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Abstract 
 

Considerable efforts have recently been devoted to the fabrication of metallic 

nanostructures on account of their tunable morphologies which can lead to new and fascinating 

optical properties.  These properties of a metallic nanostructure are most determined by their 

size, shape, composition and structure.  Hollow metallic nanostructures have attracted much 

interest as their surface plasmonic properties and catalytic activities are completely different 

from those of solid nanoparticles.  Galvanic replacement reaction (GRR) was known to be a 

powerful synthetic technique for converting solid metal nanostructures into hallow ones.  These 

hollow nanostructures have high specific surface area, low density, use less material and are cost 

effective.  On the other hand, bimetallic-nanoparticles, in which two kinds of metals are 

contained in one particle, exhibit fascinating properties compared to those of the corresponding 

single-component particles.  These particles are appeared to result from both the electronic and 

structural effects of the bimetallic structures.  Nanoparticles fabricated from Ag-based alloys find 

extensive applications in catalysis, electro catalysis, and optics because their surface plasmon 

resonance (SPR) bands appear in the visible region.   

It has been reported that the surface plasmon resonance peaks of hollow bimetallic 

Au/Ag nanostructures could be readily tuned by controlling the Ag-Au ratio of the replacement 

reaction.  However, fewer attempts have been made to study the optical properties of Pt/Ag and 

Pd/Ag based bimetallic nanoparticles compared to those of the Ag-Au system, probably because 

Pt and Pd nanoparticles do not usually exhibit surface plasmon resonance peaks in the visible 

spectrum.  However, it has been demonstrated recently that the surface plasmon resonance peak 

of Pd nanoparticles could be tuned to 520 nm by the formation of large hollow nanocages. 
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 Hence, in this project, we have shown the efforts to come up with a new synthetic route 

for the controllable synthesis of Pt/Ag and Pd/Ag based bimetallic nanoparticles which exhibit 

tunable SPR extinction peaks in the visible region by applying galvanic replacement reaction on 

Ag templates in the presence of K2PtCl4 and K2PdCl4 salts.  This report also focuses on the 

investigation of the characteristic optical properties of these composite hollow nanostructures.    

 

 

 

Introduction 
 

Noble metal-based bimetallic nanoparticles 

 

Nanoparticles (NPs) have one or more dimensions in the nanometer scale (<100 nm) 

range and subsequently show novel properties from their bulk materials. Bimetallic composite 

nanoparticles, composed of two different metal elements, attract more attention than 

monometallic nanoparticles from both scientific and technological aspects due to potential 

unique electronic, optical, catalytic, or photocatalytic properties that are absent in the coincident 

monometallic nanoparticles. Nanoparticles composed of two different metal elements show 

better novel electronic, optical, and catalytic or photocatalytic properties compared to 

monometallic nanoparticles. Bimetallic nanoparticles could show not only the combination of the 

properties related to the presence of two individual metals, but also new properties due to a 

synergy between the two metals. The structure of bimetallic nanoparticles can be oriented in a 

random alloy, alloy with an intermetallic compound, a cluster-in-cluster, or core–shell structures 

and is strictly dependent on the relative strengths of metal-metalbonding, surface energies of 

bulk elements, relative atomic sizes, preparation method, and conditions.
1 

Recent efforts have 

been devoted to metallic nanostructures, their fabrication, and applications as advanced materials 
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because of their intriguing chemical, electronic, optical, and catalytic properties.
2-5 

Metallic 

nanostructure properties are determined by their shape, size, composition and structure.
6-12

 

 

Optical Properties of monometallic and bimetallic noble metal nanoparticles 

The color of colloidal dispersions of noble metal particles in fluid, typically water, varies 

from red to pink and from violet to blue for gold,
13

 from yellow to orange, pink, and violet to 

grayish for silver,
14

 from light brown to dark brown and black for platinum,
15 

and dark brown for 

palladium,
16

 depending upon the shape and size of the particles as well as the type of solvent. In 

case of bimetallic nanoparticles the color of colloidal dispersion is also dependent on the shape 

and size of nanoparticles, as well as the composition and metal distribution in bimetallic 

nanoparticles. The optical properties of noble metal particles originate from localized surface 

plasmon resonance (LSPR). Surface plasmon of a metal is a collective excitation of electrons in 

the conduction band and they dominate the electromagnetic responses of the metallic structure of 

dimensions on the order of the plasmon resonance wavelength. These phenomena happen when 

their electromagnetic fields interact with conduction band electrons which induces the coherent 

oscillation of electrons. As an effect, a strong absorption band appears in some region of the 

electromagnetic spectrum.
17

 

