
Governors State University
OPUS Open Portal to University Scholarship

All Capstone Projects Student Capstone Projects

Spring 2016

Data Migration from RDBMS to Hadoop
Naga Sruthi Tiyyagura
Governors State University

Monika Rallabandi
Governors State University

Radhakrishna Nalluri
Governors State University

Follow this and additional works at: http://opus.govst.edu/capstones

Part of the Computer Sciences Commons

For more information about the academic degree, extended learning, and certificate programs of Governors State University, go to
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/

Visit the Governors State Computer Science Department
This Project Summary is brought to you for free and open access by the Student Capstone Projects at OPUS Open Portal to University Scholarship. It
has been accepted for inclusion in All Capstone Projects by an authorized administrator of OPUS Open Portal to University Scholarship. For more
information, please contact opus@govst.edu.

Recommended Citation
Tiyyagura, Naga Sruthi; Rallabandi, Monika; and Nalluri, Radhakrishna, "Data Migration from RDBMS to Hadoop" (2016). All
Capstone Projects. 184.
http://opus.govst.edu/capstones/184

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Governors State University

https://core.ac.uk/display/214310956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opus.govst.edu?utm_source=opus.govst.edu%2Fcapstones%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/capstones?utm_source=opus.govst.edu%2Fcapstones%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/student_capstones?utm_source=opus.govst.edu%2Fcapstones%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/capstones?utm_source=opus.govst.edu%2Fcapstones%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=opus.govst.edu%2Fcapstones%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/capstones/184?utm_source=opus.govst.edu%2Fcapstones%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/
http://www.govst.edu/cas/cpsc/ms
mailto:opus@govst.edu

2

Table of Contents
1 Project Description .. 1

1.1 Project Abstract ... 3
1.2 Competitive Information ... 3
1.3 Relationship to Other Applications/Projects ... 3
1.4 Assumptions and Dependencies .. 4
1.5 Future Enhancements .. 4
1.6 Definitions and Acronyms .. 5

2 Technical Description .. 6
2.1 Project/Application Architecture ... 6
2.2 Project/Application Information flows .. 6
2.3 Interactions with other Projects ... 7
2.4 Interactions with other Applications ... 8
2.5 Capabilities.. 10
2.6 Risk Assessment and Management ... 11

3 Project Requirements ... 12
3.1 Identification of Requirements .. 12
3.2 Operations, Administration, Maintenance and Provisioning (OAM&P) .. 12

4 Project Design Description .. 14
5 Project Internal/external Interface Impacts and Specification .. 18
6 Functional overview .. 19 I

6.1 Impact ... 21
7 Open Issues .. 23
8 References .. 27

3

1 ProjectDescription

1.1 Project Abstract

Oracle, IBM, Microsoft and Teradata own a large portion of the information on the planet. By that on the off chance
that we run an inquiry in any piece of the world, it is likely that you are perusing the information from a Database possessed
by them. The bigger the volume of information moves from Oracle to DB2 or other is testing assignment for the business.
The conception of Hadoop and NoSQL innovation spoke to a seismic movement that shook the RDBMS market and offering
a different option for organizations. The Database merchants moved rapidly to Big Data for position and opposite. Indeed,
even everybody has own enormous information innovation like prophet NoSQL and mongo DB ,There is a colossal business
sector for an elite information movement that can duplicate the information and put away in RDBMS Databases to Hadoop or
NoSQL databases. Current data is available in the RDBMS databases like oracle, SQL Server, MySQL and Teradata. We are
planning to migrate RDBMS data to big data which is support NoSQL database and contains verity of data from the existed
system it’s take huge resources and time to migrate pita bytes of data. Time and resource may be constraints for the current
migrating process.

1.2 Competitive Information
In the summary report “Big Data Best Practices”, we see 45 different examples of big data exploitation by businesses

and industries of all sorts: entertainment, manufacturing, retail, financial, food services, travel, sports, fashion, politics,
gaming, and much more. This report refers to the now famous 2011 McKinsey Global Institute report (Big Data: The Next
Frontier for Innovation, Competition, and Productivity) when making this declaration: “there are no [Big Data] best practices.
I’d say there are emerging next practices.” Consequently, it is now time for all businesses to get on board that train and
exploit big data for competitive advantage. The white paper “25 Data Stories from GNIP” provides another rich compilation
of stories that demonstrate the “unlimited value and near limitless application” of big data, with a focus on business growth
and competitive advantage through social data exploitation.

• Hundreds of built-in data-type conversions, transformers, look-up matching, and aggregations
• Robust metadata, data lineage, and data modeling capabilities
• Data quality and profiling subsystems
• Workflow management, i.e., a GUI for generating ETL scripts and handling errors
• Fine grained, role-based security

1.3 Relationship to Other Applications/Projects
Normally folks use NoSQL DBs(like HBase, Cassandra) with Hadoop. Using these DBs with hadoop is merely a

matter of configuration. You don't need any connecting program in order to achieve this. Apart from the point made by
@Doctor Dan, there are few other reasons behind choosing NoSQL DBs in place of SQL DBs. One thing is size. These
NoSQL DBs provided great horizontal scalability which enables you to store PBs of data easily. You could scale traditional
systems, but vertically. Another reason for complexityof data. The places, where these DBs are being used, mostly handle
highly unstructured data which is not very easy to deal with using traditional systems. For example, sensor data, log data etc.
Basically, I did not understand why sqoop exists. Why can’t we directly use an SQL data on Hadoop.
Although Hadoop is very good at handling your BigData needs, it is not the solution to all your needs. It is not suitable for
real-time needs. Suppose you are an Online Transaction Company with very very huge dataset. You find out that you could
process this data very easily using Hadoop. But the problem is that you can't serve the real-time needs of you customers with
Hadoop. This is where SQOOP comes into picture. It is an import/export tool that allows you to move data between a SQL
DB and Hadoop. You could move your BigData into your Hadoop cluster, process it there and then push the results back into
your SQL DB using SQOOP to serve the real-time needs of your customers.

http://www.bigdata-startups.com/best-practices/
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://lp.gnip.com/rs/gnip/images/Gnip-25-Data-Stories.pdf

4

A traditional RDBMS is used to handle relational data. Hadoop works well with structured as well as unstructured data, and
supports various serialization and data formats for example Text, Json, Xml, Avro etc. I would say there are problems where
SQL databases are a perfect choice. if your data size permits it and your data type is relational, you are fine to use the
RDBMS approach. Its worked well in the past, its a mature technology and it has its needs.
Where the data size or type is such that you are unable to save it in an RDBMS, go for solutions like Hadoop. One such
example is a product catalog. A car has different attributes than a television. It is tough to create a new table per product type.
Another example is machine generated data. in this case the data size creates a big pressure on the traditional RDBMS. Thats
a classic Hadoop problem. Or document indexing. There are various such examples.

1.4 Assumptions and Dependencies

In CDH 3, all of the Hadoop API implementations were confined to a single JAR file (hadoop-core) plus a few of its
dependencies. It was relatively straightforward to make sure that classes from these JAR files were available at runtime.

CDH 4 and CDH 5 are more complex: they bundle both MRv1 and MRv2 (YARN). To simplify things, CDH 4 and CDH 5
provide a Maven-based way of managing client-side Hadoop API dependencies that saves you from having to figure out the
exact names and locations of all the JAR files needed to provide Hadoop APIs.

In CDH 5, Cloudera recommends that you use a hadoop-client artifact for all clients, instead of managing JAR-file-based
dependencies manually.

