Summary
In this chapter, you learned about social bookmarking as a whole, especially about sites that
have APIs. You then concentrated on how to use the APIs of del.icio.us, Yahoo! MyWeb, and
Connotea. The chapter concluded with a mashup of Flickr and del.icio.us that demonstrates
how social bookmarking can be used to enhance Flickr.

CHAPTER 14 ■ EXPLORING SOCIAL BOOKMARKING AND BIBLIOGRAPHIC SYSTEMS416

858Xch14FINAL.qxd 2/4/08 3:16 PM Page 416

Accessing Online Calendars
and Event Aggregators

Online calendars will move from being merely trendy to virtually indispensable as our lives
move increasingly to the network. Calendaring (scheduling appointments and coordinating
calendars) is something most of us can relate to since we all have appointments that we make
and keep.

As we use electronic calendars, there is a good chance that we will have more than one
calendar to synchronize—people use different calendars or work with people with other cal-
endars, no matter how much Microsoft, Apple, Google, or Yahoo! might want everyone to use
its calendar alone. A lot of this calendaring activity has moved to not only digital form but
specifically to a networked digital form. In addition to the old calendars, new generations of
online calendars are coming into existence—that’s the focus of this chapter.

Online calendars exist in the context of other digital calendars: desktop calendars such as
Microsoft Outlook and Apple iCal and calendars on handheld devices such as the Palm calendar.
Much work has been done on synchronizing these calendars. Of course, calendar synchroniza-
tion has been operant for a while, but these approaches (specialized conduits/SyncML1) have
been more opaque than the APIs now available.2 Today’s online calendars with APIs generally
make synchronization easier.

In addition to the proliferation of online calendars, event aggregation sites such as
Upcoming.yahoo.com and Eventful.com are starting to create a marketplace of event data.
They are focused on public events, whereas online calendars have as their focal point individ-
uals and private events. These worlds intersect, of course, because individual users often track
the public events they attend on their individual calendars.

When it comes to public events, the point of focus is different, depending on whether
you are an attendee (and consumer of information about the event) or are a publisher or
purveyor of event information. As an individual viewer, you want to browse, aggregate,
and select events, typically from multiple sources. You might be conducting these tasks in
a social context. What are your friends interested in? What do they invite you to, and vice
versa? Your friends might know what you care about and direct you to events you’ll find
interesting. As a publisher of events, you probably want to disseminate information about

417

C H A P T E R 1 5

■ ■ ■

1. SyncML is now known as Open Mobile Alliance Data Synchronization and Device Management.

2. http://www.coldsync.org/description.html

858X_ch15.qxd 2/4/08 3:26 PM Page 417

the event as widely as possible. There are technical mechanisms for supporting the inter-
change of data between publishers of event data and consumers of event data, which is one
of the subjects of this chapter.

This chapter shows the first steps to take in learning this subject:

• It covers what data you can get in and out of calendars without programming using
iCalendar and various XML feeds as examples.

• It covers how to program individual calendars using Google Calendar and 30boxes.com,
how to move data from a source of event data into calendars, and how to write event
information to event aggregators such as Upcoming.yahoo.com and Eventful.com.

Google Calendar
Google Calendar is fast increasing in popularity among online calendars.3 Not only does it have
some clever features, but it is highly remixable with its extensive API and use of feeds and
excellent data import and export functionality.

Let’s talk about how to use Google Calendar as a user first and then look at how to program it.

Setting Up Google Calendar As an End User
Log in to your Google account here:

http://calendar.google.com

Google Calendar has some noteworthy features:

• In addition to creating a main calendar, you can create secondary calendars and sub-
scribe to calendars belonging to others. Because you can turn the visibility of any given
calendar on and off, you get a composite view of the events of all your visible calendars.
(Think of each calendar as a layer.) On the sidebar, you get a list of your own calendars
and the other calendars to which you are subscribing.

• You can search for public events and look for public calendars.4 You can also make your
events publicly searchable right within your own calendar—tightly coupling the process
of publishing and consuming events.

• You can set the visibility of your calendars to one of three options: make it publicly
available to everyone; show only the Free/Busy information availability, that is, show
only whether a block of time is occupied; or set it to the Do Not Share with Everyone
level, in which case the calendar is visible only to those people with whom you explic-
itly share your calendar.5

• To delete a calendar, you have to click the Manage Calendars link.

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS418

3. http://www.techcrunch.com/2007/01/04/online-calendar-wiars/

4. http://www.google.com/calendar/render?mode=gallery&cat=POPULAR

5. http://www.google.com/support/calendar/bin/answer.py?answer=34577&hl=en

858X_ch15.qxd 2/4/08 3:26 PM Page 418

• There is Gmail/Google Calendar integration: “Gmail users can send event invitations
directly from their Gmail accounts without accessing Google Calendar.”6

• There is currently no direct offline access to Google Calendar.7

Some Usage Patterns for Google Calendar
To show some use case scenarios for Google Calendar, here I list some of the calendars that
I have set up and the reasons why:

• A strictly personal calendar for events. I have set this calendar to Do Not Share with
Everyone.

• A family and friends calendar for my closest friends. I also use the Do Not Share with
Everyone setting here but then add the e-mail addresses of individual friends and fam-
ily members.

• A calendar called Raymond Yee’s Public Events to list events that I plan to be at and
don’t mind the world knowing about. I use the Share All Information on This Calendar
with Everyone setting.

• A calendar called Mashup Guide Demo Calendar, a public calendar I’ll use in this chap-
ter to demonstrate how to program Google Calendar.

When I create a new Google calendar, I consider the following factors:

• Who I want to share the calendar with (that is, is the calendar for myself, a specific group
of people, or for the whole world?)

• The broad topic of that calendar

Sharing Calendars
There are calendar addresses that are visible to others if the calendar is public. There are three
formats:8

• HTML

• iCalendar (also known colloquially as iCal)9

• XML (specifically, Atom feed)

To illustrate the different feed formats, I’ll use a publicly available calendar that I created:
the Mashup Guide Demo Calendar, whose sharing status I have set to Share All Information on
This Calendar with Everyone.

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 419

6. http://www.google.com/support/calendar/bin/answer.py?answer=53231&topic=8556

7. http://www.google.com/support/calendar/bin/answer.py?answer=61527&topic=8556

8. http://www.google.com/support/calendar/bin/answer.py?answer=34578&hl=en and
http://www.google.com/support/calendar/bin/answer.py?answer=37104&ctx=sibling

9. http://en.wikipedia.org/wiki/ICalendar

858X_ch15.qxd 2/4/08 3:26 PM Page 419

Every Google calendar has an identifier. The user ID for a user’s main calendar is the user’s
e-mail address. For other calendars, the user ID is a more complicated e-mail address. For
instance, the user ID for the Mashup Guide Demo Calendar is as follows:

9imfjk71chkcs66t1i436je0s0%40group.calendar.google.com

You can get the HTML feed for a calendar here:

http://www.google.com/calendar/embed?src={userID}

For example:

http://www.google.com/calendar/embed?src=9imfjk71chkcs66t1i436je0s0%40group.calendar.➥

google.com

Associated with the iCalendar and XML feeds are two parameters (visibility and
projection) that I’ll explain in greater detail in a moment. For instance, you can access an
iCalendar feed here:

http://www.google.com/calendar/ical/{userID}/{visibility}/{projection}.ics

For example:

http://www.google.com/calendar/ical/9imfjk71chkcs66t1i436je0s0%40group.calendar.➥

google.com/public/full.ics

and for example:

http://www.google.com/calendar/ical/9imfjk71chkcs66t1i436je0s0%40group.calendar.➥

google.com/public/basic.ics

The Atom feeds are found here:

http://www.google.com/calendar/feeds/{userID}/{visibility}/{projection}

For example:

http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.calendar.➥

google.com/public/basic

If your calendar is not public, there are still private addresses that other applications can
use to access the calendar. Note that you can reset these URLs too in case you want to reset
access.10

Exploring the Feed Formats from Google Calendar
The Google Calendar API is built upon GData, the RESTful protocol based on the Atom Publish-
ing Protocol (APP) combined with the Google-specific extensions introduced in Chapter 7.11

There are API kits for various languages, including PHP and Python (as well as Java, .NET, and
JavaScript).12

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS420

10. http://www.google.com/support/calendar/bin/answer.py?answer=34576&hl=en

11. http://code.google.com/apis/calendar/overview.html

12. http://code.google.com/apis/calendar/developers_guide_protocol.html

858X_ch15.qxd 2/4/08 3:26 PM Page 420

Before I cover how to programmatically interact with the Google Calendar, I’ll first cover
what you can do by changing documents. It’s useful to take a look at specific instances of
iCalendar and the XML feeds.

iCalendar/iCal

iCalendar is a dominant standard for the exchange of calendar data. Based on the older vCal-
endar standard, iCalendar is sometimes referred to as iCal, which might be confused with the
name of the Apple calendaring program of the same name. The iCalendar standard is supported
in a wide range of products.

The official documentation for iCalendar is RFC 2445:

http://tools.ietf.org/html/rfc2445

Some other allied standards are built around RFC 2445, but they are beyond the scope of
this book:

• iCalendar Transport-Independent Interoperability Protocol (iTIP) Scheduling Events,
BusyTime, To-dos and Journal Entries (RFC 2446) lays out how calendar servers can
exchange calendaring events.13

• iCalendar Message-Based Interoperability Protocol (iMIP) (RFC 2447) covers the
exchange of calendaring data by e-mail.14

See the Wikipedia article on iCalendar for a list of the wide range of products that support
iCalendar.15 Calendaring standards are complex. I recommend a good overview of how stan-
dards relate.16

The structure of an iCalendar file is not based on XML like many of the data exchange for-
mats covered in this book. There have been attempts to cast the iCalendar data model into XML
(such as xCal17), but none has reached the level of wide adoption that iCalendar has.

iCalendar has many features, but there are a few basic things to know about it:

• iCalendar has a top-level object: VCALENDAR.

• There are subobjects, including VEVENT, VTODO, VJOURNAL, and VFREEBUSY.

I’ll focus mostly on the VEVENT object here—though VFREEBUSY is generated in Google
Calendar when one uses the “Share only my free/busy information (hide details)” mode.

This is a simple example of iCalendar data (with one VEVENT), quoted from RFC 2445:18

BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//hacksw/handcal//NONSGML v1.0//EN

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 421

13. http://tools.ietf.org/html/rfc2446

14. http://tools.ietf.org/html/rfc2447

15. http://en.wikipedia.org/wiki/ICalendar

16. http://www.calconnect.org/calendaringstandards.shtml

17. http://en.wikipedia.org/wiki/XCal

18. http://tools.ietf.org/html/rfc2445#section-4.4

858X_ch15.qxd 2/4/08 3:26 PM Page 421

BEGIN:VEVENT
DTSTART:19970714T170000Z
DTEND:19970715T035959Z
SUMMARY:Bastille Day Party
END:VEVENT
END:VCALENDAR

To see a more complicated instance of an iCalendar document, you can use Google
Calendar via this:

curl "http://www.google.com/calendar/ical/9imfjk71chkcs66t1i436je0s0%40group.➥

calendar.google.com/public/basic.ics"

This gets the iCalendar rendition of my public Mashup Guide Demo Calendar, a version
of which is as follows:

BEGIN:VCALENDAR
PRODID:-//Google Inc//Google Calendar 70.9054//EN
VERSION:2.0
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:Mashup Guide Demo Calendar
X-WR-TIMEZONE:America/Los_Angeles
X-WR-CALDESC:a Google Calendar to support mashupguide.net
BEGIN:VTIMEZONE
TZID:America/Los_Angeles
X-LIC-LOCATION:America/Los_Angeles
BEGIN:DAYLIGHT
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
TZNAME:PDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
TZNAME:PST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=America/Los_Angeles:20070507T130000
DTEND;TZID=America/Los_Angeles:20070507T140000
DTSTAMP:20070510T155641Z
ORGANIZER;CN=Mashup Guide Demo Calendar:MAILTO:9imfjk71chkcs66t1i436je0s0@➥

group.calendar.google.com
UID:vk021kggr20ba2jhc3vjg6p8ek@google.com

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS422

858X_ch15.qxd 2/4/08 3:26 PM Page 422

CLASS:PUBLIC
CREATED:20070510T021623Z
DESCRIPTION:
LAST-MODIFIED:20070510T021623Z
LOCATION:110 South Hall\, UC Berkeley
SEQUENCE:0
STATUS:CONFIRMED
SUMMARY:Mixing and Remixing Information Class Open House
TRANSP:OPAQUE
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/Los_Angeles:20070411T123000
DTEND;TZID=America/Los_Angeles:20070411T140000
DTSTAMP:20070510T155641Z
ORGANIZER;CN=Mashup Guide Demo Calendar:MAILTO:9imfjk71chkcs66t1i436je0s0@➥

group.calendar.google.com
UID:d9btebsfd121lhqc4arhj9727s@google.com
CLASS:PUBLIC
CREATED:20070411T144226Z
DESCRIPTION:
LAST-MODIFIED:20070411T144226Z
LOCATION:
SEQUENCE:0
STATUS:CONFIRMED
SUMMARY:Day 22
TRANSP:OPAQUE
END:VEVENT
END:VCALENDAR

This chapter does not cover the ins and outs of the iCalendar format. I recommend the
following ways to learn more about iCalendar:

• Read the “Guide to Internet Calendaring” (http://www.ietf.org/rfc/rfc3283.txt).

• There are many standards (http://www.calconnect.org/calendaringstandards.shtml),
but keep especially RFC 2445 in mind.

• Know that since iCalendar is rich in features, these features are not evenly implemented
among calendars, servers, or libraries that claim to work with iCalendar.

• The community is wrestling with a lot of subtleties. That’s why you have organizations
such as CalConnect making recommendations about handling recurring events and
time zones (http://calconnect.org/recommendations.shtml).

• Interoperability among iCalendar implementations remains a challenge,19 so don’t be
surprised if you run into problems using one system to interpret an iCalendar file pro-
duced by another system.

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 423

19. http://www.calconnect.org/ioptesting.shtml and http://www.calconnect.org/interop/
uc%20berkeley%20interop%20testing.pdf

858X_ch15.qxd 2/4/08 3:26 PM Page 423

• Have some good programming libraries on hand to parse and create iCalendar
(although it’s hard to know for sure the quality of any given iCalendar library).

• Note that work is underway to update the standards: http://www.ietf.org/html.
charters/calsify-charter.html.

In working with iCalendar, I’ve found the iCalendar Validator (http://severinghaus.org/
projects/icv/), based on the iCal4j library (http://ical4j.sourceforge.net/), to be useful.
You can use it to validate the iCalendar feed for the Mashup Guide Demo Calendar:

http://severinghaus.org/projects/icv/?url=http%3A%2F%2Fwww.google.com%2Fcalendar%2Fi➥

cal%2F9imfjk71chkcs66t1i436je0s0%2540group.calendar.google.com%2Fpublic%2Fbasic.ics

Google Calendar Atom Data

Now compare Google Calendar data formatted as an Atom XML feed, which you can get using
this:

curl http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.➥

calendar.google.com/public/basic

This will return a feed that looks something like this:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" xmlns:openSearch="http://a9.com/-/spec/➥

opensearchrss/1.0/"
xmlns:gd="http://schemas.google.com/g/2005"
xmlns:gCal="http://schemas.google.com/gCal/2005">

<id>http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.calendar.➥

google.com/public/basic</id>
<updated>2007-05-10T02:16:23.000Z</updated>
<category scheme="http://schemas.google.com/g/2005#kind"

term="http://schemas.google.com/g/2005#event"/>
<title type="text">Mashup Guide Demo Calendar</title>
<subtitle type="text">a Google Calendar to support mashupguide.net</subtitle>
<link rel="http://schemas.google.com/g/2005#feed" type="application/atom+xml"

href="http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40
group.calendar.google.com/public/basic"/>
<link rel="self" type="application/atom+xml"

href="http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40
group.calendar.google.com/public/basic?max-results=25"/>
<author>
<name>Raymond Yee</name>
<email>raymond.yee@gmail.com</email>

</author>
<generator version="1.0" uri="http://www.google.com/calendar">Google Calendar

</generator>
<openSearch:totalResults>2</openSearch:totalResults>
<openSearch:startIndex>1</openSearch:startIndex>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS424

858X_ch15.qxd 2/4/08 3:26 PM Page 424

<openSearch:itemsPerPage>25</openSearch:itemsPerPage>
<gd:where valueString=""/>
<gCal:timezone value="America/Los_Angeles"/>
<entry>
<id>http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.➥

calendar.google.com/public/basic/vk021kggr20ba2jhc3vjg6p8ek</id>
<published>2007-05-10T02:16:23.000Z</published>
<updated>2007-05-10T02:16:23.000Z</updated>
<category scheme="http://schemas.google.com/g/2005#kind"

term="http://schemas.google.com/g/2005#event"/>
<title type="text">Mixing and Remixing Information Class Open House</title>
<summary type="html">When: Mon May 7, 2007 1pm to 2pm&nbsp; PDT

Where: 110 South Hall, UC Berkeley
Event Status:
confirmed</summary>

<content type="text">When: Mon May 7, 2007 1pm to 2pm&nbsp; PDT

Where: 110 South Hall, UC Berkeley
Event Status:
confirmed</content>

<link rel="alternate" type="text/html" ➥

href="http://www.google.com/calendar/event?eid=dmswMjFrZ2dyMjBiYTJqaGMzd➥

mpnNnA4ZWsgOWltZmprNzFjaGtjczY2dDFpNDM2amUwczBAZw" title="alternate"/>
<link rel="self" type="application/atom+xml" ➥

href="http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40➥

group.calendar.google.com/public/basic/vk021kggr20ba2jhc3vjg6p8ek"/>
<author>
<name>Mashup Guide Demo Calendar</name>

</author>
<gCal:sendEventNotifications value="false"/>

</entry>
<entry>

<id>http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.calendar.➥

google.com/public/basic/d9btebsfd121lhqc4arhj9727s</id>
<published>2007-04-11T14:42:26.000Z</published>
<updated>2007-04-11T14:42:26.000Z</updated>
<category scheme="http://schemas.google.com/g/2005#kind"

term="http://schemas.google.com/g/2005#event"/>
<title type="text">Day 22</title>
<summary type="html">When: Wed Apr 11, 2007 12:30pm to 2pm&nbsp;

PDT

Event Status: confirmed</summary>
<content type="text">When: Wed Apr 11, 2007 12:30pm to 2pm&nbsp;

PDT

Event Status: confirmed</content>
<link rel="alternate" type="text/html" ➥

href="http://www.google.com/calendar/event?eid=ZDlidGVic2ZkMTIxbGhxYzRhcmh➥

qOTcyN3MgOWltZmprNzFjaGtjczY2dDFpNDM2amUwczBAZw" title="alternate"/>
<link rel="self" type="application/atom+xml" ➥

href="http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40➥

group.calendar.google.com/public/basic/d9btebsfd121lhqc4arhj9727s"/>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 425

858X_ch15.qxd 2/4/08 3:26 PM Page 425

<author>
<name>Mashup Guide Demo Calendar</name>

</author>
<gCal:sendEventNotifications value="false"/>

</entry>
</feed>

Note the following about this data:

• The feed is expressed in Atom format (which you learned about in Chapter 4).

• It uses common GData extension elements,20 OpenSearch, and Google Calendar
extensions.21

Using the GData-Based Calendar API Directly
In this section, I will lead you through the basics of programming the Google Calendar API.
Since I won’t cover all the details of the API, I refer you to “Google Calendar Data API Devel-
oper’s Guide: Protocol” documentation as an excellent place to start. You’ll learn how to set
up some calendars and access the right URLs for various feeds.22

As with most APIs, you can take two basic approaches: you can work directly with the
protocol, which in this case is based on the GData protocol that underlies many Google APIs,
including that for Blogger (see Chapter 7), or you can use a language-specific API kit. Here I’ll
show you both approaches. Although the latter approach is often more practical, I’ll use this
explication of the Calendar API as a chance to review GData (and the concepts of REST in gen-
eral). To work with the specific language-specific libraries, consult the documentation here:

http://code.google.com/apis/gdata/clientlibs.html

Later, I’ll give a quick rundown on how to use the PHP and Python API kits. You can get
started with the documentation for the Calendar API here:

http://code.google.com/apis/calendar/developers_guide_protocol.html

The reference for the API is here:

http://code.google.com/apis/calendar/reference.html

The Google Calendar API is based on GData, which in turn is based on APP with Google-
specific extensions. APP is a strictly REST protocol; remember, that means resources are
represented as Atom feeds, and you use standard HTTP methods (GET, POST, PUT, and DELETE)
to read, update, create, and delete elements. Here I’ll show you some of the key feeds and how
to use them. Before diving into doing so, I’ll first show you how to obtain an authentication
token, which you need in order to make full use of these feeds (that is, beyond issuing GET
requests for public feeds).

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS426

20. http://code.google.com/apis/gdata/elements.html

21. http://code.google.com/apis/calendar/reference.html#Elements

22. http://code.google.com/apis/calendar/developers_guide_protocol.html

858X_ch15.qxd 2/4/08 3:26 PM Page 426

Obtaining an Authentication Token

One of the two authentication methods available to you is documented here:

http://code.google.com/apis/gdata/auth.html

I’ll show you how to use the ClientLogin technique here. To make authorized access to
the API, you will need an authentication token, which you can obtain by making an HTTP
POST request (using the application/x-www-form-urlencoded content type) to here:

https://www.google.com/accounts/ClientLogin

with a body that contains the following parameters:

Email: Your Google e-mail (for example, raymond.yee@gmail.com)

Password: Your Google password

source: A string of the form companyName-applicationName-versionID to identify your
program (for example, mashupguide.net-Chap15-v1)

service: The name of the Google service, which in this case is cl

Using the example parameters listed here, you can package the authentication request
with the following curl invocation:

curl -v -X POST -d "Passwd={passwd}&source=mashupguide.net-Chap15-v1&Email=➥

raymond.yee%40gmail.com&service=cl" https://www.google.com/accounts/ClientLogin

If this call succeeds, you will get in the body of the response an Auth token (of the form
Auth=[AUTH-TOKEN]). Retain the Auth token for your next calls. You will embed the authentica-
tion token in your calls by including the following HTTP request header:

Authorization: GoogleLogin auth=[AUTH-TOKEN]

■Tip In curl, you do so with the -H option: -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]".

On occasion, you will need to handle HTTP 302 redirects from the API. That is, instead of
fulfilling a request, the Google Calendar API sends you a response with a redirect URL appended
with the new query parameter gessionid. You then reissue your request to this new URL.

■Tip For HTTP GET, use the -L option in curl to automatically handle a redirect.

Feeds Available from Google Calendar
There are three feed types: calendar (for managing calendars), event (for events contained by
calendars), and comment (for representing comments attached to events). Each of the feeds
is qualified by two parameters: visibility and projection. After I describe visibility and

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 427

858X_ch15.qxd 2/4/08 3:26 PM Page 427

projection, I’ll list the various feeds and show how you can access them via curl. For more
details about the feeds, consult this page:

http://code.google.com/apis/calendar/reference.html#Feeds

visibility and projection
There are two parameters for “specifying” the representation of feeds: visibility and
projection. The visibility parameter can be one of public, private, or private-[magicCookie].
Feeds that are public do not require authorization and are always read-only; public feeds are
inaccessible if the user has turned off sharing for the calendar. Feeds that are private do require
authentication to use and are potentially writable in addition to being readable (that is, read/write).
Finally, feeds that have a visibility of private-[magicCookie] are read-only and enable private
information to be read without authorization. (The magicCookie encapsulates authentication
information.)

The projection values are listed here:

http://code.google.com/apis/calendar/reference.html#Projection

They include the following:

• full (potentially read/write).

• free-busy (always read-only). This feed shows minimal information about events but
does include data about the duration of events (in other words, the <gd:when> element).

• basic (always read-only). The basic projection produces Atom feeds without any
extension elements; the <atom:summary> and <atom:content> elements contain HTML
descriptions with embedded data about the events.

Calendar Feeds
There are three types of calendar feeds—meta-feed, allcalendars, and owncalendars—which
I’ll cover in turn.

meta-feed

The private and read-only meta-feed contains an <entry> element for each calendar to which
the user has access. This list includes both calendars that are owned by the user and ones to
which the user is subscribed. You can access the feed at the following URL:

http://www.google.com/calendar/feeds/default

by using this:

curl -L -X GET -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ➥

http://www.google.com/calendar/feeds/default

Let’s look at an instance of an <entry>. Here is my own default calendar:

<entry>
<id>http://www.google.com/calendar/feeds/default/raymond.yee%40gmail.com</id>
<published>2007-10-20T18:46:01.839Z</published>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS428

858X_ch15.qxd 2/4/08 3:26 PM Page 428

<updated>2007-10-19T23:18:04.000Z</updated>
<title type="text">Raymond Yee</title>
<link rel="alternate" type="application/atom+xml" ➥

href="http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/➥

private/full"/>
<link rel="http://schemas.google.com/acl/2007#accessControlList" ➥

type="application/atom+xml"➥

href="http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/➥

full"/>
<link rel="self" type="application/atom+xml"
href="http://www.google.com/calendar/feeds/default/raymond.yee%40gmail.com"/>

<author>
<name>Raymond Yee</name>
<email>raymond.yee@gmail.com</email>

</author>
<gCal:timezone value="America/Los_Angeles"/>
<gCal:hidden value="false"/>
<gCal:color value="#2952A3"/>
<gCal:selected value="true"/>
<gCal:accesslevel value="owner"/>

</entry>

Note the three link elements in the entry for the meta-feed:

• rel="alternate" whose href is as follows:

http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/private/full

If you were to do an authenticated GET on this feed, you’d see that this is an event feed
containing all the events for the default calendar.

Note how the URL of this feed maps to the following form:

http://www.google.com/calendar/feeds/{userID}/{privacy}/{projection}

Here the user ID is raymond.yee%40gmail.com, visibility is private, and projection is
full.

• rel="http://schemas.google.com/acl/2007#accessControlList". The following feed
gives you the access control list for the given calendar.

http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/full

For this calendar, there is a single entry (I’m the only person who has permissions
associated with my default calendar):

<entry> <id>http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/➥

full/user%3Araymond.yee%40gmail.com</id>
<updated>2007-10-20T23:14:47.000Z</updated>
<category scheme="http://schemas.google.com/g/2005#kind"
term="http://schemas.google.com/acl/2007#accessRule"/>

<title type="text">owner</title>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 429

858X_ch15.qxd 2/4/08 3:26 PM Page 429

<content type="text"/>
<link rel="self" type="application/atom+xml" ➥

href="http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/➥

full/user%3Araymond.yee%40gmail.com"/>
<link rel="edit" type="application/atom+xml" ➥

href="http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/➥

full/user%3Araymond.yee%40gmail.com"/>
<author>

<name>Raymond Yee</name>
<email>raymond.yee@gmail.com</email>

</author>
<gAcl:scope type="user" value="raymond.yee@gmail.com"/>
<gAcl:role value="http://schemas.google.com/gCal/2005#owner"/>

</entry>

• rel="self"

http://www.google.com/calendar/feeds/default/raymond.yee%40gmail.com

This feed returns one entry for the default calendar—instead of all the calendars to
which the user (raymond.yee@gmail.com) has access.

allcalendars

The allcalendars feed is a private, potentially read/write feed for controlling subscriptions and
settings (such as the display color) for calendars. Inserting or deleting entries to the allcalen-
dars feed is tantamount to subscribing or unsubscribing to existing calendars. You can update
personalization settings for your calendars: the color, whether it is hidden, and whether it is
selected. You can’t create or delete calendars by manipulating the allcalendars feed; for those
actions, you need to use the owncalendars feed.

The URL for the allcalendars feed is here:

http://www.google.com/calendar/feeds/default/allcalendars/full

which you can access with this:

curl -L -X GET -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ➥

http://www.google.com/calendar/feeds/default/allcalendars/full

■Note You might wonder about the difference between meta-feed and allcalendars since both of them list
all the calendars to which a user has access. The allcalendars feed with a projection value of full is
read/write, while the meta-feed is read-only. If you try to access the allcalendars feed with a projection

value of basic (to get something akin to the meta-feed), you’ll get an “unknown visibility found” error.

I’ll now walk you through how to manipulate the allcalendars feed to add and delete a
subscription to the Phases of the Moon calendar, one of Google’s public calendars, which is
available here:

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS430

858X_ch15.qxd 2/4/08 3:26 PM Page 430

http://www.google.com/calendar/embed?src=ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.➥

google.com

Note the user ID of the calendar:

ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com

To subscribe to the calendar, create a file (called phases_moon_entry.xml) with the mini-
mal entry element needed to be the body of the post as follows:

<?xml version='1.0' encoding='UTF-8'?>
<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
<atom:id>ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com</atom:id>

</atom:entry>

Next, issue an HTTP POST request:

curl -v -X POST --data-binary "@phases_of_moon_entry.xml" -H "Content-Type: ➥

application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ➥

http://www.google.com/calendar/feeds/default/allcalendars/full

As mentioned earlier, there’s a good chance you’ll get a 302 HTTP response code to this call:

http://www.google.com/calendar/feeds/default/allcalendars/full?gsessionid=➥

{gessionid}

For example:

http://www.google.com/calendar/feeds/default/allcalendars/full?gsessionid=➥

GUWxgPh61GQ

If you do get a 302 HTTP response code, reissue the call to the new URL with this:

curl -v -X POST --data-binary "@phases_of_moon_entry.xml" -H "Content-Type: ➥

application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ➥

http://www.google.com/calendar/feeds/default/allcalendars/full?gsessionid=➥

{gessionid}

If the request to subscribe to the Phases of the Moon calendar is successful, you’ll get
a 201 HTTP response code to indicate a created calendar, along with a response body akin
to this:

<entry> <id>http://www.google.com/calendar/feeds/default/allcalendars/full/➥

ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com</id>
<published>2007-10-20T23:55:52.611Z</published>
<updated>2007-10-14T07:19:30.000Z</updated>
<title type="text">Phases of the Moon</title>
<summary type="text"/>
<link rel="alternate" type="application/atom+xml" ➥

href="http://www.google.com/calendar/feeds/ht3jlfaac5lfd6263ulfh4tql8%40➥

group.calendar.google.com/private/full"/>
<link rel="self" type="application/atom+xml"➥

href="http://www.google.com/calendar/feeds/default/allcalendars/full/➥

ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com"/>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 431

858X_ch15.qxd 2/4/08 3:26 PM Page 431

<link rel="edit" type="application/atom+xml" ➥

href="http://www.google.com/calendar/feeds/default/allcalendars/full/➥

ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com"/>
<author>
<name>Phases of the Moon</name>

</author>
<gCal:timezone value="Etc/GMT"/>
<gCal:hidden value="false"/>
<gCal:color value="#7A367A"/>
<gCal:selected value="false"/>
<gCal:accesslevel value="read"/>
<gd:where valueString=""/>

</entry>

You can then unsubscribe to the Phases of the Moon calendar with the following HTTP
DELETE request:

curl -v -X DELETE -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ➥

http://www.google.com/calendar/feeds/default/allcalendars/full/ht3jlfaac5lfd6263ulfh➥

4tql8%40group.calendar.google.com?gsessionid={gsessionid}

owncalendars

The owncalendars feeds hold data about the calendars that a user owns. This feed is concep-
tually similar to the allcalendars feed, with one important difference. Instead of subscribing
and unsubscribing to calendars, actions on the owncalendars feed are equivalent to creating
and destroying calendars. The syntax for manipulating the owncalendars feed is similar to that
for the allcallendars feed. For instance, to retrieve the feed, do a GET to this:

http://www.google.com/calendar/feeds/default/owncalendars/full

For example:

curl -v -L -X GET -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ➥

http://www.google.com/calendar/feeds/default/owncalendars/full

To create a new book-writing calendar, create a file entitled book_writing_calendar_entry.xml:

<?xml version="1.0" encoding="UTF-8"?>
<entry xmlns='http://www.w3.org/2005/Atom'
xmlns:gd='http://schemas.google.com/g/2005'
xmlns:gCal='http://schemas.google.com/gCal/2005'>
<title type='text'>Book Writing Schedule</title>
<summary type='text'>A calendar to track when I write my book.</summary>
<gCal:timezone value='America/Los_Angeles'></gCal:timezone>
<gCal:hidden value='false'></gCal:hidden>
<gCal:color value='#2952A3'></gCal:color>
<gd:where rel='' label='' valueString='Berkeley, CA'></gd:where>

</entry>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS432

858X_ch15.qxd 2/4/08 3:26 PM Page 432

and do the following POST (after handling the HTTP 302 redirect):

curl -v -X POST --data-binary "@book_writing_calendar_entry.xml" -H "Content-Type: ➥

application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ➥

http://www.google.com/calendar/feeds/default/owncalendars/full?gsessionid=➥

{gsession-id}

Furthermore, you can then update an existing calendar by issuing the appropriate PUT:

http://www.google.com/calendar/feeds/default/owncalendars/full/{userID}

And you can delete an existing calendar by using DELETE:

http://www.google.com/calendar/feeds/default/owncalendars/full/{userID}

Event Feeds
Now that you have studied the three types of calendar feeds, you’ll look at how to use the
event feeds. (I won’t cover comment feeds in this book.) Specifically, let’s look at the simple
case of retrieving all the events from a given feed for which you have write privileges. To work
with a given calendar, you need to know its user ID. In the instance of my own calendars (the
Mashup Guide Demo calendar), the user ID is as follows:

9imfjk71chkcs66t1i436je0s0%40group.calendar.google.com

The syntax of the URL to the feed of the events is as follows:

http://www.google.com/calendar/feeds/{userID}/{privacy}/{projection}

Specifically, you can use a privacy value of public and a projection value of full since
the calendar is a public one to arrive here:

http://www.google.com/calendar/feeds/{userID}/public/full

For example:

http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.calendar.➥

google.com/public/full

which you can confirm is a URL to a feed of all the events on the calendar. To add an event, you
need to send an HTTP POST request (with the proper authentication) here:

http://www.google.com/calendar/feeds/{userID}/private/full

For example:

http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.calendar.➥

google.com/private/full

That is, you create a file by the name of project_showcase_event.xml with the following
content:

<?xml version='1.0' encoding='UTF-8'?>
<entry xmlns='http://www.w3.org/2005/Atom'
xmlns:gd='http://schemas.google.com/g/2005'>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 433

858X_ch15.qxd 2/4/08 3:26 PM Page 433

<category scheme='http://schemas.google.com/g/2005#kind'
term='http://schemas.google.com/g/2005#event'></category>

<title type='text'>Project Showcase</title>
<content type='text'>A chance for the class to show off their projects</content>
<gd:where valueString='110 South Hall'></gd:where>
<gd:when startTime="2008-05-12T13:00:00.000-07:00"

endTime="2008-05-12T14:00:00.000-07:00"/>
</entry>

and issue the following request:

curl -v -X POST --data-binary "@project_showcase_event.xml" -H "Content-Type: ➥

application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ➥

http://www.google.com/calendar/feeds/{userID}/private/full?gsessionid={gsessionid}

where the gsessionid is the one given in the 302 redirect to create an event on the Mashup
Guide Demo calendar.

With an analogous procedure to how you subscribe or unsubscribe to calendars in the all-
calendars feed or create calendars through the owncalendars feed, you can create and delete
events through the events feed.

Using the PHP API Kit for Google Calendar
Working directly with the GData interface to Google Calendar gives you a lot of flexibility at
the cost of tedium. Now we’ll turn to studying how to use two of the API wrappers for Google
Calendar. In the next section, I’ll show you how to use the Python API kit. Here, we’ll study the
PHP wrapper.

The PHP API kit is documented here:

http://code.google.com/apis/calendar/developers_guide_php.html

The PHP library for accessing Google Calendar is part of the Zend Google Data Client
Library, which, in turn, is available as part of the Zend Framework or as a separate download.
Note that the library is developed by Zend and works with PHP 5.1.4 or newer. You can down-
load the Zend Framework from this location:

http://framework.zend.com/

You can read about how to use the Zend Framework to access Google Calendar here:

http://framework.zend.com/manual/en/zend.gdata.calendar.html

You install the Zend framework by copying the files to a directory of your choice. I set up
the Zend Framework in this location:

http://examples.mashupguide.net/lib/ZendFramework/

I’ll now illustrate the basics of using this library through two code snippets. Both use the
ClientLogin form of authorization. The first example retrieves a list of a user’s calendars:

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS434

858X_ch15.qxd 2/4/08 3:26 PM Page 434

<?php

require_once 'Zend/Loader.php';
Zend_Loader::loadClass('Zend_Gdata');
Zend_Loader::loadClass('Zend_Gdata_ClientLogin');
Zend_Loader::loadClass('Zend_Gdata_Calendar');

function getGDataClient($user, $pass)
{
$service = Zend_Gdata_Calendar::AUTH_SERVICE_NAME;

$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
return $client;

}

function printCalendarList($client)
{
$gdataCal = new Zend_Gdata_Calendar($client);
$calFeed = $gdataCal->getCalendarListFeed();
echo $calFeed->title->text . "\n";
echo "\n";
foreach ($calFeed as $calendar) {
echo $calendar->title->text, "\n";

}
}

$USER = "[USER]";
$PASSWORD = "[PASSWORD]";

$client = getGDataClient($USER, $PASSWORD);
printCalendarList($client);

?>

The second code sample retrieves a list of events for a given calendar and prints basic ele-
ments for a given event: its ID, title, content, and details about the “where” and “when” of the
event:

<?php

require_once 'Zend/Loader.php';
Zend_Loader::loadClass('Zend_Gdata');
Zend_Loader::loadClass('Zend_Gdata_ClientLogin');
Zend_Loader::loadClass('Zend_Gdata_Calendar');

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 435

858X_ch15.qxd 2/4/08 3:26 PM Page 435

function getGDataClient($user, $pass)
{
$service = Zend_Gdata_Calendar::AUTH_SERVICE_NAME;

$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
return $client;

}

function printEventsForCalendar($client, $userID)
{
$gdataCal = new Zend_Gdata_Calendar($client);

$query = $gdataCal->newEventQuery();
$query->setUser($userID);
$query->setVisibility('private');
$query->setProjection('full');

$eventFeed = $gdataCal->getCalendarEventFeed($query);

echo $eventFeed->title->text . "\n";
echo "\n";
foreach ($eventFeed as $event) {
echo $event->title->text, "\t", $event->id->text, "\n" ;
echo $event->content->text, "\n";
foreach ($event->where as $where) {
echo $where, "\n";

}
foreach ($event->when as $when) {
echo "Starts: " . $when->startTime . "\n";
echo "Ends: " . $when->endTime . "\n";

}

check for recurring events
if ($recurrence = $event->getRecurrence()) {
echo "recurrence: ", $recurrence, "\n";

}

print "\n";
}

}

$USER = "[USER]";
$PASSWORD = "[PASSWORD]";

userID for the Mashup Guide Demo calendar
$userID = "9imfjk71chkcs66t1i436je0s0%40group.calendar.google.com";

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS436

858X_ch15.qxd 2/4/08 3:26 PM Page 436

$client = getGDataClient($USER, $PASSWORD);
printEventsForCalendar($client, $userID);

?>

Later in the chapter, you will see how to use the PHP Google Calendar library to create
events.

Using the Python API Kit for Google Calendar
You can find the documentation on the Python API kit here:

http://code.google.com/apis/calendar/developers_guide_python.html

To install the library, you can download it from here:

http://code.google.com/p/gdata-python-client/downloads/list

Or you can access the access the Subversion repository for the project here:

http://gdata-python-client.googlecode.com/svn/trunk/

■Note The following code depends on the ElementTree library, which ships with Python 2.5 and newer.
You can find instructions for downloading ElementTree at http://effbot.org/zone/element-index.htm.

Here’s some Python code to demonstrate how to list all of your calendars and to list the
events on a specific calendar:

"""
Chapter 15: simple facade for Python Google Calendar library
"""
__author__ = 'raymond.yee@gmail.com (Raymond Yee)'

EMAIL = '[USER]'
PASSWORD = '[PASSWORD]'

try:
from xml.etree import ElementTree

except ImportError:
from elementtree import ElementTree

import gdata.calendar.service
import gdata.calendar
import atom

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 437

858X_ch15.qxd 2/4/08 3:26 PM Page 437

class MyGCal:
def __init__(self):

self.client = gdata.calendar.service.CalendarService()
self.client.email = EMAIL
self.client.password = PASSWORD
self.client.source = 'GCalendarUtil-raymondyee.net-v1.0'
self.client.ProgrammaticLogin()

def listAllCalendars(self):
feed = self.client.GetAllCalendarsFeed()
print 'Printing allcalendars: %s' % feed.title.text
for calendar in feed.entry:
print calendar.title.text

def listOwnCalendars(self):
feed = self.client.GetOwnCalendarsFeed()
print 'Printing owncalendars: %s' % feed.title.text
for calendar in feed.entry:
print calendar.title.text

def listEventsOnCalendar(self,userID='default'):
"""
list all events on the calendar with userID
"""
query = gdata.calendar.service.CalendarEventQuery(userID, 'private', 'full')
feed = self.client.CalendarQuery(query)
for event in feed.entry:
print event.title.text, event.id.text, event.content.text
for where in event.where:
print where.value_string

for when in event.when:
print when.start_time, when.end_time

if event.recurrence:
print "recurrence:", event.recurrence.text

if __name__ == '__main__':
gc = MyGCal()
gc.listAllCalendars()
userID for Mashup Guide Demo calendar
userID = '9imfjk71chkcs66t1i436je0s0%40group.calendar.google.com'
gc.listEventsOnCalendar(userID)

30boxes.com
30boxes.com is another online calendar service, one that has won some rave reviews.23 It has
very noteworthy features, in addition to an API, making it worthwhile to describe it here.

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS438

23. http://30boxes.com/press

858X_ch15.qxd 2/4/08 3:26 PM Page 438

For information about the 30boxes.com API, go here:

• http://30boxes.com/developers

• http://30boxes.com/api/

An End User Tutorial
Before programming 30boxes.com, it’s useful of course to view it as an end user:

1. Sign up for an account if you don’t already have one:

http://30boxes.com/signup

2. Once you have an account, log into it:

http://30boxes.com/login

3. You can learn how to do various tasks at 30boxes.com by consulting the help section
(http://30boxes.com/help).

One noteworthy feature from an end user’s point of view is that, in terms of sharing, it seems
that all calendars are completely private by default. You can add buddies and set options as to
how much a given buddy can see:

• Buddies can see your entire calendar unless you mark an event as private.

• Buddies can see events that are marked with a certain tag.

• Buddies can see only the stuff on the buddy page.

