
Governors State University
OPUS Open Portal to University Scholarship

All Capstone Projects Student Capstone Projects

Spring 2016

Performance Improvement in Packet Buffers for
High Bandwidth Routers
Pradeep Korlamanda
Governors State University

Rajitha Siripurapu
Governors State University

Satya Deepthi Vemula
Governors State University

Follow this and additional works at: http://opus.govst.edu/capstones

Part of the Computer Sciences Commons

For more information about the academic degree, extended learning, and certificate programs of Governors State University, go to
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/

Visit the Governors State Computer Science Department
This Project Summary is brought to you for free and open access by the Student Capstone Projects at OPUS Open Portal to University Scholarship. It
has been accepted for inclusion in All Capstone Projects by an authorized administrator of OPUS Open Portal to University Scholarship. For more
information, please contact opus@govst.edu.

Recommended Citation
Korlamanda, Pradeep; Siripurapu, Rajitha; and Vemula, Satya Deepthi, "Performance Improvement in Packet Buffers for High
Bandwidth Routers" (2016). All Capstone Projects. 205.
http://opus.govst.edu/capstones/205

http://opus.govst.edu?utm_source=opus.govst.edu%2Fcapstones%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/capstones?utm_source=opus.govst.edu%2Fcapstones%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/student_capstones?utm_source=opus.govst.edu%2Fcapstones%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/capstones?utm_source=opus.govst.edu%2Fcapstones%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=opus.govst.edu%2Fcapstones%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/capstones/205?utm_source=opus.govst.edu%2Fcapstones%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/
http://www.govst.edu/cas/cpsc/ms
mailto:opus@govst.edu

2

Table of Contents
1 Project Description .. 3

1.1 Project Abstract .. 3
1.2 Existing System .. 3
1.3 Proposed System ... 3

2 Introduction ..3

3 Project Requirements .. 4

3.1 Software Requirements ... 4
3.2 Hardware Requirements ... 4

4. Project Design Description……………………………………………………………………………………………………. 5
4.1 System Design
 4.1.1 Definition……5
 4.1.2 UML is a language……………………………………………………………………………………………………. 5
 4.1.3 UML Specifying……………………………………………………………………………………………………….5
 4.1.4 UML Visualization…………………………………………………………………………………………………….5
 4.1.5 UML Constructing…………………………………………………………………………………………………….5
 4.1.6 UML Documenting……………………………………………………………………………………………………5

 4.2 Uses Of UML……….7

 4.2.1 Building Blocks Of UML………………………………………………………………………………………………7
 4.2.1.1 Things………..7
 4.2.1.2 Relationships……………………………………………………………………………………………………...8

 4.3 Usecase Diagrams…… 8
 4.4 Class Diagram……….. 9
 4.5 Sequence Diagram………………………………………………………………………………………………………. 10
 4.6 Collaboration Diagram…………………………………………………………………………………………………... 11
 4.7 State Machine Diagram………………………………………………………………………………………………….. 12
 4.8 Activity Diagram…….13
 4.9 Component Diagram……………………………………………………………………………………………………...14
 4.10 Deployment Diagram……………………………………………………………………………………………………15

5 Sample Screens .. 17
6 Technologies Used ... 25

6.1 Introduction to Java ..25
6.2 Swings .. 28

7 Sample Code .. 30

8 System Testing ...57
 8.1 Types of Tests………..57
 8.2 Unit Testing……..59
 8.3 Integration Testing………………………………………………………………………………………………………...59
 8.4 Acceptance Testing………………………………………………………………………………………………………..59

9 Conclusion And Future Work .. 60
10 References ... 60

3

1 Project Description

1.1 Project Abstract

High-speed routers rely on well-designed packet buffers that support multiple queues, provide large capacity and short

response times. Some researchers suggested combined SRAM/DRAM hierarchical buffer architectures to meet these

challenges. However, these architectures suffer from either large SRAM requirement or high time-complexity in the memory

management. In this paper, we present scalable, efficient, and novel distributed packet buffer architecture. Two fundamental

issues need to be addressed to make this architecture feasible: 1) how to minimize the overhead of an individual packet buffer;

and 2) how to design scalable packet buffers using independent buffer subsystems. We address these issues by first designing

an efficient compact buffer that reduces the SRAM size requirement by (k - 1)/k. Then, we introduce a feasible way of

coordinating multiple subsystems with a load-balancing algorithm that maximizes the overall system performance. Both

theoretical analysis and experimental results demonstrate that our load-balancing algorithm and the distributed packet buffer

architecture can easily scale to meet the buffering needs of high bandwidth links and satisfy the requirements of scale and

support for multiple queues.

1.1.1 Existing System:

The router buffer sizing is still an open issue. The traditional rule of thumb for Internet routers states that the routers should be

capable of buffering RTT*R data, where RTT is a round-trip time for flows passing through the router, and R is the line rate.

Many researchers claimed that the size of buffers in backbone routers can be made very small at the expense of a small loss in

throughput. Focusing on the performance of individual TCP flows, researchers claimed that the output/input capacity ratio at a

network link largely determines the required buffer size. If the output/input capacity ratio is lower than one, the loss rate

follows a power-law reduction with the buffer size and significant buffering is needed.

1.1.2 Proposed System:

We devise a “traffic-aware” approach which aims to provide different services for different types of data streams. This

approach further reduces the system overhead. Both mathematical analysis and simulation demonstrate that the proposed

architecture together with its algorithm reduce the overall SRAM requirement significantly while providing guaranteed

performance in terms of low time complexity, upper bounded drop rate, and uniform allocation of resources.
.

2 Project Requirements

2.1 Hardware Requirements

4

3 Project Design Description

3.1 System Design:

UML is a method for describing the system architecture in detail using the blueprint.

UML represents a collection of best engineering practices that have proven successful in the modeling of large and complex

systems.

UML is a very important part of developing objects oriented software and the software development process.

UML uses mostly graphical notations to express the design of software projects.

Using the UML helps project teams communicate, explore potential designs, and validate the architectural design of

the software.

3.1.1 Definition:

UML is a general-purpose visual modeling language that is used to specify, visualize, construct, and document the artifacts of

the software system.

3.1.2 UML is a language:

It will provide vocabulary and rules for communications and function on conceptual and physical representation. So it is

modeling language.

3.1.3 UML Specifying:

Specifying means building models that are precise, unambiguous and complete. In particular, the UML address the

specification of all the important analysis, design and implementation decisions that must be made in developing and

displaying a software intensive system.

3.1.4 UML Visualization:

The UML includes both graphical and textual representation. It makes easy to visualize the system and for better

understanding.