• Flavors of the hadoop-client Artifact

• Versions of the hadoop-client Artifact

• Using hadoop-client for Maven-based Java Projects

• Using hadoop-client for Ivy-based Java Projects

• Using JAR Files Provided in the hadoop-client Package

1.5 Future Enhancements

Hadoop is immature technology. As such, it naturally offers much room for improvement in both industrial-
strengthens and performance. And since Hadoop is booming, multiple efforts are underway to fill those gaps. For example:

• Cloudera’s proprietary code is focused on management, set-up, etc.
• The “Phase 1″ plans Hortonworks shared with me for Apache Hadoop are focused on industrial-strengthness, as

are significant parts of “Phase 2″.*
• MapR tells a performance story versus generic Apache Hadoop HDFS and MapReduce. (One aspect of same is

just C++ vs. Java.)
• So does Hadapt, but mainly vs. Hive.
• Cloudera also tells me there’s a potential 4-5X performance improvement in Hive coming down the pike from

what amounts to an optimizer rewrite.

(Zettaset belongs in the discussion too, but made an unfortunate choice of embargo date.)

Hortonworks, a new Hadoop company spun out of Yahoo, graciously permitted me to post a slide deck outlining an Apache
Hadoop roadmap. Phase 1 refers to stuff that is underway more or less now. Phase 2 is scheduled for alpha in October, 2011,
with production availability not too late in 2012.

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_1_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_2_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_3_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_4_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_5_unique_1
http://www.dbms2.com/2011/07/06/hadapt-update/
http://www.dbms2.com/2011/07/10/cloudera-and-hortonworks/
http://www.monash.com/uploads/Hortonworks-Apache-Hadoop-July-2011.pptx

5

You’ve probably heard some single point of failure fuss. Hadoop NameNodes can crash, which wouldn’t cause data loss, but
would shut down the cluster for a little while. It’s hard to come up with real-life stories in which this has been a problem;
still, it’s something that should be fixed, and everybody (including the Apache Hadoop folks, as part of Phase has a favored
solution. A more serious problem is that Hadoop is currently bad forsmall updates, because:

• Hadoop’s fundamental paradigm assumes batch processing.
• Both major workarounds to allow small updates are broken:

• HBase is seriously buggy, to the point that it sometimes loses data.
• Storing each update in a separate file runs afoul of a practical limit of 70-100 million files.

File-count limits also get blamed for a second problem, in that there may not be enough intermediate files allowed for your
Reduce steps, necessitating awkward and perhaps poorly-performing MapReduce workarounds. Anyhow, the Phase 2
Apache Hadoop roadmap features a serious HBase rewrite. I’m less clear as to where things stand with respect to file-count
limits.

Edits: As per the comments below, I should perhaps have referred to HBase’s HDFS underpinnings rather than HBase itself.
Anyhow, some details are in the slides. Please also see my follow-up post on how well HBase is indeed doing.

The other big area for Hadoop improvement is modularity, pluggability, and coexistence, on both the storage and application
execution tiers. For example:

• Greenplum/MapR and Hadapt both think you should have HDFS file management and relational DBMS
coexisting on the same storage nodes. (I agree.)

• Part of what Hortonworks calls “Phase 2″ sets out to ensure that Hadoop can properly manage temp space and so
on next to HDFS.

• Perhaps HBase won’t always assume HDFS.
• DataStax thinks you should blend HDFS and Cassandra.

Meanwhile, Pig and Hive need to come closer together. Often you want to stream data into Hadoop. The argument that MPI
trumps MapReduce does, in certain use cases, make sense. Apache Hadoop “Phase 2″ and beyond are charted to
accommodate some of those possibilities too.

1.6 Definitions and Acronyms

ETL.. Ectract, Transform and Load
SQL.. Structured Query Language
HDFS.. Hadoop Distributed File System
XML.. Extensible Markup Language
GUI.. Graphical User Interphase
HSQLDB.. Hyper SQL Database
NFS.. Network File System
CLI.. Command Line
API.. Application Programming Interphases
JDBC.. Java Database Connectivity
ODBC..Open Database Connectivity
SIEM.. Security Information Event Management
Vm.. Virtual Machine
Hadoop is an open-source software framework for storing data and running applications on clusters of commodity hardware.
It provides massive storage for any kind of data, enormous processing power and the ability to handle virtually limitless
concurrent tasks or jobs.

• Open-source software. Open-source software is created and maintained by a network of developers from around
the globe. It's free to download, use and contribute to, though more and more commercial versions of Hadoop are
becoming available.

• Framework. In this case, itmeans that everything you need to develop and run software applications is provided –
programs, connections, etc.

http://www.dbms2.com/2011/07/18/hbase-is-not-broken/
http://www.dbms2.com/2011/07/10/2010/08/16/vertica-flash-temp-space/
http://www.dbms2.com/2011/03/23/datastax-cassandrafs-hadoop-brisk/
http://www.dbms2.com/2011/04/21/sas-hpa-does-make-sense-after-all/
http://www.dbms2.com/2011/04/21/sas-hpa-does-make-sense-after-all/

6

• Massive storage. The Hadoop framework breaks big data into blocks, which are stored on clusters of commodity
hardware.

• Processing power. Hadoop concurrently processes large amounts of data using multiple low-cost computers for fast
results.

2 Technical Description

By utilizing Sqoop we will import information from a social database framework into HDFS. The info to the import
procedure is a database table. Sqoop will read the table column by-line into HDFS. The yield of this import procedure is an
arrangement of documents containing a duplicate of the foreign made table. The import procedure is performed in parallel.
Thus, the yield will be in different documents. These documents may be delimited content records or paired .A by-result of
the import procedure is a created Java class which can epitomize one line of the foreign made table. This class is utilized
amid the import process by Sqoop itself.In the wake of controlling the foreign records with Hive we will have outcome
information set which you can then fare back to the social database. Sqoop's fare procedure will read an arrangement of
delimited content documents from HDFS in parallel, parse them into records, and supplement them as new lines in an
objective database table, for utilization by outer applications or clients.

2.1 Project/Application Architecture

2.2 Project/Application Information flows:

Application Information flows have three steps strategy to move data from RDMS to HIVE on Hadoop.
Flows have three steps strategy to move data from RDMS to HIVE on Hadoop.
Depending on whether direct access is available to the RDBMS source system, you may opt for either a File Processing
method (when no direct access is available) or RDBMS Processing (when database client access is available).

Regardless of the ingest option, the processing workflow in this article requires:

1. One-time, initial load to move all data from source table to HIVE.

7

2. On-going, “Change Only” data loads from the source table to HIVE.

Below, both File Processing and Database-direct (SQOOP) ingest will be discussed.

2.3 File Processing

Step 1: Converting RDMS Data into Hadoop

For this blog, we assume that a file or set of files within a folder will have a delimited format and will have been generated
from a relational system (i.e. records have unique keys or identifiers).

Files will need to be moved into HDFS using standard ingest options:

• WebHDFS: Primarily used when integrating with applications, a Web URL provides an Upload end-point into a
designated HDFS folder.

• NFS: Appears as a standard network drive and allows end-users to use standard Copy-Paste operations to move files
from standard file systems into HDFS.

Once the initial set of records are moved into HDFS, subsequent scheduled events can move files containing only new Inserts
and Updates.