30boxes.com API
The main documentation is at this location:

http://30boxes.com/api/

You have to get a key here:

http://30boxes.com/api/api.php?method=getKeyForUser

In this section, we’ll exercise the API. Please substitute your own [APIKEY] and [AUTHTOKEN].
You can do HTTP GET requests on the following URLs:

• test.ping:24

http://30boxes.com/api/api.php?method=test.Ping&apiKey={APIKEY}

• user.FindByEmail:

http://30boxes.com/api/api.php?method=user.FindByEmail&apiKey={APIKEY}&email=yee@➥

berkeley.edu

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 439

24. http://30boxes.com/api/#t

858X_ch15.qxd 2/4/08 3:26 PM Page 439

• user.Authorize: Many methods require authorization, which then yields an authoriza-
tion token. In this example, I use a small picture of me as the application icon.25 When
calling user.FindByEmail, I also drop the optional returnURL argument:

http://30boxes.com/api/api.php?method=user.Authorize&apiKey={APIKEY}➥

&applicationName={application-name}&applicationLogoUrl={url}

For example:

http://30boxes.com/api/api.php?method=user.Authorize&apiKey={APIKEY}➥

&applicationName=Raymond+Yee&applicationLogoUrl=http%3A%2F%2Ffarm1.static.➥

flickr.com%2F4➥%2F5530475_48f80eece8_s.jpg

You will get an authentication token, which I show here as {AUTHTOKEN}.

• user.GetAllInfo:

http://30boxes.com/api/api.php?method=user.GetAllInfo&apiKey={APIKEY}➥

&authorizedUserToken={AUTHTOKEN}

to which you will get something like this:

<?xml version="1.0" encoding="utf-8"?>
<rsp stat="ok">
<user>
<id>40756</id>
<facebookId>1229336</facebookId>
<firstName>Raymond</firstName>
<lastName>Yee</lastName>
<avatar>http://farm1.static.flickr.com/4/5530475_48f80eece8_s.jpg</avatar>
<status>sweeping stuff under the carpet while he writes.</status>
<bio/>
<dateFormat>MM-DD-YYYY</dateFormat>
<timeZone>US/Pacific</timeZone>
<createDate>2006-03-17</createDate>
<startDay>0</startDay>
<use24HourClock>0</use24HourClock>
<feed>
<name>Raymond - MySpace Blog</name>
<url>http://blog.myspace.com/blog/rss.cfm?friendID=82943257</url>

</feed>
<email>
<address>yee@berkeley.edu</address>
<primary>1</primary>

</email>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS440

25. http://farm1.static.flickr.com/4/5530475_48f80eece8_s.jpg

858X_ch15.qxd 2/4/08 3:26 PM Page 440

<email>
<address>raymond.yee@gmail.com</address>
<primary>0</primary>

</email>
<otherContact>
<type>Yahoo</type>
<value>rdhyee</value>

</otherContact>
<otherContact>
<type>Personal Site</type>
<value>http://hypotyposis.net/blog</value>

</otherContact>

</user>
</rsp>

• events.Get:

http://30boxes.com/api/api.php?method=events.Get&apiKey={APIKEY}➥

&authorizedUserToken={AUTHTOKEN}&start=2007-01-01&end=2007-09-01

to which you will get something like this:

<?xml version="1.0" encoding="utf-8"?>
<rsp stat="ok">
<eventList>
<userId>40756</userId>
<listStart>2007-01-01</listStart>
<listEnd>2007-06-30</listEnd>
<event>
<id>1767437</id>
<summary>Y!RB Brain Jam: A CHI2007 Sampler</summary>
<notes>[....]</notes>
<start>2007-04-27 14:00:00</start>
<end>2007-04-27 14:00:00</end>
<lastUpdate>2007-04-11 15:08:58</lastUpdate>
<allDayEvent>0</allDayEvent>
<repeatType>no</repeatType>
<repeatEndDate>0000-00-00</repeatEndDate>
<repeatSkipDates/>
<repeatICal/>
<reminder>-1</reminder>
<tags/>
<externalUID>http://upcoming.org/event/172254/</externalUID>
<privacy>shared</privacy>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 441

858X_ch15.qxd 2/4/08 3:26 PM Page 441

<invitation>
<isInvitation>0</isInvitation>

</invitation>
</event>

[....]
</eventList>

</rsp>

■Note The end parameter cannot be more than 180 days after start.

• events.GetDisplayList (to get an expanded and sorted list of events):

http://30boxes.com/api/api.php?method=events.GetDisplayList&apiKey={APIKEY}➥

&authorizedUserToken={AUTHTOKEN}&start=2007-01-01&end=2007-09-01

• todos.Get:

http://30boxes.com/api/api.php?method=todos.Get&apiKey={APIKEY}&authorizedUser➥

Token={AUTHTOKEN}

• todos.Add:

http://30boxes.com/api/api.php?method=todos.Add&apiKey={APIKEY}&authorizedUser➥

Token={AUTHTOKEN}&text=Eat+more+veggies&externalUID=123456x

• todos.Update:

http://30boxes.com/api/api.php?method=todos.Update&apiKey={APIKEY}&authorized➥

UserToken={AUTHTOKEN}&text=Eat+more+veggies+and+fruit&todoId=123110&externalUID=➥

123456x

• todos.Delete:

http://30boxes.com/api/api.php?method=todos.Delete&apiKey={APIKEY}&authorized➥

UserToken={AUTHTOKEN}&text=Eat+more+veggies+and+fruit&todoId=123110

• events.AddByOneBox:

http://30boxes.com/api/api.php?method=events.AddByOneBox&apiKey={APIKEY}➥

&authorizedUserToken={AUTHTOKEN}&event=eat+some+sushi+tomorrow+at+7pm

■Note You can find a Python API wrapper for 30boxes.com at http://trentm.com/projects/
thirtyboxes/.

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS442

858X_ch15.qxd 2/4/08 3:26 PM Page 442

Event Aggregators
Google Calendar and 30boxes.com are examples of online calendars meant to allow individuals
and small groups of people to coordinate their appointments. Complementing such calendars
are event aggregators that gather and list events, many of which are public events. In the fol-
lowing sections, I’ll cover two event aggregators that are programmable and hence mashable:
Upcoming.yahoo.com and Eventful.com.

Upcoming.yahoo.com
The URL for Upcoming.yahoo.com is as follows:

http://upcoming.yahoo.com/

The URL for a specific event is as follows:

http://upcoming.yahoo.com/event/{event-id}/

For example, the following is the URL for CHI2007:

http://upcoming.yahoo.com/event/76140/

Feeds from Search Results
Upcoming.yahoo.com makes much of its data available through RSS 2.0 feeds. Let’s consider
an example. To look for events with the keyword Bach in the San Francisco Bay Area, you can
use the following search:

http://upcoming.yahoo.com/search/?type=Events&rt=1&q=bach&loc=Berkeley%2C+California➥

%2C+United+States

In general, the URL for searching events is as follows:

http://upcoming.yahoo.com/search/?type=Events&rt=1&q={q}&loc={location}&sort={sort}

where you can set sort to w (to sort by popularity), r (by relevance), and p (by recently added).
The previous search gives you HTML. You can also get feeds out of the search results as

either RSS 2.0 or iCalendar. The RSS 2.0 feed includes Dublin Core data, uses the xCal extension
(http://en.wikipedia.org/wiki/XCal) to encode calendaring information, and includes lati-
tude and longitude data encoded with the Compact W3C Basic Geo encoding (see Chapter 13
for details on this encoding):

http://upcoming.yahoo.com/syndicate/v2/search_all/?q=bach&loc=Berkeley%2C+California➥

%2C+United+States&rt=1

Take a look at a specific instance of an event:

<geo:lat>37.7774</geo:lat>
<geo:long>-122.4198</geo:long>

[....]
<dc:date>2007-03-18T17:59:58-07:00</dc:date>
<xCal:summary>San Francisco Symphony: Bach and Handel</xCal:summary>
<xCal:dtstart>2008-04-05T20:00:00Z</xCal:dtstart>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 443

858X_ch15.qxd 2/4/08 3:26 PM Page 443

<xCal:dtend></xCal:dtend>
<xCal:location>http://upcoming.yahoo.com/venue/17246/</xCal:location>
<xCal:x-calconnect-venue>
<xCal:x-calconnect-venue-id>http://upcoming.yahoo.com/venue/17246/

</xCal:x-calconnect-venue-id>
<xCal:adr>
<xCal:x-calconnect-venue-name>Davies Symphony Hall</xCal:x-calconnect-venue-➥

name>
<xCal:x-calconnect-street>201 Van Ness Avenue</xCal:x-calconnect-street>
<xCal:x-calconnect-city>San Francisco Bay Area</xCal:x-calconnect-city>
<xCal:x-calconnect-region>California</xCal:x-calconnect-region>
<xCal:x-calconnect-postalcode>94102</xCal:x-calconnect-postalcode>
<xCal:x-calconnect-country>United States</xCal:x-calconnect-country>
</xCal:adr>
<xCal:url type='Venue Website'>http://upcoming.yahoo.com/venue/17246/

</xCal:url>
<xCal:x-calconnect-tel></xCal:x-calconnect-tel>
</xCal:x-calconnect-venue>

You can get an iCalendar version of the results, which you can subscribe to using an
iCalendar-cognizant calendar (for example, Apple iCal, Google Calendar, or Microsoft Outlook
2007):

webcal://upcoming.yahoo.com/calendar/v2/search_all/?q=bach&loc=Berkeley%2C+➥

California%2C+United+States&rt=1

Note the use of the webcal URI scheme (http://en.wikipedia.org/wiki/Webcal). The
webcal scheme tells the recipient to subscribe to the feed—to track updates—rather than just
doing a one-time import of the iCalendar feed. (Note that you can replace webcal with http to
get the contents of the iCalendar feed.)

http://upcoming.yahoo.com/calendar/v2/search_all/?q=bach&loc=Berkeley%2C+California%➥

2C+United+States&rt=1

What can you do with these feeds coming from Upcoming.yahoo.com? One example is to
generate KML out of the RSS 2.0 feeds, which already contain geolocations for the events. In
fact, you can use Yahoo! Pipes for this very task:

http://pipes.yahoo.com/pipes/pipe.info?_id=GlqEg8WA3BGZNw9ELO2fWQ

This pipe takes as input the parameters that can be used to generate an upcoming RSS 2.0
feed from Upcoming.yahoo.com (q, loc, and sort) and uses the Location Extractor operator to
extract the geoRSS elements from the feed.

■Note You can extend the pipe to encompass the other search options at Upcoming.yahoo.com, such as
date ranges or categories.

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS444

858X_ch15.qxd 2/4/08 3:26 PM Page 444

You can run the pipe for Bach events close to Berkeley, California, sorted by relevance:

http://pipes.yahoo.com/pipes/pipe.info?q=Bach&loc=Berkeley%2C+CA&sort=r&_cmd=Run+➥

Pipe&_id=GlqEg8WA3BGZNw9ELO2fWQ&_run=1

Note that running this pipe generates a Yahoo! map showing the events contained in the
feed. In addition to the RSS 2.0 feed version here:

http://pipes.yahoo.com/pipes/pipe.run?_id=GlqEg8WA3BGZNw9ELO2fWQ&_render=rss&loc=➥

Berkeley%2C+CA&q=Bach&sort=r

which isn’t that interesting (since Upcoming.yahoo.com already generates an RSS 2.0 feed),
you can get a KML version of this feed (by changing the _render parameter to kml):

http://pipes.yahoo.com/pipes/pipe.run?_id=GlqEg8WA3BGZNw9ELO2fWQ&_render=kml&loc=➥

Berkeley%2C+CA&q=Bach&sort=r

From Chapter 13, you learned how to sort KML feeds on Google Maps:

http://maps.google.com/maps?q=http:%2F%2Fpipes.yahoo.com%2Fpipes%2Fpipe.run%3F_id%3➥

DGlqEg8WA3BGZNw9ELO2fWQ%26_render%3Dkml%26loc%3DBerkeley%252C%2BCA%26q%3DBach%26➥

sort%3Dr&ie=UTF8

Read-Only Parts of the API
Let’s now turn to the Upcoming.yahoo.com API. You can find the documentation for the API
here:

http://upcoming.yahoo.com/services/api/

You can generate a key to use for the API here:

http://upcoming.yahoo.com/services/api/keygen.php

The upcoming API is structured to be similar (but not identical) in detail to the Flickr REST
API. The authentication is simpler and less sophisticated, but you’ll see the method parameter
and api_key (similar naming). The base URL for the API is as follows:

http://upcoming.yahooapis.com/services/rest/

Like the Flickr API, you need a method (event.search), an api_key, and other parameters
for the given method, which are documented here:

http://upcoming.yahoo.com/services/api/event.search.php

There is a wide range of options (such as date range and precise location, in addition to
paging parameters such as per_page and page). In this case, we’re using the search_text and
location parameters to put together an HTTP GET request:

http://upcoming.yahooapis.com/services/rest/?api_key={api_key}&method=event.search&➥

search_text=bach&location=Berkeley%@C+California

to which you get back a series of event elements:

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 445

858X_ch15.qxd 2/4/08 3:26 PM Page 445

<event id="166104" name="San Francisco Symphony: Bach and Handel"
description="Christophers makes music of three centuries ago sound ➥

contemporary and utterly vital. Here, he conducts Baroque blockbusters, music of ➥

dazzling color and invention."
start_date="2008-04-05" end_date="" start_time="20:00:00" end_time=""
personal="0"
selfpromotion="0" metro_id="2;1311;1403;1849;1934;2122;2289;2466;2638;2962"
venue_id="17246"
user_id="59509" category_id="1" date_posted="2007-03-18 10:59:58"
watchlist_count="6"
url="http://www.sfsymphony.org/templates/event_info.asp?nodeid=250&➥

eventid=1188"
distance="10.91" distance_units="miles" latitude="37.7774"
longitude="-122.4198"
geocoding_precision="address" geocoding_ambiguous="0"
venue_name="Davies Symphony Hall"
venue_address="201 Van Ness Avenue" venue_city="San Francisco Bay Area"
venue_state_name="California" venue_state_code="ca" venue_state_id="5"
venue_country_name="United States" venue_country_code="us"
venue_country_id="1"
venue_zip="94102"/>

Note what you get back. In addition to the “what” and “when” of the event, there is also
specific geocoding. You can make a map (for example, converting this KML and displaying it
on a map), which I showed earlier in the case of using the RSS 2.0 feed.

What else can do you with the API without authentication?

• You can use event.getInfo to retrieve information about public events given its
event_id. For example, you can use the WWW2008 Conference (http://upcoming.yahoo.com/
event/205875) here:

http://upcoming.yahooapis.com/services/rest/?method=event.getInfo&api_key=➥

{api-key}&event_id=205875

to get the following:

<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
<event id="205875" name="WWW 2008 (17th International World Wide Web ➥

Conference)"
tags="www,web,www2008,ydn"
description=""The World Wide Web Conference is a global event bringing ➥

together key researchers, innovators, decision-makers, technologists, ➥

businesses, and standards bodies working to shape the Web. Since its inception ➥

in 1994, the WWW conference has become the annual venue for international ➥

discussions and debate on the future evolution of the Web.""

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS446

858X_ch15.qxd 2/4/08 3:26 PM Page 446

start_date="2008-04-21" end_date="2008-04-25" start_time="" end_time=""
personal="0"
selfpromotion="0" metro_id="420" venue_id="33275" user_id="18772"
category_id="5"
url="http://www2008.org/" date_posted="2007-06-12" latitude="" ➥

longitude=""
geocoding_precision="" geocoding_ambiguous=""
venue_name="Beijing International Conference Center"
venue_address="No.8 Beichendong Road Chaoyang District" ➥

venue_city="Beijing"
venue_state_name="Beijing" venue_state_code="bj" venue_state_id="171"
venue_country_name="China"
venue_country_code="cn" venue_country_id="44" venue_zip="" venue_url=""
venue_phone="+86-10-64910248"/>

</rsp>

• You can use metro.getForLatLon to retrieve a venue for a given latitude and longitude.
Let’s use the latitude and longitude for a building on the UC Berkeley campus in Berke-
ley, California:

37.869111,-122.260634

to formulate the following request:

http://upcoming.yahooapis.com/services/rest/?method=metro.getForLatLon&➥

api_key={api-key}&latitude=37.869111&longitude=-122.260634

which returns this:
<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
<metro id="2" name="San Francisco" code="sf" state_id="5"

state_name="California"
state_code="ca"
country_id="1" country_name="United States" country_code="us"/>

</rsp>

Parts of the API That Require Authentication
You will need to supply a callback URL for token-based authorization if you need that. How do
you authenticate? The documentation is here:

http://upcoming.yahoo.com/services/api/token_auth.php

Getting the Token

The documentation tells you how to set up a callback URL for web-based applications. I con-
sider this a simpler case in which you don’t set any callback URL and manually read off a token.
That is, load up this in your browser, and read the frob:

http://upcoming.yahoo.com/services/auth/?api_key={api-key}

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 447

858X_ch15.qxd 2/4/08 3:26 PM Page 447

Then get a token with an auth.getToken call:

http://upcoming.yahooapis.com/services/rest/?method=auth.getToken&api_key={api-key}&➥

frob={frob}

to which you will get the following:

<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
<token token="[TOKEN]" user_id="[USER_ID]" user_username="[USERNAME]"

user_name="[FULLNAME]" />
</rsp>

Adding an Event with the API

Let’s use the API to add an event with the event.add method, which is documented here:

http://upcoming.yahoo.com/services/api/event.add.php

To add an event, issue an HTTP POST request with the following parameters:

• api_key (required)

• token (required)

• name (required)

• venue_id (numeric, required)

• category_id (numeric, required)

• start_date (YYYY-MM-DD, required)

• end_date (YYYY-MM-DD, optional)

• start_time (HH:MM:SS, optional)

• end_time (HH:MM:SS, optional)

• description (optional)

• url (optional)

• personal (1=visible to friends only or 0=public, optional, defaults to 0)

• selfpromotion (1=self-promotion or 0=normal, optional, defaults to 0)

For an example, I added the JCDL 2008 conference to Upcoming.yahoo.com:

http://www.jcdl2008.org/

The best way is to practice using the user interface of Upcoming.yahoo.com to help you
pick out the venue ID and category ID:

http://upcoming.yahoo.com/event/add/

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS448

858X_ch15.qxd 2/4/08 3:26 PM Page 448

The location (found at http://www.jcdl2008.org/location.html) is the Omni William
Penn Hotel in Pittsburgh, Pennsylvania. When you type the name of the hotel and its city into
Upcoming.yahoo.com, it locates a venue. But how do you get the ID? You can use the API
method venue.search (http://upcoming.yahoo.com/services/api/venue.search.php):

http://upcoming.yahooapis.com/services/rest/?api_key={api_key}&method=venue.search&➥

search_text=Omni+William+Penn+Hotel&location=Pittsburgh%@C+PA
to which you get the following:

<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
<venue id="56189" name="Omni William Penn Hotel" address="530 William Penn Place"
city="Pittsburgh" state="Pennsylvania" zip="" country="United States"
url="http://www.omnihotels.com/FindAHotel/PittsburghWilliamPenn.aspx"
description=""
user_id="120115" metro_id="77" private="0" distance="0.14"
distance_units="miles"
latitude="40.4406" longitude="-79.997" geocoding_precision="address"
geocoding_ambiguous="0"
state_code="pa" state_id="39" country_code="us" country_id="1"/>

</rsp>

The conclusion is that the venue ID is 56189.
The next question is, how do you get the category ID? You can use the category.getList

method (http://upcoming.yahoo.com/services/api/category.getList.php):

http://upcoming.yahooapis.com/services/rest/?api_key={api_key}&method=category.getList

to get:

<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
<category id="1" name="Music" description="Concerts, nightlife, raves" />
<category id="2" name="Performing/Visual Arts" description="Theatre, dance, opera, ➥

exhibitions" />
<category id="3" name="Media" description="Film, book readings" />
<category id="4" name="Social" description="Rallies, gatherings, user groups" />
<category id="5" name="Education" description="Lectures, workshops" />
<category id="6" name="Commercial" description="Conventions, expos, flea markets" />
<category id="7" name="Festivals" description="Big events, often multiple days" />
<category id="8" name="Sports" description="Sporting events, recreation" />
<category id="10" name="Other" description="Who knows?" />
<category id="11" name="Comedy" description="Stand-up, improv, comic theatre" />
<category id="12" name="Politics" description="Rallies, fundraisers, meetings" />
<category id="13" name="Family" description="Family/kid-oriented music, shows,
theatre" />
</rsp>

For this event, let’s pick Education (category 5).

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 449

858X_ch15.qxd 2/4/08 3:26 PM Page 449

Finally, I grab the description from here:

http://www.jcdl2008.org/index.html

Since 2001, the Joint Conference on Digital Libraries has served as the major interna-

tional forum focused on digital libraries and associated technical, practical, and social

issues . . .

Four hundred attendees are expected for the five days of events including a day of cut-

ting edge tutorials; 3 days of papers, panels, and keynotes; and a day of research

workshops.

OK—let’s piece together a curl invocation that will create a new event in
Upcoming.yahoo.com. Here is a Python program to generate the curl command:

import urllib

parameters for creating the upcoming event
method = 'event.add'
api_key = '[API-KEY]'
token = '[TOKEN]'
name = 'Joint Conference on Digital Libraries (JCDL) 2008'
venue_id = '56189'
category_id = '5' #education
start_date = '2008-06-15'
end_date = '2008-06-20'
description = """
[DESCRIPTION]
"""
url = 'http://www.jcdl2008.org/'
params = {'api_key': api_key, 'method':method, 'token':token, 'name':name, ➥

'venue_id':venue_id, 'category_id': category_id, ➥

'start_date':start_date, 'end_date':end_date, 'description': description, ➥

'url': url}

command = 'curl -v -X POST -d "%s" %s' % (urllib.urlencode(params), "http://upcoming.➥

yahooapis.com/services/rest/")
print command

The resulting curl command is as follows:

curl -v -X POST -d "venue_id=56189&name=Joint+Conference+on+Digital+Libraries+➥

%28JCDL%29+2008&end_date=2008-06-20&url=http%3A%2F%2Fwww.jcdl2008.org%2F&description➥

{description}&start_date=2008-06-15&token=[TOKEN]&api_key=[API-KEY]&method=event.add➥

&category_id=5" http://upcoming.yahooapis.com/services/rest/
Remember that [TOKEN] is the authentication token received from the auth.getToken call

issued earlier. The resulting event in Upcoming.yahoo.com is as follows:

http://upcoming.yahoo.com/event/300826/

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS450

858X_ch15.qxd 2/4/08 3:26 PM Page 450

API Kits for Upcoming.yahoo.com
To find API kits for Upcoming.yahoo.com, you can start with the links here:

http://upcoming.yahoo.com/help/w/Language-specific_Libraries

Although there does not seem to be any publicly available PHP kits at this point, you can
find one for Python here:

http://code.google.com/p/upcoming-python-api/

Since this project currently has no downloads, you get the source via Subversion:

svn checkout http://upcoming-python-api.googlecode.com/svn/trunk/ upcoming-python-api

The following code searches for events with the Bach keyword that are within five miles of
Berkeley, California:

UPCOMING_API_KEY = '[UPCOMING_API_KEY]'

#from upcoming_api import Upcoming
from upcoming_api import UpcomingCached
import string

#upcoming = Upcoming(UPCOMING_API_KEY)

upcoming = UpcomingCached(UPCOMING_API_KEY)
bach_events = upcoming.event.search(search_text='Bach', location="Berkeley, CA")
print "There are %s events." % (len(bach_events))
for event in bach_events:

print "%s\t%s\t%s" % (event['id'], event['name'], event['description']),

v = upcoming.venue.getInfo(venue_id=event['venue_id'])
print "%s\t%s\t%s\t%s" % (v[0]['name'], v[0]['address'], v[0]['city'], ➥

v[0]['zip']),

metro_id are ;-delimited list. Sometimes the metro list is empty....
try:

m_ids = string.split(event['metro_id'],";")
deal with only the first metro on the list

m = upcoming.metro.getInfo(metro_id=m_ids[0])
print 'metro name: ', m[0]['name']

except:
print "no metro name"

Here is an additional line of Python to add an event to Upcoming.yahoo.com:

new_event = upcoming.event.add(token=token,name=name,venue_id=venue_id, \
category_id=category_id, start_date=start_date,end_date=end_date, \

description=description)

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 451

858X_ch15.qxd 2/4/08 3:26 PM Page 451

■Caution As of this writing, I had to update upcoming_api.py to make sure UPCOMING_API is set to
http://upcoming.yahooapis.com/services/rest/.

Eventful.com
Eventful.com is another event aggregator that has an API. You can find the web site here:

http://eventful.com/

Its API is documented is here:

http://api.eventful.com/

The list of methods in the API is here:

http://api.eventful.com/docs/

To use the API, you need to request a key from here:

http://api.eventful.com/keys/

The base URL for RESTful calls is here:

http://api.evdb.com/rest/{path for methods}

For example:

http://api.evdb.com/rest/events/search

Searching for Events (Using Feeds)
Before we jump into the API, let’s see how to look at the URL language to search for events in
the user interface and to return feeds. You can search for Bach events within five miles of
Berkeley, California, with this:

http://eventful.com/events?page_size=50&sort_order=Date&within=5&units=mi&q=bach&l=➥

berkeley%2C+ca&t=Future&c=

You can get these results as an RSS 2.0 feed:

http://eventful.com/rss/events/?page_size=50&sort_order=Date&within=5&units=mi&q=➥

bach&l=berkeley%2C+ca&t=Future&c=

or as an Atom 1.0 feed:

http://eventful.com/atom/events/?page_size=50&sort_order=Date&within=5&units=mi&q=➥

bach&l=berkeley%2C+ca&t=Future&c=

You can change this Atom feed into KML using Yahoo! Pipes the way we did so for
Upcoming.yahoo.com. The Eventful.com feeds have latitude/longitude information embed-
ded (specifically, in the GeoRSS GML encoding). For example:

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS452

858X_ch15.qxd 2/4/08 3:26 PM Page 452

<georss:where>
<gml:Point>
<gml:pos>37.72084 -122.476619</gml:pos>

</gml:Point>
</georss:where>

You can run Yahoo! Pipes here:

http://pipes.yahoo.com/pipes/pipe.info?_id=lJPPcvWA3BGvrWbY6kjTQA

to generate a KML feed for Bach-related events in the Berkeley area:

http://pipes.yahoo.com/pipes/pipe.run?_id=lJPPcvWA3BGvrWbY6kjTQA&_render=kml&l=➥

Berkeley%2C+CA&page_size=50&q=Bach&t=Future&units=mi&within=5

Searching for Events (Using the API)
Let’s first get an XML response from the /events/search method, which is documented here:

http://api.eventful.com/docs/events/search
http://api.eventful.com/rest/events/search?app_key={api-key}&keywords=Bach&location=➥

Berkeley%2C%20CA&within=5&units=5&page_size=50

to which you get event elements like this:

<event id="E0-001-005962514-3">
<title>SF State Recital by Roger Woodward, piano faculty</title>
<description> Details:
Program: J.S. Bach: Well-➥

Tempered Clavier, Book I </description>
<start_time>2007-10-23 20:00:00</start_time>
<stop_time/>
<tz_id/>
<tz_olson_path/>
<tz_country/>
<tz_city/>
<venue_id>V0-001-000550476-8</venue_id>
<venue_name>San Francisco State University</venue_name>
<venue_display>1</venue_display>
<venue_address>1600 Holloway Avenue</venue_address>
<city_name>San Francisco</city_name>
<region_name>California</region_name>
<region_abbr>CA</region_abbr>
<postal_code>94132</postal_code>
<country_name>United States</country_name>
<country_abbr2>US</country_abbr2>
<country_abbr>USA</country_abbr>
<latitude>37.72084</latitude>
<longitude>-122.476619</longitude>
<geocode_type>EVDB Geocoder</geocode_type>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 453

858X_ch15.qxd 2/4/08 3:26 PM Page 453

<all_day>0</all_day>
<recur_string/>
<trackback_count>0</trackback_count>
<calendar_count>0</calendar_count>
<comment_count>0</comment_count>
<link_count>1</link_count>
<going_count>0</going_count>
<watching_count>0</watching_count>
<created>2007-09-02 00:19:50</created>
<owner>evdb</owner>
<modified>2007-09-02 04:07:16</modified>
<performers/>
<image/>
<privacy>1</privacy>
<calendars/>
<groups/>
<going/>

</event>

Interestingly enough, we can also get iCalendar and RSS directly from the API. To get
iCalendar, you use the /events/ical method documented here:

http://api.eventful.com/docs/events/ical

To get the Bach keyword–related events within five miles of Berkeley as an iCalendar feed,
use this:

http://api.eventful.com/rest/events/ical?app_key={api-key}&keywords=Bach&location=➥

Berkeley%2C%20CA&within=5&units=5&page_size=50

You can also change http to webcal and feed it to Google Calendar.

PHP API Kit for Eventful.com
You can find a list of API kits for Eventful.com here:

http://api.eventful.com/

For PHP, there are two choices. One is Services_Eventful, which we won’t cover here, and
the other is Services_EVDB (which seems to be compatible with PHP 4 and 5). You can find the
code here:

http://api.eventful.com/libs/Services_EVDB

Let’s say you want to extract this:

http://eventful.com/events/categories/technology?l=Berkeley%2C%20California%2C%20USA

The corresponding REST call is as follows:

http://api.evdb.com/rest/events/search?category=technology&location=Berkeley%2C%20➥

California%2C%20USA&within=25&page_size=5&app_key={api-key}

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS454

858X_ch15.qxd 2/4/08 3:26 PM Page 454

Note that the default is a 25-mile radius of the location. This shows how you can do this
with the Services_EVDB PHP API kit:

<?php
// http://api.eventful.com/libs/Services_EVDB

ini_set(
'include_path',
ini_get('include_path') . PATH_SEPARATOR . "/home/rdhyee/pear/lib/php" .

PATH_SEPARATOR . '/usr/local/lib/php'
);

require 'Services/EVDB.php';

// Enter your application key here. (See http://api.evdb.com/keys/)
$app_key = '[APP_KEY]';

$evdb = &new Services_EVDB($app_key);

// Authentication is required for some API methods.
$user = $_REQUEST['user'];
$password = $_REQUEST['password'];

if ($user and $password)
{
$l = $evdb->login($user, $password);

if (PEAR::isError($l))
{

print("Can't log in: " . $l->getMessage() . "\n");
}

}

// All method calls other than login() go through call().
$args = array(
'id' => $_REQUEST['id'],

);
$event = $evdb->call('events/get', $args);

if (PEAR::isError($event))
{

print("An error occurred: " . $event->getMessage() . "\n");
print_r($evdb);

}

// The return value from a call is an XML_Unserializer data structure.
print_r($event);
?>

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 455

858X_ch15.qxd 2/4/08 3:26 PM Page 455

To see this code in action on Eventful.com, the event number is E0-001-004433237-3:26

http://examples.mashupguide.net/ch15/evdb1.php?id=E0-001-004433237-3

Python API Kit for Eventful.com
You can find the documentation for eventfulpy here:

http://api.eventful.com/libs/python/

As of writing, the latest version is as follows:

http://api.eventful.com/libs/python/eventfulpy-0.3.tar.gz

See “Installing simplejson and httplib2 on Windows Python” in case you run into problems
installing the dependencies for eventfulpy.

INSTALLING SIMPLEJSON AND HTTPLIB2 ON WINDOWS PYTHON

eventfulpy depends on two other libraries: simplejson (http://undefined.org/python/
#simple_json) and httplib2 (http://bitworking.org/projects/httplib2/). When I installed
simplesjon for Python 2.5 for Windows, I needed to do the following (I’m using the default directory for
Python 2.5 on Windows: C:\Python25):

1. Install setuptools (http://pypi.python.org/pypi/setuptools). The easiest way is to run
the .exe installer (for example, setuptools-0.6c7.win32-py2.5.exe).

2. Use Subversion svn to check out simplejson from http://svn.red-bean.com/bob/
simplejson/trunk/.

3. I installed mingw32 (http://www.mingw.org/) because I didn’t have Visual Studio installed.

4. Build the simplejson library with the following command:

c:\python25\python.exe setup.py build -c mingw32 --force

5. Install the library by copying the resulting build\lib.win32-2.5\simplejson to C:\Python25\
Lib\site-packages (I manually copied the directory because I could not find a way to coax the
standard installation command (c:\python25\python.exe setup.py install) into working.

You can find an alternative approach here:

http://maurus.net/weblog/2007/10/02/simplejson-17x-activestate-python-➥

and-the-visual-studio-2003-compiler/

I found installing httplib2 to be more straightforward. For instance, you can download the latest dis-
tribution from http://code.google.com/p/httplib2/downloads/list and run c:\python25\
python.exe setup.py install.

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS456

26. http://eventful.com/events/E0-001-004433237-3

858X_ch15.qxd 2/4/08 3:26 PM Page 456

The following code shows how to query for events and list the results:

import eventful

api = eventful.API('[API-KEY]')

If you need to log in:
api.login('[USER]','[PASSWORD]')

events = api.call('/events/search', q='Bach', l='Berkeley, CA', within='5', \
units='mi', time='future', page_size=50)
for event in events['events']['event']:

print "%s at %s" % (event['title'], event['venue_name'])

Let’s now write JCDL 2008 to Eventful.com. Note that like Upcoming.yahoo.com, Event-
ful.com also uses IDs for venues. The following code has a venue_search method to help locate
venues and their corresponding IDs:

parameters for creating the upcoming event -- now I want to write it to eventful

name = 'Joint Conference on Digital Libraries (JCDL) 2008'
start_date = '2008-06-15'
end_date = '2008-06-20'
description = """
[DESCRIPTION]
"""
url = 'http://www.jcdl2008.org/'

def venue_search(keywords,location):
"""
print out possibilities...
"""
import eventful

api = eventful.API('[API-KEY]')
api.login('[USER]','[PASSWORD]')
vs = api.call('/venues/search', keywords = keywords, location=location)
for v in vs['venues']['venue']:

print "%s\t%s\t%s" % (v['id'], v['name'], v['address'])

import eventful

api = eventful.API('[API-KEY]')
api.login('[USER]','[PASSWORD]')

#http://api.eventful.com/docs/events/new
tz_olsen_path = 'America/New_York'
all_day = '1'
privacy = 1

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 457

858X_ch15.qxd 2/4/08 3:26 PM Page 457

tags = ''
free = 0

this is the eventful venue_id for the hotel.
eventful_venue_id = 'V0-001-000412401-5'

ev = api.call('/events/new', title=name, start_time=start_date, \
stop_time=end_date, tz_olsen_path=tz_olsen_path, all_day=all_day, \
description=description, privacy=privacy, venue_id=eventful_venue_id)

import pprint
pprint(ev)

With success, you get back an ID for the event (http://eventful.com/events/E0-001-
006801918-6):

{u'id': u'E0-001-006801918-6',
u'message': u'Add event complete',
u'status': u'ok'}

Programming with iCalendar
Since iCalendar is an important data format, it’s worth looking a bit more at how to manipu-
late it in PHP and Python.

■Note The hCalendar microformat is designed to express the same information as iCalendar but in a form
that is embeddable in HTML and RSS. See Chapter 18 on microformats for how to use and create hCalendar.

Python and iCalendar
A good Python module to use is iCalendar:

http://codespeak.net/icalendar/

As of this writing, the latest version is 1.2. You download this code here:

http://codespeak.net/icalendar/iCalendar-1.2.tgz

To run a basic test of iCalendar interoperability, I created an event on Apple iCal and
e-mailed it to myself. On my notebook, the filename is as follows:

D:\Document\Docs\2007\05\iCal-20070508-082112.ics

What’s actually in the file?

BEGIN:VCALENDAR
VERSION:2.0
X-WR-CALNAME:open house at the Academy

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS458

858X_ch15.qxd 2/4/08 3:26 PM Page 458

PRODID:-//Apple Computer\, Inc//iCal 2.0//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZONE
TZID:US/Pacific
LAST-MODIFIED:20070508T152112Z
BEGIN:DAYLIGHT
DTSTART:20070311T100000
TZOFFSETTO:-0700
TZOFFSETFROM:+0000
TZNAME:PDT
END:DAYLIGHT
BEGIN:STANDARD
DTSTART:20071104T020000
TZOFFSETTO:-0800
TZOFFSETFROM:-0700
TZNAME:PST
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=US/Pacific:20070510T190000
DTEND;TZID=US/Pacific:20070510T200000
SUMMARY:open house at the Academy
UID:AAE603F6-A5A1-4E11-91CF-E6B06649A756
ORGANIZER;CN="Raymond Yee":mailto:rdhyee@yahoo.com
SEQUENCE:6
DTSTAMP:20070508T152047Z
END:VEVENT
END:VCALENDAR

Now, I want to read it in using Python. Let’s also consult the documentation to build a
simple example:27

from icalendar import Calendar
fname = r'D:\Document\Docs\2007\05\iCal-20070508-082112.ics'
cal = Calendar.from_string(open(fname,'rb').read())
ev0 = cal.walk('vevent')[0]
print ev0.keys()
print "summary: ", str(ev0['SUMMARY'])
print "start:", str(ev0['DTSTART'])
ev0['DTSTART'] is datetime.date() object
print "end:", str(ev0['DTEND'])

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 459

27. http://codespeak.net/icalendar/, http://codespeak.net/icalendar/example.html, http://codespeak.
net/icalendar/small.html, and http://codespeak.net/icalendar/groupscheduled.html

858X_ch15.qxd 2/4/08 3:26 PM Page 459

If you run it, you get this:

['DTSTAMP', 'UID', 'SEQUENCE', 'SUMMARY', 'DTEND', 'DTSTART', 'ORGANIZER']
summary: open house at the Academy
start: 20070510T190000
end: 20070510T200000

Another Python iCalendar library is vobject:

http://vobject.skyhouseconsulting.com/usage.html

The following code shows how to use vobject to parse the same iCalendar file:

import vobject
fname = r'D:\Document\Docs\2007\05\iCal-20070508-082112.ics'
cal = vobject.readOne(open(fname,'rb').read())
event = cal.vevent
print event.sortChildKeys()
print "summary: ", event.getChildValue('summary')
print "start:", str(event.getChildValue('dtstart'))
event.getChildValue('dtstart') is datetime.date() object
print "end:", str(event.getChildValue('dtend'))

PHP and iCalendar
You can download iCalcreator, a PHP library for parsing and creating iCalendar files, here:

http://www.kigkonsult.se/iCalcreator/index.php

The module is documented here:

http://www.kigkonsult.se/iCalcreator/docs/using.html

Here is some code using iCalcreator to read and parse the same iCalendar file from the
previous section:

<?php

require_once 'iCalcreator/iCalcreator.class.php';

$filename = 'D:\Document\Docs\2007\05\iCal-20070508-082112.ics';

$v = new vcalendar(); // initiate new CALENDAR
$v->parse($filename);

get first vevent
$comp = $v->getComponent("VEVENT");

#print_r($comp);
$summary_array = $comp->getProperty("summary", 1, TRUE);
echo "summary: ", $summary_array["value"], "\n";

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS460

858X_ch15.qxd 2/4/08 3:26 PM Page 460

$dtstart_array = $comp->getProperty("dtstart", 1, TRUE);
$dtstart = $dtstart_array["value"];
$startDate = "{$dtstart["year"]}-{$dtstart["month"]}-{$dtstart["day"]}";
$startTime = "{$dtstart["hour"]}:{$dtstart["min"]}:{$dtstart["sec"]}";

$dtend_array = $comp->getProperty("dtend", 1, TRUE);
$dtend = $dtend_array["value"];
$endDate = "{$dtend["year"]}-{$dtend["month"]}-{$dtend["day"]}";
$endTime = "{$dtend["hour"]}:{$dtend["min"]}:{$dtend["sec"]}";

echo "start: ", $startDate,"T",$startTime, "\n";
echo "end: ", $endDate,"T",$endTime, "\n";

?>

The output of the code is as follows:

summary: open house at the Academy
start: 2007-05-10T19:00:00
end: 2007-05-10T20:00:00

I will use iCalcreator in the following section to convert iCalendar feeds into Google cal-
endar entries.

Exporting an Events Calendar to iCalendar and
Google Calendar
In this section, I’ll show you how to use what you’ve learned so far to solve a specific problem.
After you have used event aggregators such as Upcoming.yahoo.com and Eventful.com, you’ll
get used to the idea of having a single (or at least a small number) of places to see all your
events. iCalendar-savvy calendars (such as Google Calendar, Apple iCal, and Microsoft Out-
look 2007) have also become unifying interfaces by letting you subscribe to iCalendar feeds
containing events that might be of interest to you. As extensive as Upcoming.yahoo.com,
Eventful.com, and Google Calendar (which has been a marketplace of events by letting users
author publicly available calendars) might be, there are still many sources of events that are
not covered by such services. This section teaches you how to turn event-related information
toward destinations where you might like to see them.

Specifically, I will work through the following example: converting events listed under the
Critic’s Choice section of UC Berkeley’s online event calendar (http://events.berkeley.edu)
into two different formats:

• An iCalendar feed

• A Google calendar

I use this example to demonstrate how to use Python and PHP libraries to parse and write
iCalendar feeds and to write to a Google calendar. I’ve chosen the UC Berkeley event calendar
because it already has calendaring information in a structured form (XML and iCalendar), but

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 461

858X_ch15.qxd 2/4/08 3:26 PM Page 461

as of the time of writing, it’s not quite in the configuration that I create here. You can generalize
this example to the event calendars that you might be interested in, some with more structured
information than others. Moreover, instead of writing to Google Calendar, you can use the
techniques I showed earlier in the chapter to write the events to Upcoming.yahoo.com or
Eventful.com.

The Source: UC Berkeley Event Calendars
The Critic’s Choice section of the UC Berkeley event calendar highlights some of the many events
that happen on the campus:

http://events.berkeley.edu/

As documented here:

http://events.berkeley.edu/documentation/user/rss.html

the calendar provides feeds in three formats: RSS 2.0, a live_export XML format, and iCalen-
dar. Of particular interest is that every event in the calendar, which is referenced by an event
ID (for example, 3950), is accessible in a number of representations:

• As HTML:

http://events.berkeley.edu/?event_ID={event_ID}

• As RSS 2.0:

http://events.berkeley.edu/index.php/rss/sn/pubaff/?event_ID={event_ID}

• As iCalendar:

http://events.berkeley.edu/index.php/ical/event_ID/{event_ID}/.ics

• As live_export XML:
http://events.berkeley.edu/index.php/live_export/sn/pubaff/?event_ID={event_ID}

You can get feeds for many parts of the event calendar (including feeds for events for
today, this week, or this month), but there is currently no Critic’s Choice iCalendar feed. Hav-
ing such a feed would enable one to track Critic’s Choice events in Google Calendar or Apple
iCal. The Critic’s Choice is, however, available as an RSS 2.0 feed here:

http://events.berkeley.edu/index.php/critics_choice_rss.html

The following two sections show you how to extract the event ID for each of the events
listed as part of Critic’s Choice, read the iCalendar instance for an event to create a synthe-
sized iCalendar feed, and write those events to Google Calendar.