When a conductor or metal is placed in an oscillating field of incoming radiation, the 

electron cloud is driven into an oscillation as shown in Figure 1. A complete theory of the 

scattering and absorption of electromagnetic radiation by a sphere, in order to understand the 

colors of colloidal gold particles in solution, was developed in 1908 by Mie.
18 

The surface 

plasmonic properties and catalytic activities of hollow metallic nanostructures are completely 

different from those of solid nanoparticles.  Hollow nanostructures also have lower density, high 
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specific area, use less material, and are lower in cost than solid nanoparticles.
19-20 

Composite 

bimetallic nanoparticles, where two different kinds of metals are contained in one particle, 

exhibit properties that are very different from their single-component counter parts. These 

properties are assumed to be a result of the structural and electronic effects of the bimetallic 

structures.
21-22 

Optical, electronic, and catalytic properties depend on the composition of the 

nanomaterials as well as their structure.  The synthesis of bimetallic hollow nanostructures, as 

well as nanomaterials in general, has become a necessity for the future development of advanced 

nanotechnology. Acutely controlling the structures and compositions is crucial in order to obtain 

materials with specific properties.  Previous experiments have reported that surface plasmon 

resonance peaks of hollow bimetallic Au/Ag nanostructures are able to be manipulated by 

controlling the Ag and Au ratio in the replacement reaction used.
23 

There have however been 

fewer attempts in studying the optical properties of Pt or Pd based monometallic and bimetallic 

nanoparticles. One reason why there are fewer attempts is because Pt and Pd nanoparticles 

usually do not exhibit surface plasmon resonance peaks in the visible spectrum.
24 

It has recently 

been shown that Pd surface plasmon resonance peaks can be tuned to 520 nm by forming large 

hollow nanocages.
25

 

There has been an increased interest in nanostructures which are composed of metals in 

recent years because of the associated optical, electronics, optoelectronics, catalysis, sensing, 

clinical diagnostics, surface-enhanced Ramen scattering (SERS), information storage, and energy 

conversion/storage applications.
26 

The performance of nanostructures can be improved by 

synthesizing them as hollow entities.  Hollow nanostructures are advantageous due to a lower 

density coupled with a larger surface area.  Nanoshells made from gold have been used to 



11 | P a g e  

 

expand the spectral range of surface plasmon resonance (SPR) which is associated with Au 

nanoshells.
27

 

 

 

 

 

Figure 1.The electron cloud around the metal nanoparticles is excited by light photons. When 

the light hit the electron cloud, the cloud begins to oscillate resulting in polarization. The 

collective oscillation of the conduction electrons, in resonance with certain frequencies of 

incident light, leads to an excitation known as surface plasmon resonance (SPR).  

 

 

 

Hollow metal nanostructures are prepared by templating against already existing entities 

like silica beads or polymer latexes.  A thin shell of the desired metal is deposited on the surface 

of the template using various methods.  The template can then be removed using wet chemical 

etching to create the hollow metal structure.
26 

This process may seem simple but the resulting 

nanoshells often have problems such as incomplete coverage, poor crystallinity, nonuniformity 

in shell thickness, rough surfaces, structural fragility, as well as poorly controlled composition.       



12 | P a g e  

 

Galvanic Replacement Reaction 

 

Among the strategies that have been reported to fabricate such unique hollow 

nanostructures galvanic replacement reactions offer a particularly effective, versatile, and robust 

approach for the generation of hollow nanostructures by replacing original metal or metal oxide 

sacrificial templates. These replacement reactions are driven by the redox potential difference of 

the two metal species. After the first report on the fabrication of Au hollow nanostructures from 

Ag NPs,
28 

several research groups successfully extended the method to create other complex and 

multifunctional porous nanostructures and have thus explored their novel applications over the 

past decade.
29-32

 For example, using morphology controlled Ag nanostructures as sacrificial 

templates a wide range of complex hollow nanostructures such as spherical nanoshells,
33