SQOOP is the JDBC-based utility for integrating with traditional databases. A SQOOP Import allows for the movement of
data into either HDFS (a delimited format can be defined as part of the Import definition) or directly into a Hive table.

Step 2: Store file into Hadoop cluster

In the background, the source file is split into HDFS blocks, the size of which is configurable (commonly 128 MB, 64 MB by
default). For fault tolerance, each block is automatically replicated by HDFS. By default, three copies of each block are
written to three different DataNodes. The replication factor is user-configurable (default is three). The DataNodes are servers
which are physical machines or virtual machines/cloud instances. DataNodes form the Hadoop cluster into which you write
your data and on which you run your MapReduce/Hive/Pig/Impala/Mahout/etc. programs.TheDataNodes are the workers of
the Hadoop cluster, the NameNodes are the masters.

When a file is to be written into HDFS, the client writing the file obtains from the NameNode a list of DataNodes that can
host replicas of the first block of the file.The client arranges a pipeline through which all bytes of data from the first block of
the source file will be transmitted to all participating DataNodes. The pipeline is formed from client to first DataNode to
second DataNode to final (third in our case) DataNode. The data is split into packets for transmission, and each packet is
tracked until all DataNodes return acks to indicate successful replication of the data. The packets are streamed to the first
DataNode in the pipeline, which stores the packet and forwards it to the second DataNode, and so on. If one or more
replications fail, the infrastructure automatically constructs a new pipeline and retries the copy.

When all three DataNodes confirm successful replication, the client will advance to the next block, again request a list of host
DataNodes from the NameNode, and construct a new pipeline. This process is followed until all blocks have been copied into
HDFS. The final block written may be smaller than the configured block size, but all blocks from the first to the penultimate
block will be of the configured block size.

Step 3: Read Data from HIVE

The tables in Hive are similar to tables in a relational database, and data units are organized in a taxonomy from larger to
more granular units. Databases are comprised of tables, which are made up of partitions. Data can be accessed via a simple
query language and Hive supports overwriting or appending data.

8

Within a particular database, data in the tables is serialized and each table has a corresponding Hadoop Distributed File
System (HDFS) directory. Each table can be sub-divided into partitions that determine how data is distributed within sub-
directories of the table directory. Data within partitions can be further broken down into buckets.

Hive supports all the common primitive data formats such as BIGINT, BINARY, BOOLEAN, CHAR, DECIMAL,
DOUBLE, FLOAT, INT, SMALLINT, STRING, TIMESTAMP, and TINYINT. In addition, analysts can combine primitive
data types to form complex data types, such as structs, maps and arrays.

2.4 Interactions with other Applications
Hive is a data warehousing infrastructure built on top of apache Hadoop.

Hadoop provides massive scale-out and fault-tolerance capabilities for data storage and processing (using the MapReduce
programming paradigm) on commodity hardware.

Hive enables easy data summarization, ad-hoc querying and analysis of large volumes of data.

It is best used for batch jobs over large sets of immutable data (like web logs).

It provides a simple query language called Hive QL, which is based on SQL and which enables users familiar with SQL to
easily perform ad-hoc querying, summarization and data analysis.

At the same time, Hive QL also allows traditional MapReduce programmers to be able to plug in their custom mappers and
reducers to do more sophisticated analysis that may not be supported by the built-in capabilities of the languag

Hive Query Language capabilities:

Hive query language provides the basic SQL like operations. These operations work on tables or partitions.

• Ability to create and manage tables and partitions (create, drop and alter).
• Ability to support various Relational, Arithmetic and Logical Operators.
• Ability to do various joins between two tables.
• Ability to evaluate functions like aggregations on multiple “group by” columns in a table.
• Ability to store the results of a query into another table.
• Ability to download the contents of a table to a local directory.
• Ability to create an external table that points to a specified location within HDFS
• Ability to store the results of a query in an HDFS directory.
• Ability to plug in custom scripts using the language of choice for custom map/reduce jobs.

Major Components of Hive and its interaction with Hadoop:

Hive provides external interfaces like command line (CLI) and web UI, and application programming interfaces (API)
like JDBC and ODBC. The Hive Thrift Server exposes a very simple client API to execute HiveQL statements. Thrift is a
framework for cross-language services, where a server written in one language (like Java) can also support clients in other
languages.

The Metastore is the system catalog. All other components of Hive interact with the Metastore.

The Driver manages the life cycle of a HiveQL statement during compilation, optimization and execution.

The Compiler is invoked by the driver upon receiving a HiveQL statement. The compiler translates this statement into a plan
which consists of a DAG of map/reduce jobs.

The driver submits the individual map/reduce jobs from the DAG to the Execution Engine in a topological order. Hive
currently uses Hadoop as its execution engine.

What Hive is NOT

Hive is not designed for online transaction processing and does not offer real-time queries and row-level updates.

9

Hive aims to provide acceptable (but not optimal) latency for interactive data browsing, queries over small data sets or test
queries.

Hive Applications:

• Log processing
• Text mining
• Document indexing
• Customer-facing business intelligence (e.g., Google Analytics)
• Predictive modeling, hypothesis testing

Data is the new currency of the modern world. Businesses that successfully maximize its value will have a decisive impact on
their own value and on their customers’ success. As the de-facto platform for big data, Apache Hadoop allows businesses to
create highly scalable and cost-efficient data stores. Organizations can then run massively parallel and high-performance
analytical workloads on that data, unlocking new insight previously hidden by technical or economic limitations. Hadoop
offers data value at unprecedented scale and efficiency -- in part thanks to Apache Tez and YARN.

Analytic applications perform data processing in purpose-driven ways that are unique to specific business problems or vendor
products. There are two prerequisites to creating purpose-built applications for Hadoop data access. The first is an "operating
system" (somewhat akin to Windows or Linux) that can host, manage, and execute these applications in a shared Hadoop
environment. Apache YARN is that data operating system for Hadoop. The second prerequisite is an application-building
framework and a common standard that developers can use to write data access applications that run on YARN.

Apache Tez meets this second need. Tez is an embeddable and extensible framework that enables easy integration with
YARN and allows developers to write native YARN applications that bridge the spectrum of interactive and batch
workloads. Tez leverages Hadoop's unparalleled ability to process petabyte-scale datasets, allowing projects in the Apache
Hadoop ecosystem to express fit-to-purpose data processing logic, yielding fast response times and extreme throughput. Tez
brings unprecedented speed and scalability to Apache projects like Hive and Pig, as well as to a growing field of third-party
software applications designed for high-speed interaction with data stored in Hadoop.

Hadoop in a post-MapReduce world

Those familiar with MapReduce will wonder how Tez is different. Tez is a broader, more powerful framework that maintains
MapReduce’s strengths while overcoming some of its limitations. Tez retains the following strengths from MapReduce:

• Horizontal scalability with increasing data size and compute capacity
• Resource elasticity to work both when capacity is abundant and when it’s limited

http://hortonworks.com/hadoop/yarn/
http://hortonworks.com/hadoop/tez/

10

• Fault tolerance and recovery from inevitable and common failures in distributed systems
• Secure data processing using built-in Hadoop security mechanisms

But Tez is not an engine by itself. Rather, Tez provides common primitives for building applications and engines -- thus, its
flexibility and customizability. Developers can write MapReduce jobs using the Tez library, and Tez comes with a built-in
implementation of MapReduce, which can be used to run any existing MapReduce job with Tez efficiency.