Creating an iCalendar Feed of Critic’s Choice Using Python
The following code, written in Python, knits together the iCalendar entries for each of the
Critic’s Choice events into a single iCalendar feed through the following steps:

1. Parsing the list event_ID from here:

http://events.berkeley.edu/index.php/critics_choice_rss.html

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS462

858X_ch15.qxd 2/4/08 3:26 PM Page 462

2. Reading the individual iCalendar entries and adding it to the one for the Critic’s Choice

Note that this code treats iCalendar essentially as a black box. In the next section, we’ll
parse data from iCalendar and rewrite it in a format demanded of Google Calendar:

"""
generate iCalendar feed out of the UC Berkeley events calendar
"""

import sys
try:

from xml.etree import ElementTree
except:

from elementtree import ElementTree

import httplib2
client = httplib2.Http(".cache")

import vobject

a function to get individual iCalendar feeds for each event.
http://events.berkeley.edu/index.php/ical/event_ID/3950/.ics

def retrieve_ical(event_id):
ical_url = "http://events.berkeley.edu/index.php/ical/event_ID/%s/.ics" % (event_id)
response, body = client.request(ical_url)
return body

read the RSS 2.0 feed for the Critic's Choice

from elementtree import ElementTree

cc_RSS = "http://events.berkeley.edu/index.php/critics_choice_rss.html"
response, xml = client.request(cc_RSS)
doc = ElementTree.fromstring(xml)

from pprint import pprint
import urlparse

create a blank iCalendar
ical = vobject.iCalendar()

for item in doc.findall('.//item'):
extract the anchor to get the elementID
http://events.berkeley.edu/index.php/critics_choice.html#2875
ev_url = item.find('link').text
grab the anchor of the URL, which is the event_ID

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 463

858X_ch15.qxd 2/4/08 3:26 PM Page 463

event_id = urlparse.urlparse(ev_url)[5]
print event_id
s = retrieve_ical(event_id)
try:

ev0 = vobject.readOne(s).vevent
ical.add(ev0)

except:
print "problem in generating iCalendar for event # %s " % (event_id)

ical_fname = r'D:\Document\PersonalInfoRemixBook\examples\ch15\critics_choice.ics'
f = open(ical_fname, "wb")
f.write(ical.serialize())
f.close()

upload my feed to the server
http://examples.mashupguide.net/ch15/critics_choice.ics

import os
os.popen('scp2 critics_choice.ics ➥

"rdhyee@pepsi.dreamhost.com:/home/rdhyee/examples.mashupguide.net/ch15')

By automatically running this script every day, whenever the RSS for the Critic’s Choice is
regenerated, the resulting iCalendar feed will be kept up-to-date:

http://examples.mashupguide.net/ch15/critics_choice.ics

Writing the Events to Google Calendar
In this section, instead of generating an iCalendar feed directly, I will instead write the events
to Google Calendar using the PHP Zend Calendar API library. I created a new calendar for this
purpose, whose user ID is as follows:

n7irauk3nns30fuku1anh43j5s@group.calendar.google.com

Hence, the public calendar is viewable here:

http://www.google.com/calendar/embed?src=n7irauk3nns30fuku1anh43j5s@group.calendar.➥

google.com

The following code loops through the events listed in the Critic’s Choice RSS feed, extracts
all the corresponding iCalendar entries, and then writes those events to the Google Calendar.
The code first clears out the old events in the calendar before writing new events.

Perhaps the trickiest part of this code is handling recurring events. The relevant documen-
tation in the Google Calendar API on recurring events includes the following:

• http://code.google.com/apis/calendar/developers_guide_php.html#Creating➥

Recurring

• http://code.google.com/apis/gdata/elements.html#gdRecurrence

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS464

858X_ch15.qxd 2/4/08 3:26 PM Page 464

The Google Calendar API expresses recurrence using the syntax and data model of recur-
ring events in iCalendar, which you can learn about in the following sections of the iCalendar
specification (section 4.3.10 on RECUR, section 4.8.5.1 on EXDATE [exception dates/times],
and section 4.8.5.4 on the Recurrence Rule):

• http://www.w3.org/2002/12/cal/rfc2445#sec4.3.10

• http://www.w3.org/2002/12/cal/rfc2445#sec4.8.5.1

• http://www.w3.org/2002/12/cal/rfc2445#sec4.8.5.4

More to the point, the following code captures information about recurring events by
using regular expressions to extract occurrences of the DTSTART, DTEND, RRULE, RDATE, EXDATE,
and EXRULE statements to pass to the Google Calendar API as recurrence data. (Remember to
substitute your own Google username and password and the user ID for a Google Calendar
for which you have write permission.)

<?php

/*
*
* ucb_critics_gcal.php
*/

require_once 'Zend/Loader.php';
Zend_Loader::loadClass('Zend_Gdata');
Zend_Loader::loadClass('Zend_Gdata_ClientLogin');
Zend_Loader::loadClass('Zend_Gdata_Calendar');

require_once 'iCalcreator/iCalcreator.class.php';

function getResource($url){
$chandle = curl_init();
curl_setopt($chandle, CURLOPT_URL, $url);
curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
$result = curl_exec($chandle);
curl_close($chandle);

return $result;
}

// UCB events calendar

gets all relevant rules for the first VEVENT in $ical_string
function extract_recurrence($ical_string) {

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 465

858X_ch15.qxd 2/4/08 3:26 PM Page 465

$vevent_rawstr = "/(?ims)BEGIN:VEVENT(.*)END:VEVENT/";
preg_match($vevent_rawstr, $ical_string, $matches);

$vevent_str = $matches[1];

now look for DTSTART, DTEND, RRULE, RDATE, EXDATE, and EXRULE

$rep_tags = array('DTSTART', 'DTEND', 'RRULE', 'RDATE', 'EXDATE', 'EXRULE');

$recur_list = array();

foreach ($rep_tags as $rep) {

$rep_regexp = "/({$rep}(.*))/i";
if (preg_match_all($rep_regexp, $vevent_str, $rmatches)) {
foreach ($rmatches[0] as $match) {

$recur_list[]= $match;
}

}

} //foreach $rep

return implode($recur_list,"\r\n");

}

function parse_UCB_Event($event_id) {

$ical_url = "http://events.berkeley.edu/index.php/ical/event_ID/{$event_id}/.ics";
$rsp = getResource($ical_url);

write out the file
$tempfile = "temp.ics";
$fh = fopen($tempfile,"wb");
$numbytes = fwrite($fh, $rsp);
fclose($fh);

$v = new vcalendar(); // initiate new CALENDAR
$v->parse($tempfile);

how to get to the prelude to the vevent? (timezone)

#echo $v->getProperty("prodid");

get first vevent
$comp = $v->getComponent("VEVENT");

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS466

858X_ch15.qxd 2/4/08 3:26 PM Page 466

#print_r($comp);

$event = array();

$event["summary"] = $comp->getProperty("summary");
$event["description"] = $comp->getProperty("description");

optional -- but once and only once if these elements are here:
dtstart, description,summary, url

$dtstart = $comp->getProperty("dtstart", 1, TRUE);
$event["dtstart"] = $dtstart;

assume that dtend is used and not duration

$event["dtend"] = $comp->getProperty("dtend", 1, TRUE);

$event["location"] = $comp->getProperty("location");
$event["url"] = $comp->getProperty("url");

check for recurrence -- RRULE, RDATE, EXDATE, EXRULE

$recurrence = extract_recurrence($rsp);

$event_data = array();
$event_data['event'] = $event;
$event_data['recurrence'] = $recurrence;
return $event_data;

} // parse_calendar

function extract_eventIDs($xml)
{

$ev_list = array();

foreach ($xml->channel->item as $item) {

$link = $item->link;
$k = parse_url($link);
$ev_list[] = $k['fragment'];

}
return $ev_list;
}

// Google Calendar facade

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 467

858X_ch15.qxd 2/4/08 3:26 PM Page 467

function getClientLoginHttpClient($user, $pass)
{
$service = Zend_Gdata_Calendar::AUTH_SERVICE_NAME;

$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
return $client;

}

// code adapted from the Google documentation
// this posts to the DEFAULT calendar -- how do I change to post elsewhere?

function createGCalEvent ($client, $title, $desc, $where, $startDate = '2008-01-20',
$startTime = '10:00:00',
$endDate = '2008-01-20', $endTime = '11:00:00', $tzOffset = '-08',
$recurrence=null, $calendar_uri=null)

{
$gdataCal = new Zend_Gdata_Calendar($client);
$newEvent = $gdataCal->newEventEntry();

$newEvent->title = $gdataCal->newTitle($title);
$newEvent->where = array($gdataCal->newWhere($where));
$newEvent->content = $gdataCal->newContent("$desc");

if $recurrence is not null then set recurrence -- else set the start and enddate:

if ($recurrence) {
$newEvent->recurrence = $gdataCal->newRecurrence($recurrence);

} else {
$when = $gdataCal->newWhen();
$when->startTime = "{$startDate}T{$startTime}{$tzOffset}:00";
$when->endTime = "{$endDate}T{$endTime}{$tzOffset}:00";
$newEvent->when = array($when);

} //if recurrence

// Upload the event to the calendar server
// A copy of the event as it is recorded on the server is returned

$createdEvent = $gdataCal->insertEvent($newEvent,$calendar_uri);
return $createdEvent;

}

function listEventsForCalendar($client,$calendar_uri=null) {

$gdataCal = new Zend_Gdata_Calendar($client);

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS468

858X_ch15.qxd 2/4/08 3:26 PM Page 468

$eventFeed = $gdataCal->getCalendarEventFeed($calendar_uri);
foreach ($eventFeed as $event) {
echo $event->title->text, "\t", $event->id->text, "\n";
foreach ($event->when as $when) {
echo "Starts: " . $when->startTime . "\n";

}
}
echo "\n";

}

function clearAllEventsForCalendar($client, $calendar_uri=null) {

$gdataCal = new Zend_Gdata_Calendar($client);

$eventFeed = $gdataCal->getCalendarEventFeed($calendar_uri);
foreach ($eventFeed as $event) {
$event->delete();

}

}

// bridge between UCB events calendar and GCal

function postUCBEventToGCal($client,$event_id, $calendar_uri=null) {

$event_data = parse_UCB_Event($event_id);

$event = $event_data['event'];
$recurrence = $event_data['recurrence'];

#print_r($event);
#echo $recurrence;

$title = $event["summary"];
$description = $event["description"];
$where = $event["location"];

there is a possible parameter that might have TZ info. Ignore for now.
$dtstart = $event["dtstart"]["value"];
$startDate = "{$dtstart["year"]}-{$dtstart["month"]}-{$dtstart["day"]}";
$startTime = "{$dtstart["hour"]}:{$dtstart["min"]}:{$dtstart["sec"]}";

there is a possible parameter that might have TZ info. Ignore for now.
$dtend = $event["dtend"]["value"];
$endDate = "{$dtend["year"]}-{$dtend["month"]}-{$dtend["day"]}";
$endTime = "{$dtend["hour"]}:{$dtend["min"]}:{$dtend["sec"]}";

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 469

858X_ch15.qxd 2/4/08 3:26 PM Page 469

explicitly set for now instead of calculating.
$tzOffset = '-07';

I might want to do something with the url
$description .= "\n" . $event["url"];

echo "Event: ", $title,$description, $where, $startDate, $startTime, $endDate,
$endTime, $tzOffset, $recurrence, "\n";

$new_event = createGCalEvent($client,$title,$description, $where, $startDate,
$startTime, $endDate, $endTime, $tzOffset,$recurrence, $calendar_uri);

}

credentials for Google calendar

$USER = "[USER]";
$PASSWORD = "[PASSWORD]";

the calendar to write to has a userID of
n7irauk3nns30fuku1anh43j5s@group.calendar.google.com
substitute the userID of your own calendar
$userID = urlencode("[USERID]");
$calendar_uri = "http://www.google.com/calendar/feeds/{$userID}/private/full";

$client = getClientLoginHttpClient($USER, $PASSWORD);

get UCB events list

$cc_RSS = "http://events.berkeley.edu/index.php/critics_choice_rss.html";
$rsp = getResource($cc_RSS);

for now, read the cached file
#$fname = "D:\Document\PersonalInfoRemixBook\examples\ch15\cc_RSS.xml";
#$fh = fopen($fname, "r");

#$rsp = fread($fh, filesize($fname));
#fclose($fh);

$xml = simplexml_load_string($rsp);
$ev_list = extract_eventIDs($xml);

echo "list of events to add:";
print_r($ev_list);

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS470

858X_ch15.qxd 2/4/08 3:26 PM Page 470

loop through events list

limit the number of events to do
$maxevent = 200;
$count = 0;

clear the existing calendar

echo "Deleting existing events....";
clearAllEventsForCalendar($client,$calendar_uri);

Add the events
foreach ($ev_list as $event_id) {

$count +=1;
if ($count > $maxevent) {
break;

}
echo "Adding event: {$event_id}", "\n";
postUCBEventToGCal($client,$event_id,$calendar_uri);

}

list the events on the calendar
listEventsForCalendar($client,$calendar_uri);
?>

Summary
Here are some of things you learned in this chapter:

• You spent a considerable amount of time studying Google Calendar because of its
sophisticated API and use of feeds including Atom feeds and iCalendar.

• You learned how to access and manipulate the feeds in Google Calendar, either by
directly issuing the relevant RESTful HTTP requests with curl or by using the PHP
and Python API kits.

• You took a quick look at 30boxes.com as another example of a web-based calendar
with an API.

• You then studied how to consume feeds and exercise the APIs of two event aggregators:
Upcoming.yahoo.com and Eventful.com.

• You studied how to program with iCalendar in PHP and Python.

• Finally, you learned how to synthesize an iCalendar feed from other iCalendar entries
and how to write iCalendar information to a Google Calendar.

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS 471

858X_ch15.qxd 2/4/08 3:26 PM Page 471

These are some key points to note:

• Online calendars are becoming more popular; they are especially useful when they
have APIs and feeds to help with data integration.

• Event aggregators are interesting complements in this space to the online calendars.

• iCalendar is an important data exchange standard. There are variant forms that play off
of it: hCalendar and parts of the Google Atom format for calendars.

CHAPTER 15 ■ ACCESSING ONLINE CALENDARS AND EVENT AGGREGATORS472

858X_ch15.qxd 2/4/08 3:26 PM Page 472

Using Online Storage Services

Amazon S3 and comparable services are intriguing players to recently enter the world of
online storage. As we produce more digital content to share, we often need to store that con-
tent in a place accessible to others. Moreover, if you are building a service for others to use and
need to have access to lots of storage, it’s valuable to be able to scale that storage up quickly
without lots of upfront capital investment in storage hardware.

Amazon S3 is the poster child in the arena of online storage—and hence is the primary
focus of this chapter. I will also cover some other web sites that have similar offerings but with
important twists. For instance, some of these services are meant to be used as backup services
and not really for serving up digital objects for web applications.

Some of the online storage services have APIs, which makes them highly mashable. They
include the following:

• Amazon S3 (http://aws.amazon.com/s3)

• Box.net (http://box.net/) with its API1

• MediaMax (http://www.mediamax.com/) with its API2

• Omnidrive (http://www.omnidrive.com/) and its API3

This chapter shows the basics of using the most well known of the online storage services:
Amazon S3.

Introducing Amazon S3
Amazon S3 (the S3 stands for Simple Storage Service) is described in the following way:4

Amazon S3 provides a simple web services interface that can be used to store and

retrieve any amount of data, at any time, from anywhere on the Web. It gives any devel-

oper access to the same highly scalable, reliable, fast, inexpensive data storage

infrastructure that Amazon uses to run its own global network of web sites.

473

C H A P T E R 1 6

■ ■ ■

1. http://enabled.box.net/

2. http://www.mediamax.com/webservices/

3. http://dev.omnidrive.com/HomePage

4. http://aws.amazon.com/s3, which redirects to http://www.amazon.com/gp/browse.html?node=16427261

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 473

There is no direct user interface for S3; it is meant as a technical infrastructure upon which
developers can build services. The only interface to S3 provided by Amazon.com is a web services
API. You can access S3 through its REST or SOAP interface directly or via third-party language-
specific API kits that use the REST or SOAP interface. Using the API kits generally makes accessing
S3 easier, provided they are well documented and cover the parts of the API that you care about.
Sometimes they do not shield you from all the subtleties of the underlying API. For instance, to
use the SOAP/WSDL interface to S3, you need to understand how to sign your calls, a topic I will
cover briefly in this chapter.

In the following sections, I will guide you through how to get started with Amazon S3, out-
lining how to use the API and referring you to the API’s detailed documentation as appropriate.

Rationale for S3
Why use Amazon S3? Here are some arguments for using S3:

• S3 is potentially cheaper than the alternative solutions. For instance, Don MacAskill, of
SmugMug, a photo-hosting service akin to Flickr, estimated that SmugMug saved about
$692,000 in 2006 by using S3 instead of buying and maintaining the equivalent amount
of storage.5 (Note that the comparisons might have changed with Amazon.com’s new
pricing model.6)

• S3 promises high scalability, both in volume and in the rate of change of storage needs.
You “pay as you go” and pay for what you use. That means you don’t have to invest up
front in buying the maximum amount of storage you think you will need. The utility
model lowers the barrier of entry to the level that a relatively poor individual can afford
to create a Web 2.0 application.

• Robustness is part of the picture since Amazon.com claims it runs its own infrastructure
on S3, and therefore you can expect reliability similar to that of Amazon.com itself.7

For specific examples of how S3 is being used, see the following:

• http://jeremy.zawodny.com/blog/archives/007641.html for a list of backup services
and tools that use S3

• http://solutions.amazonwebservices.com/connect/kbcategory.jspa?categoryID=66 to
see the solutions that developers have already built

Because online storage is accessed through the Internet, latency (and how it will affect
your application) is an important factor to consider when looking at S3 and similar services.

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES474

5. http://blogs.smugmug.com/don/files/ETech-SmugMug-Amazon-2007.pdf

6. http://blogs.smugmug.com/don/2007/05/01/amazon-s3-new-pricing-model/

7. http://www.amazon.com/S3-FAQs-AWS-home-page/b/ref=sc_fe_c_0_16427261_9?&node=
16427271&no=16427261#as9

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 474

Conceptual Structure of Amazon S3
To get started, read the core concepts documented here:

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/CoreConcepts.html

At its heart, S3 is conceptually simple; it lets you store objects in buckets. An object is
associated with a bucket via a key. There are authentication and authorization schemes asso-
ciated with S3 to grant you control over access to the buckets and objects. You can associate
some amount of metadata (in the form of key-value pairs) with objects.

The following are a few more important points:

• Since a bucket name is global across the S3 service (akin to a domain name), each
developer account can have up to 100 buckets at any one time. Bucket names can con-
tain only alphanumeric characters, underscores (_), periods (.), and hyphens (-). They
must be between 3 and 255 characters long, and buckets with names containing upper-
case characters are not accessible using the virtual hosting method.8

• Objects consist of object data and associated metadata. An object can hold up to 5 giga-
bytes of data.9

• A key is like a filename for an object and must be unique within a bucket. Its UTF-8
encoding must be at most 1,024 bytes long.

• You use prefixes and delimiters in keys to simulate a hierarchical (folder within folder-
like) organization within buckets.10 (Buckets cannot contain other buckets.)

• For both REST and SOAP requests to S3, the user metadata size associated with objects
is limited to 2,000 bytes. They are structured as key-value pairs.11

• There is an authentication and authorization system in place. You can have fine-grained
authorization, where you can associate permissions with specific users or with larger
preset groups (the owner, everyone, or authenticated users). Permissions are read, write,
or full control.12

• You can retrieve a .torrent file for any publicly available object by adding a ?torrent
query string parameter at the end of the REST GET request for the object.13

• There is virtual hosting of buckets that allows one to associate your own non-Amazon.com
domain name with an S3 bucket.14 For example, objects accessible at the following URL:

http://s3.amazonaws.com/{bucket}/{key}

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES 475

8. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/UsingBucket.html

9. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/UsingObjects.html

10. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/ListingKeysHierarchy.html

11. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/UsingMetadata.html

12. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/UsingAccessControl.html

13. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/S3TorrentRetrieve.html

14. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/VirtualHosting.html

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 475

are also accessible at the following (provided that the bucket name has no uppercase
characters):

http://{bucket}.s3.amazonaws.com/{key}

For example, the following:

http://s3.amazonaws.com/raymondyee/858Xtoc___.pdf

is accessible here:

http://raymondyee.s3.amazonaws.com/858Xtoc___.pdf

SIGNING UP FOR AMAZON AWS

You need an Amazon Web Services (AWS) key and secret to use S3. The home page for AWS is here:

http://aws.amazon.com

You can find the documentation for the e-commerce services part of AWS here:

http://www.amazon.com/gp/browse.html?node=12738641

You need to sign up for an AWS account to get access keys:

http://www.amazon.com/gp/aws/registration/registration-form.html

To get your keys if you are already a member, go here:

http://aws-➥

portal.amazon.com/gp/aws/developer/account/index.html/?ie=UTF8&action=access-key

After you get an access key ID and a secret access key, you can also use an X.509 certificate.

The Firefox S3 Extension Gets You Started with S3
As I have argued throughout the book, it’s helpful to learn an application well before diving
into its API. That S3 has no built-in user interface means you have to either program S3 your-
self right from the start or use someone else’s user interface. I recommend installing the S3
Firefox Explorer add-on to get a UI to not only manage your files on S3 but to also learn how
S3 works. You can get the extension from here:

http://www.rjonna.com/ext/s3fox.php

The extension is a great learning tool for S3. Using it, for instance, you can quickly create
a bucket and populate that bucket with an object. You can then test the code included in this
chapter by reading the list of buckets and what is contained in them. Without a UI tool such as
the Firefox extension, you would first have to get your code working to populate the buckets.
Figure 16-1 shows the S3 Firefox Explorer add-on. The left panel is an explorer-like interface to
your desktop. The right panel shows you your buckets and objects within the folders. You can
edit the access control list (ACL) for each object. You can also copy the URL for an object.

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES476

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 476

Figure 16-1. S3 Firefox Explorer add-on

Similarly, you might want to install S3Drive (http://www.s3drive.net/) on Microsoft
Windows to have fairly seamless integration in Windows. The S3Drive service makes S3 look
like a partition on a local hard drive.

Using the S3 REST Interface
The S3 REST interface is truly RESTful—you think in terms of resources, such as services (to
get a list of all your buckets), buckets, and objects—and they have standard methods. See the
following for a list of resources and methods:

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/RESTAPI.html

Using the REST interface is a bit tricky because of the following:

• How authentication is handled, specifically, how the signature is calculated15

• The use of authorization control lists to handle authorization16

• How metadata is implemented

In this section, I will show one specific, relatively simple GET example to demonstrate how
to use the REST interface. Let’s first use the query string request authentication alternative,

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES 477

15. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/RESTAuthentication.html

16. http://docs.amazonwebservices.com/AmazonS3/2006-03-01/RESTAccessPolicy.html

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 477

which doesn’t require the use of HTTP Authorization headers. As the documentation indi-
cates, “The practice of signing a request and giving it to a third-party for execution is suitable
only for simple object GET requests.”

The REST endpoint is as follows:

http://host.s3.amazonaws.com

You need three query parameters:

• AWSAccessKeyId: Your access key

• Expires: When the signature expires, specified as the number of seconds since the
epoch (00:00:00 UTC on January 1, 1970)

• Signature: The URL encoding of the Base64 encoding of the HMAC-SHA1 of
StringToSign (defined in a moment)

I’ll use the example data given in the documents and generate some Python and PHP
code to demonstrate how to calculate the Signature. That is, I’ll show you how to reproduce
the results in the documentation. I’ll use parameters (listed in Table 16-1) that draw from
examples at the following location:

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/RESTAuthentication.html

The parameters shown here would be used to access the object whose key is photos/puppy.jpg
in the bucket named johnsmith. (Note that AWSAccessKeyId and AWSSecretAccessKey are not actually
valid keys but are presented to illustrate the calculations.)

Table 16-1. The Values Used in This Example Calculation for S3 Parameters

Setting Value

AWSAccessKeyId 0PN5J17HBGZHT7JJ3X82

AWSSecretAccessKey uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o

Expires 1175139620

Host johnsmith.s3.amazonaws.com

Key photos/puppy.jpg

HTTP-Verb GET

Content-MD5

Content-Type

CanonicalizedAmzHeaders

CanonicalizedResource /johnsmith/photos/puppy.jpg

The pseudo-code for calculating the signature is (quoting from the documentation) as
follows:

StringToSign = HTTP-VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" +
Expires + "\n" + CanonicalizedAmzHeaders + CanonicalizedResource;

Signature = URL-Encode(Base64(HMAC-SHA1(UTF-8-Encoding-Of(StringToSign))));

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES478

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 478

We’re told that the Signature based on the parameters in Table 16-1 should be
rucSbH0yNEcP9oM2XNlouVI3BH4%3D. Let’s figure out how we can reproduce this signature in
Python and PHP.

First, here is the Python code to calculate the Signature:

import sha, hmac, base64, urllib

AWSAccessKeyId = "0PN5J17HBGZHT7JJ3X82"
AWSSecretAccessKey = "uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o"
Expires = 1175139620
HTTPVerb = "GET"
ContentMD5 = ""
ContentType = ""
CanonicalizedAmzHeaders = ""
CanonicalizedResource = "/johnsmith/photos/puppy.jpg"
string_to_sign = HTTPVerb + "\n" + ContentMD5 + "\n" + ContentType + "\n" + ➥

str(Expires) + "\n" + CanonicalizedAmzHeaders + CanonicalizedResource
sig = base64.b64encode(➥

hmac.new(AWSSecretAccessKey, string_to_sign, sha).digest())
print urllib.urlencode({'Signature':sig})

This produces the following:

Signature=rucSbH0yNEcP9oM2XNlouVI3BH4%3D

Here’s some corresponding PHP code to calculate the Signature:

<?php

base64.encodestring
The hex2b64 function is excerpted from the Amazon S3 PHP example library.
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=126

function hex2b64($str) {
$raw = '';
for ($i=0; $i < strlen($str); $i+=2) {
$raw .= chr(hexdec(substr($str, $i, 2)));

}
return base64_encode($raw);

}

require_once 'Crypt/HMAC.php';
require_once 'HTTP/Request.php';

$AWSAccessKeyId = "0PN5J17HBGZHT7JJ3X82";
$AWSSecretAccessKey = "uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o";
$Expires = 1175139620;
$HTTPVerb = "GET";
$ContentMD5 = "";

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES 479

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 479

$ContentType = "";
$CanonicalizedAmzHeaders = "";
$CanonicalizedResource = "/johnsmith/photos/puppy.jpg";
$string_to_sign = $HTTPVerb . "\n" . $ContentMD5 . "\n" . $ContentType . "\n" .
$Expires . "\n" . $CanonicalizedAmzHeaders . $CanonicalizedResource;

$hasher =& new Crypt_HMAC($AWSSecretAccessKey, "sha1");
$sig = hex2b64($hasher->hash($string_to_sign));
echo 'Signature=',urlencode($sig);

?>

Note that this PHP code depends on two PEAR libraries that need to be installed:

• Crypt_HMAC17

• HTTP_Request18

Unfortunately, after you get those libraries installed, I can’t recommend using the S3 sam-
ple code on a remote host, because it requires sending the secret over the wire. Run it on your
own secure machine.

Once you have calculated the Signature, you can package the corresponding HTTP GET
request:

http://johnsmith.s3.amazonaws.com/photos/puppy.jpg?AWSAccessKeyId=0PN5J17HBGZHT7JJ3X➥

82&Signature=rucSbH0yNEcP9oM2XNlouVI3BH4%3D&Expires=1175139620

Listing Buckets Using the REST Interface
Now that you understand the basics behind signing an Amazon S3 request, I’ll show you how
to get a list of your S3 buckets. First I’ll show the code, and then I’ll offer an explanation:

def listBuckets(AWSAccessKeyId,AWSSecretAccessKey):
"""
use the REST interface to get the list of buckets --
without the use the Authorization HTTP header
"""
import sha, hmac, base64, urllib
import time
give an hour for the request to expire (3600s)
expires = int(time.time()) + 3600
string_to_sign = "GET\n\n\n%s\n/" % (expires)
sig = base64.b64encode(➥

hmac.new(AWSSecretAccessKey, string_to_sign, sha).digest())

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES480

17. http://pear.php.net/package/Crypt_HMAC

18. http://pear.php.net/package/HTTP_Request

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 480

request = "http://s3.amazonaws.com?AWSAccessKeyId=%s&Expires=%s&%s" % \
(AWSAccessKeyId, expires, urllib.urlencode({'Signature':sig}))

return request

if __name__ == "__main__":
AWSAccessKeyId='[AWSAccessKeyID]'
AWSSecretAccessKey = '[SecretAccessKey]'
print listBuckets(AWSAccessKeyId,AWSSecretAccessKey)

This code generates a URL of the following form that returns a list of buckets:

http://s3.amazonaws.com?AWSAccessKeyId={AWSAccessKeyId}&Expires=1196114919➥

&Signature={Signature}

Note how we use some of the same parameters as in the previous example (AWSAccessKeyId,
AWSSecretAccessKey, and Expires) and calculate the Signature with the same combination of
SHA-1 hashing and Base64 encoding.

Using the SOAP Interface to S3
The following code sample illustrates how to use the SOAP interface to S3:

import sha, hmac, base64, urllib

list buckets for Amazon s3

AWSAccessKeyId='[AWSAccessKeyID]'
AWSSecretAccessKey = '[AWSSecretAccessKey]'

from SOAPpy import WSDL

import sha

def calcSig(key,text):
import hmac, base64
sig = base64.b64encode(hmac.new(key, text, sha).digest())
return sig

def ListMyBuckets(s):
from time import gmtime,strftime
method = 'ListAllMyBuckets'
ts = strftime("%Y-%m-%dT%H:%M:%S.000Z", gmtime())
text = 'AmazonS3' + method + ts
sig = calcSig(AWSSecretAccessKey,text)
print "ListMyBuckets: ts,text,sig->", ts, text, sig
return s.ListAllMyBuckets(AWSAccessKeyId=AWSAccessKeyId, ➥

Timestamp=ts,Signature=sig)

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES 481

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 481

def CreateBucket(s, bucketName):
from time import gmtime,strftime
method = 'CreateBucket'
print 'method: ', method
ts = strftime("%Y-%m-%dT%H:%M:%S.000Z", gmtime())
text = 'AmazonS3' + method + ts
sig = calcSig(AWSSecretAccessKey,text)
print "CreateBuckets: ts,text,sig->", ts, text, sig
return s.CreateBucket(Bucket=bucketName, AWSAccessKeyId=AWSAccessKeyId, ➥

Timestamp=ts,Signature=sig)

if __name__ == '__main__':
s = WSDL.Proxy("http://s3.amazonaws.com/doc/2006-03-01/AmazonS3.wsdl")
print ListMyBuckets(s)
CreateBucket(s,"test20071126RY")
print ListMyBuckets(s)

You can learn the following about S3 from this code:

• As with the REST interface, you need to have an Amazon.com AWS access key ID and
secret access key, which you can get if you sign up for an account at AWS (see Chapter 7
or the “Signing Up for Amazon AWS” sidebar earlier in this chapter for more details).

• Although S3 is accessible by the REST and SOAP interfaces, this code uses SOAP and
WSDL. The WSDL for the service at the time of writing is at http://s3.amazonaws.com/
doc/2006-03-01/AmazonS3.wsdl; you can get the location of the latest WSDL URL at
http://aws.amazon.com/s3.

• Two methods are used in this code sample: ListMyBuckets and CreateBuckets. You can
get the list of all the methods at http://www.awszone.com/scratchpads/aws/s3.us/index.
aws (the technical documentation is at http://developer.amazonwebservices.com/connect/
kbcategory.jspa?categoryID=48, which leads to http://docs.amazonwebservices.com/
AmazonS3/2006-03-01/).

• Note that one of the complicated aspects is to calculate a signature, something you
learned to do in the previous section.

Amazon S3 API Kits
In the following sections, you’ll look at some libraries to S3 written in PHP and Python.

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES482

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 482

PHP
The following API kits are available:

• php-aws19

• s3.class.zip at Neurofuzzy.net, which looks like a popular class implementation20

• edoceo’s phps3tk21

In this section, we’ll concentrate on how to use php-aws. You can access the source using
SVN. In your web browser, you can download the library from here:

http://php-aws.googlecode.com/svn/trunk/class.s3.php

You can find documentation for the S3 class here:

http://code.google.com/p/php-aws/wiki/S3Class

The following blog entry introduces php-aws:

http://sitening.com/blog/2007/01/30/introducing-php-aws/

Note the following about this library:

• Its use of curl means it is built to handle larger files.

• Only the public read or private ACL is currently implemented.

• There is no implementation of user metadata for objects.

To get started with php-aws, follow these steps:

1. Download http://php-aws.googlecode.com/svn/trunk/class.s3.php to your favorite
local PHP directory. (In my case, this is /home/rdhyee/phplib/php-aws/class.s3.php.)

2. Try the following sample code to get you started (this code first lists your S3 buckets
and then creates a bucket by the name of mashupguidetest if it doesn’t already exist):

<?php
require_once("php-aws/class.s3.php");

$key = "[AWSAccessKeyID]";
$secret = "[SecretAccessKey]";

$s3 = new S3($key,$secret);

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES 483

19. http://code.google.com/p/php-aws/ and specifically http://php-aws.googlecode.com/svn/trunk/
class.s3.php

20. http://neurofuzzy.net/2006/08/26/amazon-s3-php-class-update/ and http://www.neurofuzzy.net/
wp-content/2006/03/s3.class.zip

21. http://www.edoceo.com/creo/phps3tk/

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 483

// get list of buckets
$buckets = $s3->getBuckets();
print_r($buckets);

// if the bucket "mashupguidetest" doesn't exist, create it
$BNAME = "mashupguidetest";
if (! $s3->bucketExists($BNAME)) {
$s3->createBucket($BNAME);

}

// get list of buckets again
$buckets = $s3->getBuckets();
print_r($buckets);

■Note For you to use php-aws, you need to have a command-line invokable instance of curl installed on
your system. You might also need to set the $_pathToCurl parameter in class.s3.php so that php-aws
can find curl.

Python
Some Python-based S3 libraries are as follows:

• boto22

• HanzoiArchive’s S3 tools23

• BitBucket24

I recommend looking at boto as a good choice of a library. One of the best ways to learn
how to use boto is to read the tutorial here:

http://boto.googlecode.com/svn/trunk/doc/s3_tut.txt

You can learn the basics of using boto by studying the next code sample, which does the
following:

• It reads the list of your S3 buckets and displays the name, creation date, and XML repre-
sentation of the bucket’s ACL.

• It reads the list of objects contained in a specific bucket, along with the last modified
time stamp and the object’s metadata.

• It uploads a file to a bucket and reads back the metadata of the newly uploaded file.

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES484

22. http://code.google.com/p/boto/

23. http://www.hanzoarchives.com/development-projects/s3-tools/

24. http://cheeseshop.python.org/pypi/BitBucket/0.4a

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 484

AWSAccessKeyId='[AWSAccessKeyId]'
AWSSecretAccessKey = '[AWSSecretAccessKey]'
FILENAME = 'D:\Document\PersonalInfoRemixBook\858Xtoc___.pdf'
BUCKET = 'mashupguidetest'

from boto.s3.connection import S3Connection

def upload_file(fname, bucket, key, acl='public-read', metadata=None):
from boto.s3.key import Key

fpic = Key(bucket)
fpic.key = key
#fpic.set_metadata('source','flickr')
fpic.update_metadata(metadata)
fpic.set_contents_from_filename(fname)
fpic.set_acl(acl)
return fpic

set up a connection to S3

conn = S3Connection(AWSAccessKeyId, AWSSecretAccessKey)

retrieve all the buckets
buckets = conn.get_all_buckets()
print "number of buckets:", len(buckets)

print out the names, creation date, and the XML the represents the ACL
of the bucket

for b in buckets:
print "%s\t%s\t%s" % (b.name, b.creation_date, b.get_acl().acl.to_xml())

get list of all files for the mashupguide bucket

print "keys in " + BUCKETmg_bucket = conn.get_bucket(BUCKET)
keys = mg_bucket.get_all_keys()
for key in keys:

print "%s\t%s\t%s" % (key.name, key.last_modified, key.metadata)

upload the table of contents to mashupguide bucket.

metadata = {'author':'Raymond Yee'}
upload_file(FILENAME,mg_bucket,'samplefile','public-read',metadata)

read back the TOC
toc = mg_bucket.get_key('samplefile')
print toc.metadata

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES 485

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 485

Summary
From reading this chapter, you should now know how to get started with the Amazon S3 API
using PHP and Python. The APIs for other online storage systems are different but will have
some conceptual similarity to S3.

CHAPTER 16 ■ USING ONLINE STORAGE SERVICES486

858Xch16FINAL.qxd 2/4/08 3:27 PM Page 486

Mashing Up Desktop and
Web-Based Office Suites

I’ve long been excited about the mashability and reusability of office suite documents (for
example, word processor documents, spreadsheets, and slide presentations), the potential of
which has gone largely unexploited. There are many office suites, but in this chapter I’ll con-
centrate on the latest versions of OpenOffice.org, often called OO.o (version 2.x), and Microsoft
Office (2007 and 2003). Few people realize that both these applications not only have program-
ming interfaces but also have XML-based file formats. In theory, office documents using the
respective file formats (OpenDocument and Office Open XML) are easier to reuse and generate
from scratch than older generations of documents using opaque binary formats. And as you
have seen throughout the book, knowledge of data formats and APIs means having opportunities
for mashups. For ages, people have been reverse engineering older Microsoft Office documents,
whose formats were not publicly documented; however, recombining office suites has been
made easier, though not effortless, by these new formats. In this chapter, I will also introduce
you to the emerging space of web-based office suites, specifically ones that are programmable.
I’ll also briefly cover how to program the office suites.

This chapter does the following:

• Shows how to do some simple parsing of the OpenDocument format (ODF) and Office
Open XML documents

• Shows how to create a simple document in both ODF and Open XML

• Demonstrates some simple scripting of OO.o and Microsoft Office

• Lays out what else is possible by manipulating the open document formats

• Shows how to program Google Spreadsheets and to mash it up with other APIs (such as
Amazon E-Commerce Services)

Mashup Scenarios for Office Suites
Why would mashups of office suite documents be interesting? For one, word processing doc-
uments, spreadsheets, and even presentation files hold vast amounts of the information that
we communicate to each other. Sometimes they are in narratives (such as documents), and
sometimes they are in semistructured forms (such as spreadsheets). To reuse that information,

487

C H A P T E R 1 7

■ ■ ■

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 487

it is sometimes a matter of reformatting a document into another format. Other times, it’s
about extracting valuable pieces; for instance, all the references in a word processor docu-
ment might be extracted into a reference database. Furthermore, not only does knowledge of
the file formats enable you to parse documents, but it allows you to generate documents.

Some use case scenarios for the programmatic creation and reuse of office documents
include the following:

Reusing PowerPoint: Do you have collections of Microsoft PowerPoint presentations
that draw from a common collection of digital assets (pictures and outlines) and com-
plete slides? Can you build a system of personal information management so that PPT
presentations are constructed as virtual assemblages of slides, dynamically associated
with assets?

Writing once, publishing everywhere: I’m currently writing this manuscript in Microsoft
Office 2007. I’d like to republish this book in (X)HTML, Docbook, PDF, and wiki markup.
How would I repurpose the Microsoft Word manuscript into those formats?

Transforming data: You could create an educational website in which data is downloaded
to spreadsheets, not only as static data elements but as dynamic simulations. There’s
plenty of data out there. Can you write programs to translate it into the dominant data
analysis tool used by everyone, which is spreadsheets, whether it is on the desktop or in
the cloud?

Getting instant PowerPoint presentations from Flickr: I’d like to download a Flickr set as
a PowerPoint presentation. (This scenario seems to fit a world in which PowerPoint is the
dominant presentation program. Even if Tufte hates it, a Flickr-to-PPT translator might
make it easier to show those vacation pictures at your next company presentation.)

There are many other possibilities. This chapter teaches you what you need to know to
start building such applications.

The World of Document Markup
This chapter focuses on XML-based document markup languages in two dominant groups of
office suites: Microsoft Office 2007 and OpenOffice.org. There are plenty of other markup
languages, which are covered well on Wikipedia:

• http://en.wikipedia.org/wiki/Document_markup_language

• http://en.wikipedia.org/wiki/List_of_document_markup_languages

• http://en.wikipedia.org/wiki/Comparison_of_document_markup_languages

The OpenDocument Format
ODF is “an open XML-based document file format for office applications to be used for documents
containing text, spreadsheets, charts, and graphical elements,” developed under the auspices of

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES488

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 488

OASIS.1 ODF is also an ISO/IEC standard (ISO/IEC 206300:2006).2 ODF is used most prominently
in OpenOffice.org (http://www.openoffice.org/) and KOffice (http://www.koffice.org/), among
other office suites. For a good overview of the file format, consult J. David Eisenberg’s excellent
book on ODF, called OASIS OpenDocument Essentials, which is available for download as a PDF
(free of charge) or for purchase.3

The goal of this section is to introduce you to the issues of parsing and creating ODF files
programmatically.

■Note For this section, I am assuming you have OpenOffice.org version 2.2 installed.

A good way to understand the essentials of the file format is to create a simple instance of
an ODF file and then analyze it:

1. Fire up OpenOffice.org Writer, type Hello World, and save the file as helloworld.odt.4

2. Open the file in a ZIP utility (such as WinZip on the PC). One easy way to do so is to
change the file extension from .odt to .zip so that the operating system will recognize
it as a ZIP file. You will see that it’s actually a ZIP-format file when you go to unzip it.
(See the list of files in Figure 17-1.)

Figure 17-1. Unzipping helloworld.zip. An OpenDocument file produced by OpenOffice.org is
actually in the ZIP format.