   

core−shell NPs,
34 

nanodots,
35

 nanocages,
36

 nanotubes,
37 

nanoframes,
38

 and nanodendrites
39

 

composed of Au, Pd, and Pt. Multimetallic compositions have also been prepared via galvanic 

replacement synthesis reactions. Specifically, Xia and colleagues systematically uncovered the 

detailed mechanism of the galvanic replacement reaction between Ag NPs and HAuCl4 in an 

aqueous solution.
40-41 

Figure 2 Illustrates the galvanic replacement reaction converting solid 

metal nanostructures into hollow ones. 

As shown in Figure 3, the replacement reaction includes two distinctive stages. At the 

initial stage the replacement reaction starts at specific sites with relatively high surface energies 

and then seamless hollow nanostructures, with smooth Au−Ag alloy walls, were evolved through 

an integration of galvanic replacement with alloying. Ag atoms also simultaneously migrate into 

the Au shell to form a seamless hollow nanostructure with an Au−Ag alloy wall. This 

mechanism for galvanic replacement is applicable irrespective of the morphology and 
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composition of the sacrificial templates it is, however, dependent on the presence of appropriate 

reduction potential differences between the two metals involved. 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic illustration of galvanic replacement reaction converting solid metal 

nanostructures into hollow ones. Due to the difference in electrode potentials one metal is used 

as a sacrificial template and it is reacted with ions of a more noble metal. The growth of the 

second metal takes place on the surface of the template to form a shell while the first metal is 

continuously consumed from the core.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic illustration of the morphological and structural evolutions at different stages 

of the galvanic replacement reaction between an Ag nanoprism and HAuCl4 in an aqueous 

solution. 
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Experimental Section 
 

 

Characterization 

 

Spectroscopic Instrumentation and Methods. A PerkinElmer Lamda 35 UV-Vis 

spectrophotometer from Agilent Technologies was employed for absorption measurements as 

well as optical diffuse reflectance measurements. The absorption spectrum of the silver seed 

solution was measured, without dilution, while the silver nanoprism and Ag/Au hollow 

nanoprism solutions were diluted 3 in Millipore water and their absorbance spectra obtained in 

the 1800 to 200 nm (0.68 eV ~ 6.2 eV) range. 

Transmission Electron Microscopy (TEM) The TEM analysis was performed by using 

JOEL JEM-1230 analytical electron microscope with Gatanultrascan 4000 camera operating at a 

120 kV acceleration voltage. One drop of the Ag/Au hollow nanoprism solution was added onto 

a carbon-coated copper TEM grid and the solvent was allowed to evaporate before introduction 

into the instrument.     

 

Materials 

Silver nitrate (99.9%) and sodium borohydride (98%) were purchased from Strem 

Chemicals. Poly(sodium-p-styrenesulfonate), citric acid, trisodium salt dihydrate (99%), L(+) 

ascorbic acid (99%), hydrogen tetrachloroaurate, potassium tetrachloroplatinate(II), and 

potassium tetrachloropalladate(II)were purchased from Acros. 

 

 

 

 



15 | P a g e  

 

Preparation of Ag Triangles of Different Sizes 

The generatation of silver seeds requires aqueous trisodium citrate (5 mL, 2.5 mM), 

aqueous Poly(sodium-p-styrenesulfonate) (0.25 mL, 500 mg L
-1

), and freshly prepared aqueous 

sodium borohydride (0.3 mL, 10 mM) which are combined in a 250 mL round bottom flask. 

Aqueous silver nitrate (5 mL, 0.5 mM) was added at a rate of 1 mL min
-1

 using a syringe pump 

while stirring the solution with a magnetic stir bar. The silver nanoprisms were created by 

combining Millipore water (5 mL), silver seed solution (20 µL,120 µL, 200 µL, and 650 µL), 

and  aqueous ascorbic acid (75 µL, 10 mM), followed by the addition of aqueous silver nitrate (3 

mL, 0.5 mM) at a rate of 1 mL min
-1 

using a syringe pump. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The programmable syringe pump used to gradually add small amounts of solution of 

AgNO3 and HAuCl4 at a given rate.   
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Synthesis of Ag/Au, Ag/Pd, and Ag/Ptalloy particles 

 

 The citrate capped Ag/Au, Ag/Pd, and Ag/Pt hollow nanoparticles were synthesized by 

following a literature method
 28 

with several modifications in order to prepare these particles on a 

larger scale. The synthesis of these nanoparticles begins with the synthesis of silver seeds which 

were then used to prepare silver nanoprisms. In the final step these nanoprisms were reacted with 

the gold, palladium, and platinum precursors.  