MapReduce was (and is) ideal for Hadoop users that simply want to start using Hadoop with minimal effort. Now that
enterprise Hadoop is a viable, widely accepted platform, organizations are investing to extract the maximum value from data
stored in their clusters. As a result, customized applications are replacing general-purpose engines such as MapReduce,
bringing about greater resource utilization and improved performance.

The Tez design philosophy
Apache Tez is optimized for such customized data-processing applications running in Hadoop. It models data processing as a
data flow graph, so projects in the Apache Hadoop ecosystem can meet requirements for human-interactive response times
and extreme throughput at petabyte scale. Each node in the data flow graph represents a bit of business logic that transforms
or analyzes data. The connections between nodes represent movement of data between different transformations.

Once the application logic has been defined via this graph, Tez parallelizes the logic and executes it in Hadoop. If a data-
processing application can be modeled in this manner, it can likely be built with Tez. Extract-Transform-Load (ETL) jobs are
a common form of Hadoop data processing, and any custom ETL application is a perfect fit for Tez. Other good matches are
query-processing engines like Apache Hive, scripting languages like Apache Pig, and language-integrated, data processing
APIs like Cascading for Java and Scalding for Scala.

2.5 Capabilities

As the amount of data continues to grow exponentially, data scientists increasingly need the ability to perform full-fidelity
analysis of that data at massive scale. Cloudera, the leader in enterprise analytic data management powered by Apache
Hadoop, today announced a number of new initiatives to enable data scientists to take advantage of big data and Hadoop for
data analysis with more complex workflows.Beginning with the introduction of Ibis, an open source project incubating within
Cloudera Labs, the company is enabling advanced data analysis on a 100% Python stack—bringing a native Python
experience to Hadoop at scale. Cloudera has also announced that, as a direct contributor and industry leader in education
around Hadoop, Cloudera will be hosting and organizing the first-everWrangle Conference, an event focused exclusively on
real-world applications of data science, from the startup to the enterprise.“Hadoop has evolved dramatically over the last
decade, from a batch processing tool to an entire ecosystem that powers most of today’s information architecture as well as
traditional BI workloads,” said Wes McKinney, a software engineer at Cloudera and the creator of Python pandas. “We want
to build on this momentum and make Hadoop’s infrastructure more accessible to the data science community. We’re doing
that by bringing Python more fully into the ecosystem and focusing on the real-world, practical applications of data science.”

Ibis

Cloudera recognized the importance of the Python language in modern data engineering and data science and how, thanks to
its use of more complex workflows, it has become a primary language for data transformation and interactive analysis.
Python development has been confined to local data processing and smaller data sets, requiring data scientists to make many
compromises when attempting to work with big data. Using Ibis, a new open source data analysis framework, Python users
will finally be able to process data at scale without compromising user experience or performance.

The initial version of Ibis provides an end-to-end Python experience with comprehensive support for the built-in analytic
capabilities in Impala for simplified ETL, data wrangling, and analytics. Upcoming versions will allow users to leverage the
full range of Python packages as well as express efficient custom logic using Python. By integrating with Impala, the leading
MPP database engine for Hadoop, Ibis can achieve the interactive performance and scalability necessary for big data.

http://www.cloudera.com/content/cloudera/en/home.html
http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html
http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html

11

“With its usability, extensibility and robust third-party library ecosystem, it’s easy to understand why Python is the open
source language of choice for so many data scientists. However, we recognize its limitation – where it’s unable to achieve
high performance at Hadoop-scale,” said Wes McKinney. “With Ibis, our vision is to provide a first-class Python experience
on large scalable architectures like Hadoop, with full access to the ecosystem of Python tools.

XML processing

While many traditional databases provide XML support, the XML content must first be loaded into the database. Because
Hive tables can be linked to a collection of XML files or document fragments stored in the Hadoop file system, Hadoop is
much more flexible in analyzing XML content.

Web and text processing

In addition to XPath operators, the Hive query language offers several ways to work with common web and text data.
Tableau exposes the following functions that you can use in calculated fields:

• JSON Objects: GET_JSON_OBJECT retrieves data elements from strings containing JSON objects.
• URLs: Tableau offers PARSE_URL to extract the components of a URL such as the protocol type or the host name.

Additionally, PARSE_URL_QUERY can retrieve the value associated with a given query key in a key/value
parameter list.

• Text Data: The regular expression find and replace functions in Hive are available in Tableau for complex text
processing.

On-the-fly ETL

Custom SQL gives you the flexibility of using arbitrary queries for your connection, which allows complex join conditions,
pre-filtering, pre-aggregation and more. Traditional databases rely heavily on optimizers, but they can struggle with complex
Custom SQL and lead to unexpected performance degradation as you build views. The batch-oriented nature of Hadoop
allows it to handle layers of analytical queries on top of complex Custom SQL with only incremental increases to query time.

Because Custom SQL is a natural fit for the complex layers of data transformations seen in ETL, a Tableau connection to
Hive based on Custom SQL is essentially on-the-fly ETL. Refer to the Hadoop and Tableau Demo on the Tableau blog to see
how you can use Custom SQL to unpivot nested XML data directly in the Custom SQL connection, yielding views built from
the unpivoted data.

Initial SQL

Tableau supports initial SQL for Hadoop Hive connections, which allows you to define a collection of SQL statements to
perform immediately after the connection is established. For example, you can set Hive and Hadoop configuration variables
for a given connection from Tableau to tune performance characteristics. Refer to the Designing for Performancearticle for
more information.

Custom analysis with UDFs and Map/Reduce

Similarly, Tableau allows you to take advantage of custom UDFs and UDAFs built by the Hadoop community or by your
own development team. Often these are built as JAR files that Hadoop can easily copy across the cluster to support
distributed computation. To take advantage of JAR files or scripts, inform Hive of the location of these files and Hive will
take care of the rest.

http://www.tableausoftware.com/de-de/about/blog/2011/10/sneak-peek-hadoop-and-tableau-demo-13849
http://kb.tableausoftware.com/articles/knowledgebase/cloudera-hadoop-hive-performance?lang=de-de

12

2.6 Risk Assessment and Management

The following were the disadvantages of hadoop:
• As big data is not suitable for small business
• There is a missing encryption methodology for storage and network levels.
• There are lot of stability issues in Hadoop.

3 Project Requirements

3.1 Identification of Requirements
 Their creation, called Hive, allows SQL developers to write Hive Query Language (HQL) statements that are similar
to standard SQL statements; now you should be aware that HQL is limited in the commands it understands, but it is still
pretty useful. HQL statements are broken down by the Hive service into Map Reduce jobs and executed across a Hadoop
cluster.

Hive looks very much like traditional database code with SQL access. However, because Hive is based on Hadoop and Map
Reduce operations, there are several key differences. The first is that Hadoop is intended for long sequential scans, and
because Hive is based on Hadoop, you can expect queries to have a very high latency (many minutes). This means that Hive
would not be appropriate for applications that need very fast response times, as you would expect with a database such as
DB2. Finally, Hive is read-based and therefore not appropriate for transaction processing that typically involves a high
percentage of write operations.

Hive has three main functions: data summarization, query and analysis. It supports queries expressed in a language called
HiveQL, which automatically translates SQL-like queries into Map Reduce jobs executed on Hadoop. In addition, HiveQL
supports custom Map Reduce scripts to be plugged into queries. Hive also enables data serialization/deserialization and
increases flexibility in schema design by including a system catalog called Hive-Metastore.

