
Governors State University
OPUS Open Portal to University Scholarship

All Student Theses Student Theses

Summer 2015

The Facility Location Problem
Meghan E. Csoke
Governors State University

Follow this and additional works at: http://opus.govst.edu/theses

Part of the Emergency and Disaster Management Commons, and the Mathematics Commons

For more information about the academic degree, extended learning, and certificate programs of Governors State University, go to
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/

Visit the Governors State Mathematics Department
This Thesis is brought to you for free and open access by the Student Theses at OPUS Open Portal to University Scholarship. It has been accepted for
inclusion in All Student Theses by an authorized administrator of OPUS Open Portal to University Scholarship. For more information, please contact
opus@govst.edu.

Recommended Citation
Csoke, Meghan E., "The Facility Location Problem" (2015). All Student Theses. 63.
http://opus.govst.edu/theses/63

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Governors State University

https://core.ac.uk/display/214310404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opus.govst.edu?utm_source=opus.govst.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/theses?utm_source=opus.govst.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/student_theses?utm_source=opus.govst.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/theses?utm_source=opus.govst.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1321?utm_source=opus.govst.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=opus.govst.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/theses/63?utm_source=opus.govst.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/
http://www.govst.edu/Academics/Colleges_and_Programs/College_of_Arts_and_Sciences/Division_of_Computing_Mathematics_and_Technology/Mathematics/Mathematics,_Master_of_Science/
mailto:opus@govst.edu

The Facility Location Problem

By

Meghan E. Csoke
B.S., Iowa State University, 2004

B.A., Governors State University, 2011

Thesis

Submitted in partial fulfillment of the requirements

For the Degree of Master of Science
With a Major in Mathematics

Governors State University
University Park, IL 60466

2015

Abstract

The purpose of this study was to analyze the location of an emergency

facility location within a town based on given information from the village

and to use the results to determine the optimal location for an emergency

facility. A model of the problem was developed using a spreadsheet and

computer program to record and analyze the optimal response time based

on different locations of emergency facilities. Assumptions were made

to create situations easily computed through spreadsheet and computer

programs. Once calculated, information was used to create a framework

of demand density across a gridded map. Once the computer program was

updated to use the large amount of data, results were obtained. Based

on data and modeling, the current location of emergency facility was not

located in the most opportune locations and another location was deemed

better suited for serving the community.

1

1 Introduction

The facility location problem is an optimization problem that appears in many

disciplines and whose methods of solution can be applied to a vast range of

initial problems. There are two main categories of facilities: service based vs.

industry based. The goal is to focus on the service based aspect of this problem.

Service facilities can be, but are not limited to, police stations, fire stations, hos-

pitals, schools, libraries, ambulance depots, emergency care centers, etc. These

facilities are stationary and provide or assist in providing a service to a com-

munity. We will be looking into seeking the optimal locations of facilities to

optimize response time to better serve a given community. The location of

emergency facilities significantly affects the safety and well being of the commu-

nity as mentioned by Caccetta and Dzator [1]. Response time has been dictated

by the National Fire Protection Agency (NFPA) in their code book [2]. NFPA

publishes 300 codes and standards that are designed to minimize the risk and

effects of fire by establishing criteria for building, processing, design, service,

and installation in the United States, as well as many other countries.

The safety and well being of the community depends directly or indirectly

on the response time of the emergency facilities [1]. The minimization of the

response time measures the performance of emergency facilities and the per-

formance of these facilities can be improved by either improving the existing

location of emergency facilities or increasing the number of facilities [1]. In-

creasing the number of facilities can be a challenge based on allocated space

and city funding. Due to these factors, it is crucial to locate a facility effectively

and efficiently. The NFPA has stated in their standard 1710 (standard for the

organization and deployment of fire suppression operations, emergency medical

operations, and special operations to the public by career fire departments) that

the travel time for a fire engine or ambulance should be 240 seconds or less and

2

480 seconds or less for the arrival of all services for a full alarm or advanced life

support (ALS) unit [2]. In this paper, data was examined from the Oak Lawn

Police and Fire Department to verify their locations are the optimal locations

for police and fire. The data was also examined to determine whether or not

adding more facility locations should be considered.