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 489

1. http://www.oasis-open.org/committees/office/

2. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43485

3. http://books.evc-cit.info/OD_Essentials.pdf or
http://develop.opendocumentfellowship.com/book/

4. http://examples.mashupguide.net/ch17/helloworld.odt

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 489

You’ll see some of the files that can be part of an ODF file:

• content.xml

• styles.xml

• meta.xml

• settings.xml

• META-INF/manifest.xml

• mimetype

• Configuration2/accelerator/

• Thumbnails/thumbnail.png

You can also use your favorite programming language, such as Python or PHP, to generate
a list of the files. The following is a Python example:

import zipfile
z = zipfile.ZipFile(r'[path_to_your_file_here]')
z.printdir()

This generates the following:

File Name Modified Size
mimetype 2007-06-02 16:10:18 39
Configurations2/statusbar/ 2007-06-02 16:10:18 0
Configurations2/accelerator/current.xml 2007-06-02 16:10:18 0
Configurations2/floater/ 2007-06-02 16:10:18 0
Configurations2/popupmenu/ 2007-06-02 16:10:18 0
Configurations2/progressbar/ 2007-06-02 16:10:18 0
Configurations2/menubar/ 2007-06-02 16:10:18 0
Configurations2/toolbar/ 2007-06-02 16:10:18 0
Configurations2/images/Bitmaps/ 2007-06-02 16:10:18 0
content.xml 2007-06-02 16:10:18 2776
styles.xml 2007-06-02 16:10:18 8492
meta.xml 2007-06-02 16:10:18 1143
Thumbnails/thumbnail.png 2007-06-02 16:10:18 945
settings.xml 2007-06-02 16:10:18 7476
META-INF/manifest.xml 2007-06-02 16:10:18 1866

You can get the equivalent functionality in PHP with the PHP zip library (see
http://us2.php.net/zip):

<?php

$zip = zip_open('[path_to_your_file]');
while ($entry = zip_read($zip)) {
print zip_entry_name($entry) . "\t". zip_entry_filesize($entry). "\n";

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES490

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 490

}
zip_close($zip);
?>

This produces the following:

mimetype 39
Configurations2/statusbar/ 0
Configurations2/accelerator/current.xml 0
Configurations2/floater/ 0
Configurations2/popupmenu/ 0
Configurations2/progressbar/ 0
Configurations2/menubar/ 0
Configurations2/toolbar/ 0
Configurations2/images/Bitmaps/ 0
content.xml 2776
styles.xml 8492
meta.xml 1143
Thumbnails/thumbnail.png 945
settings.xml 7476
META-INF/manifest.xml 1866

Generating a simple ODF file using OpenOffice.org gives you a basic file from which you
can build. However, it’s useful to boil the file down even further because even the simple ODF
generated by OO.o contains features that make it difficult to see what’s happening. Let’s pare
down the “Hello World” ODF document further.

There are at least two ways to figure out a minimalist instance of an ODF document. One
is to consult the ODF specification, specifically the ODF schema, to generate a small instance.
OO.o 2.2 uses the ODF 1.0 specification.5 The specification contains a RELAX NG schema for ODF.
RELAX NG (http://relaxng.org/) is a schema language for XML. That is, you can use RELAX NG to
specify what elements and attributes can be used in ODF—and in what combination.

Schemas, stemming from the http://oasis-open.org page, include the following:

• The schema for office documents, “extracted from chapter 1 to 16 of the specification”
—Version 1.06

• “The normative schema for the manifest file used by the OpenDocument package format”
—Version 1.07

• “The strict schema for office documents that permits only meta information and format-
ting properties contained in this specification itself” —Version 1.08

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 491

5. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office

6. http://www.oasis-open.org/committees/download.php/12571/OpenDocument-schema-v1.0-os.rng

7. http://www.oasis-open.org/committees/download.php/12570/OpenDocument-manifest-schema-
v1.0-os.rng

8. http://www.oasis-open.org/committees/download.php/12569/OpenDocument-strict-schema-
v1.0-os.rng

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 491

Instead of taking this approach here, I will instead show you how to use OO.o and the
online ODF Validator (http://opendocumentfellowship.com/validator). The basic approach is
to use a bit of trial and error to generate an ODF file and add pieces while feeding it to the ODF
Validator to see how far you can distill the file. Why should you care about minimal instances of
ODF (and later OOXML) documents? ODF and OOXML are complicated markup formats. One
of the best ways to figure out how to create formats is to use a tool such as OO.o or Microsoft
Office to generate what you want, save the file, unzip the file, extract the section of the docu-
ment you want, and plug that stuff into a minimalist document that you know is valid. That’s
why you’re learning about boiling ODF down to its essence.

The ODF specification (and its RELAX NG schema) should tell you theoretically how to
find a valid ODF instance—but in practice, you need to actually feed a given instance to the
applications that are the destinations for the ODF documents. OpenOffice.org is currently
the most important implementation of an office suite that interprets ODF, making it a good
place to experiment.

J. David Eisenberg’s excellent book on ODF, OASIS OpenDocument Essentials, provides an
answer to the question of which files are actually required by OO.o:

The only files that are actually necessary are content.xml and the META-INF/manifest.xml

file. If you create a file that contains word processor elements and zip it up and a manifest

that points to that file, OpenOffice.org will be able to open it successfully. The result will be

a plain text-only document with no styles. You won’t have any of the meta-information

about who created the file or when it was last edited, and the printer settings, view area,

and zoom factor will be set to the OpenOffice.org defaults.

Let’s verify Eisenberg’s assertion. Create an .odt file with the same content.xml as
helloworld.odt, listed here:

<?xml version="1.0" encoding="UTF-8"?>
<office:document-content
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"
xmlns:style="urn:oasis:names:tc:opendocument:xmlns:style:1.0"
xmlns:text="urn:oasis:names:tc:opendocument:xmlns:text:1.0"
xmlns:table="urn:oasis:names:tc:opendocument:xmlns:table:1.0"
xmlns:draw="urn:oasis:names:tc:opendocument:xmlns:drawing:1.0"
xmlns:fo="urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0"
xmlns:number="urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0"
xmlns:svg="urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0"
xmlns:chart="urn:oasis:names:tc:opendocument:xmlns:chart:1.0"
xmlns:dr3d="urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0"
xmlns:math="http://www.w3.org/1998/Math/MathML"
xmlns:form="urn:oasis:names:tc:opendocument:xmlns:form:1.0"
xmlns:script="urn:oasis:names:tc:opendocument:xmlns:script:1.0"
xmlns:ooo="http://openoffice.org/2004/office"
xmlns:ooow="http://openoffice.org/2004/writer"

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES492

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 492

xmlns:oooc="http://openoffice.org/2004/calc"
xmlns:dom="http://www.w3.org/2001/xml-events"
xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" office:version="1.0">
<office:scripts/>
<office:font-face-decls>
<style:font-face style:name="Tahoma1" svg:font-family="Tahoma"/>
<style:font-face style:name="Times New Roman"
svg:font-family="'Times New Roman'"
style:font-family-generic="roman"
style:font-pitch="variable"/>

<style:font-face style:name="Arial" svg:font-family="Arial"
style:font-family-generic="swiss"
style:font-pitch="variable"/>

<style:font-face style:name="Arial Unicode MS"
svg:font-family="'Arial Unicode MS'"
style:font-family-generic="system"
style:font-pitch="variable"/>

<style:font-face style:name="MS Mincho" svg:font-family="'MS Mincho'"
style:font-family-generic="system" style:font-pitch="variable"/>

<style:font-face style:name="Tahoma" svg:font-family="Tahoma"
style:font-family-generic="system"
style:font-pitch="variable"/>

</office:font-face-decls>
<office:automatic-styles/>
<office:body>
<office:text>
<office:forms form:automatic-focus="false" form:apply-design-mode="false"/>
<text:sequence-decls>
<text:sequence-decl text:display-outline-level="0"
text:name="Illustration"/>

<text:sequence-decl text:display-outline-level="0" text:name="Table"/>
<text:sequence-decl text:display-outline-level="0" text:name="Text"/>
<text:sequence-decl text:display-outline-level="0" text:name="Drawing"/>

</text:sequence-decls>
<text:p text:style-name="Standard">Hello World!</text:p>

</office:text>
</office:body>

</office:document-content>

Now edit META-INF/metadata.xml to reference only content.xml and the META-INF directory:

<?xml version="1.0" encoding="UTF-8"?>
<manifest:manifest

xmlns:manifest="urn:oasis:names:tc:opendocument:xmlns:manifest:1.0">
<manifest:file-entry manifest:media-type="application/vnd.oasis.opendocument.text"

manifest:full-path="/"/>

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 493

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 493

<manifest:file-entry manifest:media-type="text/xml"
manifest:full-path="content.xml"/>

</manifest:manifest>

This leaves you with an .odt file that consists of only those two files.9 You will find that
such a file will load successfully in OpenOffice.org 2.2 and the OpenDocument Viewer10—
giving credence to the assertion that, in OO.o 2.2 at least, you don’t need any more than
content.xml and META-INF/manifest.xml.

■Note You can download and install the OpenDocument Validator11 or run the online version.12

Nonetheless, the OpenDocument Validator doesn’t find the file to be valid; it produces the
following error message:

1. warning
does not contain a /mimetype file. This is a SHOULD in OpenDocument 1.0

2. error
styles.xml is missing

3. error
settings.xml is missing

4. error
meta.xml is missing

Since the OpenDocument Validator dies on one of the Fellowship’s test files,13 you can
see there are some unresolved problems with the validator or the test files produced by the
OpenDocument Fellowship. Although there is nothing wrong with our minimalist file, it’s
a good idea to use a file that has all the major pieces in place.

If you insert skeletal styles.xml, settings.xml, and meta.xml files, you can convince the
OpenDocument Validator to accept the resulting .odt file as a valid document. Furthermore,
you can strip content.xml of extraneous declarations. (Strictly speaking, the namespace decla-
rations are extraneous, but they are useful to have once you start plugging in chunks of ODF.)
The resulting ODF text document is what you find here:

http://examples.mashupguide.net/ch17/helloworld_min_odt_2.odt

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES494

9. http://examples.mashupguide.net/ch17/helloworld_min_odt_1.odt

10. http://opendocumentfellowship.com/odfviewer

11. http://opendocumentfellowship.com/projects/odftools

12. http://opendocumentfellowship.com/validator

13. http://testsuite.opendocumentfellowship.com/testcases/General/DocumentStructure/
SingleDocumentContents/testDoc/testDoc.odt via http://testsuite.opendocumentfellowship.com/
testcases/General/DocumentStructure/SingleDocumentContents/TestCase.html

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 494

Here are the constituent files:

<!-- meta.xml -->

<?xml version="1.0" ?>
<office:document-meta office:version="1.0"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0"
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"
xmlns:ooo="http://openoffice.org/2004/office"
xmlns:xlink="http://www.w3.org/1999/xlink"/>

<!-- settings.xml -->
<?xml version="1.0" ?>
<office:document-settings office:version="1.0"
xmlns:config="urn:oasis:names:tc:opendocument:xmlns:config:1.0"
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"
xmlns:ooo="http://openoffice.org/2004/office"
xmlns:xlink="http://www.w3.org/1999/xlink" />

<!-- styles.xml -->
<?xml version="1.0" ?>
<office:document-styles office:version="1.0"
xmlns:chart="urn:oasis:names:tc:opendocument:xmlns:chart:1.0"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dom="http://www.w3.org/2001/xml-events"
xmlns:dr3d="urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0"
xmlns:draw="urn:oasis:names:tc:opendocument:xmlns:drawing:1.0"
xmlns:fo="urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0"
xmlns:form="urn:oasis:names:tc:opendocument:xmlns:form:1.0"
xmlns:math="http://www.w3.org/1998/Math/MathML"
xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0"
xmlns:number="urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0"
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"
xmlns:ooo="http://openoffice.org/2004/office"
xmlns:oooc="http://openoffice.org/2004/calc"
xmlns:ooow="http://openoffice.org/2004/writer"
xmlns:script="urn:oasis:names:tc:opendocument:xmlns:script:1.0"
xmlns:style="urn:oasis:names:tc:opendocument:xmlns:style:1.0"
xmlns:svg="urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0"
xmlns:table="urn:oasis:names:tc:opendocument:xmlns:table:1.0"
xmlns:text="urn:oasis:names:tc:opendocument:xmlns:text:1.0"
xmlns:xlink="http://www.w3.org/1999/xlink" />

<!-- content.xml -->
<?xml version="1.0" ?>
<office:document-content office:version="1.0"
xmlns:chart="urn:oasis:names:tc:opendocument:xmlns:chart:1.0"

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 495

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 495

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dom="http://www.w3.org/2001/xml-events"
xmlns:dr3d="urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0"
xmlns:draw="urn:oasis:names:tc:opendocument:xmlns:drawing:1.0"
xmlns:fo="urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0"
xmlns:form="urn:oasis:names:tc:opendocument:xmlns:form:1.0"
xmlns:math="http://www.w3.org/1998/Math/MathML"
xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0"
xmlns:number="urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0"
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"
xmlns:ooo="http://openoffice.org/2004/office"
xmlns:oooc="http://openoffice.org/2004/calc"
xmlns:ooow="http://openoffice.org/2004/writer"
xmlns:script="urn:oasis:names:tc:opendocument:xmlns:script:1.0"
xmlns:style="urn:oasis:names:tc:opendocument:xmlns:style:1.0"
xmlns:svg="urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0"
xmlns:table="urn:oasis:names:tc:opendocument:xmlns:table:1.0"
xmlns:text="urn:oasis:names:tc:opendocument:xmlns:text:1.0"
xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<office:body>
<office:text>
<text:p>
Hello World!

</text:p>
</office:text>

</office:body>
</office:document-content>

<!-- manifest.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<manifest:manifest

xmlns:manifest="urn:oasis:names:tc:opendocument:xmlns:manifest:1.0">
<manifest:file-entry manifest:media-type="application/vnd.oasis.opendocument.text"

manifest:full-path="/"/>
<manifest:file-entry manifest:media-type="text/xml"

manifest:full-path="content.xml"/>
<manifest:file-entry manifest:media-type="text/xml"

manifest:full-path="meta.xml"/>

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES496

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 496

<manifest:file-entry manifest:media-type="text/xml"
manifest:full-path="settings.xml"/>

<manifest:file-entry manifest:media-type="text/xml"
manifest:full-path="styles.xml"/>

</manifest:manifest>

You now have a minimalist and valid ODF document.
As an exercise to the reader, I’ll leave it to you to generate minimal instances of the

spreadsheet (.ods), presentation (.odp), graphics (.odg), and math (.odf) documents. In the
rest of the chapter, I’ll continue to focus on the text documents (.odt)—but what you learn
from it applies to the other ODF formats as well.

Learning Basic ODF Tags
With a minimalist ODF text document in hand, let’s look at how to generate a small example
document that illustrates some of the basic features of ODF. Here we can consult Eisenberg
once again on how to proceed:

Just start OpenOffice.org or KOffice, create a document that has the feature you want,

unpack the file, and look for the XML that implements it. To get a better understand-

ing of how things works, change the XML, repack the document, and reload it. Once

you know how a feature works, don’t hesitate to copy and paste the XML from the

OpenDocument file into your program. In other words, cheat. It worked for me when

I was writing this book, and it can work for you too!

In this section, I’ll walk you through how to create the ODF text document (see Figure 17-2)
in steps here:

http://examples.mashupguide.net/ch17/odt_example_4.odt

You can study the parts of this document by downloading and unzipping it or by looking
at the files here:

http://examples.mashupguide.net/ch17/odt_example_4/

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 497

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 497

Figure 17-2. The culminating ODF text document generated in this chapter

I will show you how I took the approach advocated by Eisenberg to construct this document.
I added a new element in an ODT, unzipped the file, found the corresponding XML fragment,
took that fragment, and added it to the document I was building. I consciously stripped out
any references to styles to focus first on content. And then I applied styles to achieve the effects
I want. I will leave it to you to take this approach on spreadsheets and presentations; the ODF
for those files formats have a similar framework as the text documents.

This example text contains some common elements:

• Headings of level 1 and 2

• Several paragraphs

• An ordered and unordered list

• Text that has some italics and bold and a font change

• A table

• An image

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES498

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 498

I’ll show how to build this document in four steps to highlight what’s involved in constructing
a nontrivial ODF document:

1. Create an ODF text document without any styling of ODF elements.

2. Set the style of the paragraph text.

3. Format lists to distinguish between ordered and unordered lists.

4. Get bold, italics, font changes, and color changes into text spans.

Create an ODF Text Document Without Any Styling of
ODF Elements
The first step is to create a document while purposefully eliminating any use of styling. This
will let us focus on content-oriented tags, much like studying HTML first without CSS and
then applying CSS. When studying ODF (and later Office Open XML), it’s useful to keep in
mind analogous constructs from HTML and CSS.

When you create an ODF text document with headers, paragraphs, lists, and the other
features listed earlier and strip out the style, you get something like this:

http://examples.mashupguide.net/ch17/odt_example_1.odt

whose constituent files (once you unzip the document) are here:

http://examples.mashupguide.net/ch17/odt_example_1/

Not surprisingly, most of the action is in content.xml:

http://examples.mashupguide.net/ch17/odt_example_1/content.xml

Remember the overall structure of content.xml, a framework in which you can plug in the
ODF tags representing various elements:

<?xml version="1.0" ?>
<!-- the namespace declarations of office:document-content are omitted -->
<office:document-content>
<office:body>
<office:text>

[INSERT CONTENT HERE]
</office:text>

</office:body>
</office:document-content>

Headers and Paragraphs
There are headers and paragraphs as in HTML—but in HTML, you have h1, h2, . . . , h6. With
ODF, you use <text:h> with text:outline-level to indicate the level of the header. For para-
graphs in ODF, you use the <text:p> element. Note the text: namespace:

urn:oasis:names:tc:opendocument:xmlns:text:1.0

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 499

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 499

Here’s some ODF you can plug in to create two headers (one of level 1 and the other of
level 2) along with a series of paragraphs:

<text:h text:outline-level="1">Purpose (Heading 1)</text:h>
<text:p>The following sections illustrate various possibilities in ODF Text.
</text:p>
<text:h text:outline-level="2">A simple series of paragraphs (Heading 2)</text:h>
<text:p>This section contains a series of paragraphs.</text:p>
<text:p>This is a second paragraph.</text:p>
<text:p>And a third paragraph.</text:p>

Lists
The following ODF markup creates two lists. The first one will ultimately be an unordered one,
and the second one will be an ordered one. Unlike HTML in which you would use and ,
with ODF you get across the difference between an ordered and unordered list through styling
alone, which we’ll do in a moment. In the meantime, let’s set up the two lists using <text:list>
and <text:list-item>:

<text:h text:outline-level="2">A section with lists (Heading 2)</text:h>
<text:p>Elements to illustrate:</text:p>
<text:list>
<text:list-item>
<text:p>hyperlinks</text:p>

</text:list-item>
<text:list-item>
<text:p>italics and bold text</text:p>

</text:list-item>
<text:list-item>
<text:p>lists (ordered and unordered)</text:p>

</text:list-item>
</text:list>
<text:p>How to figure out ODF</text:p>
<text:list>
<text:list-item>
<text:p>work out the content.xml tags</text:p>

</text:list-item>
<text:list-item>
<text:p>work styles into the mix</text:p>

</text:list-item>
<text:list-item>
<text:p>figure out how to apply what we learned to spreadsheets and

presentations</text:p>
</text:list-item>

</text:list>

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES500

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 500

Using text:a and text:span to Bracket Text Styling
The following markup constructs a paragraph with embedded hyperlinks, indicated by <text:a>
elements. You also want to eventually mark certain text areas as italics (“URL”), as bold (“API
page”), and as Arial and red in color (“Flickr”). It turns out that doing so requires styling, which
we’ll do later. Here we partition out the regions to which styles can then be applied with
<text:span>—akin to an HTML span.

<text:p>The <text:span>URL</text:span> for Flickr is
<text:a xlink:type="simple" xlink:href="http://www.flickr.com/">
http://www.flickr.com

</text:a>.
<text:s/>The <text:span>API page</text:span> is
<text:a xlink:type="simple" xlink:href="http://www.flickr.com/services/api/">
http://www.flickr.com/services/api/

</text:a>
</text:p>

Table
The following markup creates a table with three columns and three rows. Note the use of
<table:table>, <table:table-row>, and <table:table-cell> where the table namespace is
urn:oasis:names:tc:opendocument:xmlns:table:1.0:

<text:h text:outline-level="1"> A Table (Heading 1)</text:h>
<table:table table:name="Table1">
<table:table-column table:number-columns-repeated="3"/>
<table:table-row>
<table:table-cell office:value-type="string">
<text:p>Website</text:p>

</table:table-cell>
<table:table-cell office:value-type="string">
<text:p>Description</text:p>

</table:table-cell>
<table:table-cell office:value-type="string">
<text:p>URL</text:p>

</table:table-cell>
</table:table-row>
<table:table-row>
<table:table-cell office:value-type="string">
<text:p>Flickr</text:p>

</table:table-cell>
<table:table-cell office:value-type="string">
<text:p>A social photo sharing site</text:p>

</table:table-cell>
<table:table-cell office:value-type="string">
<text:p>
<text:a xlink:type="simple" xlink:href="http://www.flickr.com/"
>http://www.flickr.com</text:a>

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 501

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 501

</text:p>
</table:table-cell>

</table:table-row>
<table:table-row>
<table:table-cell office:value-type="string">
<text:p>Google Maps</text:p>

</table:table-cell>
<table:table-cell office:value-type="string">
<text:p>An online map</text:p>

</table:table-cell>
<table:table-cell office:value-type="string">
<text:p>
<text:a xlink:type="simple" xlink:href="http://maps.google.com/"
>http://maps.google.com</text:a>

</text:p>
</table:table-cell>

</table:table-row>
</table:table>

Footnote
The following ODF shows how to embed a footnote through a <text:note> element, which
contains <text:note-citation> , <text:note-body>, and <text:note> elements:

<text:h text:outline-level="1">Footnotes (Heading 1)</text:h>
<text:p>This sentence has an accompanying footnote.<text:note text:id="ftn0"
text:note-class="footnote">
<text:note-citation>1</text:note-citation>
<text:note-body>
<text:p text:style-name="Footnote">You are reading a footnote.</text:p>

</text:note-body>
</text:note>
<text:s text:c="2"/>Where does the text after a footnote go?

</text:p>

Embedded Image
The markup in this section embeds an image that I have shown before:

http://flickr.com/photos/raymondyee/18389540/

specifically the original size:

http://farm1.static.flickr.com/12/18389540_e37cc4d464_o.jpg

You download the image, rename it to campanile_fog.jpg, and insert it into the Pictures
subdirectory of the ODF structure. (Remember that when you unzip an ODF text document,
you can often find a Pictures subdirectory. That’s where embedded images get placed.) Here’s
what you have to include in content.xml:

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES502

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 502

<text:h text:outline-level="1">An Image</text:h>
<text:p>
<draw:frame draw:name="graphics1" text:anchor-type="paragraph"
svg:width="5in" svg:height="6.6665in" draw:z-index="0">
<draw:image xlink:href="Pictures/campanile_fog.jpg" xlink:type="simple"
xlink:show="embed" xlink:actuate="onLoad"/>

</draw:frame>
</text:p>

Note that you need to add the photo to the list of files in META-INF/manifest.xml (which
keeps track of the files that are zipped up in an ODF text document). See the specific
changes:14

<manifest:file-entry manifest:media-type="image/jpeg"
manifest:full-path="Pictures/campanile_fog.jpg"/>

<manifest:file-entry manifest:media-type="" manifest:full-path="Pictures/"/>

Setting the Paragraph Text to text-body
Now that you have the content elements of the ODF text document in place, you can turn to
applying styles. In this section, you’ll focus first on styling the paragraphs. The default style for
paragraphs in OpenOffice.org make it hard to tell when the paragraphs start and end. Let’s
apply the Text body style from OO.o to some paragraphs. You can do so in two steps: first
define the relevant styles, and then apply the new styles to the relevant paragraphs.

To define the styles, you insert the following definition in styles.xml:15

<?xml version="1.0" ?>
<!-- the namespace declarations of office:document-styles are omitted -->
<office:document-styles office:version="1.0">
<office:styles>
<style:style style:name="Standard" style:family="paragraph" style:class="text"/>
<style:style style:name="Text_20_body" style:display-name="Text body"
style:family="paragraph"
style:parent-style-name="Standard" style:class="text">
<style:paragraph-properties fo:margin-top="0in" fo:margin-bottom="0.0835in"/>

</style:style>
</office:styles>

</office:document-styles>

Then you use text:style-name attribute to associate this style with a <text:p> in content.xml
to the relevant paragraphs. For example:16

<text:p text:style-name="Text_20_body">The following sections illustrate various
possibilities in ODF Text.</text:p>

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 503

14. http://examples.mashupguide.net/ch17/odt_example_1/META-INF/manifest.xml

15. http://examples.mashupguide.net/ch17/odt_example_2/styles.xml

16. http://examples.mashupguide.net/ch17/odt_example_2/content.xml

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 503

You can see the resulting ODF text file here:

http://examples.mashupguide.net/ch17/odt_example_2.odt

whose constituent files are here:

http://examples.mashupguide.net/ch17/odt_example_2/

Formatting Lists to Distinguish Between Ordered and
Unordered Lists
Let’s now style the two lists. Recall that you couldn’t make the first list unordered and the
second ordered without using styling. Let’s now do so by using <style:style> again—but this
time embedded in an <office:automat-styles> element in content.xml.

<?xml version="1.0" ?>
<!-- the namespace declarations of office:document-content are omitted
<office:document-content>
<office:automatic-styles>

[INSERT automatic-styles here]
</office:automatic-styles>
<office:body>
<office:text>

[...]
</office:text>

</office:body>
</office:document-content>

specifically:

<office:automatic-styles>
<style:style style:name="P1" style:family="paragraph"
style:parent-style-name="Standard"
style:list-style-name="L1"/>

<style:style style:name="P6" style:family="paragraph"
style:parent-style-name="Standard"
style:list-style-name="L5"/>

<text:list-style style:name="L1">
<text:list-level-style-bullet text:level="1"
text:style-name="Numbering_20_Symbols"
style:num-suffix="." text:bullet-char="•">
<style:list-level-properties text:space-before="0.25in"
text:min-label-width="0.25in"/>

<style:text-properties style:font-name="StarSymbol"/>
</text:list-level-style-bullet>

[....]
</text:list-style>
<text:list-style style:name="L5">
<text:list-level-style-number text:level="1"
text:style-name="Numbering_20_Symbols"

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES504

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 504

style:num-suffix="." style:num-format="1">
<style:list-level-properties text:space-before="0.25in"
text:min-label-width="0.25in"/>

</text:list-level-style-number>
[....]
</text:list-style>

</office:automatic-styles>

Note that the styling for levels beyond level 1 are deleted in this excerpt.
Once these styles are defined, you then use text:style-name attributes to associate the

L1/ P1 and L5/P6 styles to the unordered and ordered lists, respectively:

<text:p>Elements to illustrate:</text:p>
<text:list text:style-name="L1">
<text:list-item>
<text:p text:style-name="P1">hyperlinks</text:p>

</text:list-item>
<text:list-item>
<text:p text:style-name="P1">italics and bold text</text:p>

</text:list-item>
<text:list-item>
<text:p text:style-name="P1">lists (ordered and unordered)</text:p>

</text:list-item>
</text:list>
<text:p>How to figure out ODF</text:p>
<text:list text:style-name="L5">
<text:list-item>
<text:p text:style-name="P6">work out the content.xml tags</text:p>

</text:list-item>
<text:list-item>
<text:p text:style-name="P6">work styles into the mix</text:p>

</text:list-item>

Getting Bold, Italics, Font Changes, and Color Changes into
Text Spans
The final changes to make are to define and apply the relevant styles to introduce a number
of text effects (bold, italics, font changes, and color changes). Remember that you have the
<text:span> in place already in content.xml. In content.xml, you need to do the following:

• Add an <office:font-face-decls> element containing a <style:font-face> that
declares an Arial style.

• Create <style:style> elements named T1, T2, T5, respectively, to express the styles of
the three <text:span> elements to which you are applying styling.

• Associate the T1, T2, and T5 styles with the <text:span> elements using text:style-name
attributes.

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 505

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 505

Concretely, this means the following:17

<?xml version="1.0" ?>
<!-- the namespace declarations of office:document-content are omitted
<office:document-content office:version="1.0">
<office:font-face-decls>
<style:font-face style:name="Arial" svg:font-family="Arial"
style:font-family-generic="swiss"
style:font-pitch="variable"/>

</office:font-face-decls>
<office:automatic-styles>

[....]
<style:style style:name="T1" style:family="text">
<style:text-properties fo:font-style="italic" style:font-style-asian="italic"
style:font-style-complex="italic"/>

</style:style>
<style:style style:name="T2" style:family="text">
<style:text-properties fo:font-weight="bold" style:font-weight-asian="bold"
style:font-weight-complex="bold"/>

</style:style>
<style:style style:name="T5" style:family="text">
<style:text-properties fo:color="#ff0000" style:font-name="Arial"/>

</style:style>
</office:automatic-styles>
<office:body>
<office:text>

[...]
<text:p>The <text:span text:style-name="T1">URL</text:span> for <text:span ➥

text:style-name="T5">Flickr</text:span> is <text:a xlink:type="simple"
xlink:href="http://www.flickr.com/"
>http://www.flickr.com</text:a>. <text:s/>
The <text:span text:style-name="T2">API page</text:span> is <text:a
xlink:type="simple" xlink:href="http://www.flickr.com/services/api/"
>http://www.flickr.com/services/api/</text:a></text:p>

[....]
</office:text>

</office:body>
</office:document-content>

This series of changes brings you to the completed ODF text document here:

http://examples.mashupguide.net/ch17/odt_example_4.odt

There are obviously many other features in ODF that are not demonstrated here. But
these examples should give you a good idea of how to learn about the other elements.

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES506

17. http://examples.mashupguide.net/ch17/odt_example_4/content.xml

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 506

API Kits for Working with ODF
In the previous sections, I showed the approach of working directly with the ODF specification
and the validator and using trial and error to generate valid ODF files. In this section, you’ll
move up the abstraction ladder and look at using libraries/API kits/wrapper libraries that work
with ODF. Such libraries can be a huge help if they are implemented well and reflect conscien-
tious effort on the part of the authors to wrestle with some of the issues I discussed in the
previous section.

You can find a good list of tools that support ODF here:

http://en.wikipedia.org/wiki/OpenDocument_software

You can find another good list here:

http://opendocumentfellowship.com/development/tools

In this chapter, I’ll cover two API kits:

• I’ll cover Odfpy (http://opendocumentfellowship.com/projects/odfpy). According to
documentation for Odfpy: “Odfpy aims to be a complete API for OpenDocument in
Python. Unlike other more convenient APIs, this one is essentially an abstraction layer
just above the XML format. The main focus has been to prevent the programmer from
creating invalid documents. It has checks that raise an exception if the programmer
adds an invalid element, adds an attribute unknown to the grammar, forgets to add
a required attribute or adds text to an element that doesn’t allow it.”

• I’ll cover OpenDocumentPHP (http://opendocumentphp.org/), which is in the early
stages of development.

In the next two subsections, I will show you how to use Odfpy and OpenDocumentPHP.

Odfpy
I’ll first use Odfpy to generate a minimalist document and then to re-create the full-blown
ODF text document from earlier in the chapter. To use it, follow the documentation here:

http://opendocumentfellowship.com/files/api-for-odfpy.odt

You can access the code via Subversion:

svn export http://opendocumentfellowship.com/repos/odfpy/trunk odfpy

To generate a “Hello World” document, use this:

from odf.opendocument import OpenDocumentText
from odf.text import P

textdoc = OpenDocumentText()
p = P(text="Hello World!")
textdoc.text.addElement(p)
textdoc.save("helloworld_odfpy.odt")

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 507

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 507

This code will generate helloworld_odfpy.odt with the following file structure:

File Name Modified Size
mimetype 2007-12-03 15:06:20 39
styles.xml 2007-12-03 15:06:20 403
content.xml 2007-12-03 15:06:20 472
meta.xml 2007-12-03 15:06:20 426
META-INF/manifest.xml 2007-12-03 15:06:20 691

But the generated instance doesn’t validate (according to the ODF Validator), even though
OO.o 2.2 has no problem reading the file. For many practical purposes, this may be OK, though
it’d be nice to know that a document coming out of Odfpy is valid since that’s the stated design
goal of Odfpy.

Re-creating the Example ODF Text Document
Let’s now use Odfpy to generate a more substantial document. The following code demon-
strates how you can use Odfpy to re-create the full-blown ODF text document from earlier in
the chapter. The code is a rather literal translation of the markup to the corresponding object
model of Odfpy—and should give you a feel for how to use Odfpy.

odfpy_gen_example.py

"""

Description: This program used odfpy to generate a simple ODF text document
odfpy: http://opendocumentfellowship.com/projects/odfpy
documentation for odfpy: http://opendocumentfellowship.com/files/api-for-➥

odfpy.odt

"""

from odf.opendocument import OpenDocumentText
from odf.style import Style, TextProperties, ParagraphProperties, ➥

ListLevelProperties, FontFace
from odf.text import P, H, A, S, List, ListItem, ListStyle, ListLevelStyleBullet, ➥

ListLevelStyleNumber, ListLevelStyleBullet, Span
from odf.text import Note, NoteBody, NoteCitation
from odf.office import FontFaceDecls
from odf.table import Table, TableColumn, TableRow, TableCell
from odf.draw import Frame, Image

fname is the path for the output file
fname= '[PATH-FOR-OUTPUT-FILE]';
#fname='D:\Document\PersonalInfoRemixBook\examples\ch17\odfpy_gen_example.odt'

instantiate an ODF text document (odt)
textdoc = OpenDocumentText()

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES508

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 508

styles
"""
<style:style style:name="Standard" style:family="paragraph" style:class="text"/>
<style:style style:name="Text_20_body" style:display-name="Text body"
style:family="paragraph"
style:parent-style-name="Standard" style:class="text">
<style:paragraph-properties fo:margin-top="0in" fo:margin-bottom="0.0835in"/>
</style:style>
"""

s = textdoc.styles

StandardStyle = Style(name="Standard", family="paragraph")
StandardStyle.addAttribute('class','text')
s.addElement(StandardStyle)

TextBodyStyle = Style(name="Text_20_body",family="paragraph", ➥

parentstylename='Standard', displayname="Text body")
TextBodyStyle.addAttribute('class','text')
TextBodyStyle.addElement(ParagraphProperties(margintop="0in", ➥

marginbottom="0.0835in"))
s.addElement(TextBodyStyle)

font declarations
"""
<office:font-face-decls>

<style:font-face style:name="Arial" svg:font-family="Arial"
style:font-family-generic="swiss"
style:font-pitch="variable"/>

</office:font-face-decls>
"""

textdoc.fontfacedecls.addElement((FontFace(name="Arial",fontfamily="Arial", ➥

fontfamilygeneric="swiss",fontpitch="variable")))

Automatic Style

P1
"""
<style:style style:name="P1" style:family="paragraph"

style:parent-style-name="Standard"
style:list-style-name="L1"/>

"""
P1style = Style(name="P1", family="paragraph", parentstylename="Standard", ➥

liststylename="L1")
textdoc.automaticstyles.addElement(P1style)

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 509

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 509

L1
"""
<text:list-style style:name="L1">
<text:list-level-style-bullet text:level="1"
text:style-name="Numbering_20_Symbols"
style:num-suffix="." text:bullet-char="•">
<style:list-level-properties text:space-before="0.25in"
text:min-label-width="0.25in"/>

<style:text-properties style:font-name="StarSymbol"/>
</text:list-level-style-bullet>

</text:list-style>
"""
L1style=ListStyle(name="L1")
u'\u2022' is the bullet character (http://www.unicode.org/charts/PDF/U2000.pdf)
bullet1 = ListLevelStyleBullet(level="1", stylename="Numbering_20_Symbols", ➥

numsuffix=".", bulletchar=u'\u2022')
L1prop1 = ListLevelProperties(spacebefore="0.25in", minlabelwidth="0.25in")
bullet1.addElement(L1prop1)
L1style.addElement(bullet1)
textdoc.automaticstyles.addElement(L1style)

P6
"""
<style:style style:name="P6" style:family="paragraph"

style:parent-style-name="Standard"
style:list-style-name="L5"/>

"""

P6style = Style(name="P6", family="paragraph", parentstylename="Standard", ➥

liststylename="L5")
textdoc.automaticstyles.addElement(P6style)

L5
"""
<text:list-style style:name="L5">
<text:list-level-style-number text:level="1"
text:style-name="Numbering_20_Symbols"
style:num-suffix="." style:num-format="1">
<style:list-level-properties text:space-before="0.25in"
text:min-label-width="0.25in"/>

</text:list-level-style-number>
</text:list-style>
"""

L5style=ListStyle(name="L5")
numstyle1 = ListLevelStyleNumber(level="1", stylename="Numbering_20_Symbols", ➥

numsuffix=".", numformat='1')

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES510

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 510

L5prop1 = ListLevelProperties(spacebefore="0.25in", minlabelwidth="0.25in")
numstyle1.addElement(L5prop1)
L5style.addElement(numstyle1)
textdoc.automaticstyles.addElement(L5style)

T1
"""

<style:style style:name="T1" style:family="text">
<style:text-properties fo:font-style="italic" style:font-style-asian="italic"
style:font-style-complex="italic"/>

</style:style>
"""
T1style = Style(name="T1", family="text")
T1style.addElement(TextProperties(fontstyle="italic",fontstyleasian="italic",➥

fontstylecomplex="italic"))
textdoc.automaticstyles.addElement(T1style)

T2
"""
<style:style style:name="T2" style:family="text">

<style:text-properties fo:font-weight="bold" style:font-weight-asian="bold"
style:font-weight-complex="bold"/>

</style:style>
"""
T2style = Style(name="T2", family="text")
T2style.addElement(TextProperties(fontweight="bold",fontweightasian="bold",➥

fontweightcomplex="bold"))
textdoc.automaticstyles.addElement(T2style)

T5
"""

<style:style style:name="T5" style:family="text">
<style:text-properties fo:color="#ff0000" style:font-name="Arial"/>

</style:style>
"""
T5style = Style(name="T5", family="text")
T5style.addElement(TextProperties(color="#ff0000",fontname="Arial"))
textdoc.automaticstyles.addElement(T5style)

now construct what goes into <office:text>

h=H(outlinelevel=1, text='Purpose (Heading 1)')
textdoc.text.addElement(h)
p = P(text="The following sections illustrate various possibilities in ODF Text", ➥

stylename='Text_20_body')
textdoc.text.addElement(p)

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 511

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 511

textdoc.text.addElement(H(outlinelevel=2,text='A simple series of paragraphs ➥

(Heading 2)'))
textdoc.text.addElement(P(text="This section contains a series of paragraphs.", ➥

stylename='Text_20_body'))
textdoc.text.addElement(P(text="This is a second paragraph.", ➥

stylename='Text_20_body'))
textdoc.text.addElement(P(text="And a third paragraph.", stylename='Text_20_body'))

textdoc.text.addElement(H(outlinelevel=2,text='A section with lists (Heading 2)'))
textdoc.text.addElement(P(text="Elements to illustrate:"))

add the first list (unordered list)
textList = List(stylename="L1")
item = ListItem()
item.addElement(P(text='hyperlinks', stylename="P1"))
textList.addElement(item)

item = ListItem()
item.addElement(P(text='italics and bold text', stylename="P1"))
textList.addElement(item)

item = ListItem()
item.addElement(P(text='lists (ordered and unordered)', stylename="P1"))
textList.addElement(item)

textdoc.text.addElement(textList)

add the second (ordered) list

textdoc.text.addElement(P(text="How to figure out ODF"))

textList = List(stylename="L5")
#item = ListItem(startvalue=P(text='item 1'))
item = ListItem()
item.addElement(P(text='work out the content.xml tags', stylename="P5"))
textList.addElement(item)

item = ListItem()
item.addElement(P(text='work styles into the mix', stylename="P5"))
textList.addElement(item)

item = ListItem()
item.addElement(P(text='figure out how to apply what we learned to spreadsheets and ➥

presentations', stylename="P5"))
textList.addElement(item)

textdoc.text.addElement(textList)

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES512

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 512

A paragraph with bold, italics, font change, and hyperlinks
"""

<text:p>The <text:span text:style-name="T1">URL</text:span> for <text:span
text:style-name="T5">Flickr</text:span> is <text:a xlink:type="simple"
xlink:href="http://www.flickr.com/"
>http://www.flickr.com</text:a>. <text:s/>The <text:span
text:style-name="T2"
>API page</text:span> is <text:a xlink:type="simple"
xlink:href="http://www.flickr.com/services/api/"

>http://www.flickr.com/services/api/</text:a></text:p>
"""
p = P(text='The ')
italicized URL
s = Span(text='URL', stylename='T1')
p.addElement(s)
p.addText(' for ')
Flickr in red and Arial font
p.addElement(Span(text='Flickr',stylename='T5'))
p.addText(' is ')
link
link = A(type="simple",href="http://www.flickr.com", text="http://www.flickr.com")
p.addElement(link)
p.addText('. The ')
API page in bold
s = Span(text='API page', stylename='T2')
p.addElement(s)
p.addText(' is ')
link = A(type="simple",href="http://www.flickr.com/services/api", ➥

text="http://www.flickr.com/services/api")
p.addElement(link)

textdoc.text.addElement(p)

add the table
"""
<table:table-column table:number-columns-repeated="3"/>
"""

textdoc.text.addElement(H(outlinelevel=1,text='A Table (Heading 1)'))

table = Table(name="Table 1")

table.addElement(TableColumn(numbercolumnsrepeated="3"))

first row
tr = TableRow()
table.addElement(tr)

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 513

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 513

tc = TableCell(valuetype="string")
tc.addElement(P(text='Website'))
tr.addElement(tc)
tc = TableCell(valuetype="string")
tc.addElement(P(text='Description'))
tr.addElement(tc)
tc = TableCell(valuetype="string")
tc.addElement(P(text='URL'))
tr.addElement(tc)

second row
tr = TableRow()
table.addElement(tr)
tc = TableCell(valuetype="string")
tc.addElement(P(text='Flickr'))
tr.addElement(tc)
tc = TableCell(valuetype="string")
tc.addElement(P(text='A social photo sharing site'))
tr.addElement(tc)
tc = TableCell(valuetype="string")

link = A(type="simple",href="http://www.flickr.com", text="http://www.flickr.com")
p = P()
p.addElement(link)
tc.addElement(p)

tr.addElement(tc)

third row
tr = TableRow()
table.addElement(tr)
tc = TableCell(valuetype="string")
tc.addElement(P(text='Google Maps'))
tr.addElement(tc)
tc = TableCell(valuetype="string")
tc.addElement(P(text='An online map'))
tr.addElement(tc)
tc = TableCell(valuetype="string")

link = A(type="simple",href="http://maps.google.com", text="http://maps.google.com")
p = P()
p.addElement(link)
tc.addElement(p)
tr.addElement(tc)

textdoc.text.addElement(table)

paragraph with footnote

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES514

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 514

"""
<text:h text:outline-level="1">Footnotes (Heading 1)</text:h>

<text:p>This sentence has an accompanying footnote.<text:note text:id="ftn0"
text:note-class="footnote">
<text:note-citation>1</text:note-citation>
<text:note-body>
<text:p text:style-name="Footnote">You are reading a footnote.</text:p>

</text:note-body>
</text:note>
<text:s text:c="2"/>Where does the text after a footnote go?</text:p>

"""

textdoc.text.addElement(H(outlinelevel=1,text='Footnotes (Heading 1)'))
p = P()
textdoc.text.addElement(p)
p.addText("This sentence has an accompanying footnote.")
note = Note(id="ftn0", noteclass="footnote")
p.addElement(note)
note.addElement(NoteCitation(text='1'))
notebody = NoteBody()
note.addElement(notebody)
notebody.addElement(P(stylename="Footnote", text="You are reading a footnote."))
p.addElement(S(c=2))
p.addText("Where does the text after a footnote go?")