3.1.5 UML Constructing:

UML models can be directly connected to a variety of programming languages and it is sufficiently expressive and free from

any ambiguity to permit the direct execution of models.

3.1.6 UML Documenting:

UML provides variety of documents in addition raw executable codes.

5

 Figure 3.4 Modeling a System Architecture using views of UML

The use case view of a system encompasses the use cases that describe the behavior of the system as seen by its end users,

analysts, and testers.

The design view of a system encompasses the classes, interfaces, and collaborations that form the vocabulary of the problem

and its solution.

The process view of a system encompasses the threads and processes that form the system's concurrency and synchronization

mechanisms.

The implementation view of a system encompasses the components and files that are used to assemble and release the physical

system. The deployment view of a system encompasses the nodes that form the system's hardware topology on which the

system executes.

6

3.2 Uses of UML :

The UML is intended primarily for software intensive systems. It has been used effectively for such domain as

Enterprise Information System

Banking and Financial Services

Telecommunications

Transportation

Defense/Aerosp

Retails

Medical Electronics

Scientific Fields

Distributed Web

3.2.1 Building blocks of UML:

The vocabulary of the UML encompasses 3 kinds of building blocks

Things

Relationships

Diagrams

3.2.1.1 Things:

Things are the data abstractions that are first class citizens in a model. Things are of 4 types

7

Structural Things, Behavioral Things ,Grouping Things, An notational Things

3.2.1.2 Relationships:

Relationships tie the things together. Relationships in the UML are

Dependency, Association, Generalization, Specialization

UML Diagrams:

A diagram is the graphical presentation of a set of elements, most often rendered as a connected graph of vertices (things) and

arcs (relationships).

There are two types of diagrams, they are:

Structural and Behavioral Diagrams

Structural Diagrams:-

The UML‘s four structural diagrams exist to visualize, specify, construct and document the static aspects of a system.

ican View the static parts of a system using one of the following diagrams. Structural diagrams consists of Class Diagram,

Object Diagram, Component Diagram, Deployment Diagram.

Behavioral Diagrams :

The UML’s five behavioral diagrams are used to visualize, specify, construct, and document the dynamic aspects of a

system. The UML’s behavioral diagrams are roughly organized around the major ways which can model the dynamics of a

system.

Behavioral diagrams consists of

Use case Diagram, Sequence Diagram, Collaboration Diagram, State chart Diagram, Activity Diagram

3.3 Use-Case diagram:

A use case is a set of scenarios that describing an interaction between a user and a system. A use case diagram

displays the relationship among actors and use cases. The two main components of a use case diagram are use cases and

actors.

An actor is represents a user or another system that will interact with the system you are modeling. A use case is an

external view of the system that represents some action the user might perform in order to complete a task.

Contents:

• Use cases

8

• Actors

• Dependency, Generalization, and association relationships

• System boundary

3.4 Class Diagram:

Class diagrams are widely used to describe the types of objects in a system and their relationships. Class diagrams model class

structure and contents using design elements such as classes, packages and objects. Class diagrams describe three different

perspectives when designing a system, conceptual, specification, and implementation. These perspectives become evident as

the diagram is created and help solidify the design. Class diagrams are arguably the most used UML diagram type. It is the

main building block of any object oriented solution. It shows the classes in a system, attributes and operations of each class and

the relationship between each class. In most modeling tools a class has three parts, name at the top, attributes in the middle and

operations or methods at the bottom. In large systems with many classes related classes are grouped together to to create class

diagrams. Different relationships between diagrams are show by different types of Arrows. Below is a image of a class

diagram. Follow the link for more class diagram examples.

source

destination ip

message

send

Message

receive

destination

9

UML Class Diagram with Relationships

3.5 Sequence Diagram

Sequence diagrams in UML shows how object interact with each other and the order those interactions occur. It’s important to

note that they show the interactions for a particular scenario. The processes are represented vertically and interactions are show

as arrows. This article explains the purpose and the basics of Sequence diagrams.

source

+ip
+txt

+dest ip()
+send()

router

+source ip
+dest ip

+send()

Destination

+ip
+txt

+receive()

http://creately.com/blog/wp-content/uploads/2012/01/UML-Class-Diagram-Example.png

10

3.6 Collaboration diagram

Communication diagram was called collaboration diagram in UML 1. It is similar to sequence diagrams but the focus is on

messages passed between objects. The same information can be represented using a sequence diagram and different objects.

Click here to understand the differences using an example.

/source /router
/Destination

1 : give destination ip address()

2 : select message()

3 : send ip address()

4 : send data()

http://creately.com/blog/wp-content/uploads/2012/01/Sequence-diagram-UML.png

11

3.7 State machine diagrams

State machine diagrams are similar to activity diagrams although notations and usage changes a bit. They are sometime known

as state diagrams or start chart diagrams as well. These are very useful to describe the behavior of objects that act different

according to the state they are at the moment. Below State machine diagram show the basic states and actions.

/source

/router

/Destination

12

State Machine diagram in UML, sometime referred to as State or State chart diagram

3.8 Activity diagram:

Activity Diagram:

Activity diagrams describe the workflow behavior of a system. Activity diagrams are similar to state

diagrams because activities are the state of doing something. The diagrams describe the state of activities by showing the

sequence of activities performed. Activity diagrams can show activities that are conditional or parallel.

3.8.1 How to Draw: Activity Diagrams

Activity diagrams show the flow of activities through the system. Diagrams are read from top to bottom and have

branches and forks to describe conditions and parallel activities. A fork is used when multiple activities are occurring at the

source

router

Destination

http://creately.com/blog/wp-content/uploads/2012/01/State-Machine-Diagram.png

13

same time. The diagram below shows a fork after activity1. This indicates that both activity2 and activity3 are occurring at the

same time. After activity2 there is a branch. The branch describes what activities will take place based on a set of conditions.

All branches at some point are followed by a merge to indicate the end of the conditional behavior started by that branch.

After the merge all of the parallel activities must be combined by a join before transitioning into the final activity state.

 .

3.8.2 When to Use: Activity Diagrams

Activity diagrams should be used in conjunction with other modeling techniques such as interaction diagrams and

state diagrams. The main reason to use activity diagrams is to model the workflow behind the system being designed. Activity

Diagrams are also useful for: analyzing a use case by describing what actions need to take place and when they should

occur; describing a complicated sequential algorithm; and modeling applications with parallel processes.

