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1 ProjectDescription 

1.1 Project Abstract 

Oracle, IBM, Microsoft and Teradata own a large portion of the information on the planet. By that on the off chance 
that we run an inquiry in any piece of the world, it is likely that you are perusing the information from a Database possessed 
by them. The bigger the volume of information moves from Oracle to DB2 or other is testing assignment for the business. 
The conception of Hadoop and NoSQL innovation spoke to a seismic movement that shook the RDBMS market and offering 
a different option for organizations. The Database merchants moved rapidly to Big Data for position and opposite. Indeed, 
even everybody has own enormous information innovation like prophet NoSQL and mongo DB ,There is a colossal business 
sector for an elite information movement that can duplicate the information and put away in RDBMS Databases to Hadoop or 
NoSQL databases. Current data is available in the RDBMS databases like oracle, SQL Server, MySQL and Teradata. We are 
planning to migrate RDBMS data to big data which is support NoSQL database and contains verity of data from the existed 
system it’s take huge resources and time to migrate pita bytes of data. Time and resource may be constraints for the current 
migrating process. 

1.2 Competitive Information 
In the summary report “Big Data Best Practices”, we see 45 different examples of big data exploitation by businesses 

and industries of all sorts:  entertainment, manufacturing, retail, financial, food services, travel, sports, fashion, politics, 
gaming, and much more.  This report refers to the now famous 2011 McKinsey Global Institute report (Big Data: The Next 
Frontier for Innovation, Competition, and Productivity) when making this declaration: “there are no [Big Data] best practices. 
I’d say there are emerging next practices.”  Consequently, it is now time for all businesses to get on board that train and 
exploit big data for competitive advantage. The white paper “25 Data Stories from GNIP” provides another rich compilation 
of stories that demonstrate the “unlimited value and near limitless application” of big data, with a focus on business growth 
and competitive advantage through social data exploitation. 

• Hundreds of built-in data-type conversions, transformers, look-up matching, and aggregations 
• Robust metadata, data lineage, and data modeling capabilities 
• Data quality and profiling subsystems 
• Workflow management, i.e., a GUI for generating ETL scripts and handling errors 
• Fine grained, role-based security 

 

1.3 Relationship to Other Applications/Projects 
Normally folks use NoSQL DBs(like HBase, Cassandra) with Hadoop. Using these DBs with hadoop is merely a 

matter of configuration. You don't need any connecting program in order to achieve this. Apart from the point made by 
@Doctor Dan, there are few other reasons behind choosing NoSQL DBs in place of SQL DBs. One thing is size. These 
NoSQL DBs provided great horizontal scalability which enables you to store PBs of data easily. You could scale traditional 
systems, but vertically. Another reason for complexityof data. The places, where these DBs are being used, mostly handle 
highly unstructured data which is not very easy to deal with using traditional systems. For example, sensor data, log data etc. 
Basically, I did not understand why sqoop exists. Why can’t we directly use an SQL data on Hadoop. 
Although Hadoop is very good at handling your BigData needs, it is not the solution to all your needs. It is not suitable for 
real-time needs. Suppose you are an Online Transaction Company with very very huge dataset. You find out that you could 
process this data very easily using Hadoop. But the problem is that you can't serve the real-time needs of you customers with 
Hadoop. This is where SQOOP comes into picture. It is an import/export tool that allows you to move data between a SQL 
DB and Hadoop. You could move your BigData into your Hadoop cluster, process it there and then push the results back into 
your SQL DB using SQOOP to serve the real-time needs of your customers. 

http://www.bigdata-startups.com/best-practices/
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://lp.gnip.com/rs/gnip/images/Gnip-25-Data-Stories.pdf
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A traditional RDBMS is used to handle relational data. Hadoop works well with structured as well as unstructured data, and 
supports various serialization and data formats for example Text, Json, Xml, Avro etc. I would say there are problems where 
SQL databases are a perfect choice. if your data size permits it and your data type is relational, you are fine to use the 
RDBMS approach. Its worked well in the past, its a mature technology and it has its needs. 
Where the data size or type is such that you are unable to save it in an RDBMS, go for solutions like Hadoop. One such 
example is a product catalog. A car has different attributes than a television. It is tough to create a new table per product type. 
Another example is machine generated data. in this case the data size creates a big pressure on the traditional RDBMS. Thats 
a classic Hadoop problem. Or document indexing. There are various such examples. 

1.4 Assumptions and Dependencies 
 

In CDH 3, all of the Hadoop API implementations were confined to a single JAR file (hadoop-core) plus a few of its 
dependencies. It was relatively straightforward to make sure that classes from these JAR files were available at runtime. 

CDH 4 and CDH 5 are more complex: they bundle both MRv1 and MRv2 (YARN). To simplify things, CDH 4 and CDH 5 
provide a Maven-based way of managing client-side Hadoop API dependencies that saves you from having to figure out the 
exact names and locations of all the JAR files needed to provide Hadoop APIs. 

In CDH 5, Cloudera recommends that you use a hadoop-client artifact for all clients, instead of managing JAR-file-based 
dependencies manually. 

 

• Flavors of the hadoop-client Artifact 

• Versions of the hadoop-client Artifact 

• Using hadoop-client for Maven-based Java Projects 

• Using hadoop-client for Ivy-based Java Projects 

• Using JAR Files Provided in the hadoop-client Package 

 

1.5 Future Enhancements 
 

Hadoop is immature technology. As such, it naturally offers much room for improvement in both industrial-
strengthens and performance. And since Hadoop is booming, multiple efforts are underway to fill those gaps. For example: 

• Cloudera’s proprietary code is focused on management, set-up, etc. 
• The “Phase 1″ plans Hortonworks shared with me for Apache Hadoop are focused on industrial-strengthness, as 

are significant parts of “Phase 2″.* 
• MapR tells a performance story versus generic Apache Hadoop HDFS and MapReduce. (One aspect of same is 

just C++ vs. Java.) 
• So does Hadapt, but mainly vs. Hive. 
• Cloudera also tells me there’s a potential 4-5X performance improvement in Hive coming down the pike from 

what amounts to an optimizer rewrite. 
 

(Zettaset belongs in the discussion too, but made an unfortunate choice of embargo date.) 

Hortonworks, a new Hadoop company spun out of Yahoo, graciously permitted me to post a slide deck outlining an Apache 
Hadoop roadmap. Phase 1 refers to stuff that is underway more or less now. Phase 2 is scheduled for alpha in October, 2011, 
with production availability not too late in 2012. 

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_1_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_2_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_3_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_4_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_hadoop_api_dependencies.html#topic_31_1_5_unique_1
http://www.dbms2.com/2011/07/06/hadapt-update/
http://www.dbms2.com/2011/07/10/cloudera-and-hortonworks/
http://www.monash.com/uploads/Hortonworks-Apache-Hadoop-July-2011.pptx
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You’ve probably heard some single point of failure fuss. Hadoop NameNodes can crash, which wouldn’t cause data loss, but 
would shut down the cluster for a little while. It’s hard to come up with real-life stories in which this has been a problem; 
still, it’s something that should be fixed, and everybody (including the Apache Hadoop folks, as part of Phase has a favored 
solution. A more serious problem is that Hadoop is currently bad forsmall updates, because: 

• Hadoop’s fundamental paradigm assumes batch processing. 
• Both major workarounds to allow small updates are broken: 

• HBase is seriously buggy, to the point that it sometimes loses data. 
• Storing each update in a separate file runs afoul of a practical limit of 70-100 million files. 