Insert the photo

"""
<text:h text:outline-level="1">An Image</text:h>
<text:p>
<draw:frame draw:name="graphics1" text:anchor-type="paragraph"
svg:width="5in"
svg:height="6.6665in" draw:z-index="0">
<draw:image xlink:href="Pictures/campanile_fog.jpg" xlink:type="simple"
xlink:show="embed"
xlink:actuate="onLoad"/>

</draw:frame>
</text:p>

"""

textdoc.text.addElement(H(outlinelevel=1,text='An Image'))
p = P()
textdoc.text.addElement(p)
add the image
img_path is the local path of the image to include
img_path = '[PATH-FOR-IMAGE]';
#img_path = 'D:\Document\PersonalInfoRemixBook\examples\ch17\campanile_fog.jpg'
href = textdoc.addPicture(img_path)

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 515

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 515

f = Frame(name="graphics1", anchortype="paragraph", width="5in", height="6.6665in", ➥

zindex="0")
p.addElement(f)
img = Image(href=href, type="simple", show="embed", actuate="onLoad")
f.addElement(img)

save the document
textdoc.save(fname)

You can examine the output from this code:

http://examples.mashupguide.net/ch17/odfpy_gen_example.odt

OpenDocumentPHP
OpenDocumentPHP (http://opendocumentphp.org/) is a PHP API kit for ODF in its early
stages of development.

In this section, I’ll show how to use OpenDocumentPHP version 0.5.2, which you can get
from here:

http://downloads.sourceforge.net/opendocumentphp/OpenDocumentPHP-0.5.2.zip

Alternatively, you can install OpenDocumentPHP using PEAR:

http://opendocumentphp.org/index.php/home/11-new-pear-server-for-opendocumentphp

Some autogenerated documentation of the API is available here:

http://opendocumentphp.org/static/apidoc/svn/

Unzip the file in your PHP library area. To see a reasonably complicated example of what
you can do, consult the samples in OpenDocumentPHP/samples.

Here I will write a simple helloworld-generated document to demonstrate how to get
started with the library:

<?php
require_once 'OpenDocumentPHP/OpenDocumentText.php';
$text = new OpenDocumentText('D:\Document\PersonalInfoRemixBook\examples\ch17\➥

helloworld_opendocumentphp.odt');
$textbody = $text->getBody();
$paragraph = $textbody->nextParagraph();
$paragraph->append('Hello World!');
$text->close();
?>

■Note You need ZipArchive to be enabled in PHP to run OpenDocumentPHP. On Linux systems use the
--enable-zip option at compile time. On Windows systems, enable php_zip.dll inside php.ini.

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES516

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 516

The following is a more elaborate example using OpenDocumentPHP to generate a couple
of headers and several paragraphs. The paragraphs are associated with a Text body style.

<?php

require_once 'OpenDocumentPHP/OpenDocumentText.php';

$fullpath = 'D:\Document\PersonalInfoRemixBook\examples\ch17\odp_gen_example.odt';

/*
* If file exists, remove it first.
*/
if (file_exists($fullpath)) {

unlink($fullpath);
}

$text = new OpenDocumentText($fullpath);

set some styles

/**

<style:style style:name="Standard" style:family="paragraph" style:class="text"/>
<style:style style:name="Text_20_body" style:display-name="Text body"
style:family="paragraph"
style:parent-style-name="Standard" style:class="text">
<style:paragraph-properties fo:margin-top="0in" fo:margin-bottom="0.0835in"/>
</style:style>

**/

$Standard_Style = $text->getStyles()->getStyles()->getStyle();
$Standard_Style->setStyleName('Standard');
$Standard_Style->setFamily('paragraph');
$Standard_Style->setClass('text');

$textBody_Style = $text->getStyles()->getStyles()->getStyle();
$textBody_Style->setStyleName('Text_20_body');
$textBody_Style->setDisplayName('Text body');
$textBody_Style->setFamily('paragraph');
$textBody_Style->setClass('text');

$pp = $textBody_Style->getParagraphProperties();
$pp->setMarginTop('0in');
$pp->setMarginBottom('0.0835in');

write the headers and paragraphs

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 517

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 517

$textbody = $text->getBody()->getTextFragment();

$heading = $textbody->nextHeading();
$heading->setHeadingLevel(1);
$heading->append('Purpose (Heading 1)');

$paragraph = $textbody->nextParagraph();
$paragraph->setStyleName('Text_20_body');
$paragraph->append('The following sections illustrate various possibilities in ODF
Text');

$heading = $textbody->nextHeading();
$heading->setHeadingLevel(2);
$heading->append('A simple series of paragraphs (Heading 2)');

$paragraph = $textbody->nextParagraph();
$paragraph->setStyleName('Text_20_body');
$paragraph->append('This section contains a series of paragraphs.');
$paragraph = $textbody->nextParagraph();
$paragraph->setStyleName('Text_20_body');
$paragraph->append('This is a second paragraph.');
$paragraph = $textbody->nextParagraph();
$paragraph->setStyleName('Text_20_body');
$paragraph->append('And a third paragraph.');

$text->close();

?>

You can examine the output from this script here:

http://examples.mashupguide.net/ch17/odp_gen_example.odt

Leveraging OO.o to Generate ODF
If you are willing and able to have OpenOffice.org installed on your computer, it is possible to
use OO.o itself as a big library of sorts to parse and generate your ODF documents and to con-
vert ODF to and from other formats. Libraries/tools that use this approach include the following:

• The JODConverter Java Library (http://www.artofsolving.com/opensource/jodconverter)

• OOoLib, Perl and Python libraries that use OO.o (http://sourceforge.net/projects/
ooolib/)

On Win32-oriented systems, you can access OpenOffice.org via a COM interface. For
instance, the following Python code running the win32all library will generate a new .odt
document by scripting OO.o:

import win32com.client

objServiceManager = win32com.client.Dispatch("com.sun.star.ServiceManager")
objServiceManager._FlagAsMethod("CreateInstance")

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES518

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 518

objDesktop = objServiceManager.CreateInstance("com.sun.star.frame.Desktop")
objDesktop._FlagAsMethod("loadComponentFromURL")

args = []
objDocument = objDesktop.loadComponentFromURL("private:factory/swriter", "_blank",➥

0, args)
objDocument._FlagAsMethod("GetText")
objText = objDocument.GetText()
objText._FlagAsMethod("createTextCursor","insertString")
objCursor = objText.createTextCursor()
objText.insertString(objCursor, "The first line in the newly created text➥

document.\n", 0)

ECMA Office Open XML (OOXML)
Now we turn to a competing file format: Office Open XML. Wikpedia provides a good overview
of the specification that underpins Microsoft Office 2007:

http://en.wikipedia.org/wiki/Office_Open_XML

The Office Open XML specification has been made into an ECMA standard (ECMA-376).
You can find the specification here:

http://www.ecma-international.org/publications/standards/Ecma-376.htm

Note that the standard is 6,000 pages—in case you want to read it. ECMA provides an
overview white paper:

http://www.ecma-international.org/news/TC45_current_work/OpenXML%20White%20Paper.pdf

Getting hard, easy-to-digest information on OOXML is challenging. I recommend the fol-
lowing, more colloquial overviews that you might find useful:

• The “5 Cool Things You Must Know About the New Office 2007 File Formats” article
might prove helpful (http://www.devx.com/MicrosoftISV/Article/30907/2046).

• http://openxmldeveloper.org/default.aspx has some useful tutorials on the subject.

When working with Office Open XML, it’s good to heed the following warning: “Open
XML is a new standard. So new, in fact, that the schemas are still being edited and haven’t
been published by ECMA yet. And there are no books out on Open XML development,
although that will surely change in the next year.”18

The Office Open XML format has a predecessor in the Microsoft Office 2003 XML format.
In the book Office 2003 XML (O’Reilly Media, 2004), the following was given as a minimalist
Office 2003 XML document:19

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 519

18. http://openxmldeveloper.org/articles/LearningOnline.aspx (accessed on June 5, 2007)

19. http://examples.mashupguide.net/ch17/helloworld_onedoc_2003.xml

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 519

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">
<w:body>
<w:p>
<w:r>
<w:t>Hello, World!</w:t>

</w:r>
</w:p>

</w:body>
</w:wordDocument>

This document is actually readable by Microsoft Office 2007, though in “compatibility
mode.” Can you get a valid document by using the Microsoft Office 2003 document and
updating the namespace of the document? That is, can you just update the namespace for w?

xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"

You therefore have the following:

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main">
<w:body>
<w:p>
<w:r>
<w:t>Hello, World!</w:t>

</w:r>
</w:p>

</w:body>
</w:wordDocument>

Unfortunately this document as an Office Open XML instance to Microsoft Office 2007
causes an error. You can certainly keep pushing in this direction by looking through the speci-
fication and schema. However, a more promising lead right now is to see what file gets written
out by a simple little C# script aimed at generating a simple .docx file:

http://blogs.msdn.com/dmahugh/archive/2006/06/27/649007.aspx

I downloaded the Microsoft Visual Studio C# Express Edition to run the script and made
a small change to update the namespace from this:

http://schemas.openxmlformats.org/wordprocessingml/2006/3/main

to this:

http://schemas.openxmlformats.org/wordprocessingml/2006/main

With that change, you can generate a simple Office Open XML document file (http://
examples.mashupguide.net/ch17/helloworld_simple.1.docx) that is acceptable by Microsoft

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES520

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 520

Office 2007. (This doesn’t prove that the file is valid but only that you are on the right track in
terms of generating OOXML.)

Unzipping and studying the file gives you insight into what goes into a minimalist instance
of OOXML. The list of files is as follows:

File Name Modified Size
word/document.xml 2007-06-04 16:43:44 246
[Content_Types].xml 2007-06-04 16:43:44 346
_rels/.rels 2007-06-04 16:43:44 285

Let’s look at the individual files. The first is the document.xml file in the word directory, which
holds the content of the document and corresponds most closely to content.xml in ODF.

<?xml version="1.0" encoding="utf-8"?>
<w:document

xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main">
<w:body>
<w:p>
<w:r>
<w:t>Hello World!</w:t>

</w:r>
</w:p>

</w:body>
</w:document>

The .rels file in the rels directory contains information about relationships among the
various files that make up the package of files (a bit like the METAINF/meta.xml file in ODF):

<?xml version="1.0" ?>
<Relationships xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship Id="rId1" Target="/word/document.xml"

Type="http://schemas.openxmlformats.org/officeDocument/2006/➥

relationships/officeDocument"/>
</Relationships>

The final file in the package is [Content_Types].xml:

<?xml version="1.0" ?>
<Types xmlns="http://schemas.openxmlformats.org/package/2006/content-types">
<Default ContentType="application/vnd.openxmlformats-officedocument.➥

wordprocessingml.document.main+xml" Extension="xml"/>
<Default ContentType="application/vnd.openxmlformats-package.relationships+xml"

Extension="rels"/>
</Types>

These files should give you a feel of what’s in OOXML. To learn more, take a look at the
following resources:

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 521

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 521

• The “Ecma Office Open XML Format Guide” is an official high-level conceptual/marketing
overview of OOXML.

* http://openxmldeveloper.org/articles/directory.aspx lists tutorial articles that are
gathered by the OOXML community.

• http://openxmldeveloper.org/articles/OpenXMLsamples.aspx has sample OOXML
documents.

• http://msdn2.microsoft.com/en-us/library/bb187361.aspx gives the object model of
Microsoft Office 2007.

• http://en.wikipedia.org/wiki/User:Flemingr/Microsoft_Office_2003_XML_formats
documents the older Office 2003 XML format, which has some family resemblance to
OOXML—though an unclear one to me.

• Brian Jones of Microsoft has written some clear tutorials on generating spreadsheets
in OOXML: http://blogs.msdn.com/brian_jones/archive/2007/05/29/simple-
spreadsheetml-file-part-3-formatting.aspx.

Viewers/Validators for OOXML
A big point of OOXML is being able to read and generate documents that are readable in the
latest versions of Microsoft Office without having to directly manipulate the object models of
Microsoft Office. Yet, it’s always helpful to have tools that view and validate OOXML documents—
other than Microsoft Office 2007 itself. Some promising tools are as follows:

• Open XML Package Explorer, which lets you browse and edit Open XML packages and
validate against the ECMA final schemas (http://www.codeplex.com/PackageExplorer).

• If you are using Microsoft Office XP and 2003, you can download a Microsoft Office
compatibility pack for the Word, Excel, and PowerPoint 2007 file formats to read and
write OOXML.20 This will also enable you to use the free Microsoft Office Word Viewer
2003 and Microsoft Office Excel Viewer 2003 to view Word 2007 and Excel 2007 files.21

Comparing ODF and OOXML
I will not get into surveying the complicated and often-heated comparisons made between
ODF and OOXML other than to refer you to the following articles, which in turn provide more
references:

• http://en.wikipedia.org/wiki/Comparison_of_OpenDocument_and_Office_Open_XML_
formats compares formats.

• http://weblog.infoworld.com/realitycheck/archives/2007/05/odf_vs_openxml.html
gives a flavor of the conflation of political, economical, PR, and technical issues.

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES522

20. http://www.microsoft.com/downloads/details.aspx?FamilyId=941b3470-3ae9-4aee-8f43-
c6bb74cd1466&displaylang=en

21. http://support.microsoft.com/kb/925180

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 522

Online Office Suites
Web-based offices suites are emerging in addition to the traditional desktop office suites and
their respective file formats. Prominent examples of such applications include the Zoho Office
Suite (http://zoho.com/) and Google Docs and Spreadsheets (http://docs.google.com/). There
are others, of course. You can see a list of online spreadsheets, for instance, here:

http://en.wikipedia.org/wiki/List_of_online_spreadsheets

I will focus on using a programmable online spreadsheet, specifically Google Spreadsheets,
in this section. Google Spreadsheets has an API (which we will use in a mashup later in the
chapter):

http://code.google.com/apis/spreadsheets/overview.html

Usage Scenarios for Programmable Online Spreadsheets
What might one want to do with an online spreadsheet? Here are a few examples I brainstormed:

• Tracking one’s weight, finances, or time and sharing that information with your family
and friends—or not.

• Having bots calculate data that they put into your spreadsheets that you can then analyze.
For instance, if you wanted to track your stock portfolio, you could use the StrikeIron fee-
based real-time stock quote service to calculate the value of your portfolio. (You might
think twice before storing that portfolio information online, but this is feasible in principle.)

• Build an application to track and disseminate grades.

• Manage a wedding database.

• Build a project management tool that you can update and read with the API.

• Back up a list of your del.icio.us bookmarks in a spreadsheet form.

• Track your library books.

• Build online charts (see http://imagine-it.org/google/spreadsheets/makechart.htm).

There are many other applications. Consider StrikeIron SOA Express for Excel (http://
www.strikeiron.com/tools/tools_soaexpress.aspx) as a source of hints about what people might
do with the Google Spreadsheets API; that is, start to think of Google Spreadsheets as Excel in
the cloud, but account for its lack of some of Excel’s current internal extensibility such as macros.
(There is no equivalent to Google Mapplets for the spreadsheets or VBA macros—yet.)

The application I will demonstrate in detail is copying my Amazon.com wishlist and prices
to a spreadsheet to more easily take that information with me (say to a real-life bookstore or
library).

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 523

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 523

Google Spreadsheets API
Let’s figure out how to use the Google Spreadsheets API, focusing specifically on PHP and
Python wrapper libraries. You can also directly manipulate the feed protocol:

http://code.google.com/apis/spreadsheets/developers_guide_protocol.html

There are also a number of API kits available for Google Spreadsheets. I will first demon-
strate how to use the Python API kit by creating a mashup involving the Amazon.com web
services. I’ll then show you a simple example of using the Zend PHP API kit to read the spread-
sheets generated in the mashup.

Python API Kit
Google provides a Python GData library and sample code to access the Google spreadsheet.
You can either download specific releases (from http://code.google.com/p/gdata-python-
client/downloads/list) or access the SVN repository:

svn checkout http://gdata-python-client.googlecode.com/svn/trunk/➥

gdata-python-client

Note the dependencies on other libraries, especially ElementTree, which was not part of
the standard Python libraries until version 2.5.22

I highly recommend reading the documentation on the Google site specific to the Python
library:

http://code.google.com/apis/spreadsheets/developers_guide_python.html

Once you have the Python GData library installed, you can try some code samples, using
the Python interpreter, to teach yourself how it works. First here are the obligatory imports:

import gdata.spreadsheet.service

Let’s then declare some convenience functions and variables:

GoogleUser = "[your Google email address]"
GooglePW = "[your password]"

Define the following convenience function:

def GSheetService(user,pwd):
gd_client = gdata.spreadsheet.service.SpreadsheetsService()
gd_client.email = user
gd_client.password = pwd
gd_client.source = 'amazonWishListToGSheet.py'
gd_client.ProgrammaticLogin()

return gd_client

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES524

22. http://code.google.com/p/gdata-python-client/wiki/DependencyModules

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 524

Instantiate a Google data client for your spreadsheet:

gs = GSheetService(GoogleUser,GooglePW)
sheets = gs.GetSpreadsheetsFeed()

To get a list of the spreadsheets, their titles, and their IDs, use this:

print map(lambda e: e.title.text +➥

" : " + e.id.text.rsplit('/', 1)[1],sheets.entry)

This yields something like the following (which is based on my own spreadsheets):

['My Amazon WishList : o06341737111865728099.3585145106901556666', 'Udell Mini-
Symposium May 1, 2007 : o06341737111865728099.1877210150658854761', 'weight.journal
: o06341737111865728099.6289501454054682788', 'Plan : o10640374522570553588.
5762564240835257179']

Note the key for the spreadsheet “My Amazon WishList.” The spreadsheet that the code
I write here will be reading from and writing to is as follows:

o06341737111865728099.3585145106901556666

You will need to create your own Google spreadsheets to work with since you won’t be
able to write to mine. Note the ID of your spreadsheet, which you will use here.

In the browser, if I’m logged in as the owner of the spreadsheet, I can access this:

http://spreadsheets.google.com/feeds/spreadsheets/private/full/{GSheetID}

For example:

http://spreadsheets.google.com/feeds/spreadsheets/private/full/o0634173711186572809➥

.3585145106901556666

Otherwise, I get a 404 error. Now I need to get the ID of the one worksheet in the “My
Amazon Wishlist” spreadsheet. First use this:

gs.GetWorksheetsFeed(key="[GSheetID]").entry[0].id.text

For example, I use this:

gs.GetWorksheetsFeed(key="o06341737111865728099.3585145106901556666").entry[0].➥

id.text

to return the URL whose last segment is a worksheet ID—that is, a URL of the following form:

http://spreadsheets.google.com/feeds/worksheets/{GSheetID}/private/full/➥

{worksheetID}

For example:

http://spreadsheets.google.com/feeds/worksheets/o06341737111865728099.35851451069015➥

56666/private/full/od6

(in which case the worksheet ID is od6).

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 525

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 525

Now you can get the worksheet ID:

gs.GetWorksheetsFeed(key="[GSheetID]").entry[0].id.text.rsplit('/', 1)[1]

For example:

gs.GetWorksheetsFeed(key="o06341737111865728099.3585145106901556666").entry[0].➥

id.text.rsplit('/', 1)[1]

There are two ways to get at the data in a worksheet—either in a list-based way that gets you
rows or in a cell-based way that gets you a range of cells. I will show the list-based approach here,
which depends on the assumption that the first row is the header row.

For testing purposes, I created a spreadsheet with the header row and one line of data that
I entered, as shown in Table 17-1.

Table 17-1. The Sample Spreadsheet

Date Quantity
ASIN DetailPageURL Title Author Added Price Desired

1590598385 http://www.amazon.com/ Smart and Gets Things Joel Spolsky 6/5/2007 13.25 1
gp/product/1590598385/ Done: Joel Spolsky’s

Concise Guide to
Finding the Best
Technical Talent
(Hardcover)

The following returns a feed for the rows (there’s only one):

lfeed = gs.GetListFeed(key="[GSheetID]",wksht_id="[worksheetID]")

For example:

lfeed =➥

gs.GetListFeed(key="o06341737111865728099.3585145106901556666",wksht_id="od6")

You can see the content of the row with the following:

lfeed.entry[0].content.text

This results in the following:

'ASIN: 1590598385, DetailPageURL:
http://www.amazon.com/gp/product/1590598385/ref=wl_it_dp/103-8266902-5986239?
ie=UTF8&coliid=I1A0WT8LH796DN&colid=1U5EXVPVS3WP5, Author: Joel Spolsky, Date Added:
6/5/2007, Price: 13.25, Quantity Desired: 1'

The following holds the data that has been mapped from namespace-extended elements
in the entry (see http://code.google.com/apis/spreadsheets/developers_guide_protocol.
html#listFeedExample):

lfeed.entry[0].custom

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES526

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 526

Let’s see this in action:

map(lambda e: (e[0],e[1].text), lfeed.entry[0].custom.items())

Running this returns the following:

[('asin', '1590598385'), ('dateadded', '6/5/2007'), ('detailpageurl',
'http://www.amazon.com/gp/product/1590598385/ref=wl_it_dp/103-8266902-5986239?
ie=UTF8&coliid=I1A0WT8LH796DN&colid=1U5EXVPVS3WP5'), ('author', 'Joel
Spolsky'), ('quantitydesired', '1'), ('price', '13.25'), ('title', "Smart and Gets
Things Done: Joel Spolsky's Concise Guide to Finding the Best Technical Talent
(Hardcover) ")]

Now let’s look at adding another row of data. Let’s see whether you can just duplicate the
row by creating a dictionary of the first row and stick it into the second row:

h = {}
for (key,value) in lfeed.entry[0].custom.iteritems():
h[key] = value.text

h now is as follows:

{'asin': '1590598385', 'dateadded': '6/5/2007', 'detailpageurl':
'http://www.amazon.com/gp/product/1590598385/ref=wl_it_dp/103-8266902-5986239?
ie=UTF8&coliid=I1A0WT8LH796DN&colid=1U5EXVPVS3WP5', 'author': 'Joel
Spolsky', 'quantitydesired': '1', 'price': '13.25', 'title': "Smart and Gets Things
Done: Joel Spolsky's Concise Guide to Finding the Best Technical Talent (Hardcover)
"}

To add the new row, use this:

gs.InsertRow(row_data=h,key="[GSheetID]",wksht_id="[worksheetID]")

For example:

gs.InsertRow(row_data=h,key="o06341737111865728099.3585145106901556666",➥

wksht_id="od6")

To clear the second row you just added, you need to get an update lfeed that reflects the
current state of the spreadsheet/worksheet and then issue a delete command:

lfeed = gs.GetListFeed(key="[GSheetID]",
wksht_id="[worksheetID]")
gs.DeleteRow(lfeed.entry[1])

■Note The Google Spreadsheets API is under active development and is still in the process of maturation.

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 527

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 527

Mashup: Amazon Wishlist and Google Spreadsheets Mashup
To demonstrate how to use Google Spreadsheets for a simple mashup, I will show you how to
write code that will transfer the contents of an Amazon.com wishlist to a Google Spreadsheets
spreadsheet. Why do that? I use my wishlist to keep track of books and other stuff that I find
interesting. If the wishlist belonged to someone else, I might want to download it into a spread-
sheet to make it easier to generate a hard-copy shopping list I could use.

Accessing the Wishlist Through the Amazon.com ECS Web Service
First, a word about how you can use Awszone.com to help you formulate the right Amazon.com
ECS query to get the information you want to find. I figured out that I wanted to use the
ListLookup query by using this:

http://www.awszone.com/scratchpads/aws/ecs.us/ListLookup.aws

Furthermore, I am using a ListType=WishList and the ListID=1U5EXVPVS3WP5. The URL for
web interface to an Amazon.com wishlist is this:

http://www.amazon.com/gp/registry/wishlist/{ListID}/

Substituting your own AccessKeyId, you can get information about the list as a whole:

http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService&Version=2007-05-14&➥

AWSAccessKeyId=[YourAccessKeyID]&Operation=ListLookup&ListType=WishList&➥

ListId=1U5EXVPVS3WP5http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService&➥

Version=2007-10-29&AWSAccessKeyId=[YourAccessKeyID]&Operation=ListLookup&ListType=➥

WishList&ListId=1U5EXVPVS3WP5

To get a page of the individual items, use the following URL:

http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService&Version=2007-10-29&➥

AWSAccessKeyId=[YourAccessKeyID]&Operation=ListLookup&ListType=WishList&ListId=1U5➥

EXVPVS3WP5&ResponseGroup=ListItems,Medium&ProductPage=2

Python Code to Mash Up Amazon.com and Google Spreadsheets
Now you can stitch all of this together with the following code, called amazonWishListtoGSheet.py.
(Remember to substitute your own parameters into this code.)

"""
an example to copy over a public Amazon wishlist to a Google Spreadsheet
owned by the user based on code at
http://code.google.com/apis/spreadsheets/developers_guide_python.html
"""

GoogleUser = "[GoogleUSER]"
GooglePW = "[GooglePASSWORD]"
GSheet_KEY = "[GSheetID]"
GSheet_KEY = "o06341737111865728099.3585145106901556666"
GWrkSh_ID = "[worksheetID]"
#GWrkSh_ID = "od6"

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES528

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 528

AMAZON_LIST_ID = "[LIST_ID_FOR_WISHLIST]"
AMAZON_LIST_ID = "1U5EXVPVS3WP5"
AMAZON_ACCESS_KEY_ID = "[AMAZON_KEY]"

from xml.dom import minidom

import gdata.spreadsheet.service

def getText(nodelist):
"""
convenience function to return all the text in an array of nodes
"""
rc = ""
for node in nodelist:

if node.nodeType == node.TEXT_NODE:
rc = rc + node.data

return rc

a sample row for testing the insertion of a row into the spreadsheet➥

GS_Example_Row = {'asin': '1590598385', 'dateadded': '6/5/2007', 'detailpageurl':➥

'http://www.amazon.com/gp/product/1590598385/ref=wl_it_dp/103-8266902-5986239?➥

ie=UTF8&coliid=I1A0WT8LH796DN&colid=1U5EXVPVS3WP5', 'author': 'Joel Spolsky',➥

'quantitydesired': '1', 'price': '13.25', 'title': "Smart and Gets Things Done: Joel➥

Spolsky's Concise Guide to Finding the Best Technical Talent (Hardcover) "}

GS_HEADER = ['ASIN', 'DetailPageURL', 'Title', 'Author', 'Date Added', 'Price',➥

'Quantity Desired']

GS_KEYS = ['asin', 'detailpageurl', 'title', 'author', 'dateadded', 'price',➥

'quantitydesired']

class GSheetForAmazonList:
def __init__(self,user=GoogleUser,pwd=GooglePW):

gd_client = gdata.spreadsheet.service.SpreadsheetsService()
gd_client.email = user
gd_client.password = pwd
gd_client.source = 'amazonListToGsheet.py'
gd_client.ProgrammaticLogin()
self.gd_client = gd_client

def setKey(self,key):
self.key = key

def setWkshtId(self,wksht_id):
self.wksht_id = wksht_id

def listSpreadsheets(self):
"""
return a list with information about the spreadsheets available to the user
"""
sheets = self.gd_client.GetSpreadsheetsFeed()

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 529

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 529

return map(lambda e: (e.title.text , e.id.text.rsplit('/', 1)[1]), ➥

sheets.entry)
def listWorkSheets(self):

wks = self.gd_client.GetWorksheetsFeed(key=self.key)
return map(lambda e: (e.title.text , e.id.text.rsplit('/', 1)[1]),wks.entry)

def getRows(self):
return self.gd_client.GetListFeed(key=self.key,wksht_id=self.wksht_id).entry

def insertRow(self,row_data):
return

self.gd_client.InsertRow(row_data,key=self.key,wksht_id=self.wksht_id)
def deleteRow(self,entry):

return self.gd_client.DeleteRow(entry)
def deleteAllRows(self):

entrylist = self.getRows()
i = 0
for entry in entrylist:

self.deleteRow(entry)
i += 1
print "deleted row ", i

class amazonWishList:

we can use Python and WSDL
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl?

I've been wondering how to introspect using WSDL -- Mark Pilgrim has some answers:
http://www.diveintopython.org/soap_web_services/introspection.html
well -- the introspection of the input parameters doesn't seem to yield the useful
stuff. I was hoping for more info

def __init__(self,listID=AMAZON_LIST_ID,amazonAccessKeyId=AMAZON_ACCESS_KEY_ID):
self.listID = listID
self.amazonAccessKeyId = amazonAccessKeyId
self.getListInfo()

def getListInfo(self):

aws_url = "http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService&➥

Version=2007-10-29&AWSAccessKeyId=%s&Operation=ListLookup&ListType=WishList&ListId➥

=%s" % (self.amazonAccessKeyId, self.listID)
import urllib
f = urllib.urlopen(aws_url)
dom = minidom.parse(f)
self.title = getText(dom.getElementsByTagName('ListName')[0].childNodes)
self.listLength = int(getText(dom.getElementsByTagName('TotalItems')[0].➥

childNodes))
self.TotalPages = int(getText(dom.getElementsByTagName('TotalPages')[0].➥

childNodes))

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES530

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 530

return(self.title, self.listLength, self.TotalPages)

def ListItems(self):
"""
a generator for the items on the Amazon list
"""

import itertools
for pageNum in xrange(1,self.TotalPages):

aws_url = "http://ecs.amazonaws.com/onca/xml?Service=AWSECommerce➥

Service&Version=2007-10-29&AWSAccessKeyId=%s&Operation=ListLookup&ListType=Wish➥

List&ListId=%s&ResponseGroup=ListItems,Medium&ProductPage=%s" % (self.amazon➥

AccessKeyId,self.listID,pageNum)
import urllib
f = urllib.urlopen(aws_url)
dom = minidom.parse(f)
f.close()
items = dom.getElementsByTagName('ListItem')
for c in xrange(0,10):

yield items[c]

def parseListItem(self,item):
from string import join
from decimal import Decimal

itemDict = {}

itemDict['asin'] = getText(item.getElementsByTagName('ASIN')[0].childNodes)
itemDict['dateadded'] = getText(item.getElementsByTagName('DateAdded')[0].➥

childNodes)
itemDict['detailpageurl'] = getText(item.getElementsByTagName(➥

'DetailPageURL')[0].childNodes)

join the text of all the author nodes, if they exist
authorNodes = item.getElementsByTagName('Author')
blank not allowed
itemDict['author'] = join(map(lambda e: getText(e.childNodes), ➥

authorNodes), ", ") or ' '

itemDict['quantitydesired'] = getText(item.getElementsByTagName(➥

'QuantityDesired')[0].childNodes)

titleNodes = item.getElementsByTagName('Title')
blank title not allowed
itemDict['title'] = join(map(lambda e: getText(e.childNodes), ➥

titleNodes), ", ") or ' '

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 531

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 531

to fix -- not all things have a LowestNewPrice
itemDict['price'] = str(Decimal(getText(item.getElementsByTagName(➥

'LowestNewPrice')[0].getElementsByTagName('Amount')[0].childNodes))/100) or ' '

return itemDict

def main():

gs = GSheetForAmazonList(user=GoogleUser,pwd=GooglePW)
gs.setKey(GSheet_KEY)
gs.setWkshtId(GWrkSh_ID)

aWishList = amazonWishList(listID=AMAZON_LIST_ID,amazonAccessKeyId=➥

AMAZON_ACCESS_KEY_ID)
items = aWishList.ListItems()
print "deleting all rows..."
gs.deleteAllRows()
for item in items:

try:
h = aWishList.parseListItem(item)
print h['asin']

except Exception, e:
print "Error %s parsing %s" % (e, item.toprettyxml(" "))

try:
gs.insertRow(h)

except Exception, e:
print "Error %s inserting %s" % (e, h['asin'])

if __name__ == '__main__':
main()

Here are some things to note about this code:

• The GSheetForAmazonList class provides convenience methods for the Google GData
library.

• The error handling is essential since not all wishlist items necessarily have all the pieces
of data requested. It’s important for the code to keep moving even if data is missing.

• At least in the Python GData interface to Google Spreadsheets, you can’t insert blank cells.

• amazonWishList.ListItems is a Python generator, which creates an iterator to parcel out
the Amazon items one at a time. See http://www.ibm.com/developerworks/library/
l-pycon.html?t=gr,lnxw16=PyIntro for a tutorial on Python generators.

• You can speed up the operation of this code through batch operations (http://code.
google.com/apis/gdata/batch.html), which are currently supported in the GData inter-
face and in the Java API kit (but not Python).

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES532

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 532

Zend PHP API Kit for Google Spreadsheets
In this section, I’ll show you how to use the PHP API kit for Google Spreadsheets to read the
contents of the Google Spreadsheets that we’ll generate in the previous mashup. You can
download the Zend Framework from here:

http://framework.zend.com/

and read about how to use the Zend Framework to access Google Spreadsheet here:

http://framework.zend.com/manual/en/zend.gdata.spreadsheets.html

and here:

http://code.google.com/apis/spreadsheets/developers_guide_php.html

The following code first lists your spreadsheets and then the rows and named columns of
the spreadsheet containing items from your Amazon.com wishlist:

<?php

user and password for google spreadsheet
$user = "[GoogleUSER]";
$pass = "[GooglePASSWORD]";

set parameters for your version of "My Amazon WishList" Google Spreadsheet
$GSheetID = "[GSheetID]";
$worksheetID="[worksheetID]";
#$GSheetID = "o06341737111865728099.3585145106901556666";
#$worksheetID="od6";

list entries from a spreadsheet

require_once('Zend/Loader.php');
Zend_Loader::loadClass('Zend_Gdata');
Zend_Loader::loadClass('Zend_Gdata_ClientLogin');
Zend_Loader::loadClass('Zend_Gdata_Spreadsheets');
Zend_Loader::loadClass('Zend_Http_Client');

$service = Zend_Gdata_Spreadsheets::AUTH_SERVICE_NAME;
$client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
$spreadsheetService = new Zend_Gdata_Spreadsheets($client);

the following printFeed shows how to parse various types of feeds
coming from Google Spreadsheets API
function is extracted from
http://code.google.com/apis/spreadsheets/developers_guide_php.html

function printFeed($feed)
{
$i = 0;

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 533

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 533

foreach($feed->entries as $entry) {
if ($entry instanceof Zend_Gdata_Spreadsheets_CellEntry) {
print $entry->title->text .' '. $entry->content->text . "\n";

} else if ($entry instanceof Zend_Gdata_Spreadsheets_ListEntry) {
print $i .' '. $entry->title->text .' '. $entry->content->text . "\n";

} else {
print $i .' '. $entry->title->text . "\n";

}
$i++;

}
}

figuring out how to print rows

function printWorksheetFeed($feed)
{
$i = 2; # the first row of content is row 2
foreach($feed->entries as $row) {
print "Row " . $i .' '. $row->title->text . "\t";
$i++;
$rowData = $row->getCustom();
foreach($rowData as $customEntry) {
print $customEntry->getColumnName() . " = " . $customEntry->getText(). "\t";

}
print "\n";

}
}

first print a list of your Google Spreadsheets

$feed = $spreadsheetService->getSpreadsheetFeed();
printFeed($feed);

Print the content of a specific Spreadsheet/Worksheet
set a query to return a worksheet and print the contents of the worksheet

$query = new Zend_Gdata_Spreadsheets_ListQuery();
$query->setSpreadsheetKey($GSheetID);
$query->setWorksheetId($worksheetID);
$listFeed = $spreadsheetService->getListFeed($query);
printWorksheetFeed($listFeed);

?>

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES534

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 534

A Final Variation: Amazon Wishlist to Microsoft Excel via COM
With code to access the Amazon.com wishlist in hand, you can use COM programming to
generate an Excel spreadsheet with the same information. To learn more about the details
about how to do so, consult Chapter 12 of Python Programming on Win32.23

from amazonListToGSheet import GS_HEADER, amazonWishList, AMAZON_LIST_ID, ➥

AMAZON_ACCESS_KEY_ID, GS_KEYS
from win32com.client import Dispatch

fire up the Excel application
xlApp = Dispatch("Excel.Application")
xlApp.Visible = 1
xlApp.Workbooks.Add()

write the headers
col = 1

def insertRow(sheet,row,data,keys):
col = 1
for k in keys:

sheet.Cells(row,col).Value = data[k]
col += 1

for h in GS_HEADER:
xlApp.ActiveSheet.Cells(1,col).Value = h
col +=1

now loop through the amazon wishlist

aWishList =
amazonWishList(listID=AMAZON_LIST_ID,amazonAccessKeyId=AMAZON_ACCESS_KEY_ID)
items = aWishList.ListItems()

row = 2
for item in items:

try:
p = aWishList.parseListItem(item)
print p['asin']

except Exception, e:
print "Error %s parsing %s" % (e, item.toprettyxml(" "))

try:
insertRow(xlApp.ActiveSheet,row,p,GS_KEYS)
row += 1

except Exception, e:
print "Error %s inserting %s" % (e, p['asin'])

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES 535

23. http://www.oreilly.com/catalog/pythonwin32/chapter/ch12.html

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 535

Zoho APIs
Zoho (http://zoho.com) has been generating a good amount of attention for its online office
suite, which is the most comprehensive one available right now.24 Among its offerings are Zoho
Writer (a word processor), Zoho Sheet (a spreadsheet), and Zoho Show.

There are currently APIs for Writer, Sheet, and Show:

http://writer.zoho.com/public/help/zohoapi/fullpage

Currently, the APIs do not talk deeply to pieces of documents. There are storage APIs that let
you upload and download documents. To access pieces, you have to use the techniques shown
in the rest of this chapter to parse and write documents (for instance: http://writer.zoho.com/
public/help/userView.AddWorkbook/noband). I suspect that API calls to access parts of docu-
ments will follow at some point in the future.

Summary
This chapter focused on two aspects of desktop and web-based office suites. First, you examined
two major XML-based document formats: OpenDocument format (used in such applications
as OpenOffice.org) and Open Office XML (used by Microsoft Office 2007). Then, you studied
how to figure out how to generate some basic ODF text documents (through writing ODF
directly and through using API kits) and how to generate a rudimentary OOXML document.
You can apply the techniques shown here to deepen your understanding of ODF and Office
Open XML.

Second, you studied a major instance of a programmable online office application: Google
Spreadsheets. You studied how to use the Python API kit to create a Google spreadsheet from an
Amazon.com wishlist using the APIs of their respective services. You also looked briefly at how
to use the PHP API kit.

CHAPTER 17 ■ MASHING UP DESKTOP AND WEB-BASED OFFICE SUITES536

24. http://www.technologyreview.com/Biztech/18816/ provides a useful analysis of the Zoho vs. Google
Docs battle and how they compare.

858Xch17FINAL.qxd 2/4/08 3:36 PM Page 536

Using Microformats and RDFa
As Embeddable Data Formats

The central problem that we will study in this chapter is how to embed information in web
pages in a way that is easy to understand by both humans and computer programs. The solu-
tion that we will consider in depth is microformats, little chunks of structured data that are
seamlessly embedded in web pages. (X)HTML is designed primarily to produce a human user
interface (via a web browser). However, by carefully following certain conventions (ones that
constitute microformats), you can produce (X)HTML out of which data can be unambiguously
extracted. The consequence is that it is relatively easy to write computer programs to parse
microformats so that the data can be reused in other contexts—giving rise to plenty of mashup
possibilities. Moreover, having data embedded right in the context of a user interface is helpful.
A user can decide what to do with this data (how to “operate” on a given piece of data) while in
the context of normal browsing.

Now, the previous paragraph is a bit abstract. What I will do in this chapter is walk you through
some concrete examples describing microformats in general. We will use Operator, a Firefox exten-
sion, to help parse and view microformats and to create scripts that enable users to take specific
actions in response to microformats. Specifically, we will do the following:

• Study specific examples of microformats

• Look at how to use the Firefox add-on Operator to jump-start your study of microformats

• Look at programmatic approaches to consuming and creating microformats

• Compare microformats to leading alternatives such as RDFa as a way to embed data in
human-readable contexts.

Using Operator to Learn About Microformats
Installing the Operator add-on in Firefox and seeing it in action is a good way to learn about
microformats. You can download it from here:

https://addons.mozilla.org/en-US/firefox/addon/4106

537

C H A P T E R 1 8

■ ■ ■

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 537

As of writing, the latest stable version is 0.8, the one I will use and describe in this chapter.
(Note that there is also a 0.9 beta version.1)

When using Operator, you should have on hand the closest thing to official documenta-
tion for the extension:

http://www.kaply.com/weblog/operator/

Now let’s see what Operator can do for you once it is installed. Let’s look at Operator in
action by loading a page from Upcoming.yahoo.com (the event aggregation site you learned
about in Chapter 15):

http://upcoming.yahoo.com/event/144855

Figure 18-1 shows what happens in the Operator toolbar. I’ve chosen this page to show
you an example of microformats in use “in the wild.” (Later in this chapter, I’ll show you an
example HTML page I created to show examples of microformats.)

Figure 18-1. Operator toolbar showing microformats embedded in a page from
Upcoming.yahoo.com. Actions available for the location microformat are shown boxed. (Repro-
duced with permission of Yahoo! Inc. ® 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are
trademarks of Yahoo! Inc.)

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS538

1. See the blog entry announcing 0.9b (http://www.kaply.com/weblog/2007/12/03/
operator-09-beta-available/). You can download the latest develop version of Operator from
http://www.kaply.com/operator/operator.xpi.

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 538

You will notice in the Operator toolbar a list of data formats recognized by Operator, along
with the number of instances of each format. By default, these formats (listed by their descrip-
tive and formal names) are as follows:

• Addresses (adr)

• Contacts (hCard)

• Events (hCalendar)

• Location (geo)

• Tagspaces (tag or rel-tag)2

• Bookmarks (xFolk)

• Resources (RDF)

By default, the Operator toolbar uses the descriptive names. You can instead display the
formal names of the data formats in the Operator toolbar (by doing to the General tab and
unchecking Use Descriptive Names under Data Formats). Toggling that option allows you to
correlate the formal and descriptive names of the data formats.

I will cover the individual data formats in detail later in the chapter. Continuing with the
example from Upcoming.yahoo.com, note that Operator indicates the presence of instances
for the following formats: adr, hCard, hCalendar, geo, and tag. What do these microformats
have to do with the event in question (Mashup Camp IV)? The UI for Upcoming.yahoo.com
gives you many options to package information about the event:

• You can send it to a number of calendars.

• You can download the event information in the iCalendar format.

• You can use the Upcoming.yahoo.com API (as explained in Chapter 15) to extract the
event information from Upcoming.yahoo.com.