3.9 Component diagram

A component diagram displays the structural relationship of components of a software system. These are mostly used when

working with complex systems that has many components. Components communicate with each other using interfaces. The

interfaces are linked using connectors. Below images shows a component diagram.

source

router

Destination

14

3.10 Deployment Diagram

A deployment diagrams shows the hardware of your system and the software in those hardware. Deployment diagrams are
useful when your software solution is deployed across multiple machines with each having a unique configuration. Below is an
example deployment diagram.

source destination

http://creately.com/blog/wp-content/uploads/2012/01/Component-Diagram-Example-UML.png

15

UML Deployment Diagram (Click on the image to use it as a template)

http://creately.com/diagram/example/gsx1cnemh/UML+Deployment+Diagram

16

4 Sample Screens:

17

18

19

20

21

22

23

24

5 Technologies Used:

5.1 Introduction To Java:
Java has been around since 1991, developed by a small team of Sun Microsystems developers in a project originally

called the Green project. The intent of the project was to develop a platform-independent software technology that would be

used in the consumer electronics industry. The language that the team created was originally called Oak.

The first implementation of Oak was in a PDA-type device called Star Seven (*7) that consisted of the Oak language,

an operating system called GreenOS, a user interface, and hardware. The name *7 was derived from the telephone sequence

that was used in the team's office and that was dialed in order to answer any ringing telephone from any other phone in the

office.

Around the time the First Person project was floundering in consumer electronics, a new craze was gaining

momentum in America; the craze was called "Web surfing." The World Wide Web, a name applied to the Internet's millions of

linked HTML documents was suddenly becoming popular for use by the masses. The reason for this was the introduction of a

graphical Web browser called Mosaic, developed by ncSA. The browser simplified Web browsing by combining text and

25

graphics into a single interface to eliminate the need for users to learn many confusing UNIX and DOS commands. Navigating

around the Web was much easier using Mosaic.

It has only been since 1994 that Oak technology has been applied to the Web. In 1994, two Sun developers created the

first version of Hot Java, and then called Web Runner, which is a graphical browser for the Web that exists today. The browser

was coded entirely in the Oak language, by this time called Java. Soon after, the Java compiler was rewritten in the Java

language from its original C code, thus proving that Java could be used effectively as an application language. Sun introduced

Java in May 1995 at the Sun World 95 convention.

Web surfing has become an enormously popular practice among millions of computer users. Until Java, however, the

content of information on the Internet has been a bland series of HTML documents. Web users are hungry for applications that

are interactive, that users can execute no matter what hardware or software platform they are using, and that travel across

heterogeneous networks and do not spread viruses to their computers. Java can create such applications.

The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

• Simple

• Architecture neutral

• Object oriented

• Portable

• Distributed

• High performance

• Interpreted

• Multithreaded

• Robust

• Dynamic

• Secure

With most programming languages, you either compile or interpret a program so that you can run it on your computer.

The Java programming language is unusual in that a program is both compiled and interpreted. With the compiler, first you

translate a program into an intermediate language called Java byte codes —the platform-independent codes interpreted by the

interpreter on the Java platform. The interpreter parses and runs each Java byte code instruction on the computer. Compilation

happens just once; interpretation occurs each time the program is executed. The following figure illustrates how this works.

 Figure 4.1: Working Of Java

You can think of Java bytecodes as the machine code instructions for the java virtual machine (Java VM). Every Java

interpreter, whether it’s a development tool or a Web browser that can run applets, is an implementation of the Java VM. Java

26

bytecodes help make “write once, run anywhere” possible. You can compile your program into bytecodes on any platform that

has a Java compiler. The bytecodes can then be run on any implementation of the Java VM. That means that as long as a

computer has a Java VM, the same program written in the Java programming language can run on Windows 2000, a Solaris

workstation, or on an iMac.

The Java Platform:

A platform is the hardware or software environment in which a program runs. We’ve already mentioned some of the

most popular platforms like Windows 2000, Linux, Solaris, and MacOS. Most platforms can be described as a combination of

the operating system and hardware. The Java platform differs from most other platforms in that it’s a software-only platform

that runs on top of other hardware-based platforms.

The Java platform has two components:

The java virtual mechine (Java VM)

The java application programming interface (Java API)

You’ve already been introduced to the Java VM. It’s the base for the Java platform and is ported onto various

hardware-based platforms.

The Java API is a large collection of ready-made software components that provide many useful capabilities, such as

graphical user interface (GUI) widgets. The Java API is grouped into libraries of related classes and interfaces; these libraries

are known as packages. The next section, What Can Java Technology Do?, highlights what functionality some of the packages

in the Java API provide.

The following figure depicts a program that’s running on the Java platform. As the figure shows, the Java API and the

virtual machine insulate the program from the hardware.

 Figure 4.2: The Java Platform

Native code is code that after you compile it, the compiled code runs on a specific hardware platform. As a platform-

independent environment, the Java platform can be a bit slower than native code. However, smart compilers, well-tuned

interpreters, and just-in-time bytecode compilers can bring performance close to that of native code without threatening

portability.

Working Of Java:

For those who are new to object-oriented programming, the concept of a class will be new to you. Simplistically, a

class is the definition for a segment of code that can contain both data and functions.When the interpreter executes a class, it

looks for a particular method by the name of main, which will sound familiar to C programmers. The main method is passed as

a parameter an array of strings (similar to the argv[] of C), and is declared as a static method.

27

To output text from the program, iexecute the println method of System. out, which is java’s output stream. UNIX

users will appreciate the theory behind such a stream, as it is actually standard output. For those who are instead used to the

Wintel platform, it will write the string passed to it to the user’s program.

5.2 Swing:

Introduction To Swing:

Swing contains all the components. It’s a big library, but it’s designed to have appropriate complexity for the task at

hand – if something is simple, you don’t have to write much code but as you try to do more your code becomes increasingly

complex. This means an easy entry point, but you’ve got the power if you need it.

Swing has great depth. This section does not attempt to be comprehensive, but instead introduces the power and

simplicity of Swing to get you started using the library. Please be aware that what you see here is intended to be simple. If you

need to do more, then Swing can probably give you what you want if you’re willing to do the research by hunting through the

online documentation from Sun.

Benefits Of Swing:

Swing components are Beans, so they can be used in any development environment that supports Beans. Swing

provides a full set of UI components. For speed, all the components are lightweight and Swing is written entirely in Java for

portability.

Swing could be called “orthogonality of use;” that is, once you pick up the general ideas about the library you can

apply them everywhere. Primarily because of the Beans naming conventions.

Keyboard navigation is automatic – you can use a Swing application without the mouse, but you don’t have to do any

extra programming. Scrolling support is effortless – you simply wrap your component in a JScrollPane as you add it to your

form. Other features such as tool tips typically require a single line of code to implement.

Swing also supports something called “pluggable look and feel,” which means that the appearance of the UI can be

dynamically changed to suit the expectations of users working under different platforms and operating systems. It’s even

possible to invent your own look and feel.