Hive supports text files (also called flat files), Sequence Files (flat files consisting of binary key/value pairs) and RCFiles
(Record Columnar Files which store columns of a table in a columnar database way.)

3.2 Security and Fraud Prevention
Since fraud is so hard to prove in courts, most organizations and individuals try to prevent fraud from happening by

blanket measures. This includes limiting the amount of damage the fraudster can impact on the organization as well as early
detection of fraud patterns. For example, credit card companies can cut the credit card limit across the board in anticipation
of a few negative fraud cases. Advertisers can prevent advertising campaigns with low number of qualifying events. And
anti-terrorism agencies can prevent people with bottles of pure water from boarding the planes. These actions are often in
contrast with the company efforts to attract more customers and result in general dissatisfaction. To the rescue are new
technologies like Hadoop, Influence Diagrams and Bayesian Networks which are computationally expensive (these are NP-
hard in computer science terminology) but are more accurate and predictive.Hadoop is known for its gnawing power.
Nothing can compare with the throughput power of thousands of machines each of which has multiple cores. As was
reported recently at the Hadoop Summit 2010, the largest installations of Hadoop have 2,000 to 4,000 computers with 8 to 12
cores each, amounting to up to 48,000 active threads looking for a pattern at the same time. This allows either (a) looking
through larger periods of time to incorporate events across a larger time frame or (b) taking more sources of information into
account. It is quite common among social network companies to comb through twitter blogs in search of relevant data.

Finally, one of the fraud prevention problems is latency. The agencies want to react to an event as soon as possible, often
within a few minutes of the event. Yahoo recently reported that it can adjust its behavioral model in a response to a user
click event within 5-7 minutes across several hundred of millions of customers and billions of events per day. Cloudera has
developed a tool, Flume, that can load billions of events into HDFS within a few seconds and analyze them using
MapReduce.

13

Often fraud detection is akin to “finding a needle in a haystack”. One has to go through mountains of relevant and seemingly
irrelevant information, build dependency models, evaluate the impact and thwart the fraudster actions. Hadoop helps with
finding patterns by processing mountains of information on thousands of cores in a relatively short amount of time.
As fraud and security breaches are becoming more frequent and sophisticated, traditional security solutions are not able to
protect company assets. MapR enables organizations to analyze unlimited amounts and types of data in real time, widen the
scale and accelerate the speed of threat analysis, and improve risk assessment by building sophisticated machine learning
models. Specific use cases include protection against infrastructure risks as well as consumer-oriented risks across different
industries:

• Security Information and Event Management (SIEM): Analyze and correlate large amounts of real-time data from
network and security devices to manage external and internal security threats, improve incident response time and
compliance reporting.

• Application Log Monitoring: Improve analysis of application log data to better manage system resource utilization,
security issues, and diagnose and preempt production application problems.

• Network Intrusion Detection: Monitor and analyze network traffic to detect, identify, and report on suspicious
activity or intruders.

• Fraud Detection: Use pattern/anomaly recognition on larger volumes and variety of data to detect and prevent
fraudulent activities by external or internal parties.

Risk Modeling: Improve risk assessment and associated scoring by building sophisticated machine learning models on
Hadoop that can take into account hundreds or even thousands of indicators.

MapR Advantages:

• Easy data ingestion: Copying data to and from the MapR cluster is as simple as copying data to a standard file
system using Direct Access NFS™. Applications can therefore ingest data into the Hadoop cluster in real time without
any staging areas or separate clusters just to ingest data.

• Existing applications work: Due to the MapR platform's POSIX compliance, any non- Java application works
directly on MapR without undergoing code changes. Existing toolsets, custom utilities and applications are good to go on
day one.

• Multi-tenancy: Support multiple user groups, any and all enterprise data sets, and multiple applications in the same
cluster. Data modelers, developers and analysts can all work in unison on the same cluster without stepping on each
other's toes.

• Business continuity: MapR provides integrated high availability (HA), data protection, and disaster recovery (DR)
capabilities to protect against both hardware failure as well as site-wide failure.

• High scalability: Scalability is key to bringing all data together on one platform so the analytics are much more
nuanced and accurate. MapR is the only platform that scales all the way to a trillion files without compromising
performance.

• High performance: The MapR Distribution for Hadoop was designed for high performance, with respect to both
high throughput and low latency. In addition, a fraction of servers are required for running MapR versus other Hadoop
distributions, leading to architectural simplicity and lower capital and operational expenses.

14

4 Project Description

Install Oracle VM Virtual Box Manager and load Hortonworks Sandbox with HDP 2.3

Connect to the Server:

15

Data flows have three steps strategy to move data from RDMS to HIVE on Hadoop.

Step 1: Convert the all data into files by using Sqoop

listdatbases in mysql:

sqoop list-databases --connect jdbc:mysql://localhost --username sruthi --password sruthi

list tables in specific database:

sqoop list-tables --connect jdbc:mysql://localhost/gsuproj --username sruthi --password sruthi

sqoop import --connect jdbc:mysql://localhost/gsuproj --username sruthi --password sruthi --table pagelinks --target-
dirsqoop-data

sqoop import --connect jdbc:mysql://localhost/gsuproj --username sruthi --password sruthi --table pagelinks
--hive-import

Converting data in to file and can see the file names:

16

Step 2: Store file into Hadoop cluster

Connect to the server

Move file into HDFS by using below command

hadoopfs -copyFromLocal/root/myprojfile
hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/pagelinks

Step 3: Read Data from HIVE

Connect to the Hive from root

17

Create table command:

CREATE external TABLE pagelinks (

pl_from string,

pl_namespace string,

pl_title string,

pl_from_namespace string)

 Row Format Delimited fields terminated by '~'

LOCATION hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse;

LOAD DATA INPATH hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse
INTO TABLE pagelinks

18

5 ProjectInternal/external Interface Impactsand Specification

Hadoop has become one of the most important technologies, the key factors of hadoop are as follows:

Low Cost :

Hadoop is an free open Source frame work, and uses commodity hardware to store substantial amount of data. Hadoop
additionally offers a practical stockpiling answer for organizations' blasting information sets. The issue with customary social
database administration frameworks is that it is amazingly taken a toll restrictive to scale to such an extent so as to process
such huge volumes of information. With an end goal to lessen costs, numerous organizations in the past would have needed
to down-example information and characterize it in view of specific presumptions as to which information was the most
significant. The crude information would be erased, as it would be excessively taken a toll restrictive, making it impossible to
keep. While this methodology may have worked in the short term, this implied that when business needs changed, the
complete crude information set was not accessible, as it was so costly it was not possible store. Hadoop, then again, is
outlined as a scale-out structural planning that can reasonably store the majority of an organization's information for later
utilize. The expense reserve funds are stunning: as opposed to costing thousands to a huge number of pounds every terabyte,
Hadoop offers figuring and stockpiling capacities for many pounds every terabyte.

Flexible:

 Hadoop empowers organizations to effectively get to new information sources and tap into distinctive sorts of information
(both organized and unstructured) to create esteem from that information. This implies organizations can utilize Hadoop to
get profitable business bits of knowledge from information sources, for example, social networking, email discussions
information. Moreover, Hadoop can be utilized for a wide mixed bag of purposes, for example, log handling, suggestion
frameworks,

information warehousing, business sector battle investigation and misrepresentation discovery.

Computing power:

 Hadoop is a distributed processing model, so it can prepare vast measure of information. The additionally
registering hubs you utilize.