An important way to measure the efficiency and effectiveness of an emer-

gency facility is by evaluating the average distance between the customers and

the facilities [1]. A decrease in response time will occur when the average dis-

tance between the facility location and emergency location decreases. This is

known as the p-median problem. According to Hakimi [3], the p-median prob-

lem is that of locating p facilities to minimize the demand weighted average

distance between demand nodes and the nearest of the selected facilities and

was originally introduced in 1964. Hakimi [4] showed that one optimal solution

to the p-median problem has locations only on nodes which will be the type of

solution this paper will focus on.

Since the p-median problem is a computationally difficult problem to solve

(the problem is NP-hard on general graphs) [5, 6], heuristic models were ex-

plored. NP can be defined as a class of computational problems for which a

given solution can be verified as a solution in polynomial time by a determin-

istic Turing machine. Being NP-hard is defined as a class of problems which

are at least as hard as the hardest problems in NP. Classical methods com-

pute all possible outcomes and record the best possible solution. Heuristics use

methods to approximate the best possible answer in a shorter amount of time.

There are many heuristic approaches to solving the p-median problem includ-

ing: genetic algorithms, simulated annealing, tabu search, node partitioning,

node insertion, node substitution, and various hybrids [7, 8, 9, 10]. A disadvan-

tage of using heuristics to solve a p-median problem is that there is no way to

3

verify if the given solution is in fact the best solution unless you have already

solved the problem by using a classical method. Tabu search will be used in

the modeling portion and is actually considered a meta heuristic. Heuristics

find ‘good’ solutions on large-size problem instances and they allow acceptable

performance at acceptable costs in a wide range of problems. Heuristics do not

have an approximation guarantee on the obtained solutions. They are tailored

and designed to solve a specific problem or/and instance. Meta-heuristics are

general-purpose algorithms that can be applied to solve almost any optimization

problem. They may be viewed as upper level general methodologies that can

be used as a guiding strategy in designing underlying heuristics [11].

2 Modeling Competition Problem

A simple case that was introduced during the 1986 Mathematical Competition

in Modeling and presented by the Department of Mathematical Sciences at

Salisbury State College in Salisbury, Maryland [12] was considered. Over a

weekend in February, 1986, three-student teams were presented with a packet

and a choice of two problems to solve. The first asked for construction of a

contour based on given hydro-graphic data, and the second asked for an optimal

location of two emergency facilities in a small town. All teams were free to use

computers and libraries. The second presented problem is below [12, pp1-2].

The township of Rio Rancho has hitherto not had its own emergency

facilities. It has secured funds to erect two emergency facilities in

1986, each of which will combine ambulance, fire, and police services.

Figure 1 indicates the demand, or number of emergencies per square

block, for 1985. The L region in the north is an obstacle, whereas

the rectangle in the south is a park with a shallow pond. It takes an

emergency vehicle an average of 15 seconds to go one block in the

4

N–S direction and 20 seconds in the E–W direction. The task was

to locate the two facilities so as to minimize the total response time.

It was assumed that the demand is concentrated at the center of the

block and that the facilities will be located on corners. Assume that

the demand is uniformly distributed on the streets bordering each

block and that the facilities may be located anywhere on the streets.

Figure 1: A map of Rio Rancho, with number of emergencies in 1985 indicated
for each block [12].

2.1 Assumptions

To solve the Rio Rancho problem, assumptions needed to be made based on the

given information. These assumptions enabled the coding to work with fewer

complications.

• A dispatcher will send out an emergency vehicle from the facility closest

to the emergency site.

• There will always be an emergency vehicle available at the emergency

5

facility closest to the site.

• The optimal location of an emergency facility will be at an intersection

which enables the emergency vehicle to begin its path in either direction.

• Emergency vehicles must drive on existing streets.

• Emergency vehicles always choose the shortest route distance wise.

• An emergency vehicle is called only from a facilities location, it will not

travel from one emergency to the next.

• Emergency facility locations can be located on any corner (nodes or points)

with in a specified block number.

2.2 Solution

For this solution, assume that the demand is concentrated at the center of the

block and that the facilities will be located on corners. The response time will

need to be minimized. This will be done while assuming the emergencies occur

at the center of a block and the obstacles shown on the map (Figure 1) are

negated. This means the emergency vehicle has arrived once it is at any corner

of the block. To try and solve this part of the problem, we can start by modeling

a single emergency facility location and minimizing response time through all

possible locations. This was done so that there was a basic code structure to

work with and then expand further for future models. The model to solve this

situation was created using Visual Basic (VBA) in Excel with multiple macros

for each part.