Domain Description:

Data mining involves the use of sophisticated data analysis tools to discover previously unknown, valid patterns and

relationships in large data sets. These tools can include statistical models, mathematical algorithms, and machine learning

methods (algorithms that improve their performance automatically through experience, such as neural networks or decision

trees). Consequently, data mining consists of more than collecting and managing data, it also includes analysis and prediction.

Data mining can be performed on data represented in quantitative, textual, or multimedia forms. Data mining

applications can use a variety of parameters to examine the data. They include association (patterns where one event is

connected to another event, such as purchasing a pen and purchasing paper), sequence or path analysis (patterns where one

event leads to another event, such as the birth of a child and purchasing diapers), classification (identification of new patterns,

such as coincidences between duct tape purchases and plastic sheeting purchases), clustering (finding and visually

documenting groups of previously unknown facts, such as geographic location and brand preferences), and forecasting

28

(discovering patterns from which one can make reasonable predictions regarding future activities, such as the prediction that

people who join an athletic club may take exercise classes)

 Figure 4.3 knowledge discovery process

Data Mining Uses:

Data mining is used for a variety of purposes in both the private and public sectors.

 Industries such as banking, insurance, medicine, and retailing commonly use data mining to reduce costs, enhance

research, and increase sales. For example, the insurance and banking industries use data mining applications to detect

fraud and assist in risk assessment (e.g., credit scoring).

 Using customer data collected over several years, companies can develop models that predict whether a customer is a

good credit risk, or whether an accident claim may be fraudulent and should be investigated more closely.

 The medical community sometimes uses data mining to help predict the effectiveness of a procedure or medicine.

 Pharmaceutical firms use data mining of chemical compounds and genetic material to help guide research on new

treatments for diseases.Retailers can use information collected through affinity programs (e.g., shoppers’ club cards,

frequent flyer points, contests) to assess the effectiveness of product selection and placement decisions, coupon offers,

and which products are often purchased together.

29

6 Sample Code:

//CRouter.java

import javax.swing.*;

import java.net.*;

import java.io.*;

import java.awt.*;

import javax.swing.UIManager;

class Router_Frame

{

 JFrame Ing_fra;

 Container cp1;

 JTextArea Ing_data;

 JTextField InTxt,OutTxt;

 JLabel InPac,OutPac;

 static String instring="";

 static int length=0;

 static int length1=0;

 static String s="";

 static String s1="";

 String fin="";

 static String dest="";

 static String sou="";

 static int inp=0,outp=0;

 JScrollPane jsp;

 ObjectInputStream in;

 OutputStream out;

 int readcnt=0;

 boolean header=false;

 static String text;

 static String text1;

 char chstr[]=new char[512];

 Socket soc;

30

 String inf="com.sun.java.swing.plaf.windows.WindowsLookAndFeel";

 Router_Frame()

 {

 }

 public void dis_ing_fra()

 {

 Ing_fra=new JFrame("Router");

 cp1=Ing_fra.getContentPane();

 cp1.setLayout(null);

 Ing_data=new JTextArea();

 InPac=new JLabel("INCOMING PACKETS :");

 OutPac=new JLabel("OUTGOING PACKETS :");

 InTxt=new JTextField();

 OutTxt=new JTextField();

 InTxt.setText("0");

 OutTxt.setText("0");

 InPac.setForeground(Color.blue);

 OutPac.setForeground(Color.blue);

 Ing_data.setEditable(false);

 InTxt.setEditable(false);

 OutTxt.setEditable(false);

 Ing_data.setBorder(BorderFactory.createEtchedBorder(Color.black,Color.black));

 //InTxt.setBorder(BorderFactory.createEtchedBorder(Color.black,Color.black));

 //OutTxt.setBorder(BorderFactory.createEtchedBorder(Color.black,Color.black));

 //jsp=new JScrollPane(Ing_data);

 //cp1.add(jsp);

 cp1.add(Ing_data);

 cp1.add(InPac);

 cp1.add(InTxt);

 cp1.add(OutPac);

 cp1.add(OutTxt);

31

 //jsp.setBounds(5,5,470,400);

 Ing_data.setBounds(5,5,470,400);

 InPac.setBounds(5,425,130,25);

 InTxt.setBounds(125,425,75,25);

 OutPac.setBounds(250,425,150,25);

 OutTxt.setBounds(375,425,75,25);

 Ing_fra.setBounds(5,5,500,500);

 Ing_fra.setVisible(true);

 Ing_fra.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 try

 {

 UIManager.setLookAndFeel(inf);

 SwingUtilities.updateComponentTreeUI(Ing_fra);

 }

 catch(Exception e)

 {

 //e.printStackTrace();

 }

 }

 public void dis_ing_data()

 {

 try

 {

 System.out.println("Waiting...");

 ServerSocket ss=new ServerSocket(7799);

 while(true)

 {

 soc=ss.accept();

 System.out.println("connected...");

 display();

 }

 }

 catch(IOException e)

32

 {

 e.printStackTrace();

 }

 }

 public void add()

 {

 text+="Source :"+sou+"\nMessage :"+s.trim()+"\nDestination :"+dest+"\n";

 Ing_data.setText(text);

 }

 public void display()

 {

 try

 {

 ObjectInputStream ois=new ObjectInputStream(soc.getInputStream());

 instring=(String) ois.readObject();

 length=instring.length();

 int fin=instring.indexOf('|');

 if(fin>0)

 {

 int last=instring.lastIndexOf('|');

 header=true;

 Ing_data.append("---\n");

 Ing_data.append(instring+"\n");

 Ing_data.append("---

"+"\n");

 Socket soc1=new Socket("localhost",7700);

 ObjectOutputStream oos=new

ObjectOutputStream(soc1.getOutputStream());

 oos.writeObject(instring);

 }

 else

33

 {

 header=false;

 }

 if(length>0 && (!header))

 {

 Socket soc1=new Socket("localhost",7700);

 ObjectOutputStream oos=new

ObjectOutputStream(soc1.getOutputStream());

 oos.writeObject(instring);

 oos.flush();

 outp++;

 OutTxt.setText(outp+"");

 for(int l=0;l<length;l++)

 {

 if((instring.charAt(l))=='`')

 {

 dest=instring.substring(0,l);

 s1=instring.substring(l+1,length);

 l=length+1;

 length1=s1.length();

 }

 }

 for(int l=0;l<length1;l++)

 {

 if((s1.charAt(l))=='`')

 {

 sou=s1.substring(0,l);

 if((s1.substring((s1.length()-4),s1.length())).equals("null"))

 {

 s=s1.substring(l+1,length1-4);