For instance, examine the event in iCalendar format, which you can access from
http://upcoming.yahoo.com/calendar/v2/event/144855:

BEGIN:VCALENDAR
VERSION:2.0
X-WR-CALNAME:Upcoming Event: Mashup Camp IV
PRODID:-//Upcoming.org/Upcoming ICS//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VEVENT
DTSTART:20070718T130000
DTEND:20070718T140000
RRULE:FREQ=DAILY;INTERVAL=1;UNTIL=20070720T000000
TRANSP:TRANSPARENT
SUMMARY:Mashup Camp IV

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 539

2. The format called tag in Operator is known as rel-tag on http://microformats.org.

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 539

DESCRIPTION: [Full details at http://upcoming.yahoo.com/event/144855/] From Mass
Events Labs\, the organizers of the wildly successfully Mashup Camp unconferences\,
comes Mashup Camp IV. Back on the West Coast (the Computer History Museum in
Mountain View\, CA)\, with the same great people\, great conversations and
discussions. Same fun\, hacking\, and networking in an Open Space format.

Have a mashup you'd like to show off? Enter it in the Best Mashup contest and
see if you can survive the grueling SpeedGeeking session. Event submitted by
Eventful.com on behalf of chris_radcliff .
URL;VALUE=URI:http://upcoming.yahoo.com/event/144855/
UID:http://upcoming.yahoo.com/event/144855/
DTSTAMP:20070125T124529
LAST-UPDATED:20070125T124529
CATEGORIES:Other
ORGANIZER;CN=chris_radcliff:X-ADDR:http://upcoming.yahoo.com/user/19139/
LOCATION;VENUE-UID="http://upcoming.yahoo.com/venue/259/":Computer History Museum @
1401 N Shoreline Blvd.\, Mountain View\, California 94043 US
END:VEVENT
BEGIN:VVENUE
X-VVENUE-INFO:http://evdb.com/docs/ical-venue/draft-norris-ical-venue.html
NAME:Computer History Museum
ADDRESS:1401 N Shoreline Blvd.
CITY:Mountain View
REGION;X-ABBREV=ca:California
COUNTRY;X-ABBREV=us:United States
POSTALCODE:94043
GEO:37.4149;-122.078
URL;X-LABEL=Venue Info:http://www.computerhistory.org/
END:VVENUE
END:VCALENDAR

As the Operator toolbar indicates, the event information is also embedded in the
(X)HTML source at the following location as a series of microformats:

http://upcoming.yahoo.com/event/144855

Let’s take a look at each of these example microformats in turn. I’ll give a more formal dis-
cussion of each one in the following sections.

■Tip You can use Operator to help in this exercise by checking the Debug Mode option (on the General tab)
in Operator so that you have access to the Debug action for each microformat instance. The Debug action
lists the (X)HTML source fragment containing the microformat instance.

adr (Addresses)
From the web page, you can read the address for the event: 1401 N Shoreline Blvd., Mountain
View, California, 94043. Operator picks out the address as an instance of the adr data format,
with the corresponding (X)HTML source fragment:

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS540

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 540

<div class="address adr">
1401 N Shoreline Blvd.

Mountain View,
California 94043

</div>

Note the use of the <div> tag to wrap the address and class attributes to separate and name
the parts of the address. This (X)HTML fragment meets two goals simultaneously: it displays an
address naturally and appropriately for a human reader of the web page, and it uses (X)HTML
elements and attributes to enable programs (such as Operator) to reliably parse an address
from the (X)HTML. You will see this design goal of satisfying human and computer readers
repeated among all the microformats.

With the adr microformat parsed out, you as a user can then apply an action to the address.
Operator has by default two actions (in addition to Debug) that you can apply to an address:
Find with Google Maps and Find with Yahoo! Maps. Selecting the first action, for instance, loads
the following into the browser:

http://maps.google.com/maps?q=1401%20N%20Shoreline%20Blvd.,%20California,%20Mountain➥

%20View,%2094043

This action, in effect, enables Operator to perform a mashup of Upcoming.yahoo.com
and Google Maps—and more generally, any web site that has adr microformat data with
Google Maps. Note also how Operator enables the user to invoke this action in the context
of web browsing. Firefox with Operator joins a web site with an adr microformat to Google
Maps—and not a third-party web application.

Operator allows you to add other actions. Later in the chapter, I will show you how to add
other user scripts to Operator and to write a basic user script to geocode addresses.

hCard (Contacts)
The hCard data format is meant to represent a person or organization, specifically contact
information for the entity. The (X)HTML source for the embedded hCard microformat is as
follows:

<div class="venue location vcard">

Computer History Museum

<div class="address adr">
1401 N Shoreline Blvd.

Mountain View,
California
94043

</div>

37.4149,
-122.078

</div>

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 541

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 541

You might be wondering why you will see vcard (instead of hcard) as a class attribute. The
reason is that hCard is derived from the vCard standard. You can compare the vCard data that
Operator creates for this page to the (X)HTML source to see the similarities:

BEGIN:VCARD
PRODID:-//kaply.com//Operator 0.8//EN
SOURCE:http://upcoming.yahoo.com/event/144855
NAME:Mashup Camp IV at Computer History Museum (Wednesday, July 18, 2007) - Upcoming
VERSION:3.0
N:;;;;
ORG;CHARSET=UTF-8:Computer History Museum
FN;CHARSET=UTF-8:Computer History Museum
UID:
ADR;CHARSET=UTF-8:;;1401 N Shoreline Blvd.;Mountain View;California;94043;
GEO:37.4149;-122.078
END:VCARD

Among the default actions in Operator for hCard is Add to Yahoo! Contacts, which, when
invoked for this page, loads the following URL into the browser:

http://address.yahoo.com/?fn=Computer%20History%20Museum&co=Computer%20History%20Mus➥

eum&ha1=1401%20N%20Shoreline%20Blvd.&hc=Mountain%20View&hs=California&hz=94043&A=C

hCalendar (Events)
The hCalendar microformat represents events and is roughly speaking the iCalendar format
transformed into a microformat. (See Chapter 15 for a discussion of iCalendar.) The (X)HTML
source for the hCalendar microformat is a large fragment that I will not quote here. To find it,
you can use Operator or look at the source and find a <div> element that begins with this:

<div id="calendarContainer" class="vcalendar"> <!-- Begin vCalendar -->

and ends lines later with this:

</div> <!-- End vCalendar -->

The pieces of (X)HTML in between contain event data, such as this:

<abbr class="dtstart" title="20070718T130000">Wednesday, July 18, 2007
</abbr>

and the following:

<abbr class="dtend" title="20070719T140000">

As in the case of hCard, you might wonder why the hCalendar format would use
class="vcalendar" and not class="hcalendar". vCalendar was the precursor to iCalendar,
a fact that is reflected in the iCalendar standard (which if you look at the iCalendar for the
Upcoming.yahoo.com event listed earlier), you have the following structure:

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS542

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 542

BEGIN:VCALENDAR
[...]
DTSTART:20070718T130000
DTEND:20070718T140000
[...]
END:VCALENDAR

Among the default actions associated with hCalendar are ones to send the event data to
Google Calendar, Yahoo! Calendar, and 30boxes.com. Compare how you moved event data
with APIs in Chapter 15 with this approach of extracting microformat data and sending that
data to other services via an HTTP GET request.

geo (Locations)
The geo data format represents a geospatial location, specifically a latitude and longitude. The
(X)HTML source for the geo instance is as follows:

37.4149,
-122.078

With Operator, you can map this location to Google Maps and Yahoo! Maps, or you can
export it as KML.

tag (Tagspaces)
Upcoming.yahoo.com supports the tagging of individual events. For instance, among the tags
for the example event is mashup. You can find this tag marked up using the tag microformat in
the (X)HTML source. For example:

mashup

You’ll see from the following discussion that the combination of rel=tag in an <a> element
is indicative of a tag microformat and that the last path component of the URL (that is, mashup)
is the text of the tag. By default, there are actions in Operator to look this tag up in such web
sites as del.icio.us, Flickr, Upcoming.yahoo.com, and YouTube.

Definitions and Design Goals of Microformats
This is the current official definition of microformats from http://microformats.org/:

Designed for humans first and machines second, microformats are a set of simple, open

data formats built upon existing and widely adopted standards.

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 543

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 543

Many other definitions of microformats have been proposed, some of which I find more
illuminating. This is the definition on the Microformats.org site:3

Microformats can be defined as: simple conventions for embedding semantic markup

for a specific problem domain in human-readable (X)HTML/XML documents,

Atom/RSS feeds, and “plain” XML that normalize existing content usage patterns using

brief, descriptive class names often based on existing interoperable standards to enable

decentralized development of resources, tools, and services.

Out of this definition, I would emphasize the following points:

• Human-readable (X)HTML/XML documents, Atom/RSS feeds, and “plain” XML

• Using brief, descriptive class names

It’s important to know about the intentional limitations built into microformats before
criticizing them. From the list of things that microformats are not at http://microformats.org/
about/, I will highlight a few. Microformats are not the following:

• Infinitely extensible and open-ended

• A panacea for all taxonomies, ontologies, and other such abstractions

Keep those limitations in mind when we compare microformats to specifications such as
RDFa, which are aimed to be highly generalizable.

Because microformats involve both design philosophies and concrete formats (which you
can use whether or not you subscribe to the microformats design philosophy), it’s easy to just
ignore the philosophy. So if you want to just use the work of the microformats community, is
this philosophy relevant? Probably—since there are a lot of design decisions that are hard to
understand without knowing that philosophy.

Finally, with so many other ways to already get event data, what does having the micro-
format contribute to the mix? Well, there are at least two advantages:

• For user-centered contexts, programs that have the (X)HTML source already—for
instance, a web browser such as Firefox and its associated machinery (browser exten-
sions, Greasemonkey scripts, and so on)—can reliably extract the event data and then
present options to the user about what to do with that data. (The Operator Firefox add-
on instantiates this idea.)

• Spiders and other screen-scrapers can also extract the information reliably—without
the usual heuristical guessing—to build aggregated databases of events across web
pages. That’s what sites such as Technorati are doing.

In both cases, there is no need to make an extra call to the API to get this desired informa-
tion about the event.

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS544

3. http://microformats.org/wiki/what-are-microformats retrieved as http://microformats.org/
wiki?title=what-are-microformats&direction=next&oldid=21422.

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 544

Microformats Design Patterns
Microformats are meant to be embeddable in (X)HTML—so anywhere you can put (X)HTML,
you should be able to stick in microformats—including RSS and Atom feeds.

The best way to start with microformats is to look at some specific examples while keep-
ing an eye out for some general design patterns that are behind microformats; see http://
microformats.org/wiki/design-patterns. That is, what are some tried-and-true ways to
insert data into HTML?

rel-design-pattern
rel-design-pattern uses values in a rel attribute to indicate the meaning of a link.4 You
already saw an example with the tag or rel-tag microformat:

mashup

In addition to rel-tag, you’ll learn about rel-license, a data format that also uses
rel-design-pattern.

The rev attribute is also used in this design pattern. In case you’re not up on what rev is
supposed to mean (don’t feel bad if you don’t—I didn’t before reading about microformats),
read the FAQ (http://microformats.org/wiki/rev#Then_what_does_.22rev.22_mean.3F):

‘rev’ is the precise opposite (or ‘reverse’) of the ‘rel’ attribute. E.g. a rev="help" link indicates

that the current document is ‘help’ for the resource indicated by the href.

MULTIPLE VALUES IN ATTRIBUTES

You can stick multiple values in an attribute by separating the individual values by whitespace. The following
is how you associate an HTML element with multiple classes. This is also standard usage for other attributes
such as rel and rev.

http://www.w3.org/TR/html401/struct/links.html#adef-rel
http://www.w3.org/TR/html401/struct/links.html#adef-rev

class-design-pattern
This design pattern5 involves selecting an appropriate (X)HTML element and the class attrib-
ute to hold a whitespace-separated list of semantic class names (http://microformats.org/
wiki/semantic-class-names). The and <div> elements can be used in the absence of
other appropriate (X)HTML elements to demarcate content.

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 545

4. http://microformats.org/wiki/rel-design-pattern

5. http://microformats.org/wiki/class-design-pattern

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 545

As you have already seen from the earlier examples, the adr, hCard, geo, and hCalendar for-
mats use class-design-pattern. For instance:

<div class="address adr">
1401 N Shoreline Blvd.

Mountain View,
California 94043

</div>

and for example:

37.4149,
-122.078

When you come to selecting class names, you should note the ones that are already in use
to avoid reinventing the wheel and causing namespace collisions: http://microformats.org/
wiki/existing-classes.

abbr-design-pattern
This pattern6 uses the <abbr> HTML tag to wrap text with a machine-readable version of
that information, which is stored in the title attribute of the <abbr> element. This pattern
is most commonly used to encode the date and time in datetime-design-pattern (http://
microformats.org/wiki/datetime-design-pattern):

<abbr class="dtstart" title="20080310T1700-08">
March 10, 2008 at 5 PM

</abbr>

There are some concerns about the accessibility of such constructions (http://
microformats.org/wiki/datetime-design-pattern#Accessibility_issues). Here is a recom-
mended alternative:

March 10, 2008 at 5 PM, Pacific Standard Time

include-pattern
This pattern7 is for including data from one microformat into another microformat from the
same page. A major reason for this pattern is to avoid redundancy. It’s used in the proposed
hResume, hReview, and hAtom microformats. For example, I can reuse the content contained in
the following hCard:

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS546

6. http://microformats.org/wiki/abbr-design-pattern

7. http://microformats.org/wiki/include-pattern

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 546

Raymond Yee

in a second hCard:

UC Berkeley
Alumnus

Note the use of id="ryee-hcard" in the first hCard instance and href="#ryee-hcard" to tie
the two hCard instances, as well as class="include" in the <a> element in the hCard instance
that reuses data from the other instance.

Examples of Microformats
In this section, I will show more examples of a number of microformats. (You can find a list of
microformats at http://microformats.org/wiki/Main_Page.) I have gathered the examples in
this section into one page:

http://examples.mashupguide.net/ch18/sample_microformats.html

Try Operator on this URL to have it parse the various microformats. Some of the following
data formats are not supported natively by Operator, but you might be able to find extra user
scripts that add such support. (See “Installing User Scripts to Operator” for a how-to.)

INSTALLING USER SCRIPTS TO OPERATOR

To install user scripts in Operator, download a script to your local drive. Then go to the User Scripts tab in
Operator Options. Next, hit the New button, and enter the path of the script on your drive. You can go to the
Data formats tab to load any new formats (using the New button) and to the Actions tab to make actions visi-
ble on the Operator tab.

Make sure to restart Firefox for the scripts to take effect.
You can find more details at http://www.kaply.com/weblog/operator/.
A good place to find Operator user scripts is http://www.kaply.com/weblog/

operator-user-scripts/.

rel-license
rel-license (http://microformats.org/wiki/rel-license) is for specifying a license to be
associated with the embedding page. For instance, when you go to the Creative Commons site
(http://creativecommons.org/license) to select a license, you will be given some HTML that

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 547

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 547

uses the rel-license microformat to indicate a license. For instance, if you select the defaults,
you will get something like this:8

<img alt="Creative Commons License" style="border-width:0"

src="http://i.creativecommons.org/l/by/3.0/88x31.png" />

This work is licensed under a

Creative Commons Attribution 3.0 License.

As noted, rel-license uses rel-design-pattern (that is, it uses the rel attribute in an
<a> element).

rel-tag
The rel-tag microformat (http://microformats.org/wiki/rel-tag) is used to relate a tag (as
in a folksonomic tag; see Chapter 4) to a URL. You use it by implementing rel-design-pattern,
specifically, by adding tag to the list of values in the rel attribute. The last path segment of the
URL in the href attribute is then considered the value of the tag, and the URL value of href
points to a collection of items having the same tag.

Consider the following example generated by WordPress for the Google Maps category for
http://blog.mashupguide.net:

<a rel="tag" title="View all posts in Google Maps"
href="http://blog.mashupguide.net/category/google-maps/">Google Maps

In this case, google-maps is the tag (the last path segment of the URL in the href attribute),
and http://blog.mashupguide.net/category/google-maps/ points to the blog entries that have
been tagged with the tag google-maps.

xfn
xfn (http://www.gmpg.org/xfn/), which stands for XHTML Friends Network and also uses
rel-design-pattern, is used to denote personal relationships between the author of a web
page and the people associated with the linked page. The easiest way is to get started is to fill
out the XFN Creator (http://gmpg.org/xfn/creator).

I’ll now present two examples. The first is for my wife’s weblog:

<a href="http://laurashefler.net/blog"
rel="friend met colleague coresident spouse muse sweetheart">Laura Shefler

The second is for Tim Berners-Lee’s web page. In this case, he is a contact since I don’t
know him personally:

Tim Berners-Lee

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS548

8. http://creativecommons.org/license/results-one?q_1=2&q_1=1&field_commercial=yes&field_
derivatives=yes&field_jurisdiction=&field_format=&lang=en&language=en&n_questions=3

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 548

xFolk
xFolk (http://microformats.org/wiki/xfolk) is used to publish a bookmark (like the book-
marks you see in social bookmarking sites, covered in Chapter 14). That is, you can use xFolk
to tie a URL to a description and tags. (I imagine that the name xFolk is meant to suggest folk-
sonomies since you can use it to tag URLs.)

xFolk uses class-design-pattern (with class="xfolkentry"). In the following example,
the URL of the bookmark is http://www.w3.org/People/Berners-Lee, the description is
The inventor of the WWW, and the tag associated with the bookmark is WWW:

<div class="xfolkentry">
Tim Berners-Lee
: The inventor of the WWW

</div>

Note the use of the xfolkentry, taggedlink, and description class names.
With Operator, you can try the “Bookmark with del.icio.us” action, which sends the book-

mark to del.icio.us through the following URL:

https://secure.del.icio.us/login?url=http%3A%2F%2Fwww.w3.org%2FPeople%2FBerners-Lee%➥

2F&title=Tim%20Berners-Lee¬es=The%20inventer%20of%20the%20WWW&v=4

geo
geo (http://microformats.org/wiki/geo) is used to denote the latitude and longitude of the
resource tied to the embedding web page. Using http://microformats.org/wiki/geo-cheatsheet,
you can figure out how to use class-design-pattern and use the geo, latitude, and longitude
class names to write an example such as the following:

<div class="geo">Tim Berners-Lee's location is:
42.3633690,
-71.091796.

</div>

Given all the attention we paid to mapping geotagged photos in Flickr, I should mention
that Flickr uses the geo microformat to denote the location of geotagged photos. For instance,
if you load this:

http://flickr.com/photos/raymondyee/18389540/

into Firefox, you can use Operator to extract the geo instance:

37.4149,
-122.078

Then you can invoke one of the default actions (for example, Find with Google Maps) to
plot the location of the photo at this location:

http://maps.google.com/maps?ll=37.8721,-122.257704&q=37.8721,-122.257704

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 549

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 549

hCard and adr
hCard (http://microformats.org/wiki/hcard) is used to represent such entities as people,
organizations, companies, and places. An easy way to get started with hCard is to use the
hCard Creator at http://microformats.org/code/hcard/creator.

Let’s create an hCard for Tim Berners-Lee, the inventor of the Web, drawing on his web
page at http://www.w3.org/People/Berners-Lee/ to come up with the following:

<div id="hcard-Tim-Berners-Lee" class="vcard">
Tim Berners-Lee
<div class="org">World Wide Web Consortium</div>
timbl@w3.org
<div class="adr">
<div class="street-address">77 Massachusetts Ave. (MIT Room 32-G524)</div>
Cambridge

,
MA

,
02139

USA

</div>
<div class="tel">+1 (617) 253 5702</div>
<p style="font-size:smaller;">This

hCard created with the
hCard creator.
</p>

</div>

You’ll notice that inside the hCard microformat is the adr microformat (http://
microformats.org/wiki/adr). adr is a mapping of vCard:

This specification introduces the adr microformat, which is a 1:1 representation of the

aforementioned adr property from the vCard standard, by simply reusing the adr prop-

erty and sub-properties as-is from the hCard microformat.

There is support in adr for the following properties, which show up in adr as (X)HTML
attributes according to class-design-pattern:

• post-office-box

• extended-address

• street-address

• locality

• region

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS550

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 550

• postal-code

• country-name

hCalendar
hCalendar (http://microformats.org/wiki/hcalendar) is a microformat-based iCalendar used
to represent calendar information. To quickly create an instance, use the hCalendar Creator
(http://microformats.org/code/hcalendar/creator), or consult the hCalendar cheat sheet
(http://microformats.org/wiki/hcalendar-cheatsheet). Let’s create an hCalendar for the
WWW 2008 conference (http://www2008.org/):

<div class="vevent"
id="hcalendar-WWW-2008-17th-International-World-Wide-Web-Conference">

<abbr class="dtstart" title="20080421">April 21th</abbr> —
<abbr class="dtend" title="20080426">25th, 2008</abbr>

WWW 2008 (17th International World Wide Web Conference)

— at
Beijing International Convention Center,

<div class="description">"The World Wide Web Conference is a global event bringing

together key researchers, innovators, decision-makers, technologists, businesses,
and standards bodies working to shape the Web. Since its inception in 1994, the WWW
conference has become the annual venue for international discussions and debate on
the future evolution of the Web."</div>
<p style="font-size: smaller;">This
hCalendar event

brought to you by the
hCalendar Creator.

</p>
</div>

Other Microformats
Here are some other noteworthy microformats:

• xoxo (http://microformats.org/wiki/xoxo) represents hierarchical outlines (that is,
nested lists).

• vote-links (http://microformats.org/wiki/vote-links) indicates whether a link repre-
sents a vote-for, vote-abstain, or vote-against the link.

• hReview (http://microformats.org/wiki/hreview) represents reviews of URLs.

• hResume (http://microformats.org/wiki/hresume) represents resumes.

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 551

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 551

Microformats in Practice
You can learn a lot about microformats by studying how they are actually being used on the
Web. Some implementations include the following:

• The use of adr, hCard, hCalendar, tag, and geo by Upcoming.yahoo.com and Eventful.com

• The use of adr and hCard at Yahoo! Local

• The use of hCard and adr on Technorati

I suggest using the list of implementations of microformats in the wild (http://
microformats.org/wiki/examples-in-the-wild), which includes lists for geo, hCalendar,
hCard, hReview, and include-pattern. Go to the listed sites, and use Operator to pick out
the microformats.

Programming with Microformats
For simple microformats, including the ones that depend on rel-design-pattern, it should be
simple enough to write your own code to parse data from and write data to the appropriate
rel and rev attributes. It takes a lot more work to handcraft parsers for complicated microfor-
mats such as hCard and hCalendar because there are many possible properties.

There are no schemas for microformats, only specifications written for direct human
interpretation, which makes difficult any autogeneration of high-quality language-specific
parsers from the specifications.9

A challenge in working with microformats is the lack of validators. Norm Walsh argues
that W3C Schema and Relax-NG will not work for the purpose of expressing the syntax of
microformats as schemas, though Schematron might be up for the task.10 You can use XMDP,
a schema (of sorts) geared to easy human consumption, to get partway to generating valida-
tors, argues Brian Suda, at least for some simple formats.11

Hence, you will need to look for some handcrafted language-specific libraries to handle
microformats. Start by looking at http://microformats.org/wiki/implementations.

Language-Specific Libraries
Here are some language-specific libraries:

• mofo (http://mofo.rubyforge.org/) is a new Ruby library that has support for a variety
of microformats including hCard, hCalendar, and xfn.

• uformats (http://rubyforge.org/projects/uformats/) is another Ruby library that has
support for hReview, hCard, hCalendar, rel-tag, rel-license, and include-pattern.

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS552

9. http://smackman.com/2006/06/01/an-old-idea/ and http://lists.w3.org/Archives/Public/public-
rdf-in-xhtml-tf/2006Jun/0011.html.

10. See http://norman.walsh.name/2006/04/13/validatingMicroformats for more about validating
microformats. Erik van der Vlist adds to this analysis at http://eric.van-der-vlist.com/blog/2277_
Validating_microformats.item.

11. http://norman.walsh.name/2005/09/05/microformats#comment0008

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 552

• For PHP 5, consider using hKit (http://allinthehead.com/hkit/), which has support
for hCard.

• Probably the best library out there is Microformats.js, which is the heart of the Operator
add-on.12

There are interesting things to do with Operator, both for what it can do today and for
how it might be a harbinger of things to come in Firefox 3 (which might have native support
for microformats).13 Operator makes a great sandbox for experimenting with microformats.
Here are some things to try:

• Download and install user-scripts to add new actions and new microformats (http://
www.kaply.com/weblog/operator-user-scripts/).

• Try your hand at writing new actions or support for new microformats by studying
existing scripts and the documentation.14

• Study the code for Operator to pick up on the subtleties that go into working code using
microformats.15

Writing an Operator Script
In this section, I’ll lead you through the process of creating a simple user script for Operator.
Start by looking through the best documentation for understanding Operator scripts:

http://www.kaply.com/weblog/operator-user-scripts/

There you will find a tutorial for writing a script that lets users find the closest Domino’s
Pizza to a given instance of an address (adr):

http://www.kaply.com/weblog/operator-user-scripts/creating-a-microformat-action-
user-script-basic/

In this section, I will walk you through the steps to create a script that performs a similar
function. Instead of converting an adr instance into a URL to the Domino’s Pizza web site, our
script will geocode the address by creating a URL to http://geocoder.us. Since our script is
similar to that of the tutorial, we will follow a two-step strategy:

1. Install the tutorial script to understand how it works.

2. Convert the script to one that geocodes the adr instance.

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 553

12. http://svn.mozilla.org/labs/operator/chrome/operator/content/Microformats/Microformats.js

13. http://www.readwriteweb.com/archives/mozilla_does_microformats_firefox3.php

14. http://www.kaply.com/weblog/2007/04/24/operator-action-architecture/ and
http://www.kaply.com/weblog/2007/04/18/microformat-objects-in-javascript/

15. http://svn.mozilla.org/labs/operator/

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 553

Studying the Tutorial Script
You will find the tutorial script here:

http://www.kaply.com/weblog/wp-content/uploads/2007/07/dominos.js

It’s possible that after this book is published, there might be a newer version of the refer-
enced user scripts. You can check here: http://www.kaply.com/weblog/operator-user-scripts/.

Install it and restart your web browser. If you run the action on this:

http://upcoming.yahoo.com/event/144855

your browser will conduct a search for the closest Domino’s Pizza stores to 1401 N Shoreline
Blvd in Mountain View, CA:

http://www.dominos.com/apps/storelocator-EN.jsp?street=1401%20N%20Shoreline%20Blvd.&➥

cityStateZip=California,%20Mountain%20View%2094043

Let’s now study the script to understand how it works:

var dominos = {
description: "Find the nearest Domino's Pizza",
shortDescription: "Domino's",
scope: {
semantic: {
"adr" : "adr"

}
},
doAction: function(semanticObject, semanticObjectType) {
var url;
if (semanticObjectType == "adr") {
var adr = semanticObject;
url = "http://www.dominos.com/apps/storelocator-EN.jsp?";
if (adr["street-address"]) {
url += "street=";
url += adr["street-address"].join(", ");

}
if ((adr.region) || (adr.locality) || (adr["postal-code"])) {
url += "&cityStateZip=";

}
if (adr.region) {
url += adr.region;
url += ", ";

}
if (adr.locality) {
url += adr.locality;
url += " ";

}
if (adr["postal-code"]) {
url += adr["postal-code"];

}

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS554

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 554

}
return url;

}
};

SemanticActions.add("dominos", dominos);

There are several elements to notice about this script as you think about how to adapt it:

• The dominos JavaScript object defines an action. An action consists of four properties:
description, shortDescription, scope, and doAction.

• You should change the name of the JavaScript object, its description, and its
shortDescription to fit the purpose of the new script.

• The scope property is used to tie an action to a specific data format. The following:

scope: {
semantic: {
"adr" : "adr"

}

means any adr instance. You can limit the scope to only adr instances with the property
locality with this:

scope: {
semantic: {
"adr" : "locality"

}

or to a certain URL:

scope: {
url: "http://www.flickr.com"
}

• Associated with the doAction property is a function that actually creates the URL for
Domino’s Pizza by concatenating the various pieces of the adr instance. To adapt this
function, you need to understand the URL structure of http://geocoder.us, the service
we will use to geocode the address.

• Note that the simplest type of action of an Operator script is to return a URL, which
the browser then loads. (You can learn how to get Operator actions to perform other
operations by reading the advanced tutorials at http://www.kaply.com/weblog/
operator-user-scripts/.)

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 555

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 555

Writing a Geocoding Script
As you learned in Chapter 13, there are a variety of sites to use to geocode an address in the
United States. One service is Geocoder.us. You can geocode an address here:

http://geocoder.us/demo.cgi?address={address}

For example:

http://geocoder.us/demo.cgi?address=1600+Pennsylvania+Ave%2C+Washington+DC

Taking the URL template for Geocoder.us into account, you can adapt the script to come
up with something like the following:

// based on http://www.kaply.com/weblog/wp-content/uploads/2007/07/dominos.js

var geocoder_us = {
description: "Geocode with geocoder_us",
shortDescription: "geocoder_us",
scope: {
semantic: {
"adr" : "adr"

}
},
doAction: function(semanticObject, semanticObjectType) {
var url;
if (semanticObjectType == "adr") {
var adr = semanticObject;
url = "http://geocoder.us/demo.cgi?address=";
if (adr["street-address"]) {
url += adr["street-address"].join(", ");
url += ", ";

}
if (adr.locality) {
url += adr.locality;
url += ", ";

}
if (adr.region) {
url += adr.region;
url += ", ";

}
if (adr["postal-code"]) {
url += adr["postal-code"];

}
}
return url;

}
};

SemanticActions.add("geocoder_us", geocoder_us);

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS556

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 556

The resulting URL for Mashup Camp IV on Upcoming.yahoo.com is as follows:

http://geocoder.us/demo.cgi?address=1401%20N%20Shoreline%20Blvd.,%20Mountain%20View,➥

%20California,%2094043

Resources (RDFa): A Promising Complement to
Microformats
There’s a lot of hype around RDF and the semantic Web, but the core concept of the Resource
Description Framework (RDF) is simple:

• An RDF document is just a series of statements about resources in a subject-predicate-object
(triplet) form. In other words, they are statements where a resource (R) has a property
(P) of a value (V)—a triplet (R,P,V). For example: ("Raymond Yee", "has age of ", 40).

• RDF vocabularies define ways to talk about such things as types of resources and terms
for properties. For example, a genealogical vocabulary would define properties such as
“is mother of” and “is sister of.”

• Once we have these types of RPVs around, we can add to the mix various logical propo-
sitions. If V > 30 of an RPV with P="has age of", then (R, "has to trust status", No).
In other words, a computer program should be able to deduce that Raymond Yee should
not be trusted since he is older than 30, since one must not trust anyone older than 30.

Tim Bray’s “What is RDF?” (http://www.xml.com/pub/a/2001/01/24/rdf.html) was the first
essay I read in my attempts to understand RDF. It’s still very good. However, I think that the
triplets idea was still unclear to me after reading the essay. (And I don’t blame Tim Bray for
that since the idea is clearly in the essay.) So, you should follow up Bray’s essay with reading
something like Aaron Schwartz’s “RDF Primer Primer” (http://notabug.com/2002/rdfprimer/).
The two complement each other.

You can express RDF triplets in many ways, including the standard RDF/XML syntax
(http://www.w3.org/TR/rdf-syntax-grammar/). Since we have been discussing how microfor-
mats embed machine-understandable data in (X)HTML, we’ll now look at RDFa (http://
rdfa.info/about/), described in the following way:

With RDFa, you can easily include extra “structure” in your HTML to indicate a calendar

event, contact information, a document license, etc. . . . RDFa is about total publisher

control: you choose which attributes to use, which to reuse from other sites, and how to

evolve, over time, the meaning of these attributes.

Here is a sample RDFa assertion, in which the resource (a book with ISBN of
9781590598580) has a property (namely, the Dublin Core title) whose value is Pro Web 2.0
Mashups: Remixing Data and Web Services:16

<span xmlns:dc="http://purl.org/dc/elements/1.1/" about="isbn:9781590598580"
property="dc:title">Pro Web 2.0 Mashups: Remixing Data and Web Services

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS 557

16. http://examples.mashupguide.net/ch18/sample_rdf.html

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 557

I think that microformats and RDFa will both have a place on the Web. Microformats
already have some good uptake and are grounded in today’s real-world problems. They are
focused on very specific applications. RDFa provides a mechanism for making more general
assertions about pieces of data.

Reference for Further Study
The following are useful resources for more on microformats:

• The microformat book at http://microformatique.com/book/

• Micah Dubinko’s “What Are Microformats?”17

• Uche Ogbuji’s “Microformats in Context”18

Summary
You can use microformats and RDFa to embed data into the human-readable contexts of
(X)HTML. In this chapter, you looked at instances of microformats that you can find “in the
wild” (such as on Upcoming.yahoo.com) and ones that you can craft as simple examples, and
you learned about how you can use microformats to embed data (such as contact information,
addresses, geolocations, bookmarks, tags, and licenses) into (X)HTML. Microformats tend to
follow certain common design patterns (that is, use class attributes or use the rel attribute)
and are adapted from existing standards (such as iCalendar and vCard).

In this chapter, you learned how to use the Operator Firefox extension to work with micro-
formats, including extracting them from web pages and invoking actions on them. You saw how
these Operator actions enact simple mashups that move data from any web site with embed-
ded microformats to another web site.

CHAPTER 18 ■ USING MICROFORMATS AND RDFA AS EMBEDDABLE DATA FORMATS558

17. http://www.xml.com/pub/a/2005/03/23/deviant.html

18. http://www.xml.com/pub/a/2006/04/26/microformats-grddl-rdfa-nvdl.html

858Xch18FINAL.qxd 2/4/08 3:37 PM Page 558

Integrating Search

No one needs to be reminded that search engines are at the heart of the current web infra-
structure. Not surprisingly, it’s useful to be able to integrate search functionality and search
results into mashups. If a mashup is integrated with search engines via their APIs, users of the
mashups can more easily find and reuse that digital content.

This chapter shows how to use the Google, Yahoo!, and Live.com search APIs, as well
as configuring searchable web sites for access as a search plug-in in Firefox 2.0 or Internet
Explorer 7 using OpenSearch. This chapter will also examine briefly how to use the Google
Desktop Search API.

Google Ajax Search
Google was one of the first major search companies to provide an API: the Google SOAP API.
Since December 2006, no new developer keys have been issued because Google is directing
users to its newer Ajax Search API, which we will now study.

The Google Ajax Search API (http://code.google.com/apis/ajaxsearch/) gives you a search
widget that you can embed in your web site. You can access functionality for searching the Web,
doing local searches (tied to maps), and doing video searches. The widget displays a search
box and takes care of displaying search results in an HTML element that you designate.

Like Google Maps, you have to sign up for a key that is tied to a specific directory; you can
do that here:

http://code.google.com/apis/ajaxsearch/signup.html

Paste the “Hello, World” code into your page, and load it.1 The “Hello, World” code shows
you how to create a basic search box and display the results.

Manipulating Search Results
Let’s adapt the basic code to let a user search a particular search source (the web search) and
save a result. This is done by creating a callback (KeepHandler) with the setOnKeepCallback
method. You’ll also see some code to access the attributes of the result.2

559

C H A P T E R 1 9

■ ■ ■

1. http://examples.mashupguide.net/ch19/google.ajax.1.html

2. http://examples.mashupguide.net/ch19/google.ajax.2.html

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 559

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>google.ajax.2.html</title>
<link href="http://www.google.com/uds/css/gsearch.css" type="text/css"

rel="stylesheet"/>
<script src="http://www.google.com/uds/api?file=uds.js&v=1.0&key=[KEY]"

type="text/javascript"></script>
<script type="text/javascript">
//<![CDATA[

function KeepHandler(result) {
// clone the result html node
var node = result.html.cloneNode(true);

// attach it
var savedResults = document.getElementById("saved_results");
savedResults.appendChild(node);

// extract some info from the result to show to get at the individual
// attributes.
// see http://code.google.com/apis/ajaxsearch/documentation/reference.html
var title = result.title;
var unformattedtitle = result.titleNoFormatting;
var content = result.content;
var unescapedUrl = result.unescapedUrl;
alert("Saving " + unformattedtitle + " " + unescapedUrl + " " + content);

}

function OnLoad() {
// Create a search control
var searchControl = new GSearchControl();

// attach a handler for saving search results
searchControl.setOnKeepCallback(this, KeepHandler);

// expose the control to manipulation by the JavaScript shell and Firebug.
window.searchControl = searchControl

// Add in the web searcher
searchControl.addSearcher(new GwebSearch());

// Tell the searcher to draw itself and tell it where to attach
searchControl.draw(document.getElementById("search_control"));

CHAPTER 19 ■ INTEGRATING SEARCH560

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 560

// Execute an initial search
searchControl.execute("flower");

}
GSearch.setOnLoadCallback(OnLoad);

//]]>
</script>

</head>
<body>
<div id="search_control"></div>
<div id="saved_div">Saved Search Results:
<div id="saved_results"></div></div>

</body>
</html>

There’s obviously more you can do with the Google Ajax Search API, such as styling the
search widget. Consult the documentation to learn how. Here are some noteworthy extras:

• Adding local search to a Google map: http://www.google.com/uds/solutions/
localsearch/index.html

• Searching outside the widget context to do raw searching: http://www.google.com/uds/
samples/apidocs/raw-searchers.html

Indeed, you can learn plenty of things for your specific applications from the sample code:

http://code.google.com/apis/ajaxsearch/samples.html

For those of you who are looking for a way of using Google search without creating an
HTML interface, take a look specifically at the following:

http://www.google.com/uds/samples/apidocs/raw-searchers.html

This sample gets the closest to giving you back the raw search functionality that the SOAP
interface has, although you still need to use JavaScript and embed that search in a web page
on the public Web.

Yahoo! Search
The Yahoo! Search API (http://developer.yahoo.com/search/) is a RESTful one. I’ll now show
how to use the Yahoo! Search API.

You need an application ID, which you get from here:

https://developer.yahoo.com/wsregapp/index.php

You can see your registered apps here:

https://developer.yahoo.com/wsregapp/index.php?view

Yahoo! has an authentication system called BBAuth:

http://developer.yahoo.com/auth/

CHAPTER 19 ■ INTEGRATING SEARCH 561

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 561

In the authentication system, there is a single sign-on option. For this example, I signed
up for the ability to do single sign-on, for which I needed to state an application endpoint:

http://examples.mashupguide.net/ch07/yahoo.php

Once you have registered your application, you can get an application ID and a shared secret.
Now, let’s do a web search that doesn’t require any authentication. Consulting the docu-

mentation (http://developer.yahoo.com/search/web/) and specifically the classic web search
documentation (http://developer.yahoo.com/search/web/V1/webSearch.html), you can see
a sample query:

http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=YahooDemo&➥

query=madonna&results=2

If you substitute your own API key and search for flower, you’ll come up with the following
query:

http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=[YourAppID]&➥

query=flower&results=1

An excerpt of the search results follows:

<Result>
<Title>1-800-FLOWERS.COM - Official Site</Title>
<Summary>1-800-Flowers delivers flowers and floral arrangements, gift baskets,➥

gourmet treats, or other presents for anniversaries, birthdays, and special➥

occasions. Order online, over the phone, or by visiting a store location.
</Summary>
<Url>http://www.1800flowers.com/</Url> <ClickUrl>http://uk.wrs.yahoo.com/_ylt=➥

A0Je5VZ47HdGmOQAzhvdmMwF;_ylu=X3oDMTB2cXVjNTM5BGNvbG8DdwRsA1dTMQRwb3MDMQRzZWMDc3IEdn➥

RpZAM-/SIG=19qu9j9dq/EXP=1182350840/**http%3A//rdrw1.yahoo.com/click%3
Fu=http%3A//clickserve.cc-dt.com/link/click%253Flid%253D41000000011562437%26
y=04765B7ED3D00A0BB4%26i=482%26c=37687%26q=02%255ESSHPM%255BL7ysphzm6%26
e=utf-8%26r=0%26d=wow~WBSV-en-us%26n=LP94K1LESHRKDFP3%26s=3%26t=%26m=4677EC78%26
x=057E49A7F20A924F7B2C30A7101C217A96</ClickUrl>

<DisplayUrl>www.1800flowers.com/</DisplayUrl>
<ModificationDate>1181631600</ModificationDate>
<MimeType>text/html</MimeType>

</Result>

The parameters for this RESTful interface are documented here:

http://developer.yahoo.com/search/web/V1/webSearch.html

I find it interesting that there is a published W3C XML Schema published for the response:

http://search.yahooapis.com/WebSearchService/V1/WebSearchResponse.xsd

There are also API Kits for Yahoo! Search; you may find one for your favorite language.
They are BSD-licensed:

http://developer.yahoo.com/download/

CHAPTER 19 ■ INTEGRATING SEARCH562

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 562

Yahoo! Images
The documentation for Yahoo!’s image search is at the following location:

http://developer.yahoo.com/search/image/V1/imageSearch.html

Note the sample search:

http://search.yahooapis.com/ImageSearchService/V1/imageSearch?appid=YahooDemo&➥

query=Corvette&results=2

You can substitute your own key and search term. For example, you can use this:

http://search.yahooapis.com/ImageSearchService/V1/imageSearch?appid=[YourAppId]&➥

query=flower&results=2

and receive an XML response similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:yahoo:srchmi"
xsi:schemaLocation="urn:yahoo:srchmi http://api.search.yahoo.com/➥

ImageSearchService/V1/ImageSearchResponse.xsd"
totalResultsAvailable="5446610" totalResultsReturned="2" firstResultPosition="1">
<Result>
<Title>Flower.jpg</Title>
<Summary>Flower.jpg</Summary>
<Url>http://home.mchsi.com/~gentle501/images/Flower.jpg</Url>
<ClickUrl>http://home.mchsi.com/~gentle501/images/Flower.jpg</ClickUrl>
<RefererUrl>http://home.mchsi.com/~gentle501/pages/Flower.html</RefererUrl>
<FileSize>104755</FileSize>
<FileFormat>jpeg</FileFormat>
<Height>800</Height>
<Width>771</Width>
<Thumbnail>
<Url>http://sp1.mm-a7.yimg.com/image/3966820083</Url>
<Height>155</Height>
<Width>149</Width>

</Thumbnail>
</Result>
<Result>
<Title>dca_sunshine_flower.jpg</Title>
<Summary>Sunshine Flower Sunday, 14 Nov 2004 | Disneyland , Flora A flower taken➥

at Disney's California Adventure. Nikon D100 | 50mm f/1.4 D | 50mm | 1/250 sec |➥

f/2.5 | ISO 200 | 26 Jun 2004</Summary>
<Url>http://www.disneymike.com/photoblog/dca_sunshine_flower.jpg</Url>

<ClickUrl>http://www.disneymike.com/photoblog/dca_sunshine_flower.jpg</ClickUrl>

<RefererUrl>http://www.disneymike.com/photoblog/archives/2004/11/sunshine_flower➥

.html</RefererUrl>

CHAPTER 19 ■ INTEGRATING SEARCH 563

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 563

<FileSize>311603</FileSize>
<FileFormat>jpeg</FileFormat>
<Height>635</Height>
<Width>700</Width>
<Thumbnail>
<Url>http://sp1.mm-a4.yimg.com/image/2928630219</Url>
<Height>136</Height>
<Width>150</Width>

</Thumbnail>
</Result>

</ResultSet>

Yahoo! Local Search has a similar architecture:

http://developer.yahoo.com/search/local/V2/localSearch.html

Microsoft Live.com Search
Microsoft’s Live Search APIs (http://msdn2.microsoft.com/en-us/library/bb251794.aspx) are
SOAP-based. The WSDL for version 1.1 is as follows:

http://soap.search.msn.com/webservices.asmx?wsdl

The Getting Started Guide is located here:

http://dev.live.com/blogs/livesearch/archive/2006/03/23/27.aspx

You need to set up an API ID (or get an existing one) to use the service; you can do this at
the following location:

http://search.msn.com/developer

If you have access to Microsoft Visual Studio, I recommend trying the code samples:

http://msdn2.microsoft.com/en-us/library/bb251815.aspx

There are Express editions of Microsoft Visual Studio that are available for a free download:

http://www.microsoft.com/express/

■Note In theory, because of the WSDL interface, you should be able to use Live.com in non-Microsoft envi-
ronments. In practice, you will find it much easier to use Microsoft tools because the documentation and the
samples are geared to those tools. To use other tools, I still refer to Microsoft tools to help me understand the
important parameters.