First, a map of Rio Rancho was created in Excel with a 10 by 5 grid where

each cell represented a block in the town. Values were entered in each remaining

cell for demand. The block numbers were represented by their x− and y−

coordinates on the 10 by 5 grid. The coordinates started at 0 and ended at 9

6

in the north-south direction and started at 0 and ended at 4 in the east-west

direction. This grid, Figure 2, was used as a visual reference and guide for the

remaining parts of the code.

Figure 2: Rio Rancho Block Grid with Demand

The first challenge of this problem was creating a list of all possible combi-

nation of points by coding in VBA. The combinations represent the emergency

facility location and the actual emergency. For example, if the facility was lo-

cated at any corner of block (0,0), it was necessary to determine the distance

from (0,0) to all other possible blocks (50 of them in this case) in the town.

Since there are 50 nodes there will then be 2500 different combinations of where

the emergency facility can be located and where all possible emergencies will

be located. The code used to create this list of point combinations used can be

found in Appendix A.

A separate macro was created in VBA to determine the response time be-

tween each pair of points in the list of 2500 combinations (Appendix B). A simple

formula for rectilinear distances was implemented and adjusted with the given

time constraints as stated in the original problem and can be seen in Listing

1. Lines 5-10 are declaring variables, lines 14-15 are telling the program where

to get the information, lines 19-22 are telling the program where the defined

variables are located and what type of information to take from the location,

7

line 26 is where you can find the formula for rectilinear distances adjusted with

the travel times, and lines 30-32 tell the program where to insert the calculated

response time and to repeat the process. Emergency vehicles moving in the N-S

direction would require 15 seconds to travel each block and vehicles traveling in

the E-W direction would require 20 seconds. These times were added into the

code as multipliers to the original rectilinear formula. The pair (x1, y1) repre-

sents the coordinates of the facility and (x2, y2) represents the coordinates of an

emergency. The time it takes an emergency vehicle to respond from a specific

location and travel to a specific emergency site is called the response time. That

response time needs to be multiplied by the demand at the emergency location

block to determine the total response time (at any given block). This was done

in VBA with a separate macro as well and can be seen in Appendix B.

Listing 1: Calculate Distances Code

1 Sub CalculateDistance ()

2
3 ’ Declariation of variables and their types
4
5 Dim x1 As Double

6 Dim x2 As Double

7 Dim y1 As Double

8 Dim y2 As Double

9 Dim Distance As Double

10 Dim i As Long

11
12 ’ extract input from the sheet
13
14 With Sheets("Combination of Points")

15 For i = 15 To 2514

16
17 ’ se lect the ce l l i t s e l f
18
19 x1 = Range("B" & i).Value

20 x2 = Range("D" & i).Value

21 y1 = Range("C" & i).Value

22 y2 = Range("E" & i).Value

23
24 ’ formula for distance with travel time i s (abs(x1 −

x2) ∗ 20) + (abs(y1 − y2) ∗ 15)
25

8

26 Distance = (Abs(x1 - x2) * 20) + (Abs(y1 - y2) * 15)

27
28 ’ output response time into speci f ied ce l l s
29
30 Range("G" & i).Value = Distance

31 Next i

32 End With

33
34 Beep

Next, there needed to be code written to take the list of 2500 possible re-

sponse times for the Rio Rancho area and covert it back into a visually under-

standable grid like we started with. Within this grid we also needed to sum the

total response time over an entire block based on the location of the emergency

facility to show the total response time for the entire town if the emergency

facility was located at that specific block. Also included in the code (Appendix

C) are the three smallest total response times.

Figure 3: Gridded Total Response Time

In Figure 3 it can seen where the three best locations for one facility in the

Rio Rancho area should be located, in the block (2, 4), (2, 3) and (3, 4). The

location with the smallest amount of response time would be at block (2, 4).

9

2.3 Strengths and Weaknesses of the Model

Finding a solution through the method described in this paper will truly only

work in this instance. Due to the complication of coding this in VBA, a general

case code could not be completed. Because of this, the original stated problem

could not be determined. Locating two emergency facilities would include many

if/then statements and looping. The concept can easily be mapped but the act of

writing code to complete the process is beyond this author’s scope. For example,

an if statement testing a current location must sum up all of the travel times

to each 50 nodes, save that time in memory, and check the next location. If the

new sum is less that the sum in memory, the program needs to forget the old,

save the new and continue checking until all 50 locations have been summed

and verified for the smallest total response time.