File-count limits also get blamed for a second problem, in that there may not be enough intermediate files allowed for your 
Reduce steps, necessitating awkward and perhaps poorly-performing MapReduce workarounds. Anyhow, the Phase 2 
Apache Hadoop roadmap features a serious HBase rewrite. I’m less clear as to where things stand with respect to file-count 
limits. 

Edits: As per the comments below, I should perhaps have referred to HBase’s HDFS underpinnings rather than HBase itself. 
Anyhow, some details are in the slides. Please also see my follow-up post on how well HBase is indeed doing. 

The other big area for Hadoop improvement is modularity, pluggability, and coexistence, on both the storage and application 
execution tiers. For example: 

• Greenplum/MapR and Hadapt both think you should have HDFS file management and relational DBMS 
coexisting on the same storage nodes. (I agree.) 

• Part of what Hortonworks calls “Phase 2″ sets out to ensure that Hadoop can properly manage temp space and so 
on next to HDFS. 

• Perhaps HBase won’t always assume HDFS. 
• DataStax thinks you should blend HDFS and Cassandra. 

Meanwhile, Pig and Hive need to come closer together. Often you want to stream data into Hadoop. The argument that MPI 
trumps MapReduce does, in certain use cases, make sense. Apache Hadoop “Phase 2″ and beyond are charted to 
accommodate some of those possibilities too. 

1.6 Definitions and Acronyms 
 
ETL..  Ectract, Transform and Load 
SQL.. Structured Query Language 
HDFS.. Hadoop Distributed File System 
XML.. Extensible Markup Language 
GUI.. Graphical User Interphase 
HSQLDB.. Hyper SQL Database 
NFS.. Network File System 
CLI.. Command Line 
API.. Application Programming Interphases 
JDBC.. Java Database Connectivity  
ODBC..Open Database Connectivity 
SIEM.. Security Information Event Management 
Vm.. Virtual Machine 
Hadoop is an open-source software framework for storing data and running applications on clusters of commodity hardware. 
It provides massive storage for any kind of data, enormous processing power and the ability to handle virtually limitless 
concurrent tasks or jobs. 

• Open-source software. Open-source software is created and maintained by a network of developers from around 
the globe. It's free to download, use and contribute to, though more and more commercial versions of Hadoop are 
becoming available. 

• Framework. In this case, itmeans that everything you need to develop and run software applications is provided – 
programs, connections, etc. 

http://www.dbms2.com/2011/07/18/hbase-is-not-broken/
http://www.dbms2.com/2011/07/10/2010/08/16/vertica-flash-temp-space/
http://www.dbms2.com/2011/03/23/datastax-cassandrafs-hadoop-brisk/
http://www.dbms2.com/2011/04/21/sas-hpa-does-make-sense-after-all/
http://www.dbms2.com/2011/04/21/sas-hpa-does-make-sense-after-all/
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• Massive storage. The Hadoop framework breaks big data into blocks, which are stored on clusters of commodity 
hardware. 

• Processing power. Hadoop concurrently processes large amounts of data using multiple low-cost computers for fast 
results. 

2 Technical Description 

By utilizing Sqoop we will import information from a social database framework into HDFS. The info to the import 
procedure is a database table. Sqoop will read the table column by-line into HDFS. The yield of this import procedure is an 
arrangement of documents containing a duplicate of the foreign made table. The import procedure is performed in parallel. 
Thus, the yield will be in different documents. These documents may be delimited content records or paired .A by-result of 
the import procedure is a created Java class which can epitomize one line of the foreign made table. This class is utilized 
amid the import process by Sqoop itself.In the wake of controlling the foreign records with Hive we will have outcome 
information set which you can then fare back to the social database. Sqoop's fare procedure will read an arrangement of 
delimited content documents from HDFS in parallel, parse them into records, and supplement them as new lines in an 
objective database table, for utilization by outer applications or clients. 

2.1 Project/Application Architecture 

 

2.2 Project/Application Information flows: 
 

Application Information flows have three steps strategy to move data from RDMS to HIVE on Hadoop. 
Flows have three steps strategy to move data from RDMS to HIVE on Hadoop. 
Depending on whether direct access is available to the RDBMS source system, you may opt for either a File Processing 
method (when no direct access is available) or RDBMS Processing (when database client access is available). 

Regardless of the ingest option, the processing workflow in this article requires: 

1. One-time, initial load to move all data from source table to HIVE. 
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2. On-going, “Change Only” data loads from the source table to HIVE. 

Below, both File Processing and Database-direct (SQOOP) ingest will be discussed. 

2.3 File Processing 
 
Step 1: Converting RDMS Data into Hadoop 
 
For this blog, we assume that a file or set of files within a folder will have a delimited format and will have been generated 
from a relational system (i.e. records have unique keys or identifiers). 

Files will need to be moved into HDFS using standard ingest options: 

• WebHDFS: Primarily used when integrating with applications, a Web URL provides an Upload end-point into a 
designated HDFS folder. 

• NFS: Appears as a standard network drive and allows end-users to use standard Copy-Paste operations to move files 
from standard file systems into HDFS. 

Once the initial set of records are moved into HDFS, subsequent scheduled events can move files containing only new Inserts 
and Updates. 

SQOOP is the JDBC-based utility for integrating with traditional databases. A SQOOP Import allows for the movement of 
data into either HDFS (a delimited format can be defined as part of the Import definition) or directly into a Hive table. 

Step 2: Store file into Hadoop cluster 
 
In the background, the source file is split into HDFS blocks, the size of which is configurable (commonly 128 MB, 64 MB by 
default). For fault tolerance, each block is automatically replicated by HDFS. By default, three copies of each block are 
written to three different DataNodes. The replication factor is user-configurable (default is three). The DataNodes are servers 
which are physical machines or virtual machines/cloud instances. DataNodes form the Hadoop cluster into which you write 
your data and on which you run your MapReduce/Hive/Pig/Impala/Mahout/etc. programs.TheDataNodes are the workers of 
the Hadoop cluster, the NameNodes are the masters. 

When a file is to be written into HDFS, the client writing the file obtains from the NameNode a list of DataNodes that can 
host replicas of the first block of the file.The client arranges a pipeline through which all bytes of data from the first block of 
the source file will be transmitted to all participating DataNodes. The pipeline is formed from client to first DataNode to 
second DataNode to final (third in our case) DataNode. The data is split into packets for transmission, and each packet is 
tracked until all DataNodes return acks to indicate successful replication of the data. The packets are streamed to the first 
DataNode in the pipeline, which stores the packet and forwards it to the second DataNode, and so on. If one or more 
replications fail, the infrastructure automatically constructs a new pipeline and retries the copy. 