The generation of silver seeds involved the addition of aqueous trisodium citrate (30 mL, 

2.5 mM), aqueous Poly(sodium-p-styrenesulfonate) (1.5 mL, 500 mg L
-1

), and freshly prepared 

aqueous sodium borohydride (1.8 mL, 10 mM) into a 250 mL round bottom flask. Aqueous 

silver nitrate (30 mL, 0.5 mM) was added to this three component solution at a rate of 1 mL  

min
-1

 using a syringe pump and stirring with a magnetic stir bar. 

Silver nanoprisms were prepared by combining Millipore water (10 mL), silver seed 

solution (9.60 mL) and  aqueous ascorbic acid (7.2mL, 10 mM), followed by the addition of 

aqueous silver nitrate (48 mL, 0.5 mM) at a rate of 1.66 mL min
-1 

using a syringe pump. After 

adding all of the silver nitrate the solution was vigorously stirred until the solution turned deep 

orange color permanently (usually this takes more than an hour). 

Ag/Au, Ag/Pd, and Ag/Pt hollow nanoprisms were prepared by adding aqueous ascorbic 

acid (9mL, 10 mM) followed by HAuCl4, K2PdCl4, or K2PtCl4 (60 mL, 0.5 mM) to the above 

prepared silver nanoprism solution at a rate of 1 mL min
-1

. 
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Results and Discussion 

 

Au/Ag alloy nanoshells were prepared by employing a galvanic displacement reaction of 

sacrificial Ag nanotriangles with HAuCl4 as reported in the literature.
42 

In addition, Pd/Ag 

spherical nanoshells and Pt/Ag triangular nanoshells were prepared by employing a similar 

synthesis method using K2PdCl4 and K2PtCl4, respectively, as metal precursors. The sacrificial 

Ag nanotriangles were produced by the reduction of AgNO3 in the presence of PSSS using 

ascorbic acid as the reducing agent. Silver nanoprisms of varying size were created by adding 

different volumes of Silver seed solution (Table 1).  Extinction spectra indicated that the surface 

plasmon resonance peak of the Ag nanoprism, which was prepared with decreasing amounts of 

silver seeds, red shifts compared to the SPR of pure Ag nanoparticles at 400 nm (Figure 5). 

Photographs of aqueous dispersions of the nanoparticles clearly show that the silver nanoprism 

revealed bright and distinctive colors as they were tuned across the visible spectrum (Figure 6). 

In other words the colors of the various solutions are dependent upon the absorption peaks at 

different wavelengths, based on the volume of silver seed added.    

 

Table 1. Volumes of seed solution used to prepare silver nanoprisms of different sizes and their 

corresponding SPR peak position. 

 

 

Ag Seed Solution Volume   SPR  Peak position   

20 µL 794 nm 

120 µL 678 nm 

200 µL 618 nm 

650 µL 480 nm  
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Figure 5. UV-Visible absorption spectra of the series of Ag nanoprisms obtained by using 

different volumes of seed solution:650 L, 120 L, 120 L, and 20 L. 

 

 

 

 

 
Figure 6. Photograph of the series of Ag nanoprism samples illustrating the range of colors 

obtained using different volumes of seed solution: 20 L, 120 L, 200 L, and 650 L. 
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Figure 7 shows UV-Visible absorption spectra for the series of Pd/Ag samples obtained 

by combining 40 L, 80 L, 120 L, 160 L, 200 L, 240 L, 280 L, 320 L, 360 L, and 400 

L of K2PdCl4 (0.5 mM) with Ag nanoprisms in the presence of ascorbic acid using 120 L of 

silver seed solution.  The maximum absorbance peak for the Ag prism was 722 nm.  The 

additional curves show the absorbance spectra of the Ag-Pd bimetallic particles with increased 