2.4 Conclusion

The solution gained from using this program was consistent with the solutions

presented in the research material. For a one facility location problem, it is

almost as easy to visually see the location as it is to find the optimal location

using data, once a proper program has been created. Considering the solutions

the algorithm found, the obstacles do not play an important role in determining

the optimal solution. This means there is no reason for Rio Rancho to remove

the obstacle or bridge the pond to decrease response time. Since the station

is not located in blocks which are blocked by either the L-shaped obstacle or

the pond, no extra time need be expended avoiding the obstructions (detour),

therefore they have no effect on the optimal solution.

10

3 Application of Model

After creating a working model in Excel for the Rio Rancho problem, a more

organized program needed to be created to apply this method to a real life

problem situation. Data was gathered from the Oak Lawn Police Department

on police and fire calls with in the Oak Lawn, Illinois town for the year 2014.

The goal of applying our method to a real life situation is to see if the one

emergency facility the town currently has is the best location and where two

facility locations would best be placed. As stated previously in this paper,

adding a location can depend a multiple factors, including cost and available

land, so the outcome is strictly hypothetical.

3.1 Data Sorting

Included in the data was the location of an emergency, the agency who re-

sponded, the time the call was taken, the time the agency arrived, and the

amount of time to respond. To determine the demand per block, all calls needed

to be mapped and assigned one of the 749 different blocks in Oak Lawn. This

was done by using Google Maps [13] and plotting all address calls. Addresses

are defined as street intersections and not house numbers. There were a total of

30,111 total calls for police and fire in 2014 sorted into 7,064 for fire and 23,047

for police. Since the addresses were listed by intersections, there were multiple

calls for the same intersections. The number of times an address appeared in

the data list will now be referenced as the demand. Due to this only 2,230 calls

needed to be mapped and sorted to each of the blocks. Once this was completed

the total demand per block could be determined by using Excel. The following

assumptions were made in order sort the data more efficiently.

• All emergencies located at the current police station will be disregarded

and not used for this program. It is most likely that the amount of calls

11

generated at the current facility’s location would not occur if the facility

was not located there.

• Emergency facilities can be located anywhere with in a block.

• Demand will be centered in each block.

• All calls are located at intersections and need to be assigned a block.

Therefore, calls will be assigned to the nearest block to the south, or the

nearest block to the east of the intersection.

• If there is no block to the south or east (blocks on the boundary of the

city), then the call will be assigned to the nearest block on the north or

west.

• All emergency response vehicles will be dispatched from their emergency

facility. No responders will go from emergency to emergency.

3.2 Tabu Search

Tabu search is a local search method that moves at each iteration from a solution

to its best neighbor even if this causes the objective value to deteriorate. Local

(neighborhood) searches take a potential solution to a problem and check its

immediate neighbors (solutions that are similar except for one or two minor

details) in the hope of finding an improved solution. Tabu search enhances the

performance of local search by relaxing its basic rule. At each step, worsening

moves can be accepted if no improving move is available. It does what local

search methods often do: when you get stuck, you allow a non-improving move

in the hopes of getting unstuck. In addition, tabu moves are introduced to

discourage the search from coming back to previously visited solutions. Tabu

search, in particular, maintains a tabu list. When a non-improving move in

introduced, the tabu list ensures we never move to a previously visited state.

12

Multiple parameters of a tabu search exist and includ: local search pro-

cedures, neighborhood structures, aspiration conditions, form of tabu moves,

addition of a tabu move, maximize size of tabu list, and the stopping rule [14].

A chief way to exploit memory in tabu search is to classify a subset of the

moves in a neighborhood, or search space, as forbidden (or tabu) [9]. A neigh-

borhood is constructed to identify adjacent solutions that can be reached from

current solution [15]. The classification of the moves depends on the history

of the search, and particularly on the recency or frequency that certain move

or solution components, called attributes, have participated in generating past

solutions [9]. Tabu restrictions are subject to an important exception. When

a tabu move has a sufficiently attractive evaluation where it would result in a

solution better than any visited so far, then its tabu classification may be over-

ridden. A condition that allows such an override to occur is called an aspiration

criterion [9].

Three strategies to using tabu search include the forbidding strategy (control

what enters the tabu list), freeing strategy (control what exits the tabu list

and when) and short-term strategy (manage interplay between the forbidding

strategy and freeing strategy to select trial solutions). To avoid cycling, solutions

similar to recently examined solutions are forbidden, or tabu, for a number of

iterations [16]. It uses flexible memory and responsive exploration in guiding

the solution process to move from one trial solution to another [17]. By giving

recently or frequently (or infrequently) visited solutions a tabu status, so as

to discourage their selection in the search process, it guides other searching

methods to move away from local optimal solutions.