When all three DataNodes confirm successful replication, the client will advance to the next block, again request a list of host 
DataNodes from the NameNode, and construct a new pipeline. This process is followed until all blocks have been copied into 
HDFS. The final block written may be smaller than the configured block size, but all blocks from the first to the penultimate 
block will be of the configured block size. 

Step 3: Read Data from HIVE 

The tables in Hive are similar to tables in a relational database, and data units are organized in a taxonomy from larger to 
more granular units. Databases are comprised of tables, which are made up of partitions. Data can be accessed via a simple 
query language and Hive supports overwriting or appending data. 
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Within a particular database, data in the tables is serialized and each table has a corresponding Hadoop Distributed File 
System (HDFS) directory. Each table can be sub-divided into partitions that determine how data is distributed within sub-
directories of the table directory. Data within partitions can be further broken down into buckets. 

Hive supports all the common primitive data formats such as BIGINT, BINARY, BOOLEAN, CHAR, DECIMAL, 
DOUBLE, FLOAT, INT, SMALLINT, STRING, TIMESTAMP, and TINYINT. In addition, analysts can combine primitive 
data types to form complex data types, such as structs, maps and arrays. 

2.4 Interactions with other Applications 
Hive is a data warehousing infrastructure built on top of apache Hadoop. 

Hadoop provides massive scale-out and fault-tolerance capabilities for data storage and processing (using the MapReduce 
programming paradigm) on commodity hardware. 

Hive enables easy data summarization, ad-hoc querying and analysis of large volumes of data. 

It is best used for batch jobs over large sets of immutable data (like web logs). 

It provides a simple query language called Hive QL, which is based on SQL and which enables users familiar with SQL to 
easily perform ad-hoc querying, summarization and data analysis. 

At the same time, Hive QL also allows traditional MapReduce programmers to be able to plug in their custom mappers and 
reducers to do more sophisticated analysis that may not be supported by the built-in capabilities of the languag 

Hive Query Language capabilities: 

Hive query language provides the basic SQL like operations. These operations work on tables or partitions. 

• Ability to create and manage tables and partitions (create, drop and alter). 
• Ability to support various Relational, Arithmetic and Logical Operators. 
• Ability to do various joins between two tables. 
• Ability to evaluate functions like aggregations on multiple “group by” columns in a table. 
• Ability to store the results of a query into another table. 
• Ability to download the contents of a table to a local directory. 
• Ability to create an external table that points to a specified location within HDFS 
• Ability to store the results of a query in an HDFS directory. 
• Ability to plug in custom scripts using the language of choice for custom map/reduce jobs. 

Major Components of Hive and its interaction with Hadoop: 

Hive provides external interfaces like command line (CLI) and web UI, and application programming interfaces (API) 
like JDBC and ODBC. The Hive Thrift Server exposes a very simple client API to execute HiveQL statements. Thrift is a 
framework for cross-language services, where a server written in one language (like Java) can also support clients in other 
languages. 

The Metastore is the system catalog. All other components of Hive interact with the Metastore. 

The Driver manages the life cycle of a HiveQL statement during compilation, optimization and execution. 

The Compiler is invoked by the driver upon receiving a HiveQL statement. The compiler translates this statement into a plan 
which consists of a DAG of map/reduce jobs. 

The driver submits the individual map/reduce jobs from the DAG to the Execution Engine in a topological order. Hive 
currently uses Hadoop as its execution engine. 

What Hive is NOT 

Hive is not designed for online transaction processing and does not offer real-time queries and row-level updates. 
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Hive aims to provide acceptable (but not optimal) latency for interactive data browsing, queries over small data sets or test 
queries. 

Hive Applications: 

• Log processing 
• Text mining 
• Document indexing 
• Customer-facing business intelligence (e.g., Google Analytics) 
• Predictive modeling, hypothesis testing 

 

Data is the new currency of the modern world. Businesses that successfully maximize its value will have a decisive impact on 
their own value and on their customers’ success. As the de-facto platform for big data, Apache Hadoop allows businesses to 
create highly scalable and cost-efficient data stores. Organizations can then run massively parallel and high-performance 
analytical workloads on that data, unlocking new insight previously hidden by technical or economic limitations. Hadoop 
offers data value at unprecedented scale and efficiency -- in part thanks to Apache Tez and YARN. 

Analytic applications perform data processing in purpose-driven ways that are unique to specific business problems or vendor 
products. There are two prerequisites to creating purpose-built applications for Hadoop data access. The first is an "operating 
system" (somewhat akin to Windows or Linux) that can host, manage, and execute these applications in a shared Hadoop 
environment. Apache YARN is that data operating system for Hadoop. The second prerequisite is an application-building 
framework and a common standard that developers can use to write data access applications that run on YARN. 

Apache Tez meets this second need. Tez is an embeddable and extensible framework that enables easy integration with 
YARN and allows developers to write native YARN applications that bridge the spectrum of interactive and batch 
workloads. Tez leverages Hadoop's unparalleled ability to process petabyte-scale datasets, allowing projects in the Apache 
Hadoop ecosystem to express fit-to-purpose data processing logic, yielding fast response times and extreme throughput. Tez 
brings unprecedented speed and scalability to Apache projects like Hive and Pig, as well as to a growing field of third-party 
software applications designed for high-speed interaction with data stored in Hadoop. 

Hadoop in a post-MapReduce world 

Those familiar with MapReduce will wonder how Tez is different. Tez is a broader, more powerful framework that maintains 
MapReduce’s strengths while overcoming some of its limitations. Tez retains the following strengths from MapReduce: 

• Horizontal scalability with increasing data size and compute capacity 
• Resource elasticity to work both when capacity is abundant and when it’s limited 

http://hortonworks.com/hadoop/yarn/
http://hortonworks.com/hadoop/tez/
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• Fault tolerance and recovery from inevitable and common failures in distributed systems 
• Secure data processing using built-in Hadoop security mechanisms 

But Tez is not an engine by itself. Rather, Tez provides common primitives for building applications and engines -- thus, its 
flexibility and customizability. Developers can write MapReduce jobs using the Tez library, and Tez comes with a built-in 
implementation of MapReduce, which can be used to run any existing MapReduce job with Tez efficiency. 

MapReduce was (and is) ideal for Hadoop users that simply want to start using Hadoop with minimal effort. Now that 
enterprise Hadoop is a viable, widely accepted platform, organizations are investing to extract the maximum value from data 
stored in their clusters. As a result, customized applications are replacing general-purpose engines such as MapReduce, 
bringing about greater resource utilization and improved performance. 

The Tez design philosophy 
Apache Tez is optimized for such customized data-processing applications running in Hadoop. It models data processing as a 
data flow graph, so projects in the Apache Hadoop ecosystem can meet requirements for human-interactive response times 
and extreme throughput at petabyte scale. Each node in the data flow graph represents a bit of business logic that transforms 
or analyzes data. The connections between nodes represent movement of data between different transformations. 