Pd composition.  The surface plasmon resonance peaks of the particles with K2PdCl4 blue-shifted 

compared to the surface plasmon resonance of the pure Ag nanoparticle at 722 nm.  As the 

volume of K2PdCl4continues to increase (120 µL and 400 µL), the surface plasmon resonance 

peaks continue to red-shift instead of blue-shift.  The peaks continue to broaden and eventually 

diminish as can be seen with the addition of 400 µL of K2PdCl4.  Figure 8 shows the photographs 

of aqueous dispersions of the Pd/Ag hollow particles which correspond to the UV-vis spectra 

(Ag prism and 400 µL Pd) in Figure 7. The evolution of the SPR is demonstrative of the 

changing structure of the nanoparticles during the reaction. This peak shift is hypothesized to be 

attributed to the increase in void size for composite bimetallic nanoshells and the formation of 

pinholes in the walls.
25
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Figure 7. UV-Visible absorption spectra of the series of Pd/Ag samples obtained by addition of 

40 L, 80 L, 120 L, 160 L, 200 L, 240 L, 280 L, 320 L, 360 L, and 400 L of 

K2PdCl4 (0.5 mM) in the presence of ascorbic acid to the Ag nanoprisms prepared by using of 

120 L of silver seed solution. 
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Figure 8. Photograph of Ag nanoprism solution obtained by using 120 L of seed solution (left) 

and Pd/Ag samples obtained by addition of 400L of K2PdCl4 solution (right).  

 

 

Figure 9 shows UV-Visible absorption spectra of the series of Pt/Ag samples obtained by 

the addition of 40 L, 80 L, 120 L, 160 L, 200 L, 240 L, 280 L, 320 L, 360 L, and 

400 L of K2PtCl4 (0.5 mM) in the presence of ascorbic acid to the Ag nanoprisms prepared by 

using 120 L of silver seed solution.  The maximum absorbance peak for the Ag Prism was 695 

nm.  The additional SPR peaks correspond to the Ag-Pt bimetallic particles with increased Pt 

content.  The surface plasmon resonance peaks of the particles synthesized using the larger 

K2PtCl4 solution volumes lie at longer wavelengths and are further red-shifted in comparison 

with the surface plasmon resonance of the pure Ag nanoparticles at 695 nm.  As the volume of 

K2PtCl4 continues to increase the surface plasmon resonance peaks continue to red-shift and 

broaden.  Subsequent to the addition of 160 µL of K2PtCl4 the spectra significantly diminishes 

and continues to diminish until the addition of 400 µL of K2PtCl4. Figure 10 displays the 

photographs of the aqueous dispersions of Pt/Ag hollow nanoparticles which correspond to the 
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UV-vis spectra (Ag prism and 400 µL Pt) in Figure 9. The plasmonic properties of the bimetallic 

nanoparticles composed of Ag and Pt, which were prepared by successive reduction of AgNO3 

and H2PtCl6 by hydrazine, were reported by Gao et al.
43

.The UV–Vis extinction peak along with 

the corresponding photograph of the colloids with different Pt content indicate that the surface 

plasmon resonance peak of the particles, which were prepared with higher content of H2PtCl6, 

red-shift further compared with the SPR of pure Ag and pure Pt nanoparticles at 430 nm. 

Photographs of the aqueous dispersions of the nanoparticles clearly show that the Ag–Pt 

nanoparticles revealed bright and distinctive colors as they were tuned across the visible light 

spectrum. When the amount of H2PtCl6 solution used during the preparation route surpassed a 

certain value the surface plasmon resonance peaks became broadened and blue shift rather than 

red shift before finally weakening. In our cases, the surface plasmon resonance peak of the Pt/Ag 

bimetallic particles red shifted when the volume of K2PtCl4 solution increased within a certain 

range (Figure. 9). This indicates that our present bimetallic system is similar the above-

mentioned Pt/Ag alloy system and likely comprises nanostructures with hollow interiors as 

indicated from the microscopy results. 