Fast:

Hadoop’s unique storage method is based on a distributed file system that basically ‘maps’ data wherever it is located on a
cluster. The tools for data processing are often on the same servers where the data is located, resulting in much faster data
processing. If you’re dealing with large volumes of unstructured data, Hadoop is able to efficiently process terabytes of data
in just minutes petabytes in hours.

Storage Flexibility:

Unlike traditional relational databases, you don’t have to preprocess data before storing it. And that includes unstructured
data like text, images and videos. You can store as much data as you want and

decide how to use it later.

Inherent data protection and self-healing capabilities:

Data and application processing are protected against hardware failure. If a node goes down, jobs are automatically redirected
to other nodes to make sure the distributed computing does not fail. And it automatically stores multiple copies of all data.

19

19

6 Functional overview

The idea underpinning map-reduce–bringing compute to the data instead of the opposite–should sound like a very
simple solution to the I/O bottleneck inherent in traditional parallelism. However, the devil is in the details, and
implementing a framework where a single large file is transparently diced up and distributed across multiple physical
computing elements (all while appearing to remain a single file to the user) is not trivial.

Hadoop, perhaps the most widely used map-reduce framework, accomplishes this feat using HDFS, the Hadoop Distributed
File System. HDFS is fundamental to Hadoop because it provides the data chunking and distribution across compute
elements necessary for map-reduce applications to be efficient. Since we’re now talking about an actual map-reduce
implementation and not an abstract concept, let’s refer to the abstract compute elements now as compute nodes.

HDFS exists as a filesystem into which you can copy files to and from in a manner not unlike any other filesystem. Many of
the typical commands for manipulating files (ls, mkdir, rm, mv, cp, cat,tail, and chmod, to name a few) behave as you might
expect in any other standard filesystem (e.g., Linux’s ext4).

The magical part of HDFS is what is going on just underneath the surface. Although it appears to be a filesystem that
contains files like any other, in reality those files are distributed across multiple physical compute nodes:

When you copy a file into HDFS as depicted above, that file is transparently sliced into 64 MB “chunks” and replicated three
times for reliability. Each of these chunks are distributed to various compute nodes in the Hadoop cluster so that a given 64
MB chunk exists on three independent nodes. Although physically chunked up and distributed in triplicate, all of your
interactions with the file on HDFS still make it appear as the same single file you copied into HDFS initially. Thus, HDFS
handles all of the burden of slicing, distributing, and recombining your data for you.

HDFS’s chunk size and replication The 64 MB chunk (block) size and the choice to replicate your data three times are only
HDFS’s default values. These decisions can be changed:

• The 64 MB block size can be modified by changing the dfs.block.size property in hdfs-site.xml. It is common to
increase this to 128 MB in production environments.

• The replication factor can be modified by changing the dfs.replication property in hdfs-site.xml. It can also be
changed on a per-file basis by specifying -D dfs.replication=1on your -put command line, or using the hadoopdfs -
setrep -w 1 command.

20

20

Map-Reduce Jobs

HDFS is an interesting technology in that it provides data distribution, replication, and automatic recovery in a user-space
filesystem that is relatively easy to configure and, conceptually, easy to understand. However, its true utility comes to light
when map-reduce jobs are executed on data stored in HDFS.

As the name implies, map-reduce jobs are principally comprised of two steps: the map step and the reduce step. The overall
workflow generally looks something like this:

The left half of the diagram depicts the HDFS magic described in the previous section, where thehadoopdfs -
copyFromLocal command is used to move a large data file into HDFS and it is automatically replicated and distributed
across multiple physical compute nodes. While this step of moving data into HDFS is not strictly a part of a map-reduce job
(i.e., your dataset may already have a permanent home on HDFS just like it would any other filesystem), a map-reduce job’s
input data must already exist on HDFS before the job can be started.

The Map Step
Once a map-reduce job is initiated, the map step

1. Launches a number of parallel mappers across the compute nodes that contain chunks of your input data
2. For each chunk, a mapper then “splits” the data into individual lines of text on newline characters (\n)
3. Each split (line of text that was terminated by \n) is given to your mapper function
4. Your mapper function is expected to turn each line into zero or more key-value pairs and then “emit” these key-

value pairs for the subsequent reduce step

That is, the map step’s job is to transform your raw input data into a series of key-value pairs with the expectation that these
parsed key-value pairs can be analyzed meaningfully by the reduce step. It’s perfectly fine for duplicate keys to be emitted by
mappers.

The decision to split your input data along newline characters is just the default behavior, which assumes your input data is
just an ascii text file. You can change how input data is split before being passed to your mapper function using
alternate InputFormats.

The Reduce Step

Once all of the mappers have finished digesting the input data and have emitted all of their key-value pairs, those key-value
pairs are sorted according to their keys and then passed on to the reducers. The reducers are given key-value pairs in such a
way that all key-value pairs sharing the same key always go to the same reducer. The corollary is then that if one particular
reducer has one specific key, it is guaranteed to have all other key-value pairs sharing that same key, and all those common
keys will be in a continuous strip of key-value pairs that reducer received.

Your job’s reducer function then does some sort of calculation based on all of the values that share a common key. For
example, the reducer might calculate the sum of all values for each key (e.g., the word count example). The reducers then

http://www.glennklockwood.com/data-intensive/hadoop/mapreduce-workflow.png
http://www.glennklockwood.com/data-intensive/hadoop/streaming.html
http://www.glennklockwood.com/data-intensive/hadoop/mapreduce-workflow.png�

21

21

emit key-value pairs back to HDFS where each key is unique, and each of these unique keys’ values are the result of the
reducer function’s calculation.

6.1 Impact
VMware’s new vSphere Big Data Extensions (BDE) commercializes its open source Project Serengetito make it dead

easy for enterprise admins to spin and up down virtual Hadoop clusters at will. Now that VMware has made it clear that
Hadoop is going to be fully supported as a virtualized workload in enterprise vSphere environments, here at Taneja Group we
expect a rapid pickup in Hadoop adoption across organizations of all sizes
Big Data, Virtually
However, Hadoop is all about mapping parallel compute jobs intelligently over massive amounts of distributed data. Cluster
deployment and operation are becoming very easy for the virtual admin. But in a virtual environment where storage can be
effectively abstracted from compute clients, there are some important complexities and opportunities to consider when
designing the underlying storage architecture. Some specific concerns with running Hadoop in a virtual environment include
considering how to configure virtual data nodes, how to best utilize local hypervisor server DAS, and when to think about
leveraging external SAN/NAS.

Big Data, Virtually
The main idea behind virtualizing Hadoop is to take advantage of deploying Hadoop scale-out nodes as virtual machines
instead of as racked commodity physical servers. Clusters can be provisioned on-demand and elastically expanded or shrunk.
Multiple Hadoop virtual nodes can be hosted on each hypervisor physical server, and as virtual machines can be easily
allocated more or less resource for a given application. Hypervisor level HA/FT capabilities can be brought to bear on
production Hadoop apps. VMware’s BDE even includes QoS algorithms that help prioritize clusters dynamically, shrinking
lower-priority cluster sizes as necessary to ensure high-priority cluster service.

Obviously, one of the big concerns with virtualizing Hadoop is about performance. Much of Hadoop’s value lies in how it
effectively executes parallel algorithms over distributed data chunks. Hadoop takes advantage of high data “locality” by
spreading out big data over many nodes using HDFS (Hadoop Distributed File System). It then farms out parallelized
compute tasks local to each data node for initial processing (the “map” part of MapReduce implemented by job and task
trackers).