Once the application logic has been defined via this graph, Tez parallelizes the logic and executes it in Hadoop. If a data-
processing application can be modeled in this manner, it can likely be built with Tez. Extract-Transform-Load (ETL) jobs are 
a common form of Hadoop data processing, and any custom ETL application is a perfect fit for Tez. Other good matches are 
query-processing engines like Apache Hive, scripting languages like Apache Pig, and language-integrated, data processing 
APIs like Cascading for Java and Scalding for Scala. 

2.5 Capabilities 

As the amount of data continues to grow exponentially, data scientists increasingly need the ability to perform full-fidelity 
analysis of that data at massive scale. Cloudera, the leader in enterprise analytic data management powered by Apache 
Hadoop, today announced a number of new initiatives to enable data scientists to take advantage of big data and Hadoop for 
data analysis with more complex workflows.Beginning with the introduction of Ibis, an open source project incubating within 
Cloudera Labs, the company is enabling advanced data analysis on a 100% Python stack—bringing a native Python 
experience to Hadoop at scale. Cloudera has also announced that, as a direct contributor and industry leader in education 
around Hadoop, Cloudera will be hosting and organizing the first-everWrangle Conference, an event focused exclusively on 
real-world applications of data science, from the startup to the enterprise.“Hadoop has evolved dramatically over the last 
decade, from a batch processing tool to an entire ecosystem that powers most of today’s information architecture as well as 
traditional BI workloads,” said Wes McKinney, a software engineer at Cloudera and the creator of Python pandas. “We want 
to build on this momentum and make Hadoop’s infrastructure more accessible to the data science community. We’re doing 
that by bringing Python more fully into the ecosystem and focusing on the real-world, practical applications of data science.” 
 
Ibis 

Cloudera recognized the importance of the Python language in modern data engineering and data science and how, thanks to 
its use of more complex workflows, it has become a primary language for data transformation and interactive analysis. 
Python development has been confined to local data processing and smaller data sets, requiring data scientists to make many 
compromises when attempting to work with big data. Using Ibis, a new open source data analysis framework, Python users 
will finally be able to process data at scale without compromising user experience or performance. 
 
The initial version of Ibis provides an end-to-end Python experience with comprehensive support for the built-in analytic 
capabilities in Impala for simplified ETL, data wrangling, and analytics. Upcoming versions will allow users to leverage the 
full range of Python packages as well as express efficient custom logic using Python. By integrating with Impala, the leading 
MPP database engine for Hadoop, Ibis can achieve the interactive performance and scalability necessary for big data. 
 

http://www.cloudera.com/content/cloudera/en/home.html
http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html
http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html
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“With its usability, extensibility and robust third-party library ecosystem, it’s easy to understand why Python is the open 
source language of choice for so many data scientists. However, we recognize its limitation – where it’s unable to achieve 
high performance at Hadoop-scale,” said Wes McKinney.  “With Ibis, our vision is to provide a first-class Python experience 
on large scalable architectures like Hadoop, with full access to the ecosystem of Python tools. 

XML processing 

While many traditional databases provide XML support, the XML content must first be loaded into the database. Because 
Hive tables can be linked to a collection of XML files or document fragments stored in the Hadoop file system, Hadoop is 
much more flexible in analyzing XML content. 

Web and text processing 

In addition to XPath operators, the Hive query language offers several ways to work with common web and text data. 
Tableau exposes the following functions that you can use in calculated fields: 

• JSON Objects: GET_JSON_OBJECT retrieves data elements from strings containing JSON objects. 
• URLs: Tableau offers PARSE_URL to extract the components of a URL such as the protocol type or the host name. 

Additionally, PARSE_URL_QUERY can retrieve the value associated with a given query key in a key/value 
parameter list. 

• Text Data: The regular expression find and replace functions in Hive are available in Tableau for complex text 
processing. 

On-the-fly ETL 

Custom SQL gives you the flexibility of using arbitrary queries for your connection, which allows complex join conditions, 
pre-filtering, pre-aggregation and more. Traditional databases rely heavily on optimizers, but they can struggle with complex 
Custom SQL and lead to unexpected performance degradation as you build views. The batch-oriented nature of Hadoop 
allows it to handle layers of analytical queries on top of complex Custom SQL with only incremental increases to query time. 

Because Custom SQL is a natural fit for the complex layers of data transformations seen in ETL, a Tableau connection to 
Hive based on Custom SQL is essentially on-the-fly ETL. Refer to the Hadoop and Tableau Demo on the Tableau blog to see 
how you can use Custom SQL to unpivot nested XML data directly in the Custom SQL connection, yielding views built from 
the unpivoted data. 

Initial SQL 

Tableau supports initial SQL for Hadoop Hive connections, which allows you to define a collection of SQL statements to 
perform immediately after the connection is established. For example, you can set Hive and Hadoop configuration variables 
for a given connection from Tableau to tune performance characteristics. Refer to the Designing for Performancearticle for 
more information.  

Custom analysis with UDFs and Map/Reduce 

Similarly, Tableau allows you to take advantage of custom UDFs and UDAFs built by the Hadoop community or by your 
own development team. Often these are built as JAR files that Hadoop can easily copy across the cluster to support 
distributed computation. To take advantage of JAR files or scripts, inform Hive of the location of these files and Hive will 
take care of the rest. 

http://www.tableausoftware.com/de-de/about/blog/2011/10/sneak-peek-hadoop-and-tableau-demo-13849
http://kb.tableausoftware.com/articles/knowledgebase/cloudera-hadoop-hive-performance?lang=de-de
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2.6 Risk Assessment and Management 

The following were the disadvantages of hadoop:  
• As big data is not suitable for small business  
• There is a missing encryption methodology for storage and network levels.  
• There are lot of stability issues in Hadoop. 

  
3 Project Requirements 

3.1 Identification of Requirements 
 Their creation, called Hive, allows SQL developers to write Hive Query Language (HQL) statements that are similar 
to standard SQL statements; now you should be aware that HQL is limited in the commands it understands, but it is still 
pretty useful. HQL statements are broken down by the Hive service into Map Reduce jobs and executed across a Hadoop 
cluster.  
  
Hive looks very much like traditional database code with SQL access. However, because Hive is based on Hadoop and Map 
Reduce operations, there are several key differences. The first is that Hadoop is intended for long sequential scans, and 
because Hive is based on Hadoop, you can expect queries to have a very high latency (many minutes). This means that Hive 
would not be appropriate for applications that need very fast response times, as you would expect with a database such as 
DB2. Finally, Hive is read-based and therefore not appropriate for transaction processing that typically involves a high 
percentage of write operations.  
 
 
Hive has three main functions: data summarization, query and analysis. It supports queries expressed in a language called 
HiveQL, which automatically translates SQL-like queries into Map Reduce jobs executed on Hadoop. In addition, HiveQL 
supports custom Map Reduce scripts to be plugged into queries. Hive also enables data serialization/deserialization and 
increases flexibility in schema design by including a system catalog called Hive-Metastore.  
 
Hive supports text files (also called flat files), Sequence Files (flat files consisting of binary key/value pairs) and RCFiles 
(Record Columnar Files which store columns of a table in a columnar database way.) 
 