The search parameters for the Live Search API are more complicated than those for the
Google SOAP search because the former uses complex, nested types. As I described in Chapter 7,
there are a variety of ways to invoke WSDL-described SOAP calls. Some generate language-specific
bindings. The one I find the easiest to understand is the approach taken by such tools as the

CHAPTER 19 ■ INTEGRATING SEARCH564

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 564

WSDL/SOAP tools in XML Spy and oXygen: feed them the WSDL, and they determine the SOAP
connection endpoint, the SOAPaction, and a template for the body. That combination of param-
eters allows you to call the method without resorting directly to any SOAP libraries.

■Note XML Spy and oXygen are not free, although you can try them for 30 days free of charge. I don’t
know of any freeware (except perhaps Eclipse) that makes it quite so easy to work with WSDL and SOAP.

The search parameters are confusing, and it is not at all clear which parameters are
mandatory without studying the WSDL directly; it’s also not clear what the valid parameters
would be. For instance, I needed to study the following:

http://msdn2.microsoft.com/en-us/library/bb266177.aspx

to get help with the CultureInfo field to figure out that an acceptable value is en-US for American
English.

Feeding the Live.com WSDL to XML Spy, you will get the following:

• Connection endpoint: http://soap.search.msn.com:80/webservices.asmx

• SOAPaction HTTP header: http://schemas.microsoft.com/MSNSearch/2005/09/fex/Search

• The following template for a SOAP request:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<m:Search xmlns:m="http://schemas.microsoft.com/MSNSearch/2005/09/fex">
<m:Request>

<m:AppID>String</m:AppID>
<m:Query>String</m:Query>
<m:CultureInfo>String</m:CultureInfo>
<m:SafeSearch>Moderate</m:SafeSearch>
<m:Flags>None</m:Flags>
<m:Location>
<m:Latitude>3.14159265358979E0</m:Latitude>
<m:Longitude>3.14159265358979E0</m:Longitude>
<m:Radius>3.14159265358979E0</m:Radius>

</m:Location>
<m:Requests>
<m:SourceRequest>
<m:Source>Web</m:Source>
<m:Offset>0</m:Offset>
<m:Count>0</m:Count>
<m:FileType>String</m:FileType>
<m:SortBy>Default</m:SortBy>
<m:ResultFields>All</m:ResultFields>

CHAPTER 19 ■ INTEGRATING SEARCH 565

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 565

<m:SearchTagFilters>
<m:string>String</m:string>

</m:SearchTagFilters>
</m:SourceRequest>

</m:Requests>
</m:Request>

</m:Search>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If you just enter a key and a search term, no search results will come back. To figure out
which parameters in the SOAP request are required and the range of possible values, start by
reading this:

http://msdn2.microsoft.com/en-us/library/bb266182.aspx

which distinguishes between the following required parameters:

• AppID: Your application key

• CultureInfo: Language and regional information that must be chosen from a list of
possible values3 (for example, en-US)

• Query: Your search term

• Requests: A list of SourceRequest values drawn from a set of possible values4 (for example,
Web, Ads, Image)

and the following optional parameters:

• Flags: One of None, DisableHostCollapsing, DisableSpellCheckForSpecialWords, or
MarkQueryWord (None is the default value)

• Location: The latitude, longitude, and optional search radius for the search

• SafeSearch: One of Strict, Moderate, or Off (Moderate is the default value)

Here’s a sample SOAP request that searches the Web for flower in the American English
context:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<m:Search xmlns:m="http://schemas.microsoft.com/MSNSearch/2005/09/fex">
<m:Request>
<m:AppID>[YOURKEY]</m:AppID>

CHAPTER 19 ■ INTEGRATING SEARCH566

3. http://msdn2.microsoft.com/en-us/library/bb266177.aspx

4. http://msdn2.microsoft.com/en-us/library/bb266167.aspx

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 566

<m:Query>flower</m:Query>
<m:CultureInfo>en-US</m:CultureInfo>
<m:SafeSearch>Moderate</m:SafeSearch>
<m:Flags>None</m:Flags>
<m:Requests>
<m:SourceRequest>
<m:Source>Web</m:Source>

</m:SourceRequest>
</m:Requests>

</m:Request>
</m:Search>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This shows how to do this with curl:

curl -H 'SOAPAction: "http://schemas.microsoft.com/MSNSearch/2005/09/fex/Search"'➥

-d '<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"➥

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"➥

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

xmlns:xsd="http://www.w3.org/2001/XMLSchema"><SOAP-ENV:Body> <m:Search➥

xmlns:m="http://schemas.microsoft.com/MSNSearch/2005/09/fex"><m:Request><m:AppID>➥

[YOURKEY]</m:AppID> <m:Query>flower</m:Query><m:CultureInfo>en-US</m:CultureInfo>➥

<m:SafeSearch>Moderate</m:SafeSearch> <m:Flags>None</m:Flags><m:Requests>➥

<m:SourceRequest> <m:Source>Web</m:Source> </m:SourceRequest> </m:Requests>➥

</m:Request></m:Search></SOAP-ENV:Body></SOAP-ENV:Envelope>'
http://soap.search.msn.com:80/webservices.asmx

This will return a SOAP message with search results:

<?xml version="1.0" encoding="utf-8" ?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<SearchResponse xmlns="http://schemas.microsoft.com/MSNSearch/2005/09/fex">
<Response>
<Responses>
<SourceResponse>
<Source>Web</Source>
<Offset>0</Offset>
<Total>192000000</Total>
<Results>
<Result>
<Title>Flowers, Roses, Plants, Gift Baskets - 1-800-FLOWERS.COM -

Your ... </Title>
<Description>Florist and gift retailer and franchisor with more than➥

100 stores nationwide offering online purchasing of arrangements, plants, gift➥

baskets, confections and gourmet foods ... </Description>

CHAPTER 19 ■ INTEGRATING SEARCH 567

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 567

<Url>http://www.1800flowers.com/</Url>
</Result>
<Result>
<Title>Flowers, plants, roses, & gifts. Flower delivery with➥

fewer handlers ... </Title>
<Description>Flowers, roses, plants and gift delivery. Order flowers➥

from ProFlowers once, and you'll never use flower delivery from florists➥

again</Description>
<Url>http://www.proflowers.com/</Url>

</Result>
[...]

</Results>
</SourceResponse>

</Responses>
</Response>

</SearchResponse>
</soapenv:Body>

</soapenv:Envelope>

OpenSearch
The A9 search engine (http://a9.com) created the OpenSearch protocol (http://www.
opensearch.org/Home) as a “collection of simple formats for the sharing of search results.”

Many web sites have their own search boxes; many are also capable of creating RSS and
Atom feeds. OpenSearch is a set of extensions that can wrap existing search functionality, lever-
aging the feeds to create lightweight search APIs. The most prominent clients for OpenSearch
are the search plug-ins for Firefox 2 and Internet Explorer 7.

Let’s get more concrete. One of the easiest ways to learn how to create a search plug-in is to
use the search plug-in generator at the Mozilla Mycroft project (http://mycroft.mozdev.org/
submitos.html).

Here I use http://blog.mashupguide.net as an example site for which I want to generate
a search plug-in. I go to the blog to type in a term (for example, Yahoo) to search on and see
what URLs come back:

http://blog.mashupguide.net/?s=Yahoo&searchsubmit=Find

I can then replace Yahoo with {searchTerms} to generate the search URL for the plug-in
generator:

http://blog.mashupguide.net/?s={searchTerms}&searchsubmit=Find

You are given the option to register your search plug-in. One of the great features of
the search plug-in wizard is its generation of OpenSearch documents. Here’s the one for the
Mashupguide.net plug-in (http://mycroft.mozdev.org/installos.php/17890/orangeremix.xml):

<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/"
xmlns:moz="http://www.mozilla.org/2006/browser/search/">
<!-- Created on Sun, 17 Jun 2007 17:08:21 GMT -->

CHAPTER 19 ■ INTEGRATING SEARCH568

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 568

<ShortName>MashupGuide.net</ShortName>
<Description>Search for info about mashups</Description>
<Url type="text/html" method="get"

template="http://blog.mashupguide.net/?s={searchTerms}&searchsubmit=Find"/>
<Image width="16" height="16">
http://mycroft.mozdev.org/updateos.php/id0/orangeremix.png

</Image>
<Developer>Raymond Yee</Developer>
<InputEncoding>UTF-8</InputEncoding>
<moz:SearchForm>http://blog.mashupguide.net/</moz:SearchForm>
<moz:UpdateUrl>
http://mycroft.mozdev.org/updateos.php/id0/orangeremix.xml

</moz:UpdateUrl>
<moz:IconUpdateUrl>
http://mycroft.mozdev.org/updateos.php/id0/orangeremix.png

</moz:IconUpdateUrl>
<moz:UpdateInterval>7</moz:UpdateInterval>

</OpenSearchDescription>

With the OpenSearch XML document in hand, you can then embed some JavaScript to let
a user install the plug-in. The relevant method is window.external.AddSearchProvider(),
which you find documented here:

• http://msdn2.microsoft.com/en-us/library/Aa744112.aspx (for Internet Explorer 7)

• http://developer.mozilla.org/en/docs/Adding_search_engines_from_web_pages (for
Firefox)

You can get a list of search engine plug-ins here:

• https://addons.mozilla.org/en-US/firefox/browse/type:4 (a popular list linked to
from within the Firefox Manage Search Engine List widget)

• http://mycroft.mozdev.org/dlstats.html (the top downloads)

Note a caveat from http://mycroft.mozdev.org/contribute.html:

While the implementation of Sherlock [the legacy Apple search tool] in Mozilla-based

browsers only supported GET requests, the introduction of OpenSearch has also allowed

POST requests to be used but unfortunately this is not currently supported in IE7.

You can use the following WordPress plug-in to generate a search plug-in:

http://inner.geek.nz/projects/wordpress-plugins/mycroft-search-plugin-generator/

There is another half to the OpenSearch specification. If the search results that come out
of the search engine are in RSS 2.0 or Atom 1.0 format, wrapped with special elements docu-
mented here:

http://www.opensearch.org/Specifications/OpenSearch/1.1#OpenSearch_response_elements

CHAPTER 19 ■ INTEGRATING SEARCH 569

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 569

then the search results can be consumed and presented by search clients that support the
OpenSearch protocol:

http://www.opensearch.org/Community/OpenSearch_search_clients

and by programming libraries that can use it:

http://www.opensearch.org/Community/OpenSearch_software

In other words, you can get lightweight APIs for these sources and build metasearch sys-
tems from them. In the specific case of WordPress search results, you can make WordPress into
a full OpenSearch source using a WordPress plug-in, such as the following:

http://williamsburger.com/wb/archives/opensearch-v-1-1

Google Desktop HTTP/XML Gateway
If you find the Google Desktop useful, you might be glad to know that you can access results
programmatically via an HTTP/XML gateway, documented at the following location:

http://desktop.google.com/dev/queryapi.html#httpxml

■Note There is also a COM-based interface in Windows, located at http://desktop.google.com/dev/
queryapi.html#registering. The XML gateway works on Mac OS X in Google Desktop Mac 1.0.3+. The
API is currently unsupported for the Linux version of Google Desktop.

On Windows, you get the query URL from the registry key using this:

HKEY_CURRENT_USER\Software\Google\Google Desktop\API\search_url

The query URL will be of the following form:

http://127.0.0.1:4664/search&s={SECRETKEY}?q=

You can get XML out by tacking on &format=xml. A sample query is as follows:

http://127.0.0.1:4664/search&s={SECRETKEY}?q=bach

This query returns the following (excerpted here):

<results count="447">
_
<result>
<category>web</category>
<doc_id>247278</doc_id>
<event_id>277975</event_id>

_
<title>
Eventful - Mountain View Events - Mashup Camp IV at Computer History Museum

CHAPTER 19 ■ INTEGRATING SEARCH570

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 570

</title>
<url>http://eventful.com/events/E0-001-002642665-0</url>
<flags>259</flags>
<time>128263024673430000</time>

_
<snippet>
Add to Reddit Add to calendar Eventful calendar Add to Calendar: Bach

in San Francisco metro area Berkeley, California, USA My Events Add to
</snippet>

_
<thumbnail>
/thumbnail?id=6%5F76xk4cxwsgMBAAAA&s=KLp8LKWLzFxwQ25pvDi42EHVfTk

</thumbnail>
_

<icon>
/icon?id=http%3A%2F%2Feventful%2Ecom%2F&s=YtdjKx9s9jRBxC11CW7vm377nN0

</icon>
_

<cache_url>
http://127.0.0.1:4664/redir?url=http%3A%2F%2F127%2E0%2E0%2E1%3A4664%2Fcache%3➥

Fevent%5Fid%3D277975%26schema%5Fid%3D2%26q%3Dbach%26s%3DuSIdPgul9xWiUyUybC6Ko3XA2cI➥

&src=1&schema=2&s=uADtUWTU45Sf6jKTCjeexK0wxjY
</cache_url>

</result>

Summary
In this chapter, you learned the basics of using APIs for Google Ajax Search, Yahoo! Search,
Yahoo! Image Search, and Microsoft Live.com for searching content on the Web. You looked at
how you can use OpenSearch to wrap existing search functionality so that it can be accessed
in search bars for web browsers. Finally, I presented an example of an API for desktop search
by outlining the Google Desktop HTTP/XML gateway.

CHAPTER 19 ■ INTEGRATING SEARCH 571

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 571

858Xch19FINAL.qxd 2/4/08 3:39 PM Page 572

Creative Commons
Legal Code

Attribution-NonCommercial-ShareAlike 2.5
Reprinted from http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-
CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN
“AS-IS” BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFOR-
MATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
ITS USE.

License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN
AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE
RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS
AND CONDITIONS.

1. Definitions

a. “Collective Work” means a work, such as a periodical issue, anthology or encyclo-
pedia, in which the Work in its entirety in unmodified form, along with a number
of other contributions, constituting separate and independent works in themselves,
are assembled into a collective whole. A work that constitutes a Collective Work will
not be considered a Derivative Work (as defined below) for the purposes of this
License.

573

A P P E N D I X

■ ■ ■

858XchAppAFINAL.qxd 2/7/08 6:11 PM Page 573

b. “Derivative Work” means a work based upon the Work or upon the Work and other
pre-existing works, such as a translation, musical arrangement, dramatization,
fictionalization, motion picture version, sound recording, art reproduction, abridg-
ment, condensation, or any other form in which the Work may be recast, transformed,
or adapted, except that a work that constitutes a Collective Work will not be consid-
ered a Derivative Work for the purpose of this License. For the avoidance of doubt,
where the Work is a musical composition or sound recording, the synchronization
of the Work in timed-relation with a moving image (“synching”) will be considered
a Derivative Work for the purpose of this License.

c. “Licensor” means the individual or entity that offers the Work under the terms of
this License.

d. “Original Author” means the individual or entity who created the Work.

e. “Work” means the copyrightable work of authorship offered under the terms of
this License.

f. “You” means an individual or entity exercising rights under this License who has
not previously violated the terms of this License with respect to the Work, or who
has received express permission from the Licensor to exercise rights under this
License despite a previous violation.

g. “License Elements” means the following high-level license attributes as selected
by Licensor and indicated in the title of this License: Attribution, Noncommercial,
ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any
rights arising from fair use, first sale or other limitations on the exclusive rights of the
copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the
applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works,
and to reproduce the Work as incorporated in the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly, perform publicly, and
perform publicly by means of a digital audio transmission the Work including as
incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and
perform publicly by means of a digital audio transmission Derivative Works;

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as
are technically necessary to exercise the rights in other media and formats. All rights
not expressly granted by Licensor are hereby reserved, including but not limited to
the rights set forthin Sections 4(e) and 4(f).

APPENDIX ■ CREATIVE COMMONS LEGAL CODE574

858X_chAppA.qxd 2/7/08 12:14 PM Page 574

4. Restrictions. The license granted in Section 3 above is expresslymade subject to and
limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform
the Work only under the terms of this License, and You must include a copy of, or
the Uniform Resource Identifier for, this License with every copy or phonorecord
of the Work You distribute, publicly display, publicly perform, or publicly digitally
perform. You may not offer or impose any terms on the Work that alter or restrict
the terms of this License or the recipients’ exercise of the rights granted hereunder.
You may not sublicense the Work. You must keep intact all notices that refer to this
License and to the disclaimer of warranties. You may not distribute, publicly display,
publicly perform, or publicly digitally perform the Work with any technological
measures that control access or use of the Work in a manner inconsistent with the
terms of this License Agreement. The above applies to the Work as incorporated in
a Collective Work, but this does not require the Collective Work apart from the Work
itself to be made subject to the terms of this License. If You create a Collective
Work, upon notice from any Licensor You must, to the extent practicable, remove
from the Collective Work any credit as required by clause 4(d), as requested. If You
create a Derivative Work, upon notice from any Licensor You must, to the extent
practicable, remove from the Derivative Work any credit as required by clause 4(d),
as requested.

b. You may distribute, publicly display, publicly perform, or publicly digitally perform
a Derivative Work only under the terms of this License, a later version of this License
with the same License Elements as this License, or a Creative Commons iCommons
license that contains the same License Elements as this License (e.g. Attribution-
NonCommercial-ShareAlike 2.5 Japan). You must include a copy of, or the Uniform
Resource Identifier for, this License or other license specified in the previous sentence
with every copy or phonorecord of each Derivative Work You distribute, publicly
display, publicly perform, or publicly digitally perform. You may not offer or impose
any terms on the Derivative Works that alter or restrict the terms of this License or
the recipients’ exercise of the rights granted hereunder, and You must keep intact
all notices that refer to this License and to the disclaimer of warranties. You may
not distribute, publicly display, publicly perform, or publicly digitally perform the
Derivative Work with any technological measures that control access or use of
the Work in a manner inconsistent with the terms of this License Agreement. The
above applies to the Derivative Work as incorporated in a Collective Work, but this
does not require the Collective Work apart from the Derivative Work itself to be
made subject to the terms of this License.

c. You may not exercise any of the rights granted to You in Section 3 above in any
manner that is primarily intended for or directed toward commercial advantage or
private monetary compensation. The exchange of the Work for other copyrighted
works by means of digital file-sharing or otherwise shall not be considered to be
intended for or directed toward commercial advantage or private monetary com-
pensation, provided there is no payment of any monetary compensation in connection
with the exchange of copyrighted works.

APPENDIX ■ CREATIVE COMMONS LEGAL CODE 575

858X_chAppA.qxd 2/7/08 12:14 PM Page 575

d. If you distribute, publicly display, publicly perform, or publicly digitally perform
the Work or any Derivative Works or Collective Works, You must keep intact all
copyright notices for the Work and provide, reasonable to the medium or means
You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable)
if supplied, and/or (ii) if the Original Author and/or Licensor designate another
party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution
in Licensor’s copyright notice, terms of service or by other reasonable means, the
name of such party or parties; the title of the Work if supplied; to the extent reason-
ably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to
be associated with the Work, unless such URI does not refer to the copyright notice
or licensing information for the Work; and in the case of a Derivative Work, a credit
identifying the use of the Work in the Derivative Work (e.g., “French translation of
the Work by Original Author,” or “Screenplay based on original Work by Original
Author”). Such credit may be implemented in any reasonable manner; provided,
however, that in the case of a Derivative Work or Collective Work, at a minimum
such credit will appear where any other comparable authorship credit appears and
in a manner at least as prominent as such other comparable authorship credit.

e. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor reserves the exclu-
sive right to collect, whether individually or via a performance rights society
(e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital
performance (e.g. webcast) of the Work if that performance is primarily intended
for or directed toward commercial advantage or private monetary compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive
right to collect, whether individually or via a music rights agency or designated
agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the
Work (“cover version”) and distribute, subject to the compulsory license created
by 17 USC Section 115 of the US Copyright Act (or the equivalent in other juris-
dictions), if Your distribution of such cover versionis primarily intended for or
directed toward commercial advantage or private monetary compensation.

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the
Work is a sound recording, Licensor reserves the exclusive right to collect, whether
individually or via a performance-rights society (e.g. SoundExchange), royalties for
the public digital performance (e.g. webcast) of the Work, subject to the compulsory
license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in
other jurisdictions), if Your public digital performance is primarily intended for or
directed toward commercial advantage or private monetary compensation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE
OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF

APPENDIX ■ CREATIVE COMMONS LEGAL CODE576

858X_chAppA.qxd 2/7/08 12:14 PM Page 576

ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW,
IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon
any breach by You of the terms of this License. Individuals or entities who have
received Derivative Works or Collective Works from You under this License, how-
ever, will not have their licenses terminated provided such individuals or entities
remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will sur-
vive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual
(for the duration of the applicable copyright in the Work). Notwithstanding the
above, Licensor reserves the right to release the Work under different license terms
or to stop distributing the Work at any time; provided, however that any such elec-
tion will not serve to withdraw this License (or any other license that has been, or
is required to be, granted under the terms of this License), and this License will
continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collective
Work, the Licensor offers to the recipient a license to the Work on the same terms
and conditions as the license granted to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor
offers to the recipient a license to the original Work on the same terms and condi-
tions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it
shall not affect the validity or enforceability of the remainder of the terms of this
License, and without further action by the parties to this agreement, such provi-
sion shall be reformed to the minimum extent necessary to make such provision
valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach con-
sented to unless such waiver or consent shall be in writing and signed by the party
to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to
the Work licensed here. There are no understandings, agreements or representations
with respect to the Work not specified here. Licensor shall not be bound by any addi-
tional provisions that may appear in any communication from You. This License
may not be modified without the mutual written agreement of the Licensor and You.

APPENDIX ■ CREATIVE COMMONS LEGAL CODE 577

858X_chAppA.qxd 2/7/08 12:14 PM Page 577

Creative Commons is not a party to this License, and makes no warranty whatsoever in
connection with the Work. Creative Commons will not be liable to You or any party on any
legal theory for any damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this license. Notwithstanding
the foregoing two (2) sentences, if Creative Commons has expressly identified itself as the
Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under
the CCPL, neither party will use the trademark “Creative Commons” or any related trademark
or logo of Creative Commons without the prior written consent of Creative Commons. Any
permitted use will be in compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made available upon request from
time to time.

Creative Commons may be contacted at http://creativecommons.org/.

APPENDIX ■ CREATIVE COMMONS LEGAL CODE578

858X_chAppA.qxd 2/7/08 12:14 PM Page 578

Special Characters
&description parameter, 401
&dt parameter, 402
&extended parameter, 402
&format=xml query, 570
&page=page-number parameter, 41
&replace=no parameter, 402
&s=int parameter, 41
&s=rec parameter, 41
&shared=no parameter, 402
&tags parameter, 402
&url parameter, 401
&z=t parameter, 41

Numbers
1U5EXVPVS3WP5 identifier, 55
30boxes.com, 418, 438–442

A
<a> element, 543–547
<abbr> HTML tag, 546
abbr-design-pattern, 546
access control list (ACL), 476
access permissions, 38
account management, Flickr, 40
accuracy parameter, 43, 248
ACL (access control list), 476
Actions tab, 547
Add Another Blog link, Flickr, 107
add submethod, 401–402
address attribute, 541
addresses (adr) format, 539–541, 546
adr microformat, 339, 541, 550–552
aggregate feeds, 78
Ajax, 24, 328
Ajax Search, Google, 559–561
Ajax widgets, 205–223

accessing Flickr via JavaScript, 217–220
DOM Inspector, 208
Firebug add-on, 208–210
Google Maps, 213–216

Greasemonkey, 220–223
JavaScript libraries, 210
JavaScript Shell, 210
overview, 205–208
YUI widgets, 211–213

Calendar component, 211–212
installing on host, 212–213

all submethod, 401
allcalendars calendar feed, 430–432
allow_url_fopen option, 133
alternative interfaces, 26
Amazon, 53–56

items, 53–55
lists, 55
subject headings, 55–56
tags, 55

Amazon E-Commerce Service (ECS), 191–195
Amazon S3 (Simple Storage Service), 67, 473

API kits, 482–485
PHP, 483–484
Python, 484–485

conceptual structure of, 475–476
Firefox S3 extension, 476–477
rationale for, 474
REST interface, 477–481
SOAP interface, 481–482

Amazon Standard Identification Number
(ASIN), 53

Amazon Web Services (AWS), 476
Amazon wishlists, Google Spreadsheets

mashup, 528–532
accessing through ECS Web Service, 528
to Microsoft Excel Via COM, 535
overview, 528
Python code for, 528–532

amazonWishList.ListItems generator,
532

amazonWishListtoGSheet.py code, 528
<answer> element, 260
Apatar mashup tool, 310
API ID, 564

Index

579

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 579

API kits, 314, 320
Amazon S3, 482–485

PHP, 483–484
Python, 484–485

Python, 524–532
for Upcoming.yahoo.com, 451
for working with ODF, 507–518

Odfpy, 507–516
OpenDocumentPHP, 516–518
OpenOffice.org (OO.o), 518

Zend PHP, 533–534
API methods, 121
API packets, 320
API programming, creating online maps

with, 346–355
Google, 347–350
Microsoft, 354–355
Yahoo!, 351–354

api_key method, 158
api_key parameter, 217, 256, 445–448
api_key; perms method, 158
api_sig method, 158
api-key key, 123
APIs (application programming interfaces),

6, 21, 115, 121–204. See also API kits
30boxes.com, 439–442
Flickr, 122

API Explorer, 129–132
authorization, 156–164
calling methods from PHP, 132–145
community, 128
documentation, 128–132
flickr.reflection methods, 146–154
kits, 165–169
limitations of, 169–170
policy, 128
request and response formats, 154–156
terms of use, 128
XML response, 124–127

GData, Blogger, 199–203
overview, 121–122, 171–172
Programmableweb.com, 196–198
public, 23–24
SOAP, 181–195

Amazon E-Commerce Service (ECS),
191–195

Flickr SOAP interface, 195
geocoder.us service, 182–191

overview, 181
WSDL and, 181–182

Upcoming.yahoo.com
parts that require authentication,

447–450
read-only parts of, 445–447

XML-RPC, 172–181
overview, 172–177
parsing traffic, 178–181
Wireshark, 177–178

YouTube, 198–199
APP (Atom Publication Protocol), 82, 199,

316, 420, 426
appid parameter, 332, 356, 566
AppleScript, programming Google Earth via,

375
application programming interfaces. See APIs
applications. See web sites
ASIN (Amazon Standard Identification

Number), 53
Atom

data, Google Calendar, 424–426
in Flickr, 45
publishing, 320
Version 1.0, 82–86

Atom feeds, 27, 94, 316, 420, 545
Atom Publication Protocol (APP), 82, 199,

316, 420, 426
Atom Syndication Format, 82
atom value, format parameter, 86
Atom XML feed, 424
atom_1 value, format parameter, 86
<atom:content> element, 428
<atom:summary> element, 428
atom:title expression, 288
<attribution> element, 345
au value, region feed, 96
Auth token, 200, 427
authenticate attribute, 301
authentication, 138, 475
auth.getToken method, 448, 450
authorization, 127, 475

Flickr APIs, 156–164
example, 157–161
implementation of in PHP, 161–164
passwords, 157

tokens, Blogger, 199–200
autodiscovery, feed, 93–94

■INDEX580

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 580

AWS (Amazon Web Services), 476
AWSAccessKeyId parameter, 478

B
b value, topic feed, 95
Bach keyword, 443, 451
badge, 317
basic value, projection parameter, 428
BBAuth authentication, 561
bbox parameter, 256, 377–378
BEA AquaLogic Pages mashup tool, 310
Berkeley Public Library (BPL), 14
Better Flickr Firefox Extension, 25
Bidochko, Andriy, 329
binding, 184
blog template, 289
BlogDesk, 111
Blogger, 109–110, 199–203, 426

authorization tokens, 199–200
creating entries, 201–202
deleting entries, 203
HTTP methods, 203
lists of blogs and posts, 200–201
overview, 199
updating entries, 203
user IDs, 200

blogger.message.2.xml file, 203
blogging integration, 114
Blogging protocol, 111
Bloglines, 97
blogs, 105–118. See also Blogger

desktop blogging tools, 111–112
feeds, 94
Flock social web browser, 114
generating feedback flows, 113
integration scenarios for, 105–106
interfacing with Flickr, 44–45
linkbacks, 116
posting to, 316
posting to blogs, 316
RSD specification, 115–116
sending Flickr pictures to, 106–111

blogging Flickr pictures, 110
configuring Flickr for integration,

107–110
overview, 106–107

WordPress, 108
Blogspot weblogs, 94

BlueOrganizer, 238
bold, ODF, 505–506
book_writing_calendar_entry.xml file, 432
BookBump, 238
BookBurro, 18
bookmark, 395, 408–409
bookmarklet, 13, 210
books, tracking, 235–239
bots, 58–59
bounding box, 270–272, 285
BPL (Berkeley Public Library), 14
BPL LibraryLookup bookmarklet, 15
Browser Object Model, 208
browser plug-ins, 25
browsing through Flickr, 40–41
buckets, 475, 480–481
bundles, 399, 403
Bungee Connect mashup tool, 310
BusyTime, 421

C
ca value, region feed, 96
caching, 138, 323
calc_square() method, 258
Calendar API, 426
calendar feeds, 428–433

allcalendars, 430–432
meta-feed, 428–430
owncalendars, 432–433

Calishain, Tara, 59
callback object, 264
callback parameter, 332
<Camera> element, 369–374
<Camera>: <LookAt> element, 369
cameras, viewing photos by types of in Flickr,

46
campanile_fog.jpg file, 502
case, del.icio.us tags, 68–69
category_id parameter, 448
category.getList method, 449
Catt, Dan, 9
CC (Creative Commons) licensing, 26, 46
cdf value, format parameter, 87
‰CE method, 135
<channel> element, 79, 82, 90
chemistry tag, 411
Chickenfoot mashup tool, 310
Christen, Benjamin, 346

■INDEX 581

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 581

city string, 356
class attribute, 541
class-design-pattern, 545–546, 549
ClientLogin authorization, 434
ClientLogin technique, 427
client-side frame, 257

form submission, 260
hooking to Flickr, 261–266
reading and writing elements, 257–260

clouds, 61
clustering algorithm, 64
Cocoalicious, 405
Coghead mashup tool, 310
collection_id parameter, 332
color changes, ODF, 505–506
COM

generating Amazon wishlist Excel
spreadsheet via, 535

programming Google Earth via, 374–375
comma-separated values (CSV), 334–336,

338
comment feed type, 427
community, Flickr APIs, 128
Compact W3C Basic Geo encoding,

340
composite applications, 4
Computer Museum, 52
Computers & Internet Section, 55
Connotea, 408–412
contacts, list of in Flickr, 38
contacts(hCard), 541–542
Content-Type, 188, 358
content-type identifier, 41
content.xml file, 492–499, 502–504
context-type identifier, 32
converting JSON to HTML, 264–266
Copy Selected button, 285, 301
copy_this() function, 301
CoScripter mashup tool, 310
count argument, 401
cracking, 22
Craigslist, 5
CreateBuckets method, 482
Creative Commons (CC) licensing, 26, 46
Creative Commons license, 317
Critic’s Choice events, 462–464
CSV (comma-separated values), 334–336, 338
csv format, 92

csv value, format parameter, 87
CultureInfo field, 565
CultureInfo parameter, 566
curl command, 177–188, 450
curl command-line tool, 177–178
curl invocation, 200, 427
custom template, 289–291

D
Dapper mashup tool, 310
data attribute, 294
data compression, 138
Data formats tab, 547
Data Mashups Online Service mashup tool,

310
data standards, 323–324
dates submethod, 402
datetime-design-pattern format, 546
DC (Dublin Core) metadata standard,

90
dc prefix, 90
Debug Mode option, 540
de-de value, lang parameter, 87
DELETE method, 135, 203
delete permission, 129
DELETE request, 432
Delete Selected button, 302–304
delete submethod, 402
deleting Blogger entries, 203
deletion process, for photos, 302–304
del.icio.us, 56–58, 397–407

bundles, 403
Firefox extension, 25
JSON, 403–405
mashup with Flickr, 412–416
overview, 398–399
posts method, 400–402

add submethod, 401–402
all submethod, 401
dates submethod, 402
delete submethod, 402
get submethod, 400–401
recent submethod, 401

RSS, 403–405
tags, 67–71, 400

adding, 68
case, 68–69
further information, 69–71

■INDEX582

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 582

multiword phrases, 68–69
using to mash up, 72–73

third-party API kits, 405–407
third-party tools for, 405
update method, 399

delimiters, 475
Denodo data mashup, 310
Denton, William, 18
description class, 549
description parameter, 448
<description> element, 84, 381–383
design patterns, microformats, 545–547

abbr-design-pattern, 546
class-design-pattern, 545–546
include-pattern, 546–547
overview, 545
rel-design-pattern, 545

desktop blogging tools, 111–112
developer communities, 322
developers, community of, 25
die_on_error parameter, 167
direct API calls, and XHR, 253–255
dirflg=h parameter, 52
display_all parameters, 88
<div id="pics"></div> element, 264
<div> element, 257, 268, 294, 541, 542, 545
Do Not Share with Everyone setting, Google

Calendar, 419
doAction property, 555
Document Object Model (DOM) Inspector,

208, 347
documentation, 26, 318

Flickr APIs, 128
Flickr methods, 129–132

document.xml file, 521
.docx file, 520
DOM (Document Object Model) Inspector,

208, 347
dominos object, 555
dt parameter, 400
DTEND statement, 465
DTSTART statement, 465
Dublin Core (DC) metadata standard, 90

E
e value, topic feed, 95
ECMA final schemas, 521
ECMA Office Open XML (OOXML), 519–522

versus ODF, 522
overview, 519–522
viewers/validators for, 522

ECS (Amazon E-Commerce Service), 191–195
ECS Web Service, accessing Amazon wishlists

through, 528
ecto, 111
ElementTree library, 173, 437, 524
e-mail interfaces, in Flickr, 44
Email parameter, 199, 427
embeddable iframe, 331
embedded images, ODF, 502–503
embedded scriptability, 24
en_za value, region feed, 96
<enclosure> element, 90, 92
end parameter, 442
end_date parameter, 448
end_time parameter, 448
entries, Blogger, 201–203
<entry> element, 83, 84–85, 428
en-us value, lang parameter, 87
error reporting, 321
es-us value, lang parameter, 87
eval() method, 264
event aggregators, 443–458

Eventful.com, 452–458
PHP API kit for, 454–456
Python API kit, 456–458
searching for events, 452–454

overview, 443
Upcoming.yahoo.com, 443–451

API, 445–450
API kits for, 451
feeds from search results, 443–445

event feed type, 427
event feeds, 433–434
event_id parameter, 446
event.add method, 448
Eventful.com, 417, 452–458

PHP API kit for, 454–456
Python API kit, 456–458
searching for events

using API, 453–454
using feeds, 452–453

eventfulpy library, 456
event.getInfo parameter, 446
events.GetDisplayList argument, 442
events(hCalendar), 542–543

■INDEX 583

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 583

/events/ical method, 454
/events/search method, 453
Excel, generating Amazon wishlist

spreadsheet via COM, 535
EXDATE statement, 465
Expires parameter, 478
explicit licenses, 317
exporting data, 25
EXRULE statement, 465
extending LibraryLookup bookmarklet, 17
Extensio mashup tool, 310
extensive error reporting, 321

F
f=q parameter, 50
fans, 404
fastr, 67
feed autodiscovery, 93
Feed Browser tab, 288
feed formats, from Google Calendar,

420–426
Atom data, 424–426
iCalendar/iCal, 421–424

feed readers, 96
<feed> element, 83–84
feedback flows, 113
Feedburner, 99–100
Feedity, 98
feeds, 77–104, 315–316

Atom 1.0, 82–86
autodiscovery, 93–94
combining with blogging to generate

feedback flows, 113
filtering, 103
finding, 93–94
Flickr, 86–92

exchange formats, 90–92
parameters, 86–87

Google News, 95–96
how to persist, 299–304

overview, 299–301
selection and deletion process for

photos, 302–304
news aggregators, 96–97
overview, 78
remixing

with Feedburner, 99–100
with Yahoo! Pipes, 100–104

RSS 1.0, 80–82
RSS 2.0, 78–86
scraping using GUI tools, 98–99
validating, 98
weblogs, 94
Wikipedia, 94–95
Yahoo! News, 95–96

feeds (simple template), 288–289
Fetch Feed module, 101
fickr_key.php file, 165
file_get_contents function, 133
file-suffix identifier, 32
Filter module, 103
filtering feeds, 103
Find Businesses option, 331
finding feeds, 93–94
findr, 67
Firebug add-on, 208–210
Firefox, 8, 68, 97, 208–210, 238, 405, 476–477,

544
Flags parameter, 566
FlashEarth, 234, 376
Flickr, 8, 21, 29, 38, 314

accessing via JavaScript, 217–220
account management, 40
APIs, 122

API Explorer, 129–132
authorization, 156–164
calling methods from PHP, 132–145
community, 128
documentation, 128–132
flickr.reflection methods, 146–154
kits, 165–169
limitations of, 169–170
policy, 128
request and response formats,

154–156
terms of use, 128
XML response, 124–127

blogging pictures, 110
browsing through, 40–41
configuring for blog integration,

107–110
Blogger blogs, 109–110
WordPress blogs, 108

contacts, 38
Creative Commons (CC) licensing, 46
displaying photos using <gm:map>, 292–294

■INDEX584

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 584

e-mail interfaces, 44
feeds, 86–92

exchange formats, 90–92
parameters, 86–87

Flickr SOAP interface, 195
Flock social web browser, 114
GeoFeed, 340
groups, 38–40
KML from, 367–368
mashing up with Google Maps API,

243–281
bounding box, 270–272
bringing together Flickr and GMap

code, 269
client-side frame, 257–266
design, 244
geotagging in Flickr, 245–248
Google Mapplet that shows Flickr

photos, 277–281
making pictures show up in map,

272–276
overview, 243–244
server-side proxy, 253–257
setting up, 267
viewport, 268–269
XMLHttpRequest (XHR) object, 248–252

mashup with del.icio.us, 412–416
Mashup-by-URL-Templating-and-

Embedding pattern, 47–49
mobile access, 45
Organizer feature, 43–44
photos, 30–33

browsing by date, 36
collections of, 37
data associated with individual, 33–34
favorites, 37
geotagged, 42–43
popular, 38
representations of, 31
search of, 41–42
sets of, 37
viewing by type of camera, 46

recent activities, 44
sending pictures to blogs, 106–111
showing pictures in Google Earth, 376–393

flickrgeo.php code, 383–392
generating KML for photos, 382–383
<NetworkLink> element, 379–382

syndication feeds, 45
tags, 34–35, 62–67

applications using, 67
common practice, 63–64
creating, 64
geotagging, 66–67
machine, 66–67
popular, 30
potential weaknesses of, 65
singular/plural nouns, 65–66
syntax of, 64–65
using to mash up, 72–73

third-party applications, 45
users, 30–33

personal archives, 36
using Yahoo! Pipes to access, 291–292
weblog interfacing, 44–45

Flickr API, 66
Flickr API Explorer, 129–132, 319
Flickr Central Group, 38
flickr. class, 168
Flickr FAQ, 62
Flickr GeoFeed, 344
Flickr Greasemonkey script, 45
Flickr map, 66
Flickr Maps, 207
Flickr photo, 23
Flickr Related Tag Browser, 67
Flickr script, 4
Flickr World map, 42
Flickr_API object, 166
flickr_client class, 174
flickr_method class, 152
flickr_methods.php class, 149
flickr.auth.getToken method, 160
FlickrCentral, GeoFeed, 340
flickr.client instance, 247
flickr.contacts.getList method, 157, 160
flickrgeo.php, 255, 261–268, 291, 383–392
flickr.groups.pools.getPhotos method, 146
flickr.methods.getMethods method, 149
flickr.people.findByUsername, 145
flickr.photos.geo method, 246
flickr.photos.geo.getLocation method, 247
flickr.photos.geo.setLocation method, 146
flickr.photos.getCounts method, 170
flickr.photos.getInfo method, 130
flickr.photos.search class, 168

■INDEX 585

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 585

flickr.photos.search method, 123–129, 148,
178, 247, 255, 377

flickr.reflection methods, 146–148, 149–154,
182

flickr.reflection.getMethodInfo method,
146–149, 182

flickr.reflection.getMethods method, 146
flickr.test.echo method, 129, 168
Flock social web browser, 114, 115
flower keyword, 192
<Folder> element, 383
folksonomic, 396
folksonomies, 61, 73–75. See also tags
font changes, ODF, 505–506
footnotes, ODF, 502
foreign tags, 84
FORM enctype attribute, 135
form submission, 260
format parameter, 86, 90, 155
format=json parameter, 217
format=kml format, 367
format=kml_nl format, 367
formatting lists, ODF, 504–505
free-busy value, projection parameter,

428
freshDel.icio.us, 405
fr-fr value, lang parameter, 87
friends parameters, 88
full value, projection parameter, 428
FUTEF, 112

G
Garrett, Jesse James, 206
GClientGeocoder object, 360
GData, Blogger, 199–203

authorization tokens, 199–200
creating entries, 201–202
deleting entries, 203
HTTP methods, 203
lists of blogs and posts, 200–201
overview, 199
updating entries, 203
user IDs, 200

GData-based Calendar API, 426–434
calendar feeds, 428–433

allcalendars, 430–432
meta-feed, 428–430
owncalendars, 432–433

event feeds, 433–434
feeds available from, 427–428
obtaining authentication token,

427
visibility and projection, 428

geo (locations), 543
geo class, 549
geo format, 539, 546
geo microformat, 339, 549, 552
geo namespace prefix, 340
geo.* method, 247
geocode addresses, 356
geocode method, 182–189
geocode_address method, 182
geocode_intersection method, 182
geocoding, 356–364

geocoder.us service, 182–191
oXygen XML editor, 184–188
PHP PEAR::SOAP invocation,