The design, with each scale-out physical node hosting both local compute and a share of data, is intended to support
applications like searching and scoring. These applications might often need to crawl through all the data of massively large
data sets, which are commonly made up of low-level semi- or unstructured text and documents.

Commonly, each HDFS data node will be assigned raw physical host server DAS disks directly by the hypervisor. HDFS will
then replicate data across data nodes, by default making two copies on different data nodes. On a physical cluster, replicates
are placed on different server nodes by definition (one data node per server). HDFS also knows to place the second replicate
on a different “rack” of nodes to help avoid rack level loss.

In the virtual world, Hadoop must become aware of the hypervisor grouping of virtual nodes in order to ensure good physical
data placement and subsequent job/task assignment. This virtual awareness is implemented by the Hadoop Virtual Extensions
(HVE) that VMware contributed into Apache Hadoop 1.2.

Hadoop Virtual Extensions
The Hadoop Virtual Extensions do break the virtual abstraction between application and physical hosting. But in some ways,
the Hadoop platform can be seen as another layer of the virtualization, adding scale-out data and computing management to
the hypervisor.

http://www.vmware.com/hadoop
http://www.projectserengeti.org/

22

22

The HVE essentially inserts a new level of “node group” into the Hadoop hierarchy between nodes and racks. Node groups
represent the set of virtual Hadoop nodes on each given hypervisor server to help inform Hadoop and HDFS management
algorithms.

The effect is that Hadoop can maintain knowledge of “data locality” even in the virtual environment to keep compute tasks
close to required data for performance, and ensure optimal placement of replicates for fault tolerance.

Data Node Options
When you virtualize Hadoop nodes, you also have the option to separate the compute side (task trackers, et.al.) from the data
node and place them each in different virtual machines. If the compute node and data node virtual machines still reside on the
same hypervisor server, then they can effectively communicate over a virtual network “in-memory” and won’t suffer any
significant physical network latencies. HVE can ensure that this data local relationship is maintained for performance.

Separating out the data node from compute nodes gives you orthogonal scaling and the option to host multiple compute
nodes sharing a single data node. This new flexibility enables optimizing the utilization of the host physical server resources,
although getting the ratios right for each application might require a lot of experimentation.
In fact, HDFS can be offered as a service itself, managed as a more permanent data repository, while various compute
“applications” can come and go quite dynamically. In this way, HDFS can now serve as a scale out virtual storage appliance.

Big Data SAN?
One of the cost-compelling reasons to look at a physical Hadoop architecture is to avoid expensive SANs, especially as the
data sets grow larger. Yet in the virtual environment it may make sense to consider SAN storage for some big data sets.
One reason is that provisioning compute-only virtual Hadoop clusters is quite simple with VMware’s BDE GUI, but
throwing around big data sets is still going to be a challenge. By hosting the data on external shared storage, provisioning
virtual Hadoop hosting becomes almost trivial. And hypervisor features like DRS and HA can be fully leveraged. At EMC
World 2013, Pat Gelsinger readily demonstrated spinning up and down virtual Hadoop clusters using external Isilon storage.

Another reason to look at SAN storage is if you have data governance concerns. HDFS is not easy to backup, protect, secure
or audit. SANs of course, are built with great data protection (and use fewer disks for RAID than triplicate replication) and
snapshots. It’s easy to imagine some big data applications where the data is critical enough to want to protect and rollback if
necessary. With an eye towards ensuring some high performance networking, performance from SANs can of course provide
more throughput than server DAS. It is worth mentioning disk failure recovery here too, because with big data on lots of
disks, failures become quite common.
In a normal Hadoop cluster, a local disk failure shuts down that node, and Hadoop then works around it. In a virtual
environment, a disk failure might shut down the data node, but multiple virtual data nodes can be configured per hypervisor
server. And a disk failure that sidelines a virtual data node will not take down any other virtual Hadoop nodes on that
hypervisor. With SAN storage, a highly available Hadoop application might never know that disk failures have even
happened.
There are a number of reasons why virtualizing Hadoop makes sense in many usage scenarios. As a virtual workload,
Hadoop can achieve comparable performance to physical hosting in a broad set of expected usage scenarios while further
helping consolidate and optimize IT infrastructure investments.

At this point, thousand node clusters with multiple PBs of data in continuous use aren’t likely virtualization candidates. But
we think that most organizations have some big data opportunities in the 10-20TB range, and they could be extracting value
from that data if only their IT shops could offer scale-out analytical solutions as a cost-effective service.

With a virtual Hadoop capability, a single big data set can be readily shared “in-place” between multiple virtualized Hadoop
clusters. That creates an opportunity to serve multiple clients with the same storage. By eliminating multiple copies of big
data sets, reducing the amount of data migration, and ensuring higher availability and data protection, Hadoop becomes more
manageable and readily supported as an enterprise production application.

23

23

7 Open Issues

Hadoop tracks both bugs and enhancement requests using JIRA. Input before filing a request search the Apache JIRA
database. Check the users mailing lists, both by searching the archives and by asking questions. Common Hadoop Common
issues are tracked in the HADOOP Jira instance. HDFS issues are tracked in the HDFS Jira instance. YARN issues are
tracked in the YARN Jira instance. MapReduce issues are tracked in the MAPREDUCE Jira instance.

HDFS is the primary distributed storage used by Hadoop applications. A HDFS cluster primarily consists of a
NameNode that manages the file system metadata and DataNodes that store the actual data. The HDFS Architecture Guide
describes HDFS in detail. This user guide primarily deals with the interaction of users and administrators with HDFS
clusters. The HDFS architecture diagram depicts basic interactions among NameNode, the DataNodes, and the clients.
Clients contact NameNode for file metadata or file modifications and perform actual file I/O directly with the DataNodes.

The following are some of the salient features that could be of interest to many users.

• Hadoop, including HDFS, is well suited for distributed storage and distributed processing using commodity
hardware. It is fault tolerant, scalable, and extremely simple to expand. MapReduce, well known for its simplicity
and applicability for large set of distributed applications, is an integral part of Hadoop.

• HDFS is highly configurable with a default configuration well suited for many installations. Most of the time,
configuration needs to be tuned only for very large clusters.

• Hadoop is written in Java and is supported on all major platforms.
• Hadoop supports shell-like commands to interact with HDFS directly.
• The NameNode and Datanodes have built in web servers that makes it easy to check current status of the cluster.

page. It lists the DataNodes in the cluster and basic statistics of the cluster. The web interface can also be used to browse the
file system . Hadoop includes various shell-like commands that directly interact with HDFS and other file systems that
Hadoop supports. The command bin/hdfsdfs help lists the commands supported by Hadoop shell. Furthermore, the
command bin/hdfsdfsn name displays more detailed help for a command. These commands support most of the normal files
system operations like copying files, changing file permissions, etc. It also supports a few HDFS specific operations like
changing replication of files. The bin/hdfsdfsadmin command supports a few HDFS administration related operations. This
help command lists all the commands currently supported. Some samples are below.

When Hadoop is upgraded on an existing cluster, as with any software upgrade, it is possible there are new bugs or
incompatible changes that affect existing applications and were not discovered earlier. In any non-trivial HDFS installation, it
is not an option to loose any data, let alone to restart HDFS from scratch. HDFS allows administrators to go back to earlier
version of Hadoop and rollback the cluster to the state it was in before the upgrade. HDFS upgrade is described in more detail
in Hadoop Upgrade Wiki page. HDFS can have one such backup at a time. Before upgrading, administrators need to remove
existing backup using bin/hadoopdfsadmin -finalizeUpgrade command. The following briefly describes the typical upgrade
procedure:

• Before upgrading Hadoop software, finalize if there an existing backup. dfsadmin -upgradeProgress status can tell if
the cluster needs to be finalized.