3.2 Security and Fraud Prevention 
Since fraud is so hard to prove in courts, most organizations and individuals try to prevent fraud from happening by 

blanket measures.  This includes limiting the amount of damage the fraudster can impact on the organization as well as early 
detection of fraud patterns.  For example, credit card companies can cut the credit card limit across the board in anticipation 
of a few negative fraud cases.  Advertisers can prevent advertising campaigns with low number of qualifying events.  And 
anti-terrorism agencies can prevent people with bottles of pure water from boarding the planes.  These actions are often in 
contrast with the company efforts to attract more customers and result in general dissatisfaction.  To the rescue are new 
technologies like Hadoop, Influence Diagrams and Bayesian Networks which are computationally expensive (these are NP-
hard in computer science terminology) but are more accurate and predictive.Hadoop is known for its gnawing power.  
Nothing can compare with the throughput power of thousands of machines each of which has multiple cores.  As was 
reported recently at the Hadoop Summit 2010, the largest installations of Hadoop have 2,000 to 4,000 computers with 8 to 12 
cores each, amounting to up to 48,000 active threads looking for a pattern at the same time.  This allows either (a) looking 
through larger periods of time to incorporate events across a larger time frame or (b) taking more sources of information into 
account.  It is quite common among social network companies to comb through twitter blogs in search of relevant data. 

Finally, one of the fraud prevention problems is latency.  The agencies want to react to an event as soon as possible, often 
within a few minutes of the event.  Yahoo recently reported that it can adjust its behavioral model in a response to a user 
click event within 5-7 minutes across several hundred of millions of customers and billions of events per day.  Cloudera has 
developed a tool, Flume, that can load billions of events into HDFS within a few seconds and analyze them using 
MapReduce. 
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Often fraud detection is akin to “finding a needle in a haystack”.  One has to go through mountains of relevant and seemingly 
irrelevant information, build dependency models, evaluate the impact and thwart the fraudster actions.  Hadoop helps with 
finding patterns by processing mountains of information on thousands of cores in a relatively short amount of time. 
As fraud and security breaches are becoming more frequent and sophisticated, traditional security solutions are not able to 
protect company assets. MapR enables organizations to analyze unlimited amounts and types of data in real time, widen the 
scale and accelerate the speed of threat analysis, and improve risk assessment by building sophisticated machine learning 
models. Specific use cases include protection against infrastructure risks as well as consumer-oriented risks across different 
industries: 

• Security Information and Event Management (SIEM): Analyze and correlate large amounts of real-time data from 
network and security devices to manage external and internal security threats, improve incident response time and 
compliance reporting. 

• Application Log Monitoring: Improve analysis of application log data to better manage system resource utilization, 
security issues, and diagnose and preempt production application problems. 

• Network Intrusion Detection: Monitor and analyze network traffic to detect, identify, and report on suspicious 
activity or intruders. 

• Fraud Detection: Use pattern/anomaly recognition on larger volumes and variety of data to detect and prevent 
fraudulent activities by external or internal parties. 

Risk Modeling: Improve risk assessment and associated scoring by building sophisticated machine learning models on 
Hadoop that can take into account hundreds or even thousands of indicators. 

 

MapR Advantages: 

• Easy data ingestion: Copying data to and from the MapR cluster is as simple as copying data to a standard file 
system using Direct Access NFS™. Applications can therefore ingest data into the Hadoop cluster in real time without 
any staging areas or separate clusters just to ingest data. 

• Existing applications work: Due to the MapR platform's POSIX compliance, any non- Java application works 
directly on MapR without undergoing code changes. Existing toolsets, custom utilities and applications are good to go on 
day one. 

• Multi-tenancy: Support multiple user groups, any and all enterprise data sets, and multiple applications in the same 
cluster. Data modelers, developers and analysts can all work in unison on the same cluster without stepping on each 
other's toes. 

• Business continuity: MapR provides integrated high availability (HA), data protection, and disaster recovery (DR) 
capabilities to protect against both hardware failure as well as site-wide failure. 

• High scalability: Scalability is key to bringing all data together on one platform so the analytics are much more 
nuanced and accurate. MapR is the only platform that scales all the way to a trillion files without compromising 
performance. 

• High performance: The MapR Distribution for Hadoop was designed for high performance, with respect to both 
high throughput and low latency. In addition, a fraction of servers are required for running MapR versus other Hadoop 
distributions, leading to architectural simplicity and lower capital and operational expenses. 
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4 Project Description 

 
Install Oracle VM Virtual Box Manager and load Hortonworks Sandbox with HDP 2.3 
 
 

 
 
 

 

 

 

Connect to the Server: 
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Data flows have three steps strategy to move data from RDMS to HIVE on Hadoop. 

Step 1: Convert the all data into files by using Sqoop 

listdatbases in mysql: 

sqoop list-databases --connect jdbc:mysql://localhost --username sruthi --password sruthi 

list tables in specific database: 

sqoop list-tables --connect jdbc:mysql://localhost/gsuproj --username sruthi --password sruthi 

sqoop import --connect jdbc:mysql://localhost/gsuproj --username sruthi --password sruthi --table pagelinks --target-
dirsqoop-data 

 
 
 
sqoop import --connect jdbc:mysql://localhost/gsuproj --username sruthi --password sruthi --table pagelinks 
--hive-import 
 

 
 
Converting data in to file and can see the file names: 
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Step 2: Store file into Hadoop cluster 
 
Connect to the server  
 

 
 

 

 

Move file into HDFS by using below command  

 
hadoopfs -copyFromLocal/root/myprojfile 
hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/pagelinks 
 
 

 
 
 

 

Step 3: Read Data from HIVE 

Connect to the Hive from root  
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Create table command: 

CREATE external TABLE pagelinks ( 

pl_from string, 

pl_namespace  string, 

pl_title string, 

pl_from_namespace string ) 

  Row Format Delimited fields terminated by '~' 

LOCATION hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse; 

 

 
 
 
 
LOAD DATA INPATH  hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse 
INTO TABLE pagelinks 
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5 ProjectInternal/external Interface Impactsand Specification 

Hadoop has become one of the most important technologies, the key factors of hadoop are as follows:  

Low Cost : 

Hadoop is an free open Source frame work, and uses commodity hardware to store substantial amount of data. Hadoop 
additionally offers a practical stockpiling answer for organizations' blasting information sets. The issue with customary social 
database administration frameworks is that it is amazingly taken a toll restrictive to scale to such an extent so as to process 
such huge volumes of information. With an end goal to lessen costs, numerous organizations in the past would have needed 
to down-example information and characterize it in view of specific presumptions as to which information was the most 
significant. The crude information would be erased, as it would be excessively taken a toll restrictive, making it impossible to 
keep. While this methodology may have worked in the short term, this implied that when business needs changed, the 
complete crude information set was not accessible, as it was so costly it was not possible store. Hadoop, then again, is 
outlined as a scale-out structural planning that can reasonably store the majority of an organization's information for later 
utilize. The expense reserve funds are stunning: as opposed to costing thousands to a huge number of pounds every terabyte, 
Hadoop offers figuring and stockpiling capacities for many pounds every terabyte.  