 }

 else

 {

 s=s1.substring(l+1,length1);

34

 }

 l=length1+1;

 }

 }

 add();

 inp++;

 InTxt.setText(inp+"");

 }

 }

 catch(ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 catch(IOException e1)

 {

 e1.printStackTrace();

 }

 }

}

class CRouter

{

 public static void main(String args[])

 {

 Router_Frame obj=new Router_Frame();

 obj.dis_ing_fra();

 Back b=new Back(obj);

 obj.dis_ing_data();

 }

}

//Back.java

import java.io.*;

import java.net.*;

35

class Back extends Thread

{

 Router_Frame rf;

 ServerSocket ss;

 Back(Router_Frame obj1)

 {

 rf=obj1;

 start();

 }

 public void run()

 {

 try

 {

 ss=new ServerSocket(888);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 while(true)

 {

 try

 {

 Socket soc=ss.accept();

 ObjectInputStream ois=new ObjectInputStream(soc.getInputStream());

 String instring=(String) ois.readObject();

 rf.Ing_data.append("---\n");

 rf.Ing_data.append(instring+"\n");

 rf.Ing_data.append("---"+"\n");

 Socket soc1=new Socket("localhost",777);

36

 ObjectOutputStream oos=new

ObjectOutputStream(soc1.getOutputStream());

 oos.writeObject(instring);

 Thread.sleep(1000);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 }

}

//Destination.java

import java.net.*;

import java.io.*;

import java.awt.*;

import javax.swing.*;

class Destination

 {

 public static void main(String args[]) throws IOException

 {

System.out.println("******************************DESTINATION*************************

**************");

 String instring=" ";

 String s=" ";

 int length=0;

 String dest=" ";

 int coun=0,i=1;

 int count=0;

 int initial=0;

 FileWriter fos;

 try

37

 {

 ServerSocket sock1 = new ServerSocket(7718);

 while(true)

 {

 System.out.println("waiting..........");

 Socket insocket1 = sock1.accept();

 System.out.println("connected sucessfully.............");

 try

 {

 ObjectInputStream ois=new ObjectInputStream(insocket1.getInputStream());

 instring=(String) ois.readObject();

 }

 catch(ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 length=instring.length();

 int st=instring.indexOf('`');

 int end=instring.lastIndexOf('`');

 dest=instring.substring(st+1,end);

 String dest1=dest+"("+i+")";

 if((instring.substring((instring.length()-

4),instring.length())).equals("null"))

 {

 coun=1;

 count++;

 s=instring.substring(end+1,length-4);

 }

 else

 {

 s=instring.substring(end+1,length);

 count++;

 }

38

 s="Packet "+count+": "+s;

 //byte data[]=s.getBytes();

 if(initial==0)

 {

 fos = new FileWriter(dest1+".txt",false);

 }

 else

 {

 fos = new FileWriter(dest1+".txt",true);

 }

 BufferedWriter bw = new BufferedWriter(fos);

 bw.write(s);

 bw.newLine();

 bw.newLine();

 bw.newLine();

 bw.close();

 fos.close();

 initial++;

 if(coun==1)

 { System.out.println("finished");

 JOptionPane.showMessageDialog((Component) null,count+"

Packet(s) Recieved ","Click OK",JOptionPane.INFORMATION_MESSAGE);

 Runtime r = Runtime.getRuntime();

 Process p = null;

 p = r.exec("C:\\Program Files\\Windows NT\\Accessories\\wordpad.exe"+"

"+dest1+".txt");

 coun=0;

 i++;

 initial=0;

 count=0;

 }

 }

 }

39

 catch(UnknownHostException e)

 {

 e.printStackTrace();

 }

 }

 }

//Drouter.java

import java.net.*;

import java.io.*;

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.util.*;

import javax.swing.UIManager;

class Get implements Runnable

 {

 Tim1 ti=new Tim1();

 Thread t1;

 static String instring=" ";

 static int length=0;

 static int length1=0;

 static String s=" ";

 static String s1=" ";

 static String dest=" ";

 static String sou=" ";

 boolean header=false;

 long tim;

 long avg_rate;

 Socket soc;

 Vector sour=new Vector();

 Vector des=new Vector();

 Vector leng=new Vector();

 Vector virtual_time=new Vector();

40

 String instring1="";

 static TSW ts;

 static JFrame jf1;

 static JTextArea jta;

 static JButton jb1;

 static JLabel jl1;

 static String text;

 static Container cp1;

 String find,sub1;

 int fir,sec;

 static long CT;

 int last,check;

 Get()

 {

 }

 Get(Socket insocket1)

 {

 t1=new Thread(this,"Get");

 soc=insocket1;

 t1.start();

 }

 public void dis_Sec_Frame()

 {

 jf1 =new JFrame("Details");

 jb1=new JButton("Close");

 jta=new JTextArea();

 jta.setEditable(false);

 JScrollPane jsp=new JScrollPane(jta);

 cp1=jf1.getContentPane();

 cp1.setLayout(null);

 cp1.add(jb1);

41

 jb1.addActionListener(new AL());

 cp1.add(jsp);

 jsp.setBounds(20,5,450,375);

 jb1.setBounds(150,400,150,50);

 jf1.setBounds(25,25,500,500);

 }

 class AL implements ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 if(e.getSource()==jb1)

 {

 jf1.setVisible(false);

 }

 }

 }

 public void show()

 {

 jf1.setVisible(true);

 }

 public void add()

 {

 text+="Source :"+sou+"\nMessage :"+s.trim()+"\nDestination :"+dest+"\n";

 jta.setText(text);

 }

 public void run()

 {

 try

 {

 ObjectInputStream ois=new ObjectInputStream(soc.getInputStream());

 instring=(String) ois.readObject();

42

 length=instring.length();

 header=true;

 CT=ti.calculateTime();

 int fin=instring.indexOf('|');

 if(fin>0)

 {

 int last=instring.lastIndexOf('|');

 fir=instring.indexOf('|');

 sec=instring.indexOf('|',fir+1);

 int thi=instring.indexOf('|',sec+1);

 if(thi<0)

 {

 Thread.sleep(10000);

 jta.append("---

\n");

 jta.append(instring+"\n");

 jta.append("---

"+"\n");

 Back b=new Back(instring,fir,sec,this);

 }

 if(thi>0)

 {

 Thread.sleep(10000);

 jta.append("---

\n");

 jta.append(instring);

 jta.append("\n---

"+"\n");

 instring1=instring.substring(0,sec)+"|";

 long

LT=Long.parseLong(instring.substring(last+1,instring.length()));

 tim=(CT-LT);

 ts=new TSW(tim);

 avg_rate=length/tim;