• Stop the cluster and distribute new version of Hadoop.
• Run the new version with -upgrade option (bin/start-dfs.sh -upgrade).
• Most of the time, cluster works just fine. Once the new HDFS is considered working well (may be after a few days

of operation), finalize the upgrade. Note that until the cluster is finalized, deleting the files that existed before the
upgrade does not free up real disk space on the DataNodes.

http://wiki.apache.org/hadoop/Hadoop_Upgrade

24

24

The file permissions are designed to be similar to file permissions on other familiar platforms like Linux. Currently, security
is limited to simple file permissions. The user that starts NameNode is treated as the superuser for HDFS. Future versions of
HDFS will support network authentication protocols like Kerberos for user authentication and encryption of data transfers.
The details are discussed in the Permissions Guide. Hadoop currently runs on clusters with thousands of nodes. lists some of
the organizations that deploy Hadoop on large clusters. HDFS has one NameNode for each cluster. Currently the total
memory available on NameNode is the primary scalability limitation. On very large clusters, increasing average size of files
stored in HDFS helps with increasing cluster size without increasing memory requirements on NameNode. The default
configuration may not suite very large clusters.

Yarn MapReduce has undergone a complete overhaul in hadoop-0.23 and we now have, what we call, MapReduce 2.0
(MRv2) or YARN.The fundamental idea of MRv2 is to split up the two major functionalities of the JobTracker, resource
management and job scheduling/monitoring, into separate daemons. The idea is to have a global ResourceManager (RM) and
per-application ApplicationMaster (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a
DAG of jobs.The ResourceManager and per-node slave, the NodeManager (NM), form the data-computation framework. The
ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system. The per-
application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the
ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.

Map Reduce Hadoop MapReduce is a software framework for easily writing applications which process vast amounts of data
(multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant
manner. MapReduce job usually splits the input data-set into independent chunks which are processed by the map tasks in a
completely parallel manner. The framework sorts the outputs of the maps, which are then input to the reduce tasks. Typically
both the input and the output of the job are stored in a file-system. The framework takes care of scheduling tasks, monitoring

25

25

them and re-executes the failed tasks. Typically the compute nodes and the storage nodes are the same, that is, the
MapReduce framework and the Hadoop Distributed File System (see HDFS Architecture Guide) are running on the same set
of nodes. This configuration allows the framework to effectively schedule tasks on the nodes where data is already present,
resulting in very high aggregate bandwidth across the cluster. The MapReduce framework consists of a single master
ResourceManager, one slave NodeManager per cluster-node, and MRAppMaster per application (see YARN Architecture
Guide). Minimally, applications specify the input/output locations and supply map and reduce functions via implementations
of appropriate interfaces and/or abstract-classes. These, and other job parameters, comprise the job configuration. The
Hadoop job client then submits the job (jar/executable etc.) and configuration to the ResourceManager which then assumes
the responsibility of distributing the software/configuration to the slaves, scheduling tasks and monitoring them, providing
status and diagnostic information to the job-client. Although the Hadoop framework is implemented in Java™, MapReduce
applications need not be written in Java. Mapper maps input key/value pairs to a set of intermediate key/value pairs.

Maps are the individual tasks that transform input records into intermediate records. The transformed intermediate records do
not need to be of the same type as the input records. A given input pair may map to zero or many output pairs. The Hadoop
MapReduce framework spawns one map task for each InputSplit generated by the InputFormat for the job.Overall, Mapper
implementations are passed the Job for the job via the Job.setMapperClass(Class) method. The framework then calls
map(WritableComparable, Writable, Context) for each key/value pair in the InputSplit for that task. Applications can then
override the cleanup(Context) method to perform any required cleanup. Output pairs do not need to be of the same types as
input pairs. A given input pair may map to zero or many output pairs. Output pairs are collected with calls to
context.write(WritableComparable, Writable). Applications can use the Counter to report its statistics. All intermediate
values associated with a given output key are subsequently grouped by the framework, and passed to the Reducer(s) to
determine the final output. Users can control the grouping by specifying a Comparator via
Job.setGroupingComparatorClass(Class). The Mapper outputs are sorted and then partitioned per Reducer. The total number
of partitions is the same as the number of reduce tasks for the job. Users can control which keys (and hence records) go to
which Reducer by implementing a custom Partitioner. Users can optionally specify a combiner, via
Job.setCombinerClass(Class), to perform local aggregation of the intermediate outputs, which helps to cut down the amount
of data transferred from the Mapper to the Reducer. The intermediate, sorted outputs are always stored in a simple (key-len,
key, value-len, value) format. Applications can control if, and how, the intermediate outputs are to be compressed and the
CompressionCodec to be used via the Configuration.

26

26

8 References

1. http://hadoop.apache.org/
2. http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html
3. http://hortonworks.com/hadoop
4. http://hadoop.apache.org/
5. http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html
6. http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html
7. http://www-01.ibm.com/software/data/infosphere/hadoop
8. http://www.usa.gov/About/developer-resources/1usagov.shtml
9. http://www.enterprisestorageforum.com/storage-management/the-impact-of-virtualized-hadoop.html
10. http://searchcio.techtarget.com/opinion/Hadoop-20s-deep-impact-on-big-data-and-big-data-technologies
11. http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-hs/dependency-

analysis.html
12. http://www.bodhtree.com/blog/2012/09/08/what-is-hive-it%E2%80%99s-interaction-with-hadoop-and-big-data/
13. https://www.quora.com/How-does-the-rising-popularity-of-Hadoop-impact-legacy-data-warehouse-vendors-like-

Teradata
14. http://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/39636
15. http://www.cloudera.com/content/www/en-us/campaign/data-impact-awards.html

http://hortonworks.com/hadoop

	Governors State University
	OPUS Open Portal to University Scholarship
	Spring 2016

	Data Migration from RDBMS to Hadoop
	Naga Sruthi Tiyyagura
	Monika Rallabandi
	Radhakrishna Nalluri
	Recommended Citation

	1 ProjectDescription
	1.1 Project Abstract
	1.2 Competitive Information
	1.3 Relationship to Other Applications/Projects
	1.4 Assumptions and Dependencies
	1.5 Future Enhancements
	1.6 Definitions and Acronyms

	2 Technical Description
	2.1 Project/Application Architecture
	2.2 Project/Application Information flows:
	2.3 File Processing
	2.4 Interactions with other Applications
	The Tez design philosophy

	2.5 Capabilities
	XML processing
	Web and text processing
	On-the-fly ETL
	Initial SQL
	Custom analysis with UDFs and Map/Reduce
	2.6 Risk Assessment and Management

	3 Project Requirements
	3.1 Identification of Requirements
	3.2 Security and Fraud Prevention

	4 Project Description
	Connect to the Server:
	Step 1: Convert the all data into files by using Sqoop
	Step 2: Store file into Hadoop cluster
	Step 3: Read Data from HIVE

	5 ProjectInternal/external Interface Impactsand Specification
	6 Functional overview
	Map-Reduce Jobs
	The Map Step
	The Reduce Step

	6.1 Impact

	7 Open Issues
	8 References