Flexible: 

 Hadoop empowers organizations to effectively get to new information sources and tap into distinctive sorts of information 
(both organized and unstructured) to create esteem from that information. This implies organizations can utilize Hadoop to 
get profitable business bits of knowledge from information sources, for example, social networking, email discussions 
information. Moreover, Hadoop can be utilized for a wide mixed bag of purposes, for example, log handling, suggestion 
frameworks,  

information warehousing, business sector battle investigation and misrepresentation discovery.  

Computing power:  

 Hadoop  is  a  distributed  processing  model,  so  it  can  prepare  vast  measure  of  information.  The additionally 
registering hubs you utilize.  

Fast:  

Hadoop’s unique storage method is based on a distributed file system that basically ‘maps’ data wherever it is located on a 
cluster. The tools for data processing are often on the same servers where the data is located, resulting in much faster data 
processing. If you’re dealing with large volumes of unstructured data, Hadoop is able to efficiently process terabytes of data 
in just minutes petabytes in hours. 

Storage Flexibility:   

Unlike traditional relational databases, you don’t have to preprocess data before storing it. And that includes unstructured 
data like text, images and videos. You can store as much data as you want and  

decide how to use it later.  

Inherent data protection and self-healing capabilities:  

Data and application processing are protected against hardware failure. If a node goes down, jobs are automatically redirected 
to other nodes to make sure the distributed computing does not fail. And it automatically stores multiple copies of all data. 
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6 Functional overview 

The idea underpinning map-reduce–bringing compute to the data instead of the opposite–should sound like a very 
simple solution to the I/O bottleneck inherent in traditional parallelism. However, the devil is in the details, and 
implementing a framework where a single large file is transparently diced up and distributed across multiple physical 
computing elements (all while appearing to remain a single file to the user) is not trivial. 

Hadoop, perhaps the most widely used map-reduce framework, accomplishes this feat using HDFS, the Hadoop Distributed 
File System. HDFS is fundamental to Hadoop because it provides the data chunking and distribution across compute 
elements necessary for map-reduce applications to be efficient. Since we’re now talking about an actual map-reduce 
implementation and not an abstract concept, let’s refer to the abstract compute elements now as compute nodes. 

HDFS exists as a filesystem into which you can copy files to and from in a manner not unlike any other filesystem. Many of 
the typical commands for manipulating files (ls, mkdir, rm, mv, cp, cat,tail, and chmod, to name a few) behave as you might 
expect in any other standard filesystem (e.g., Linux’s ext4). 

The magical part of HDFS is what is going on just underneath the surface. Although it appears to be a filesystem that 
contains files like any other, in reality those files are distributed across multiple physical compute nodes: 

 

 

When you copy a file into HDFS as depicted above, that file is transparently sliced into 64 MB “chunks” and replicated three 
times for reliability. Each of these chunks are distributed to various compute nodes in the Hadoop cluster so that a given 64 
MB chunk exists on three independent nodes. Although physically chunked up and distributed in triplicate, all of your 
interactions with the file on HDFS still make it appear as the same single file you copied into HDFS initially. Thus, HDFS 
handles all of the burden of slicing, distributing, and recombining your data for you. 

HDFS’s chunk size and replication The 64 MB chunk (block) size and the choice to replicate your data three times are only 
HDFS’s default values. These decisions can be changed: 

• The 64 MB block size can be modified by changing the dfs.block.size property in hdfs-site.xml. It is common to 
increase this to 128 MB in production environments. 

• The replication factor can be modified by changing the dfs.replication property in hdfs-site.xml. It can also be 
changed on a per-file basis by specifying -D dfs.replication=1on your -put command line, or using the hadoopdfs -
setrep -w 1 command. 
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Map-Reduce Jobs 

HDFS is an interesting technology in that it provides data distribution, replication, and automatic recovery in a user-space 
filesystem that is relatively easy to configure and, conceptually, easy to understand. However, its true utility comes to light 
when map-reduce jobs are executed on data stored in HDFS. 

As the name implies, map-reduce jobs are principally comprised of two steps: the map step and the reduce step. The overall 
workflow generally looks something like this: 

 
The left half of the diagram depicts the HDFS magic described in the previous section, where thehadoopdfs -
copyFromLocal command is used to move a large data file into HDFS and it is automatically replicated and distributed 
across multiple physical compute nodes. While this step of moving data into HDFS is not strictly a part of a map-reduce job 
(i.e., your dataset may already have a permanent home on HDFS just like it would any other filesystem), a map-reduce job’s 
input data must already exist on HDFS before the job can be started. 

The Map Step 
Once a map-reduce job is initiated, the map step 

1. Launches a number of parallel mappers across the compute nodes that contain chunks of your input data 
2. For each chunk, a mapper then “splits” the data into individual lines of text on newline characters (\n) 
3. Each split (line of text that was terminated by \n) is given to your mapper function 
4. Your mapper function is expected to turn each line into zero or more key-value pairs and then “emit” these key-

value pairs for the subsequent reduce step 

That is, the map step’s job is to transform your raw input data into a series of key-value pairs with the expectation that these 
parsed key-value pairs can be analyzed meaningfully by the reduce step. It’s perfectly fine for duplicate keys to be emitted by 
mappers. 

The decision to split your input data along newline characters is just the default behavior, which assumes your input data is 
just an ascii text file. You can change how input data is split before being passed to your mapper function using 
alternate InputFormats. 

The Reduce Step 

Once all of the mappers have finished digesting the input data and have emitted all of their key-value pairs, those key-value 
pairs are sorted according to their keys and then passed on to the reducers. The reducers are given key-value pairs in such a 
way that all key-value pairs sharing the same key always go to the same reducer. The corollary is then that if one particular 
reducer has one specific key, it is guaranteed to have all other key-value pairs sharing that same key, and all those common 
keys will be in a continuous strip of key-value pairs that reducer received. 

Your job’s reducer function then does some sort of calculation based on all of the values that share a common key. For 
example, the reducer might calculate the sum of all values for each key (e.g., the word count example). The reducers then 

http://www.glennklockwood.com/data-intensive/hadoop/mapreduce-workflow.png
http://www.glennklockwood.com/data-intensive/hadoop/streaming.html
http://www.glennklockwood.com/data-intensive/hadoop/mapreduce-workflow.png�
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emit key-value pairs back to HDFS where each key is unique, and each of these unique keys’ values are the result of the 
reducer function’s calculation. 

 

6.1 Impact 
VMware’s new vSphere Big Data Extensions (BDE) commercializes its open source Project Serengetito make it dead 

easy for enterprise admins to spin and up down virtual Hadoop clusters at will. Now that VMware has made it clear that 
Hadoop is going to be fully supported as a virtualized workload in enterprise vSphere environments, here at Taneja Group we 
expect a rapid pickup in Hadoop adoption across organizations of all sizes 
Big Data, Virtually 
However, Hadoop is all about mapping parallel compute jobs intelligently over massive amounts of distributed data. Cluster 
deployment and operation are becoming very easy for the virtual admin. But in a virtual environment where storage can be 
effectively abstracted from compute clients, there are some important complexities and opportunities to consider when 
designing the underlying storage architecture. Some specific concerns with running Hadoop in a virtual environment include 
considering how to configure virtual data nodes, how to best utilize local hypervisor server DAS, and when to think about 
leveraging external SAN/NAS. 
 