43

 find=instring.substring(sec,thi+1);

 if(find.equals("|f|"))

 {

 String sub=instring.substring(thi+1,instring.length());

 do

 {

 int beg=sub.indexOf('~');

 if(beg>0)

 {

 int first=sub.indexOf('~',beg+1);

 check=sub.indexOf('|',first+1);

 if(check<0)

 {

 last=sub.length();

 }

 else

 {

 last=check;

 }

 sour.add(sub.substring(0,beg));

 des.add(sub.substring(beg+1,first));

 leng.add(sub.substring(first+1,last));

 instring1+=sub.substring(0,beg)+"~"+sub.substring(beg+1,first)+"~"+sub.substring(first+1,last)+"

|";

 if(check>0)

 {

 sub=sub.substring(check+1,sub.length());

 }

 if(!leng.isEmpty())

 {

 long tim1=(

Long.parseLong((leng.get(leng.size()-1)).toString()))*tim;

44

 virtual_time.add(tim1+"");

 instring1+=virtual_time.get(virtual_time.size()-1)+"|";

 }

 }

 else

 {

 check=-1;

 }

 }while(check>0);

 Back b=new Back(instring1,fir,sec,this);

 }

 else

 {

 }

 }

 }

 else

 {

 header=false;

 }

 if(length>0 && (!header))

 {

 try

 {

 ts.TimeSlide(length,CT);

 }

 catch(Exception e){e.printStackTrace();}

 for(int l=0;l<length;l++)

 {

 if((instring.charAt(l))=='`')

 {

45

 dest=instring.substring(0,l);

 s1=instring.substring(l+1,length);

 l=length+1;

 length1=s1.length();

 }

 }

 for(int l=0;l<length1;l++)

 {

 if((s1.charAt(l))=='`')

 {

 sou=s1.substring(0,l);

 if((s1.substring((s1.length()-4),s1.length())).equals("null"))

 {

 s=s1.substring(l+1,length1-4);

 }

 else

 {

 s=s1.substring(l+1,length1);

 }

 l=length1+1;

 }

 }

 add();

 Socket soc1=new Socket(dest,7718);

 ObjectOutputStream oos=new ObjectOutputStream(soc1.getOutputStream());

 oos.writeObject(instring);

 oos.flush();

 }

 }

 catch(ClassNotFoundException e)

 { }

 catch(IOException e1)

 { }

 catch(Exception e)

46

 { }

 }

 }

class Fir_Frame extends Get implements Runnable,ActionListener

 {

 String Monlab="Monitoring Packets";

 int count=0;

 Thread t3;

 JFrame jf;

 Container cp;

 JPanel jp;

 JLabel jl;

 JButton jb;

 String inf="com.sun.java.swing.plaf.windows.WindowsLookAndFeel";

 Fir_Frame()

 {

 dis_Fir_Frame();

 dis_Sec_Frame();

 t3=new Thread(this,"Mon");

 t3.start();

 }

 public void dis_Fir_Frame()

 {

 jf =new JFrame("Monitoring");

 jl=new JLabel(Monlab);

 jb=new JButton("View Details");

 cp=jf.getContentPane();

 jl.setFont(new Font("Times-Roman",Font.BOLD,20));

 cp.setLayout(null);

 cp.add(jl);

 cp.add(jb);

47

 jb.addActionListener(this);

 jl.setBounds(60,5,500,500);

 jb.setBounds(150,350,150,50);

 jf.setVisible(true);

 jf.setBounds(25,25,500,500);

 try

 {

 UIManager.setLookAndFeel(inf);

 SwingUtilities.updateComponentTreeUI(jf);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 public void actionPerformed(ActionEvent e)

 {

 if(e.getSource()==jb)

 {

 show();

 }

 }

 public void run()

 {

 while(true)

 {

 Monlab=Monlab+".";

 jl.setText(Monlab);

 count++;

 if(count==11)

 {

 Monlab="Monitoring Packets";

 count=0;

 }

48

 else

 {

 try

 {

 t3.sleep(500);

 }

 catch(InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 }

 }

 }

class DRouter

 {

 public static void main(String args[]) throws IOException,InterruptedException

 {

 System.out.println("*********************Egress

Router**");

 try

 {

 ServerSocket socket = new ServerSocket(7700);

 Fir_Frame ff=new Fir_Frame();

 while(true)

 {

 System.out.println("waiting");

 Socket insocket1 = socket.accept();

 System.out.println("connected");

 Get g1=new Get(insocket1);

 }

 }

49

 catch(UnknownHostException e)

 {

 System.out.println("UHE");

 }

 }

 }

//Tim.java

import java.util.*;

class Tim

{

 public String calculateTime()

 {

 Calendar c;

 int hr,min,sec;

 c=Calendar.getInstance();

 hr=c.get(Calendar.HOUR);

 min=c.get(Calendar.MINUTE);

 sec=c.get(Calendar.SECOND);

 String str=hr+":"+min+":"+sec;

 return str;

 }

}

//TSW.java

import java.io.*;

import java.net.*;

class TSW

{

 static long winlength=1;

 static long avg_rate=0;

 static long T_Front=0;

50

 static long Byte_in_TSW=0;

 static long New_Byte=0;

 static long Packet_Size=0;

 static Tim1 t=new Tim1();

 TSW()

 {

 }

 TSW(long avg_rate)

 {

 avg_rate=avg_rate;

 //System.out.println("Const");

 }

 public void TimeSlide(long Packet_Size,long now)

 {

 Packet_Size=Packet_Size;

 Byte_in_TSW=avg_rate*winlength;

 New_Byte=Byte_in_TSW+Packet_Size;

 avg_rate=New_Byte*(now-T_Front+winlength);

 System.out.println("hai :"+Math.abs(avg_rate));

 String avg=Math.abs(avg_rate)+"";

 long avg1=Long.parseLong(avg.substring(0,14));

 T_Front=now;

 try

 {

 Socket soc=new Socket("localhost",3333);

 PrintWriter pw=new PrintWriter(soc.getOutputStream(),true);

 pw.println(avg1);

 }

 catch(Exception e){e.printStackTrace();}

51

 }

}

//Source.java

import java.net.*;

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

class SouFrame implements ActionListener

 {

 static JButton jb1;

 static JButton jb2;

 static JLabel jl1,jl2;

 static JTextField jtf;

 static JTextArea jtf1;

 static JScrollPane jsp;

 static JFrame jf;

 String dest_addr=" ";

 String Msg=" ";

 String conc=" ";

 String fin=" ";

 int st=0;

 int end=48;

 int len1=0;

 Socket soc;

 int split=0;