A substantial amount of material is needed for the property characterization to be carried 

out on a large scale synthesis; this was accomplished by scaling up the amounts of constituent 

compounds compared to the literature synthetic method
28

 in order to synthesize larger Au/Ag, 

Pd/Ag, and Pt/Ag alloy samples. Because nanostructures made of gold and/or silver are known to 

exhibit distinctive SPR features that are strongly dependent on the composition, shape, and 

structure, the processes could also be conveniently observed using the UV-visible-NIR 

spectroscopic methods. Figure 11 shows UV-Visible absorption spectra, below is the series of 

Au/Ag samples obtained by the addition of 2 mL, 4 mL, 6 mL, 8 mL, 10 mL, 15 mL, 20 mL, 30 
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mL, 40 mL, 50 mL, and 60 mL of HAuCl4 (0.5 mM), in the presence of ascorbic acid, to the Ag 

nanoprisms using 9.6 mL of silver seed solution.   

 

 

 
Figure 9. UV-Visible absorption spectra of the series of Pt/Ag samples obtained by addition of 

40 L, 80 L, 120 L, 160 L, 200 L, 240 L, 280 L, 320 L, 360 L, and 400 L of 

K2PdCl4 (0.5 mM), in the presence of ascorbic acid, to the Ag nanoprisms prepared by using of 

120 L of silver seed solution . 
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Figure 10. Photograph of Ag nanoprism solution obtained by using 120 L of seed solution 

(left) and Pt/Ag samples obtained via the addition of 400L of K2PtCl4 solution (right).  

 

 

 
 

Figure 11. UV-Visible absorption spectra of the series of Au/Ag samples obtained by addition of 

2 mL, 4 mL, 6 mL, 8 mL, 10 mL, 15 mL, 20 mL, 30 mL, 40 mL, 50 mL, and 60 mL of HAuCl4 

(0.5 mM), in the presence of ascorbic acid, to the Ag nanoprisms prepared by using of 9.5mL of 

silver seed solution. 
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The Ag nanoprism seed solution spectra was color-coded blue and the additional curves 

show the absorbance spectra of the Ag-Au bimetallic particles, with increased Au content for the 

large scale reaction. The surface plasmon resonance peaks of the particles with higher HAuCl4 

solution volumes lie at longer wavelengths and are red-shifted compared with the surface 

plasmon resonance of the pure Ag nanoprism seed solution.  As the volume of HAuCl4continues 

to increase the surface plasmon resonance peaks continue to red-shift and broaden.  The 

absorbance which corresponds to the peak lies in the range of 370nm to 450 nm and increases 

initially when the addition of Au begins (2mL of HAuCl4), but decline as more Au is added.  

Figure 11 shows the extinction spectra taken from a set of samples which were prepared by 

adding different volumes of a 0.5 mM HAuCl4 solution to the Ag nanoprisms. More specifically, 

Figure 11 also shows the spectral changes involved in the formation of Au/Ag alloyed 

nanoshells. Note that the extinction peak corresponding to Ag nanoparticles (at 400 nm) 

disappeared when 40 mL of the HAuCl4 solution was introduced into the reaction system. This 

change indicated the complete consumption of templates made of pure Ag as well as the 

formation of nanoshells composed of a homogeneous Au/Ag alloy. Accompanying the formation 

of Au/Ag nanoshells, an extinction peak with increasing intensity appeared at the longer 

wavelengths, and its position was continuously red-shifted toward 570 nm. This peak shift could 

be attributed to a slight increase in void size for the alloyed nanoshells.
44

 

The UV-Visible absorption spectra shown in  Figure 12 is from the series of Pd/Ag 

samples obtained by the addition of 10 mL, 20 mL, 30 mL, 40 mL, 50 mL, and 60 mL of 

K2PdCl4 (0.5 mM), in the presence of ascorbic acid, to the Ag nanoprisms which were prepared 

by using 9.5mL of of silver seed solution. The Ag nanoprism seed solution spectra is denoted in 

blue and the additional curves show the absorbance spectra of the Ag-Pd bimetallic particles with 
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increased Pd content for the large scale reaction.  The surface plasmon resonance peaks of the 

particles with higher K2PdCl4 solution volumes lie at shorter wavelengths. Note that the 

extinction peak corresponding to Ag nanoparticles (at 577 nm) disappeared even when 10 mL of 

K2PdCl4 solution was introduced into the reaction system. As the volume of K2PdCl4continues to 

increase after addition of 10 mL the intensity of the surface plasmon resonance peaks continue to 

decrease and broaden. As the volume of K2PdCl4continues to increase (50mL-60mL) the surface 

plasmon resonance peaks continue to broaden until they diminish. 