Big Data, Virtually 
The main idea behind virtualizing Hadoop is to take advantage of deploying Hadoop scale-out nodes as virtual machines 
instead of as racked commodity physical servers. Clusters can be provisioned on-demand and elastically expanded or shrunk. 
Multiple Hadoop virtual nodes can be hosted on each hypervisor physical server, and as virtual machines can be easily 
allocated more or less resource for a given application. Hypervisor level HA/FT capabilities can be brought to bear on 
production Hadoop apps. VMware’s BDE even includes QoS algorithms that help prioritize clusters dynamically, shrinking 
lower-priority cluster sizes as necessary to ensure high-priority cluster service. 
 
Obviously, one of the big concerns with virtualizing Hadoop is about performance. Much of Hadoop’s value lies in how it 
effectively executes parallel algorithms over distributed data chunks. Hadoop takes advantage of high data “locality” by 
spreading out big data over many nodes using HDFS (Hadoop Distributed File System). It then farms out parallelized 
compute tasks local to each data node for initial processing (the “map” part of MapReduce implemented by job and task 
trackers). 
 
The design, with each scale-out physical node hosting both local compute and a share of data, is intended to support 
applications like searching and scoring. These applications might often need to crawl through all the data of massively large 
data sets, which are commonly made up of low-level semi- or unstructured text and documents. 
 
Commonly, each HDFS data node will be assigned raw physical host server DAS disks directly by the hypervisor. HDFS will 
then replicate data across data nodes, by default making two copies on different data nodes. On a physical cluster, replicates 
are placed on different server nodes by definition (one data node per server). HDFS also knows to place the second replicate 
on a different “rack” of nodes to help avoid rack level loss. 
 
In the virtual world, Hadoop must become aware of the hypervisor grouping of virtual nodes in order to ensure good physical 
data placement and subsequent job/task assignment. This virtual awareness is implemented by the Hadoop Virtual Extensions 
(HVE) that VMware contributed into Apache Hadoop 1.2. 
 
Hadoop Virtual Extensions 
The Hadoop Virtual Extensions do break the virtual abstraction between application and physical hosting. But in some ways, 
the Hadoop platform can be seen as another layer of the virtualization, adding scale-out data and computing management to 
the hypervisor. 
 

http://www.vmware.com/hadoop
http://www.projectserengeti.org/
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The HVE essentially inserts a new level of “node group” into the Hadoop hierarchy between nodes and racks. Node groups 
represent the set of virtual Hadoop nodes on each given hypervisor server to help inform Hadoop and HDFS management 
algorithms. 
 
The effect is that Hadoop can maintain knowledge of “data locality” even in the virtual environment to keep compute tasks 
close to required data for performance, and ensure optimal placement of replicates for fault tolerance. 
 
Data Node Options 
When you virtualize Hadoop nodes, you also have the option to separate the compute side (task trackers, et.al.) from the data 
node and place them each in different virtual machines. If the compute node and data node virtual machines still reside on the 
same hypervisor server, then they can effectively communicate over a virtual network “in-memory” and won’t suffer any 
significant physical network latencies. HVE can ensure that this data local relationship is maintained for performance. 
 
Separating out the data node from compute nodes gives you orthogonal scaling and the option to host multiple compute 
nodes sharing a single data node. This new flexibility enables optimizing the utilization of the host physical server resources, 
although getting the ratios right for each application might require a lot of experimentation. 
In fact, HDFS can be offered as a service itself, managed as a more permanent data repository, while various compute 
“applications” can come and go quite dynamically. In this way, HDFS can now serve as a scale out virtual storage appliance. 
 
Big Data SAN? 
One of the cost-compelling reasons to look at a physical Hadoop architecture is to avoid expensive SANs, especially as the 
data sets grow larger. Yet in the virtual environment it may make sense to consider SAN storage for some big data sets.  
One reason is that provisioning compute-only virtual Hadoop clusters is quite simple with VMware’s BDE GUI, but 
throwing around big data sets is still going to be a challenge. By hosting the data on external shared storage, provisioning 
virtual Hadoop hosting becomes almost trivial. And hypervisor features like DRS and HA can be fully leveraged. At EMC 
World 2013, Pat Gelsinger readily demonstrated spinning up and down virtual Hadoop clusters using external Isilon storage. 
 
Another reason to look at SAN storage is if you have data governance concerns. HDFS is not easy to backup, protect, secure 
or audit. SANs of course, are built with great data protection (and use fewer disks for RAID than triplicate replication) and 
snapshots. It’s easy to imagine some big data applications where the data is critical enough to want to protect and rollback if 
necessary. With an eye towards ensuring some high performance networking, performance from SANs can of course provide 
more throughput than server DAS. It is worth mentioning disk failure recovery here too, because with big data on lots of 
disks, failures become quite common. 
In a normal Hadoop cluster, a local disk failure shuts down that node, and Hadoop then works around it. In a virtual 
environment, a disk failure might shut down the data node, but multiple virtual data nodes can be configured per hypervisor 
server. And a disk failure that sidelines a virtual data node will not take down any other virtual Hadoop nodes on that 
hypervisor. With SAN storage, a highly available Hadoop application might never know that disk failures have even 
happened. 
There are a number of reasons why virtualizing Hadoop makes sense in many usage scenarios. As a virtual workload, 
Hadoop can achieve comparable performance to physical hosting in a broad set of expected usage scenarios while further 
helping consolidate and optimize IT infrastructure investments. 
 
At this point, thousand node clusters with multiple PBs of data in continuous use aren’t likely virtualization candidates. But 
we think that most organizations have some big data opportunities in the 10-20TB range, and they could be extracting value 
from that data if only their IT shops could offer scale-out analytical solutions as a cost-effective service. 
 
With a virtual Hadoop capability, a single big data set can be readily shared “in-place” between multiple virtualized Hadoop 
clusters. That creates an opportunity to serve multiple clients with the same storage. By eliminating multiple copies of big 
data sets, reducing the amount of data migration, and ensuring higher availability and data protection, Hadoop becomes more 
manageable and readily supported as an enterprise production application. 
 



23 
 

23 
 

 
7 Open Issues 

Hadoop tracks both bugs and enhancement requests using JIRA. Input before filing a request search the Apache JIRA 
database. Check the users mailing lists, both by searching the archives and by asking questions. Common Hadoop Common 
issues are tracked in the HADOOP Jira instance.  HDFS issues are tracked in the HDFS Jira instance. YARN issues are 
tracked in the YARN Jira instance. MapReduce issues are tracked in the MAPREDUCE Jira instance. 

HDFS is the primary distributed storage used by Hadoop applications. A HDFS cluster primarily consists of a 
NameNode that manages the file system metadata and DataNodes that store the actual data. The HDFS Architecture Guide 
describes HDFS in detail. This user guide primarily deals with the interaction of users and administrators with HDFS 
clusters. The HDFS architecture diagram depicts basic interactions among NameNode, the DataNodes, and the clients. 
Clients contact NameNode for file metadata or file modifications and perform actual file I/O directly with the DataNodes. 