 //InetAddress in1=InetAddress.getLocalHost();

 SouFrame() throws IOException

 {

 CreateFrame();

 }

52

 public void CreateFrame()

 {

 jf=new JFrame("Source");

 try

 {

 UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

 SwingUtilities.updateComponentTreeUI(jf);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 Container cp=jf.getContentPane();

 jl1=new JLabel("Destination IP :");

 jtf=new JTextField();

 jl2=new JLabel("Message :");

 jtf1=new JTextArea(10,10);

 jb1=new JButton("SEND");

 jb2=new JButton("EXIT");

 jsp=new JScrollPane(jtf1);

 cp.setLayout(null);

 cp.add(jl1);

 cp.add(jtf);

 cp.add(jl2);

 cp.add(jsp);

 cp.add(jb1);

 jl1.setForeground(Color.blue);

 jl2.setForeground(Color.blue);

 jb1.addActionListener(this);

 cp.add(jb2);

 jb2.addActionListener(this);

 jl1.setBounds(80,50,195,25);

53

 jtf.setBounds(165,50,200,25);

 jl2.setBounds(80,100,195,25);

 jsp.setBounds(165,100,200,200);

 jb1.setBounds(150,325,75,25);

 jb2.setBounds(250,325,75,25);

 jf.setVisible(true);

 jf.setBounds(100,100,400,400);

 jf.validate();

 jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 }

 public void actionPerformed(ActionEvent e)

 {

 if(e.getSource()==jb1)

 {

 try

 {

 SendPacket();

 }

 catch(IOException e1)

 {

 JOptionPane.showMessageDialog((Component) null,"IngressMachine is

Not Ready To Data Transfer","Click OK",JOptionPane.ERROR_MESSAGE);

 }

 }

 else

 {

 System.exit(0);

 }

 }

 public void SendPacket() throws IOException

 {

 try

54

 { InetAddress in1=InetAddress.getLocalHost();

 dest_addr=jtf.getText();

 Msg=jtf1.getText();

 if(((dest_addr.trim()).length())>0)

 {

 if(((Msg.trim()).length())>0)

 {

 System.out.println("**********************"+jtf.getText()+"****************");

 soc=new Socket("localhost",7788);

 OutputStream out = soc.getOutputStream();

 st=0;

 end=48;

 conc=dest_addr+"`"+in1.getHostName()+"`";

 byte buffer[]=Msg.getBytes();

 int len=buffer.length;

 len1=len;

 if(len<=48)

 {

 fin=conc+Msg+"\n"+"null";

 byte buffer1[]=fin.getBytes();

 out.write(buffer1);

 }

 else

 {

 fin=conc+Msg.substring(st,end)+"\n";

 byte buffer2[]=fin.getBytes();

 out.write(buffer2);

 Thread.sleep(1000);

 while(len1>48)

 {

 len1-=48;

 if(len1<=48)

 {

55

 fin=conc+Msg.substring(end,len)+"\n"+"null";

 byte buffer3[]=fin.getBytes();

 out.write(buffer3);

 Thread.sleep(1000);

 }

 else

 {

 split=end+48;

 fin=conc+Msg.substring(end,split)+"\n";

 end=split;

 byte buffer5[]=fin.getBytes();

 out.write(buffer5);

 Thread.sleep(1000);

 }

 }

 }

 }

 else

 {

 JOptionPane.showMessageDialog((Component) null,"There Is No

Message To Send","Click OK",JOptionPane.INFORMATION_MESSAGE);

 }

 }

 else

 {

 JOptionPane.showMessageDialog((Component) null,"Destination Machine

Name is Missing","Click OK",JOptionPane.INFORMATION_MESSAGE);

 }

 }

 catch(UnknownHostException e)

 {

 JOptionPane.showMessageDialog((Component) null,"Check the Ingress Machine

Name","Click OK",JOptionPane.INFORMATION_MESSAGE);

56

 }

 catch(InterruptedException e1)

 {

 }

 }

}

class Source

 {

 public static void main(String args[])throws IOException

 {

 SouFrame sf=new SouFrame();

 }

 }

7 System Testing:

 The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or

weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a

finished product It is the process of exercising software with the intent of ensuring that the

Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various

types of test. Each test type addresses a specific testing requirement.

7.1 TYPES OF TESTS

Unit testing:

 Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that

program inputs produce valid outputs. All decision branches and internal code flow should be validated. It is the testing of

individual software units of the application .it is done after the completion of an individual unit before integration. This is a

structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level

and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a

business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

Integration testing

57

 Integration tests are designed to test integrated software components to determine if they actually run as one program.

Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that

although the components were individually satisfaction, as shown by successfully unit testing, the combination of components

is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of

components.

Functional test

 Functional tests provide systematic demonstrations that functions tested are available as specified by the business and

technical requirements, system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

 Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition,

systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes

must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of

current tests is determined.

System Test:

 System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure

known and predictable results. An example of system testing is the configuration oriented system integration test. System

testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.

White Box Testing:

 White Box Testing is a testing in which in which the software tester has knowledge of the inner workings, structure and

language of the software, or at least its purpose. It is purpose. It is used to test areas that cannot be reached from a black box

level.

Black Box Testing:

 Black Box Testing is testing the software without any knowledge of the inner workings, structure or language of the

module being tested. Black box tests, as most other kinds of tests, must be written from a definitive source document, such as

specification or requirements document, such as specification or requirements document. It is a testing in which the software

under test is treated, as a black box .you cannot “see” into it. The test provides inputs and responds to outputs without

considering how the software works.

58

7.2 Unit Testing:

 Unit testing is usually conducted as part of a combined code and unit test phase of the software lifecycle, although it is

not uncommon for coding and unit testing to be conducted as two distinct phases.

Test strategy and approach

 Field testing will be performed manually and functional tests will be written in detail.

Test objectives

• All field entries must work properly.

• Pages must be activated from the identified link.

• The entry screen, messages and responses must not be delayed.

Features to be tested

• Verify that the entries are of the correct format

• No duplicate entries should be allowed

• All links should take the user to the correct page.

7.3 Integration Testing

 Software integration testing is the incremental integration testing of two or more integrated software components on a

single platform to produce failures caused by interface defects.