 

 

 

 

Figure12. UV-Visible absorption spectra of the series of Pd/Ag samples obtained by addition of 

10 mL, 20 mL, 30 mL, 40 mL, 50 mL, and 60 mL of K2PdCl4 (0.5 mM), in the presence of 

ascorbic acid, to the Ag nanoprisms prepared by using of 9.5mL of silver seed solution. 
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UV-Visible absorption spectra shown in Figure 12 is from the series of Pt/Ag samples 

obtained by the addition of 2 mL, 4 mL, 6 mL, 8 mL, 10 mL, 20 mL, 30 mL, 40 mL, 50 mL, and 

60 mL of K2PtCl4 (0.5 mM), in the presence of ascorbic acid, to the Ag nanoprisms prepared by 

using 9.5 mL of silver seed solution.  The Ag nanoprism seed solution spectra is denoted in blue 

and the additional curves show the absorbance spectra of the Ag-Pt bimetallic particles with 

increased Pt content for the large scale reaction.  The surface plasmon resonance peaks of the 

particles with higher K2PtCl4 solution volumes lie at longer wavelengths and are red-shifted 

compared with the surface plasmon resonance of the pure Ag nanoprism seed solution.  As the 

volume of K2PtCl4continues to increase the surface plasmon resonance peaks continue to red-

shift and broaden until they diminish.   

 

 

Figure13. UV-Visible absorption spectra of the series of Pt/Ag samples obtained by addition of 

2 mL, 4 mL, 6 mL, 8 mL, 10 mL, 20 mL, 30 mL, 40 mL, 50 mL, and 60 mL of K2PtCl4 (0.5 

mM), in the presence of ascorbic acid, to the Ag nanoprisms prepared by using 120 L of silver 

seed solution. 
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 Transmission scanning electron microscopy (TEM) was also employed to study the 

morphology of the Au/Ag, Pd/Ag, and Pt/Ag nanoshells. Transmission Electron Microscopy 

(TEM) is a technique that utilizes a beam of electrons that is transmitted through extremely small 

and thin specimens in a sample.  The beam of electrons interacts with the specimens and an 

image is formed from that interaction.  The TEM images shown in Figure 14 are of the 

individual (A) Au/Ag, (B) Pd/Ag, and (C) Pt/Ag nanoshells. The dark contrast areas in A and B 

represent the multilayers of nanoshells and illustrate the 3-dimensional connectivity of 

nanoscale. TEM images show that, in a majority of the individual Au/Ag alloy particles, small 

divided hollows have been created, whereas in Pd/Ag and Pt/Ag nanoshells, significantly larger 

single hollows (20−30 nm) have been created. Interestingly, in the case of Pt/Ag nanoshells 

narrowly dispersed triangular hollows were produced in a rapid manner. 

 

 

 

 
 

Figure14.TEM images of the individual (A) Au/Ag, (B) Pd/Ag, and (C) Pt/Ag nanoshells. The 

dark contrast areas in A and B represent the multilayers of nanoshells, illustrating the  

3-dimensional connectivity of nanoscale. 
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Conclusion 

 

In summary, Ag/Au, Ag/Pd, and Ag/Pt bimetallic hollow particles were successfully 

formed by employing a replacement reaction between Ag nanoparticles and aqueous HAuCl4, 

K2PdCl4, and K2PtCl4using Ag nanoprism as sacrificial templates. These bimetallic 

nanostructures were intensively studied using UV-vis and TEM spectroscopy methods. We have 

presented here a simple method that exploit Ag template for the synthesis of Pd/Ag and Pt/Ag 

bimetallic hollow nanoparticles with a wide range of Pd and Pt content in order to tune the 

plasmon resonance peaks within the visible spectrum. 

It has been demonstrated that the plasmon resonance peak locations, corresponding to 

these bimetallic hollow particles, could be tuned across the UV and visible spectrum by 

controlling the Pt and Pd content. This concept was reinforced by manipulating the composition, 

shape, and size of the noble metal nanoparticles and it has been shown that it is possible to 

design and construct nanostructures which can absorb photons of a desired wavelength. 
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