The following are some of the salient features that could be of interest to many users. 

• Hadoop, including HDFS, is well suited for distributed storage and distributed processing using commodity 
hardware. It is fault tolerant, scalable, and extremely simple to expand. MapReduce, well known for its simplicity 
and applicability for large set of distributed applications, is an integral part of Hadoop. 

• HDFS is highly configurable with a default configuration well suited for many installations. Most of the time, 
configuration needs to be tuned only for very large clusters. 

• Hadoop is written in Java and is supported on all major platforms. 
• Hadoop supports shell-like commands to interact with HDFS directly. 
• The NameNode and Datanodes have built in web servers that makes it easy to check current status of the cluster. 

page. It lists the DataNodes in the cluster and basic statistics of the cluster. The web interface can also be used to browse the 
file system . Hadoop includes various shell-like commands that directly interact with HDFS and other file systems that 
Hadoop supports. The command bin/hdfsdfs help lists the commands supported by Hadoop shell. Furthermore, the 
command bin/hdfsdfsn name displays more detailed help for a command. These commands support most of the normal files 
system operations like copying files, changing file permissions, etc. It also supports a few HDFS specific operations like 
changing replication of files. The bin/hdfsdfsadmin command supports a few HDFS administration related operations. This 
help command lists all the commands currently supported. Some samples are below. 

When Hadoop is upgraded on an existing cluster, as with any software upgrade, it is possible there are new bugs or 
incompatible changes that affect existing applications and were not discovered earlier. In any non-trivial HDFS installation, it 
is not an option to loose any data, let alone to restart HDFS from scratch. HDFS allows administrators to go back to earlier 
version of Hadoop and rollback the cluster to the state it was in before the upgrade. HDFS upgrade is described in more detail 
in Hadoop Upgrade Wiki page. HDFS can have one such backup at a time. Before upgrading, administrators need to remove 
existing backup using bin/hadoopdfsadmin -finalizeUpgrade command. The following briefly describes the typical upgrade 
procedure: 

• Before upgrading Hadoop software, finalize if there an existing backup. dfsadmin -upgradeProgress status can tell if 
the cluster needs to be finalized. 

• Stop the cluster and distribute new version of Hadoop. 
• Run the new version with -upgrade option (bin/start-dfs.sh -upgrade). 
• Most of the time, cluster works just fine. Once the new HDFS is considered working well (may be after a few days 

of operation), finalize the upgrade. Note that until the cluster is finalized, deleting the files that existed before the 
upgrade does not free up real disk space on the DataNodes. 

http://wiki.apache.org/hadoop/Hadoop_Upgrade
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The file permissions are designed to be similar to file permissions on other familiar platforms like Linux. Currently, security 
is limited to simple file permissions. The user that starts NameNode is treated as the superuser for HDFS. Future versions of 
HDFS will support network authentication protocols like Kerberos for user authentication and encryption of data transfers. 
The details are discussed in the Permissions Guide. Hadoop currently runs on clusters with thousands of nodes. lists some of 
the organizations that deploy Hadoop on large clusters. HDFS has one NameNode for each cluster. Currently the total 
memory available on NameNode is the primary scalability limitation. On very large clusters, increasing average size of files 
stored in HDFS helps with increasing cluster size without increasing memory requirements on NameNode. The default 
configuration may not suite very large clusters.  

Yarn MapReduce has undergone a complete overhaul in hadoop-0.23 and we now have, what we call, MapReduce 2.0 
(MRv2) or YARN.The fundamental idea of MRv2 is to split up the two major functionalities of the JobTracker, resource 
management and job scheduling/monitoring, into separate daemons. The idea is to have a global ResourceManager (RM) and 
per-application ApplicationMaster (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a 
DAG of jobs.The ResourceManager and per-node slave, the NodeManager (NM), form the data-computation framework. The 
ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system. The per-
application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the 
ResourceManager and working with the NodeManager(s) to execute and monitor the tasks. 

 

 

Map Reduce Hadoop MapReduce is a software framework for easily writing applications which process vast amounts of data 
(multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant 
manner.  MapReduce job usually splits the input data-set into independent chunks which are processed by the map tasks in a 
completely parallel manner. The framework sorts the outputs of the maps, which are then input to the reduce tasks. Typically 
both the input and the output of the job are stored in a file-system. The framework takes care of scheduling tasks, monitoring 
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them and re-executes the failed tasks. Typically the compute nodes and the storage nodes are the same, that is, the 
MapReduce framework and the Hadoop Distributed File System (see HDFS Architecture Guide) are running on the same set 
of nodes. This configuration allows the framework to effectively schedule tasks on the nodes where data is already present, 
resulting in very high aggregate bandwidth across the cluster. The MapReduce framework consists of a single master 
ResourceManager, one slave NodeManager per cluster-node, and MRAppMaster per application (see YARN Architecture 
Guide).  Minimally, applications specify the input/output locations and supply map and reduce functions via implementations 
of appropriate interfaces and/or abstract-classes. These, and other job parameters, comprise the job configuration. The 
Hadoop job client then submits the job (jar/executable etc.) and configuration to the ResourceManager which then assumes 
the responsibility of distributing the software/configuration to the slaves, scheduling tasks and monitoring them, providing 
status and diagnostic information to the job-client. Although the Hadoop framework is implemented in Java™, MapReduce 
applications need not be written in Java. Mapper maps input key/value pairs to a set of intermediate key/value pairs. 

Maps are the individual tasks that transform input records into intermediate records. The transformed intermediate records do 
not need to be of the same type as the input records. A given input pair may map to zero or many output pairs. The Hadoop 
MapReduce framework spawns one map task for each InputSplit generated by the InputFormat for the job.Overall, Mapper 
implementations are passed the Job for the job via the Job.setMapperClass(Class) method. The framework then calls 
map(WritableComparable, Writable, Context) for each key/value pair in the InputSplit for that task. Applications can then 
override the cleanup(Context) method to perform any required cleanup. Output pairs do not need to be of the same types as 
input pairs. A given input pair may map to zero or many output pairs. Output pairs are collected with calls to 
context.write(WritableComparable, Writable). Applications can use the Counter to report its statistics. All intermediate 
values associated with a given output key are subsequently grouped by the framework, and passed to the Reducer(s) to 
determine the final output. Users can control the grouping by specifying a Comparator via 
Job.setGroupingComparatorClass(Class). The Mapper outputs are sorted and then partitioned per Reducer. The total number 
of partitions is the same as the number of reduce tasks for the job. Users can control which keys (and hence records) go to 
which Reducer by implementing a custom Partitioner. Users can optionally specify a combiner, via 
Job.setCombinerClass(Class), to perform local aggregation of the intermediate outputs, which helps to cut down the amount 
of data transferred from the Mapper to the Reducer. The intermediate, sorted outputs are always stored in a simple (key-len, 
key, value-len, value) format. Applications can control if, and how, the intermediate outputs are to be compressed and the 
CompressionCodec to be used via the Configuration. 
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