 The task of the integration test is to check that components or software applications, e.g. components in a software

system or – one step up – software applications at the company level – interact without error.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

7.4 Acceptance Testing

 User Acceptance Testing is a critical phase of any project and requires significant participation by the end user. It also

ensures that the system meets the functional requirements.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

59

Test Case Specifications:

Testcase number

Testcase

Input

Expected output

Obtained output

1

Send ip

Destination ip

Send data to
destination

sent

2

Send message

Send message to
destination

Send data to dest

sent

8 Conclusion and Future Work:

Building packet buffers based on a hybrid SRAM/DRAM architecture while introducing minimum overhead is the major issue

discussed in this paper. To distinctly increase the throughput and storage capacity of a packet buffer, a parallel mechanism

using multiple DRAM chips should be deployed. Our analysis shows that previous algorithms make very little effects in

exploring the advantage of parallel DRAMs leading to the requirement of large size SRAM and high time complexity in

memory management. In this paper, we present a novel packet buffer architecture by using both fast batch load scheme and a

hierarchal distributed structure. It reduces the requirement of SRAM size greatly. Both mathematical analysis and simulation

results indicate that the proposed architecture provides guaranteed performance in terms of the low time complexity, short

access delay, and upper bounded drop rate, when a small speedup is provided.

9 References

1. A. Willig, A Short Introduction to Queueing Theory, Telecom Networks Group, pp. 19-27, 1999.

2. B. Agrawal and T. Sherwood, “Virtually Pipelined Network Memory,” Proc. IEEE/ACM 39th Ann. Int’l Symp.

Microarchitecture (Micro ’06), pp. 197-207, Dec. 2006.

3. B.S. Arnaud, “Scaling Issues on Internet Networks,” http://www.canet3. net/ library/ papers/scaling.pdf, 2001.

4. Cisco, “Cisco Carrier Router System,” http://www.cisco.com/en/US/ products/ ps5763 /index.html, 2011.

[5] D. Lin, M. Hamdi, and J. Muppala, “Designing Packet Buffers in High Bandwidth Switches and Routers,” Proc. Int’l Conf.

High Performance Switching and Routing (HPSR ’10), pp. 32-37, June 2010.

[6] D. Lin, M. Hamdi, and J. Muppala, “Designing Packet Buffers Using Random Round Robin,” Proc. IEEE GlobeCom ’10,

pp. 1-5,Dec. 2010.

60

[7] D. Lin and M. Hamdi, “Two-Stage Fair Queuing Using Budget Round-Robin,” Proc. IEEE Int’l Conf. Comm. (ICC ’10),

pp. 1-5, May 2010.

[8] DRAMeXchange, http://www.dramexchange.com/#dram, 2011.

[9] F. Wang and M. Hamdi, “Scalable Router Memory Architecture Based on Interleaved DRAM,” Proc. Workshop High

Performance Switching and Routing (HPSR ’06), pp. 6-10, May 2006.

[10] F. Wang, M. Hamdi, and J. Muppala, “Using Parallel DRAM to Scale Router Buffers,” IEEE Trans. Parallel and

Distributed Systems,vol. 20, no. 5, pp. 710-724, May 2009.

[11] G. Appenzeler, I. Keslassy, and N. McKeown, “Sizing Router Buffers,” ACM SIGCOMM Computer Comm. Rev., vol.

34, no. 4,pp. 281-292, Oct. 2004.

[12] G. Shrimali and N. McKeown, “Building Packet Buffers with Interleaved Memories,” Proc. Workshop High Performance

Switching and Routing (HPSR ’05), pp. 1-5, May 2005.

[13] H. Wang and B. Lin, “Block-Based Buffer with Deterministic Packet Departure,” Proc. Int’l Conf. High Performance

Switching and Routing (HPSR ’10), pp. 38-43, June 2010.

[14] H. Wang, H. Zhao, B. Lin, and J. Xu, “Design and Analysis of a Robust Pipelined Memory System,” Proc. IEEE

INFOCOM ’10,pp. 1-9, Mar. 2010.

[15] J. Corbal, R. Espasa, and M. Valero, “Command Vector Memory Systems: High performance at Low Cost,” Proc. Int’l

Conf. Parallel Architectures and Compilation Techniques, pp. 68-77, Oct. 1998.

[16] J. Garcia, J. Corbal, L. Cerda, and M. Valero, “Design and Implementation of High-Performance Memory Systems for

Future Packet Buffers,” Proc. IEEE/ACM 36th Ann. Int’l Symp. Microarchitecture (Micro ’03), pp. 372-384, Dec. 2003.

[17] J. Garcia, M. March, L. Cerda, J. Corbal, and M. Valero, “A DRAM/SRAM Memory Scheme for Fast Packet Buffers,”

IEEE Trans. Computers, vol. 55, no. 5, pp. 588-602, May 2006.

[18] J. Kleinberg and E. Tardos, Algorithm Design, pp. 758-760. Prentice Hall, 2006.

[19] Juniper E Series Router, http://juniper.net/products/eseries/,2011.

[20] K.G. Coffman and A.M. Odlyzko, “Is There a Moore’s Law for Data Traffic?,” Handbook of Massive Data Sets, pp. 47-

93, Kluwer, 2002.

	Governors State University
	OPUS Open Portal to University Scholarship
	Spring 2016

	Performance Improvement in Packet Buffers for High Bandwidth Routers
	Pradeep Korlamanda
	Rajitha Siripurapu
	Satya Deepthi Vemula
	Recommended Citation

	1 Project Description
	1.1 Project Abstract
	High-speed routers rely on well-designed packet buffers that support multiple queues, provide large capacity and short response times. Some researchers suggested combined SRAM/DRAM hierarchical buffer architectures to meet these challenges. However, t...
	1.1.1 Existing System:
	1.1.2 Proposed System:

	2 Project Requirements
	2.1 Hardware Requirements

	3 Project Design Description
	3.1 System Design:
	3.1.1 Definition:
	3.1.2 UML is a language:
	3.1.3 UML Specifying:
	3.1.4 UML Visualization:
	3.1.5 UML Constructing:
	3.1.6 UML Documenting:

	3.2 Uses of UML :
	3.2.1 Building blocks of UML:
	3.2.1.1 Things:
	3.2.1.2 Relationships:

	3.3 Use-Case diagram:
	3.4 Class Diagram:
	3.5 Sequence Diagram
	3.6 Collaboration diagram
	3.7 State machine diagrams
	3.8 Activity diagram:
	3.8.1 How to Draw: Activity Diagrams
	3.8.2 When to Use: Activity Diagrams

	3.9 Component diagram
	3.10 Deployment Diagram

	4 Sample Screens:
	5 Technologies Used:
	5.1 Introduction To Java:
	5.2 Swing:

	6 Sample Code:
	7 System Testing:
	7.1 TYPES OF TESTS
	Unit testing:
	Integration testing

	Functional test
	System Test:
	White Box Testing:
	Black Box Testing:

	7.2 Unit Testing:
	Test strategy and approach

	7.3 Integration Testing
	7.4 Acceptance Testing

	8 Conclusion and Future Work:
	9 References