190
Python’s SOAPpy library, 188–190

geocoding script, 556–557
Google Geocoder, 358–361

JavaScript interface, 360–361
REST interface, 358–360

non-U.S. addresses, 363–364
Virtual Earth, 361–363
Yahoo! Maps, 356–357

Geographic Information System (GIS),
328

geo:lat=[LATITUDE] tag, 245
<geo:lat> element, 10, 245, 292, 340
geolocated photos, script for,

255–257
geo:lon tag, 10, 245
geo:lon=[LONGITUDE] tag, 245
<geo:long> element, 292, 340
geo:Point element, 340
geo.position metatag, 339
GeoRSS, 336, 339–340

vs. KML, 346
in Virtual Earth, 344–345
Yahoo!’s use of, 341–345

GeoRSS GML encoding, 340
georss prefix, 340
GeoRSS Simple encoding, 340
georss:point element, 337–340
georss:where element, 340

■INDEX586

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 586

geotagged tag, 66, 245
geotagging, 9, 62, 66–67, 245–248
gessionid parameter, 427
GET method, 135–138, 203
GET request, 160, 245, 247, 250, 262, 380, 439,

478–480, 543
get submethod, 400–401
get_pictues() method, 261, 262
getCollection method, 332–334
getErrorCode() function, 167
getErrorMsg() function, 167
GetFeatureByHref method, 374
getResource function, 134, 143
GIS (Geographic Information System),

328
Global Positioning System (GPS),

327
GMap button, 9
GMap keyboard, 215
<gm:container> element, 301
GME (Google Mashup Editor), 283, 287–288,

316, 319
analysis of using, 309–310
Feed Browser tab, 288
tags, 287

<gm:handleEvent> element, 294
GMiF (Google Maps in Flickr), 7–13, 28

comparable mashups, 13
elements, 8
methods of combination, 12–13
reasons for combination, 8–11

gml prefix, 340
<gm:list> element, 294–299
<gm:list> tag, 288
gml:Point element, 340
gml:pos element, 340
<gm:map> element, 294
<gm:page> element, 301
<gm:pager/> element, 294
<gm:section> element, 301
<gm:tabs> tag, 301
<gm:template> element, 289, 294
Goodreads, 238
Google AJAX Feed API, 93
Google Ajax Search, 559–561

manipulating results, 559–561
Google Base, 67
Google Base feed, 288

Google Calendar, 418–438
exporting events calendar to, 461–471

creating feed of Critic’s Choice using
Python, 462–464

UC Berkeley event calendars, 462
writing events to, 464–471

feed formats from, 420–426
Atom data, 424–426
iCalendar/iCal, 421–424

GData-based Calendar API, 426–434
calendar feeds, 428–433
event feeds, 433–434
feeds available from, 427–428
obtaining authentication token, 427
visibility and projection, 428

PHP API kit for, 434–437
Python API kit for, 437–438
setting up, 418–420

sharing calendars, 419–420
usage patterns, 419

Google Code, 290
Google Desktop HTTP/XML Gateway,

570–571
Google Docs, 523
Google Earth, 8–11, 364–375

KML, 364
<Camera> element, 369–374
from Flickr, 367–368
<LookAt> element, 369–374

programming via AppleScript, 375
programming via COM, 374–375
showing Flickr pictures in, 376–393

flickrgeo.php code, 383–392
generating KML for photos, 382–383
<NetworkLink> element, 379–382

Google Earth Community, 364
Google Earth Gallery, 364
Google Gadgets, 24
Google GData APIs, 320
Google Geocoder, 358–361

JavaScript interface, 360–361
REST interface, 358–360

Google Mapplets, 24, 277–281
Google Maps, 8, 24, 45, 49–52, 207, 213–216,

328
connecting Yahoo! Pipes, 51–52
URL language of, 49–51
viewing KML files in, 51

■INDEX 587

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 587

Google Maps API, 6, 49, 213, 347–350
mashing up with Flickr, 243–281

bounding box, 270–272
bringing together Flickr and GMap

code, 269
client-side frame, 257–266
design, 244
geotagging in Flickr, 245–248
Google Mapplet that shows Flickr

photos, 277–281
making pictures show up in map,

272–276
overview, 243–244
server-side proxy, 253–257
setting up, 267
viewport, 268–269
XMLHttpRequest (XHR) object, 248–252

Google Maps in Flickr (GMiF), 7–13, 28
comparable mashups, 13
elements, 8
methods of combination, 12–13
reasons for combination, 8–11

Google Mashup Editor (GME), 283, 287–288,
316, 319

analysis of using, 309–310
Feed Browser tab, 288
tags, 287

Google My Maps, 331–332
Google News

feeds, 95–96
refactoring pipes, 102–103

Google Reader, 97
Google Spreadsheets API, 524–535

Amazon wishlists mashup, 528–532
accessing through ECS Web Service, 528
generating Excel spreadsheet via COM,

535
overview, 528
Python code for, 528–532

Python API kit, 524–527
Zend PHP API kit, 533–534

google-maps tag, 548
GPS (Global Positioning System), 327
granular architecture, 319
granular services, 319
graphical user interface (GUI) tools, 98–99
graphical widgets, 100
Greasemonkey, 8, 12, 17, 21, 73, 221

group-id identifier, 38
gsessionid request, 434
GSheetForAmazonList class, 532
GUI (graphical user interface) tools, 98–99
GuruLib, 238

H
h value, topic feed, 95
hacking, 22
hacks, 25
hAtom microformat, 546
hCalendar format, 539, 542, 546
hCalendar microformat, 551, 552
hcard class attribute, 542
hCard format, 539, 546
hCard microformat, 547, 550, 552
HEAD method, 135
<head> element, 93
headers, ODF, 499–500
heading angle, <Camera> element, 373
heading parameter, 371
helloworld_odfpy.odt file, 508
helloworld.odt file, 492
Hemenway, Kevin, 59
hl=en parameter, 50
Holovaty, Adrian, 7
Housingmaps.com, 5–7, 28

comparable mashups, 7
elements, 5
location of remixing, 6
methods of combination, 6–7
reasons for combination, 5–6

href attribute, 93, 548
href element, 380
hResume microformat, 546, 551
hReview microformat, 546, 551
HTML

converting JSON to, 264–266
microformats and metatags for, 338–339

html interface, 257
html value, 257
HTTP

Blogger, 203
error codes, 321
methods, 426
Wireshark, 177–178

HttpClient library, 138
httplib2 library, 138

■INDEX588

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 588

HTTP/XML Gateway, Google Desktop, 570–571
hybrid blogs/wikis, 116

I
iCal4j library, 424
iCalendar, 323, 418–420

exporting events calendar to, 461–471
creating feed of Critic’s Choice using

Python, 462–464
UC Berkeley event calendars,

462
Google Calendar, 421–424
programming with, 458–461

PHP, 460–461
Python, 458–460

iCalendar Message-Based Interoperability
Protocol (iMIP), 421

iCalendar Transport-Independent
Interoperability Protocol (iTIP)
Scheduling Events, 421

iCalendar Validator, 424
ICBM <meta> tag, 339
identifiers, 48
ie value, region feed, 96
ie=UTF8 parameter, 50
_IG_FetchContent() method, 281
iGoogle, 24
images, embedded, ODF, 502–503
iMIP (iCalendar Message-Based

Interoperability Protocol), 421
importing data, 25
in value, region feed, 96
include_path variable, 165
include-pattern, 546–547
index.gml file, 287, 290
influence, 171
ini_set() function, 165
init_data() method, 299
<input> element, 259, 262, 272
integrating

with blogs
desktop blogging tools, 111–112
Flock social web browser, 114
generating feedback flows, 113
linkbacks, 116
RSD specification, 115–116
scenarios, 105–106
sending Flickr pictures to, 106–111

search functionality, 559–571
Google Ajax Search, 559–561
Google Desktop HTTP/XML Gateway,

570–571
Microsoft Live Search, 564–568
OpenSearch, 568–570
overview, 559
Yahoo! Search, 561–564

with wikis, 116–117
Intel Mash Maker mashup tool, 311
intellectual property, 26
interfaces

alternative, 26
APIs, public, 23–24
e-mail, Flickr, 44
mobile, 26, 45

Internet bots, 58
is_contact parameter, 246
is_family parameter, 246
is_friend parameter, 246
is_public parameter, 246
<isbn> tag, 85
italics, ODF, 505–506
<item> element, 79, 90
item.description link, 292
item.image_prefix parameter, 291
item.image_small_URL parameter, 291
item.link link, 292
<items> element, 82
ItemSearch operation, 191
iTIP (iCalendar Transport-Independent

Interoperability Protocol) Scheduling
Events, 421

it-it value, lang parameter, 87
iwloc=addr parameter, 50

J
JackBe Presto Enterprise Edition mashup

tool, 311
Jargon File web site, 22
JavaScript

accessing Flickr via, 217–220
adding to mashups, 294–299
interface, 360–361
libraries, 210

JavaScript Shell, 210, 211, 347
JavaScript-accessible interface, 358
JODConverter Java Library, 518

■INDEX 589

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 589

JSON, 91–92
converting to HTML, 264–266
del.icio.us, 403–405
using XHR via YUI Connection Manager to

read, 262–264
json output, 360
json parameter, 377
JSON serialization, 77
json value, 257
json value, format parameter, 87
jsoncallback parameter, 219
jsonFlickrApi() function, 218
jsonFlickrFeed() function, 91

K
Kayak website, 240
key parameter, 358
Keyhole Markup Language (KML), 345

<Camera> element, 369–374
files, viewing in Google Maps, 51
from Flickr, 367–368
generating for photos, 382–383
versus GeoRSS, 346
<LookAt> element, 369–374
<NetworkLink> element, 379–382

keys, 475
<Keywords> type, 192
KML (Keyhole Markup Language), 345

<Camera> element, 369–374
files, viewing in Google Maps, 51
from Flickr, 367–368
generating for photos, 382–383
versus GeoRSS, 346
<LookAt> element, 369–374
<NetworkLink> element, 379–382

kml output, 358
kml parameter, 377
kml value, 257
KOffice, 489
ko-kr value, lang parameter, 87

L
lang parameter, 86–87
language-specific libraries, 552–553
latitude class, 549
<Latitude> element, 357
latref attribute, 294
layer=t parameter, 51

LCSH (Library of Congress Subject Heading),
74

libcurl Emulator, 134
libcurl library, 143, 173
Library of Congress Subject Heading (LCSH),

74
LibraryLookup bookmarklet, 4, 13–18, 28

comparable mashups, 18
configuring, 14
extending, 17
function, 16
invoking, 15

LibraryLookup Bookmarklet Generator, 14
LibraryThing, 18, 74
lingua franca, 13
link elements, 429
link generator, 220
<link> elements, 93
linkbacks, 116, 316
ListLookup query, 528
ListMyBuckets method, 482
lists, ODF, 500, 504–505
Live Search, 329, 336–337, 354–355, 564–568
live_export XML format, 462
ll parameter, 52
lngref attribute, 294
load function, 272
locality property, 555
location parameter, 189, 445, 566
location string, 356
locations (geo), 543
longitude class, 549
<Longitude> element, 357
<LookAt> element, 369–374, 383
loops, 291
loosely coupled architecture, 319

M
m value, topic feed, 95
machine tags, 66–67, 245
magicCookie parameter, 428
map object, 214
Mapbuilder.net, 329–331, 334–336
MapQuest, 329
Mapstraction, 376
map-type identifier, 42
maptypes variable, 215
Marmite mashup tool, 311

■INDEX590

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 590

Maron, Mikal, 346
MarsEdit, 111–112
mashup, 4, 71
Mashup Dashboard, 18
mashup event, 543
Mashup Guide Demo Calendar, 420, 422
mashup tag, 400, 403
Mashup-by-URL-Templating-and-Embedding

pattern, 47–49
Mashupguide.net, 47, 568
mashups, 3–19, 21, 80

API and mashup verticals, 233
del.icio.us, 72–73
describing using tags, 231–233
determining potential for, 22

Ajax, 24
alternative interfaces, 26
browser plug-ins, 25
community of users/developers, 25
Creative Commons (CC) licensing, 26
documentation, 26
embedded scriptability, 24
existing mashups, 23–24
importing/exporting data, 25
intellectual property, 26
key entities, 22–23
mobile interfaces, 26
open source software, 26
public APIs, 23–24
reusability, 26
RSS, 27
skinnability, 26
tagging, 27
weblogging, 27

directories of, 228–230
Flickr, 72–73
going from specific API to, 234
Google Maps in Flickr (GMiF), 7–13

comparable mashups, 13
elements, 8
methods of combination, 12–13
reasons for combination, 8–11

Housingmaps.com, 5–7
comparable mashups, 7
elements, 5
location of remixing, 6
methods of combination, 6–7
reasons for combination, 5–6

learning about, 228–233
LibraryLookup bookmarklet, 13–18

comparable mashups, 18
configuring, 14
extending, 17
function, 16
invoking, 15

looking for patterns in, 3–4
other examples, 18
profiles of given mashups, 233–234
sample problems to solve using, 235–242
tools to create, 308–311

adding JavaScript, 294–299
additional tools, 310–311
analysis of using GME and Yahoo! Pipes,

309–310
custom template, 289–291
displaying Flickr photos using

<gm:map>, 292–294
feeds (simple template), 288–289
Google Mashup Editor (GME), 287–288
how to persist feeds and use tabs,

299–304
overview, 283
problems solved with, 284
showing saved entries on map, 304–308
Yahoo! Pipes to access Flickr, 291–292

tracking using feeds, 230–231
Media RSS, 90
<media:category> element, 90
<media:content> element, 90
<media:credit> element, 90
<media:text> element, 90
<media:thumbnail> element, 90
<media:title> element, 90
MediaWiki extensions, 24
messages, 182
<meta> tags, 339
meta-feed calendar feed, 428–430
META-INF directory, 493
META-INF/manifest.xml file, 494, 503
META-INF/metadata.xml file, 493
metatags, 338–339
meta.xml file, 494
methods, calling from PHP, 132–145

HTML, 143–144
HTTP, 133–138
XML, 138–143

■INDEX 591

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 591

metro.getForLatLon parameter, 447
MGeoRSS, 346
microformats, 537–558

definitions and design goals of, 543–544
design patterns, 545–547

abbr-design-pattern, 546
class-design-pattern, 545–546
include-pattern, 546–547
overview, 545
rel-design-pattern, 545

examples of, 547–551
geo, 549
hCalendar, 551
hCard and adr, 550
rel-license, 547–548
rel-tag, 548
xfn, 548
xFolk, 549

for HTML, 338–339
overview, 537
in practice, 552
programming with, 552–553
RDFa and, 557–558
using Operator to learn, 537–543

adr (addresses), 540–541
geo (locations), 543
hCalendar (events), 542–543
hCard (contacts), 541–542
tag (tagspaces), 543

writing Operator scripts, 553–557
geocoding script, 556–557
overview, 553
tutorial script, 554–555

Microsoft Excel, generating Amazon wishlist
spreadsheet via COM, 535

Microsoft Live Search, 564–568
Microsoft Live Search Maps, 336–337,

354–355
Microsoft Office, macros and add-ins, 24
Microsoft Popfly mashup tool, 311
Microsoft Virtual Earth, 354–355

3D aspects of, 355
geocoding, 361–363
GeoRSS in, 344–345

Microsoft Web Gadgets, 24
Milosz, Czeslaw, 17, 53, 73–74
min_upload_date parameter, 248
mobile interfaces, 26, 45

mobile version, 26
mo:Blog, 111
modules, 100
mofo library, 552
moveend event, 268
mrad parameter, 51
mrt=kmlkmz parameter, 51
msid parameter, 331
multiword phrases, del.icio.us tags, 68–69
Musser, John, 18, 23, 239
My Maps, 329, 331–332
My Yahoo!, 97
MySQLicious, 405
MyWeb, 407–408

N
n value, topic feed, 95
name element, 383
name parameter, 448
NetNewsWire, 97
network hacker, 22
<NetworkLink> element, 379–382
<NetworkLink> elements, 381
New York Times permalinks, 220–223
news aggregators, 96–97
new-style geotagging, 245
NH library, 17
nl parameter, 378
nl value, 257
nojsoncallback=1 parameter, 219
non-U.S. addresses, geocoding, 363–364
NSID, 31
null parameters, 362
NY Times, filtering feeds, 103
nz value, region feed, 96

O
o_format parameter, 256, 376
OASIS, 323, 489
OCLC (Online Computer Library Center), 17,

74
ODF (OpenDocument format), 487, 488–506

API kits for working with, 507–518
Odfpy, 507–516
OpenDocumentPHP, 516–518
OpenOffice.org (OO.o), 518

bold, 505–506
color changes, 505–506

■INDEX592

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 592

font changes, 505–506
formatting lists, 504–505
italics, 505–506
versus OOXML, 522
overview, 488–497
paragraph styling, 503–504
tags, 497–499
text documents, 499–503

embedded images, 502–503
footnotes, 502
headers, 499–500
lists, 500
paragraphs, 499–500
tables, 501–502
text styling, 501

ODF Validator, 492
Odfpy, 507–516
.odt file, 492
Office Open XML. See OOXML
office suites, 487–536

ECMA Office Open XML (OOXML),
519–522

overview, 519–522
viewers/validators for, 522

Google Spreadsheets API, 524–535
Amazon wishlists mashup, 528–535
Python API kit, 524–527
Zend PHP API kit, 533–534

mashup scenarios for, 487–488
online, 523
OpenDocument format (ODF), 488–506

API kits for working with, 507–518
font and color changes, 505–506
formatting lists, 504–505
versus OOXML, 522
overview, 488–497
paragraph styling, 503–504
tags, 497–499
text documents, 499–503

overview, 487
XML-based document markup languages,

488
Zoho APIs, 536

<office:automat-styles> element, 504
<office:font-face-decls> element, 505
 element, 500
old-style geotagging, 245
om=1 parameter, 50

online calendars, 417–472
30boxes.com, 438–442
Google Calendar, 418–438

exporting events calendar to, 461–471
feed formats from, 420–426
GData-based Calendar API, 426–434
PHP API kit for, 434–437
Python API kit for, 437–438
setting up, 418–420

iCalendar
exporting events calendar to, 461–471
programming with, 458–461

overview, 417–418
Online Computer Library Center (OCLC), 17,

74
online maps, 327–393

creating with API programming, 346–355
Google, 347–350
Microsoft, 354–355
Yahoo!, 351–354

creating without programming, 329–338
Google My Maps, 331–332
Mapbuilder.net, 329–331
Microsoft Live Search Maps, 336–337
Yahoo! Local, 332–336

data formats, 338–346
CSV, 338
GeoRSS, 339–346
HTML, 338–339
KML, 345–346

geocoding, 356–364
Geocoder.us, 357–358
Google Geocoder, 358–361
non-U.S. addresses, 363–364
Virtual Earth, 361–363
Yahoo! Maps, 356–357

Google Earth, 364–375
KML and, 364–374
programming via AppleScript, 375
programming via COM, 374–375
showing Flickr pictures in, 376–393

Mapstraction, 376
mashup examples, 329
number of, 328–329
OpenLayers, 376
overview, 327–328

online office suites, 523
online public access catalogs (OPACs), 14

■INDEX 593

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 593

online storage services, 473–486
Amazon S3 (Simple Storage Service), 473

API kits, 482–485
conceptual structure of, 475–476
Firefox S3 extension, 476–477
rationale for, 474
REST interface, 477–481
SOAP interface, 481–482

overview, 473
OO.o (OpenOffice.org), 24, 487–489, 518
OOoLib, 518
OOXML (Office Open XML), 519–522

versus ODF, 522
overview, 519–522
viewers/validators for, 522

OPACs (online public access catalogs), 14
open source software, 26
open sourcing, 323
OpenDocument format (ODF), 487, 488–506

API kits for working with, 507–518
Odfpy, 507–516
OpenDocumentPHP, 516–518
OpenOffice.org (OO.o), 518

bold, 505–506
color changes, 505–506
font changes, 505–506
formatting lists, 504–505
italics, 505–506
versus OOXML, 522
overview, 488–497
paragraph styling, 503–504
tags, 497–499
text documents, 499–503

embedded images, 502–503
footnotes, 502
headers, 499–500
lists, 500
paragraphs, 499–500
tables, 501–502
text styling, 501

OpenDocumentPHP, 507, 516–518
Openkapow mashup tool, 311
Openkapow.com, 98
OpenKmlFile method, 374
OpenLayers, 376
OpenOffice.org (OO.o), 24, 487–489, 518
OpenSearch, 568–570
open-uri library, 138

operations, 182–184
Operator, 537

scripts, writing, 553–557
geocoding script, 556–557
overview, 553
tutorial script, 554–555

toolbar, 538
using to learn microformats,

537–543
adr (addresses), 540–541
geo (locations), 543
hCalendar (events), 542–543
hCard (contacts), 541–542
tag (tagspaces), 543

OPTIONS method, 135
ordered lists, ODF, 504–505
Organizer, Flickr feature, 43–44
others attribute, 401
output parameter, 332, 357–358
output=kml parameter, 51
output=php option, 357
owncalendars calendar feed,

432–433
oXygen, 184–188, 565

P
pages attribute, 124
paragraphs, ODF, 499–500
parsing XML-RPC traffic, 178–181
password hacker, 22
Password parameter, 200, 427
passwords, 157
path, 136
$_pathToCurl parameter, 484
patterns, looking for in mashups, 3–4
PEAR::Flickr_API, 165–166
PEAR::SOAP library, 190
PEAR::XML_RPC library, 181
PEAR::XML_RPC package, 174
per_page argument, 182
per_page parameter, 217
Perl, 518
permalink, 220
permission level, 156
personal parameter, 448
Phlickr, 168–169
photo element, 125, 133
photo-id identifier, 31

■INDEX594

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 594

photos
deletion process for, 302–304
favorites

geotagged, 42–43
popular, 38
representations of, 31
search, 41–42
sets of, 37

in Flickr, 30–33
browsing by date, 36
collections of, 37
data associated with individual, 33–34

HTML representations of, 143–144
selection process for, 302–304

<photos> element, 124, 179
photosets, 37
PHP

Amazon S3, 483–484
calling methods from, 132–145

HTML, 143–144
HTTP, 133–138
XML, 138–143

iCalendar, 460–461
implementation of Flickr authorization in,

161–164
querying with, 149–154

PHP API kit
for Eventful.com, 454–456
for Google Calendar, 434–437

php format, 92
PHP PEAR::SOAP invocation, 190
PHP serialization, 77
php value, format parameter, 87
php_serial format, 92
php_serial value, format parameter, 87
php_zip.dll file, 516
PHPDelicious, 405
phpFlickr, 166–168
phpFlickr file, 318
phpFlickr::enableCache() function, 168
php.ini file, 516
pictures, Flickr, 106–111
Pictures subdirectory, 502
pipes, refactoring, 102–103
<Placemark> element, 359, 368–374, 381–383
plug-ins, browser, 25
plural nouns, Flickr tags, 65–66
plural tag, 315

<Point> element, 368, 383
policy, Flickr APIs, 128
Polysemy, 65
popularity, 171
POST method, 201–203
POST request, 199, 431, 448
post tag, 401
posts, blog, 200–201, 316
posts method, 400–402

add submethod, 401–402
all submethod, 401
dates submethod, 402
delete submethod, 402
get submethod, 400–401
recent submethod, 401

Potluck mashup tool, 311
PowerPoint, 488
prefixes, 475
privacy value, 433
private-key, 403
Pro level, 98
ProgrammableWeb.com, 18, 98, 172,

196–198, 228–233, 396–397
programming with microformats, 552–553
project_showcase_event.xml file, 433
Proto mashup tool, 311
protocols, 171
pt-br value, lang parameter, 87
publishing, 488
puppy tag, 123
PUT method, 135, 203
PUT request, 203, 433
Pydelicious, 405
Python, 490

Amazon S3, 484–485
creating feed of Critic’s Choice using,

462–464
iCalendar, 458–460
SOAPpy library, 188–190

Python API kit, 426, 524–527
Amazon wishlist and Google Spreadsheets

mashup, 528–532
Eventful.com, 456–458
for Google Calendar, 437–438

Python code, 189
Python GData library, 524
Python libraries, 518, 524
Python Programming on Win32, 535

■INDEX 595

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 595

Q
q parameter, 358
q=1600+Pennsylvania+Ave,+Washington,

+DC parameter, 50
q=URL-of-KML parameter, 52
QEDWiki mashup tool, 311
Query parameter, 566
querying with PHP, 149–154

R
Rademacher, 7
Rademacher, Paul, 5
range element, 371
Raymond, Eric, 22
RDATE statement, 465
RDF (Resource Description Framework),

80
rdf value, format parameter, 87
RDFa, 557–558
rdf:item elements, 401
<rdf:RDF> root element, 82
<rdf:resources> element, 82
read permission, 129, 157, 160
reading elements, 257–260
real estate–oriented mashups,

240–241
Really Simple Discovery (RSD) specification,

115–116
reblogging, 113
recent submethod, 401
redirects, 138
refactoring pipes, 102–103
reflection method, 154
<refreshInterval> element, 379
<refreshMode> element, 379
region feed, 96
rel attribute, 93, 545, 548, 552
rel="http://schemas.google.com/acl/

2007#accessControlList" feed,
429

RELAX NG schema, 491
rel-design-pattern, 545, 548, 552
rel-license data format, 545
rel-license microformat, 547–548
rels directory, 521
.rels file, 521
rel-tag microformat, 72, 545,

548

remixing feeds
with Feedburner, 99–100
with Yahoo! Pipes, 100–104

Google News, 102–103
NY Times, 103
Wikinews, 103
Yahoo! News, 101

Remote Feed, 288
Representational State Transfer (REST), 172,

320, 356, 358–360, 474–482
request formats, Flickr APIs, 154–156
request headers, 136
Requests parameter, 566
resource, 557
Resource Description Framework (RDF), 80
response code, 136
response formats, Flickr APIs, 154–156
response headers, 136
</Response> element, 359
responses, 122
REST (Representational State Transfer), 172,

320, 356, 358–360, 474–482
rest parameter, 377
rest value, 257
RESTful interface, 562
RESTful protocol, 420
rest-open-uri library, 138
reusability, 26
rev attribute, 545, 552
reverse engineering, 22
RFC 2445 documentation, for iCalendar, 421
RoboMaker, 98
roll angle, <Camera> element, 373
RRULE statement, 465
RSD (Really Simple Discovery) specification,

115–116
rsp root element, 124
<rsp> root node, 174
RSS, 27, 93

autodiscovery, 93
del.icio.us, 403–405
in Flickr, 45
version 0.91, 91
version 0.92, 91
version 1.0, 80–82
version 2.0, 78–80, 84–86

rss value, format parameter, 86
rss_091 value, format parameter, 86

■INDEX596

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 596

rss_092 value, format parameter, 86
rss_100 value, format parameter, 87
rss_200 value, format parameter, 86
rss_200_enc format, 92
rss_200_enc value, format parameter,

87
<rss> root element, 79
rss2 value, format parameter, 86
RSS/Atom syndication, 106
RSSBus mashup tool, 311

S
s value, topic feed, 95
S3Drive, 477
S3Fox Amazon S3 Firefox Organizer,

25
SafeSearch parameter, 566
Save Selected button, 304
Save to My Maps link, 331
Saved Results tab, 285, 302
Schachter, Joshua, 69
Schrenk, Michael, 59
scope property, 555
scraping feeds using GUI tools, 98–99
screen-scrapes, 6
screen-scraping, 58–59
ScribeFire, 111
<script> element, 264
scriptability, embedded, 24
search API, 321
search functionality, 559–571

Google Ajax Search, 559–561
Google Desktop HTTP/XML Gateway,

570–571
Microsoft Live Search, 564–568
OpenSearch, 568–570
overview, 559
Yahoo! Search, 561–564

Search tab, 285, 302
Search the Map functionality, 331
Search, Yahoo!, 561–564
search_example() method, 174
search_text parameter, 445
<SearchIndex> type, 192
searching Technorati, 71
search-mode identifier, 41
search-scope identifier, 41
secret parameter, 167

secret secret, 158
select event, 294
selfpromotion parameter, 448
Serena Mashup Composer mashup tool,

311
server-side proxy, 253–257

script for geolocated photos, 255–257
XHR and direct API calls, 253–255

service parameter, 200, 427
service-level agreements (SLAs), 322
services, 4, 319
Services_EVDB API kit, 454
Services_Eventful API kit, 454
set:Berkeley tag, 73
SetCameraParams method, 374
setData(url) method, 299
set-id identifier, 37
setOnKeepCallback method, 559
settings.xml file, 494
set-view identifier, 37
Share All Information on This Calendar with

Everyone setting, Google Calendar,
419

SharpReader, 97, 113
Shelfari, 238
Signature parameter, 478–480
signing, 158
Simmon, Brent, 112
Simple Storage Service (Amazon S3), 67,

473
API kits, 482–485

PHP, 483–484
Python, 484–485

conceptual structure of, 475–476
Firefox S3 extension, 476–477
rationale for, 474
REST interface, 477–481
SOAP interface, 481–482

simple template, 288–289
simpleXML library, 139–143, 173
singular nouns, Flickr tags, 65–66
singular tag, 315
SketchUp Ruby, 24
skinnability, 26
SLAs (service-level agreements), 322
sll=36.60585,-121.858956 parameter,

50
Snell, James, 86

■INDEX 597

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 597

SOAP, 181–195, 320
Amazon ECS, 191–195
Amazon S3, 481–482
Flickr SOAP interface, 195
geocoder.us service, 182–191

oXygen XML editor, 184–188
PHP PEAR::SOAP invocation,

190
Python’s SOAPpy library, 188–190

overview, 181
WSDL and, 181–182

SOAPaction header, 188
SOAPAction parameter, 188
SOAPpy library, 188–190, 194
SOAP/WSDL interface, 474
social bookmarking, 395–416

Connotea, 408–412
del.icio.us, 397–407

bundles, 403
mashup with Flickr, 412–416
overview, 398–399
posts method, 400–402
RSS and JSON, 403–405
tags, 400
third-party API kits, 405–407
third-party tools for, 405
update method, 399

MyWeb, 407–408
overview, 395–396
Programmableweb.com, 396–397
Yahoo! bookmarks, 407–408

social bookmarking system, 315
software, open source, 26
source parameter, 200, 427
 element, 545
Spiders, 544
spn=0.006313,0.01133 parameter,

50
spreadsheets, 523, 525
sql format, 92
sql value, format parameter, 87
start_date parameter, 448
start_time parameter, 448
state string, 356
street string, 356
StrikeIron mashup tool, 311
StrikeIron SOA Express, 523

String Builder module, 103
stringify() method, 264
STRIPE_NAME identifier, 301
<style> elements, 209, 383
<style:font-face> element, 505
<style:style> element, 504–505
styles.xml file, 494, 503
<styleUrl> element, 383
subject matter, 171
<subtitle> element, 84
subversion (SVN), 287, 309, 524
<summary> elements, 84
SVN (subversion), 287, 309, 524
syndication feeds, 27, 45
synonymy, 65
Syntactic constraints, 65

T
t value, topic feed, 95
<table> element, 294
tables, ODF, 501–502
<table:table> element, 501
<table:table-cell> element, 501
<table:table-row> element, 501
tabs, 299–304

overview, 299–301
selection and deletion process for photos,

302–304
Tag link, 64
tag microformat, 543, 545, 552
tag parameter, 217, 400
tag: prefix, 68
taggedlink class, 549
tagging content, 315
TagMaps, 67
tags, 27, 61–75, 399, 400

Amazon, 55
del.icio.us, 67–71

adding, 68
case, 68–69
further information, 69–71
multiword phrases, 68–69

Flickr, 34–35, 62–67
applications using, 67
common practice, 63–64
creating, 64
geotagging, 66–67

■INDEX598

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 598

machine tags, 66–67
popular, 30
potential weaknesses of, 65
singular/plural nouns, 65–66
syntax of, 64–65

ODF, 497–499
relationship to formal classification

schemes, 73–75
Technorati, 71–72
using to mash up, 72–73

tags parameter, 412
tagspaces (tag), 543
task template, 289
taxonomies, 61, 73–75
Technorati, tags, 71–72

process of deriving, 72
searching with, 71
syntactic constraints, 72
word inflections, 72

terms of service (TOS), 59, 128
terms of use, 128
Test feed, 288
testing usability, 319
text documents, ODF, 499–503

embedded images, 502–503
footnotes, 502
headers, 499–500
lists, 500
paragraphs, 499–500
tables, 501–502
text styling, 501

Text Input module, 101
text: namespace, 499
text styling, ODF, 501
<text:a> element, 501
<text:h> element, 499
<text:list> element, 500
<text:list-item> element, 500
<text:note> element, 502
<text:note-body> element, 502
<text:note-citation> element, 502
text:outline-level namespace, 499
<text:p> element, 499–503
<text:span> element, 501, 505
text:style-name attribute, 503, 505
third-party API kits, del.icio.us,

405–407

third-party tools
for del.icio.us, 405
for Flickr, 45

tilt angle, <Camera> element, 373
tilt parameter, 371
time-period identifier, 44
timo user, 409
title attribute, 93, 546
To-dos and Journal Entries, 421
token, 156
token parameter, 448
[TOKEN] authentication token, 450
tools

to create mashups, 308–311
adding JavaScript, 294–299
additional tools, 310–311
analysis of using GME and Yahoo! Pipes,

309–310
custom template, 289–291
displaying Flickr photos using

<gm:map>, 292–294
Google Mashup Editor (GME), 287–288
how to persist feeds and use tabs,

299–304
overview, 283
problems solved with, 284
reading and displaying feed (simple

template), 288–289
showing saved entries on map, 304–308
Yahoo! Pipes to access Flickr, 291–292

desktop blogging, 111–112
topic feed, 95
.torrent file, 475
TOS (terms of service), 59, 128
transforming data, 488
TreeView widget, 211
triple tags, 66
Trulia, 240
tutorial script, 554–555
type attribute, <link> elements, 93
type="html" attribute, 84
TypePad blogs, 94

U
UC Berkeley event calendars, 462
Udell, Jon, 13
uformats library, 552

■INDEX 599

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 599

UI (user interface), 21, 321
uk value, region feed, 96
 element, 500
uniform interface, 201
Uniform Resource Identifier (URI), 22, 28
Union module, 104
Unique module, 104
Universal Resource Locator (URL) languages,

27–28, 49–51
Universal Resource Locators (URLs), 28
Universal Resource Names (URNs), 28
Unix directory, 212
unordered lists, ODF, 504–505
Upcoming.yahoo.com, 417, 443–451

API
adding event, 448–450
getting token, 447–448
parts that require authentication,

447–450
read-only parts of, 445–447

API kits for, 451
feeds from search results, 443–445

update method, 399, 401
update_feed() function, 298
updateStatus, 272
updating Blogger entries, 203
upload-date identifier, 43
URI (Uniform Resource Identifier),

22, 28
uri parameter, 412
URL (Universal Resource Locator) languages,

27–28, 49–51
URL Builder module, 101
URL language, 23, 314–315
url parameter, 400, 448
URLs (Universal Resource Locators),

28
urn:oasis:names:tc:opendocument:xmlns:

table:1.0 namespace, 501
URNs (Universal Resource Names), 28
usability testing, 319
user IDs, Blogger, 200
user interface (UI), 21, 321
User Scripts tab, 547
user_id method, 160
user.Authorize argument, 440
user-id identifier, 31
users

community of, 25
of Flickr, 30–33

groups of, 38–40
personal archives of, 36
recent activities of, 44

V
validating feeds, 98
validators, for OOXML, 522
Vander Wal, Thomas, 68
var keyword, 214
vCalendar format, 542
VCALENDAR object, 421
vcard class attribute, 542
VEMap.Find method, 361
venue_id parameter, 448
venue_search method, 457
venue.search method, 449
verbose option, 177
versioning, 322
VEVENT subobject, for iCalendar, 421
VFREEBUSY subobject, for iCalendar, 421
viewers, for OOXML, 522
viewFormat element, 382
<viewFormat> element, 380
viewport, Google Maps, 268–269
<viewRefreshMode> tag, 380
<viewRefreshTime> tag, 380
Virtual Earth, 336, 354–355

3D aspects of, 355
geocoding, 361–363
GeoRSS in, 344–345
Interactive SDK, 354

Virtual Earth Map control, 354
VJOURNAL subobject, for iCalendar, 421
vobject library, 460
Vogels, Werner, 319
Von Hippel, Eric Von, 59
vote-links microformat, 551
VTODO subobject, for iCalendar, 421

W
w value, topic feed, 95
W3 Basic Geo encoding, 358
W3C Basic Geo encoding, 340
W3C standards, 315
W3C XML Schema, 562
w.bloggar, 111

■INDEX600

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 600

Weather Bonk, 7
weather.php file, 251
web accessibility, 315
web crawlers, 58
web harvesters, 58
web robots, 58
Web Services Definition Language (WSDL),

181–182, 186, 565
web sites, 21–60

Amazon, 53–56
items, 53–55
lists, 55
subject headings, 55–56
tags, 55

bots, 58–59
del.icio.us, 56–58
determining mashup potential of

Ajax, 24
alternative interfaces, 26
browser plug-ins, 25
community of users/developers, 25
Creative Commons, 26
documentation, 26
embedded scriptability, 24
existing mashups, 23–24
importing/exporting data, 25
intellectual property, 26
key entities, 22–23
mobile interfaces, 26
open source software, 26
public APIs, 23–24
reusability, 26
RSS, 27
skinnability, 26
tagging, 27
weblogging, 27

Flickr
account management, 40
browsing through, 40–41
cameras, 46
collections, 37
contacts, 38
Creative Commons (CC) licensing, 46
e-mail interfaces, 44
favorites, 37
groups, 38–40
mobile access, 45
Organizer feature, 43–44

photos, 30–43
recent activities, 44
sets, 37
syndication feeds, 45
tags, 27, 34–35
third-party applications, 45
users, 30–36
weblog interfacing, 44–45

Google Maps, 49–52
connecting Yahoo! Pipes, 51–52
URL language of, 49–51
viewing KML files in, 51

making mashable, 313–324
allowing users to tag content, 315
API kits, 320
Atom publishing, 320
being too controlling, 322
community of developers, 322
consuming resources wisely, 323
data standards, 323–324
explicit licenses, 317
extensive error reporting, 321
feeds, 315–316
granular, loosely coupled architecture,

319
import and export options, 317
learning from other APIs, 318
making easy to learn, 318–319
making it easier, 317
multiple formats for output and input,

321
open sourcing, 323
overview, 313
posting to blogs and other web sites,

316
reasons for, 314
REST, 320, SOAP and XML–RPC
search API, 321
service-level agreements (SLAs), 322
testing usability, 319
UI functionality, 321
URL language, 314–315
versioning, 322
W3C standards, 315
web accessibility, 315
your audiences, 318

Mashup-by-URL-Templating-and-
Embedding pattern, 47–49

■INDEX 601

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 601

screen-scraping, 58–59
URL languages, 27–28

webbots, 58
webcal URI scheme, 444
weblogs. See blogs
wiki mashups, 117
Wikinews, 103
Wikipedia, 94–95
wikis, 116–117
win32all library, 518
window.external.AddSearchProvider()

method, 569
Windows Live Writer, 111
Wireshark, 177–178
word directory, 521
word inflections, 65, 72
WordPress, 24, 26, 46, 94, 108
work-id tag, 74
write permission, 129
writeResults() method, 250
writing elements, 257–260
WSDL (Web Services Definition Language),

181–182, 186, 565
WSO2 Mashup Server mashup tool, 311

X
xfn microformat, 548
xFolk microformat, 549
xfolkentry class, 549
XHR (XMLHttpRequest) object, 210, 248–252

and direct API calls, 253–255
using directly, 248–250
using via YUI Connection Manager to read

JSON, 262–264
Yahoo! UI (YUI) Connection Manager,

250–252
(X)HTML, 315
XML

feeds, 420
response, 124–127
Yahoo! Local

getCollection method, 332–334
transforming into CSV, 334–336

xml output, 358
XML Spy, 565
XML_Tree root object, 166
XML-based document markup languages, 488

XMLHttpRequest (XHR) object. See XHR
(XMLHttpRequest) object

xmlhttp.responseXML object, 250
XML-RPC, 172–181, 320

libraries, 172
overview, 172–177
parsing traffic, 178–181
Wireshark, 177–178

xmlrpclib library, 173
xoxo microformat, 551

Y
Yahoo! bookmarks, 407–408
Yahoo! Local

getCollection method, 332–334
transforming XML into CSV, 334–336

Yahoo! Maps
API, 351–354
geocoding, 356–357
use of GeoRSS, 341–345
YMaps extensions, 341–345

Yahoo! News, 95–96, 101
Yahoo! Pipes, 241–242, 316, 319

to access Flickr, 291–292
analysis of using, 309–310
connecting to Google Maps, 51–52
remixing feeds with, 100–104

Google News, 102–103
NY Times, 103
Wikinews, 103
Yahoo! News, 101

Yahoo! Search, 561–564
Yahoo! UI (YUI) Connection Manager,

250–252, 262–264
Yahoo! UI Library (YUI) widgets, 211–213
yaml value, format parameter, 87
YMaps extensions, 341–345
ymaps tag, 342
<ymaps:Address> tag, 341
<ymaps:CityState> tag, 341
<ymaps:Country> tag, 341
<ymaps:Zip> tag, 341
YouTube, 198–199
YUI (Yahoo! UI) Connection Manager,

250–252, 262–264
YUI (Yahoo! UI Library) widgets,

211–213

■INDEX602

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 602

Z
Zend Framework, 434, 533
Zend Google Data Client Library, 434
Zend PHP API kit, 524, 533–534
zh-hk value, lang parameter, 87
Zillow, 240
zip library, 490
zip string, 356

Zoho APIs, 536
Zoho Office Suite, 523
Zoho Sheet, 536
Zoho Show, 536
Zoho Writer, 536
ZoneTag, 67
zoom-level identifier, 42

■INDEX 603

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 603

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 604

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 605

Offer valid through 8/25/08.

858XchIDXFINAL.qxd 2/7/08 9:48 AM Page 606

	858XFMFINAL.pdf
	858Xch01FINAL.pdf
	858Xch02FINAL.pdf
	858Xch03FINAL.pdf
	858Xch04FINAL.pdf
	858Xch05FINAL.pdf
	858Xch06FINAL.pdf
	858Xch07FINAL.pdf
	858Xch08FINAL.pdf
	858Xch09FINAL.pdf
	858Xch10FINAL.pdf
	858Xch11FINAL.pdf
	858Xch12FINAL.pdf
	858Xch13FINAL.pdf
	858Xch14FINAL.pdf
	858Xch15FINAL.pdf
	858Xch16FINAL.pdf
	858Xch17FINAL.pdf
	858Xch18FINAL.pdf
	858Xch19FINAL.pdf
	858XAppAFINAL.pdf
	858XINDXFINAL.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