Tabu search has three major flexible memory components, a short term

memory process, an intermediate memory process, and a long term memory

process [9]. The short term memory process is based on a set of tabu conditions

13

and aspiration criteria. Through frequency-based memories, tabu search char-

acterizes a subset of potential moves as tabu, or forbidden, to avoid reversal of

previously visited solutions. The intermediate memory process is implemented

by restricting the search within a set of potentially prosperous solutions to in-

tensify the search. The long term memory process is invoked periodically to lead

the search to new regions that might not have been explored as it diversifies the

search.

The basic tabu search algorithm [18] is outlined below. Here S is the set of

feasible solutions (candidate list of solutions), f is some function to be optimized,

i is the current solution, j is the next solution, i∗ is the best solution found so far,

and k is the iteration counter. As soon as any non-improving moves are possible,

the risk of repeating moves is present. This is when the use of memory is helpful

to forbid moves which might lead to repetition in solutions. If such a memory is

introduced, we may consider that the structure of neighborhood of the current

solution N(i) will depend upon the iteration k; thus the neighborhood would

be referred to as N(i, k). The flow chart of the process can be seen in Figure 4.

1. Chose an initial solution i in S. Set i∗ = i and k = 0.

2. Set k = k + 1 and generate a subset V ∗ of solutions in N(i, k) such that

either one of the tabu conditions is violated or at least one of the aspiration

conditions holds.

3. Choose a best j in V ∗ (with respect to f) and set i = j.

4. If f(i) < f(i∗) then set i∗ = i.

5. Update tabu and aspiration conditions.

6. If a stopping condition is met then stop. Else go to Step 2.

14

Figure 4: Flow Chart of Standard Tabu Search Algorithm

Hillier and Lieberman [14] outlined the tabu search stopping criterion by

using a fixed number of iterations, a fixed amount of CPU time, or a fixed

number of consecutive iterations without an improvement in the best objective

function value. Also, it may stop at any iteration where there are no feasible

moves into the local neighborhood of the current trial solution. Some immediate

stopping conditions could be the following:

• N(i, k + 1) = 0. (no feasible solution in the neighborhood of solution i)

• k is larger than the maximum number of iterations allowed.

• The number of iterations since the last improvement of i∗ is larger than a

specified number.

• Evidence can be given than an optimum solution has been obtained.

Various pros and cons are attributed to using the tabu search method. It

allows non-improving solution to be accepted in order to escape from a local

optimum. The use of tabu list can be applied to both discrete and continuous

solution spaces. For larger and more difficult problems (scheduling, quadratic

assignment and vehicle routing), tabu search obtains solutions that rival and

15

often surpass the best solutions previously found by other approaches [9]. How-

ever, if there are too many parameters to be determined, the number of itera-

tions could be very large and global optimum may not be found, depending on

parameter settings.

3.3 The FLP Solver Solution Algorithm

Due to the limitations of the first program created in VBA, a new program

needed to be used. The program used for the Oak Lawn data is adapted from

the public code for the FLP Solver which was created by Dr. Güneş Erdoğan at

the School of Management, University of Southampton [19]. The FLP Solver is

an extension of a previously created workbook to help solve the vehicle routing

problem. The purpose of the FLP solver workbook is to provide a proof of

concept for what can be done when trying to solve the facilities location problem

and it was with this in mind, the code provided for the public workbook was

adapted to fit the Oak Lawn data.

The field of facilities location problem research mostly focuses on exact al-

gorithms. One of a better known heuristic algorithm to solve this problem is

the tabu search [19] and a variant of the tabu search is implemented within the

FLP Spreadsheet Solver [19]. An outline of the algorithm is given below.

1. Initialization: Initialize the incumbent solution, the best known solution,

and the iteration counter k = 1. Initialize the tabu list as an empty list.

Read the solution on the Solution worksheet into the incumbent solution

if a “warm start” is required.

2. Stopping condition: If the time limit is exceeded, stop and report the

best known solution.

3. Select move: Explore all possible relocations of a single location and all

16

possible exchanges of two locations between facilities. An exchange means

an exchange between the emergency location and the emergency to test

which location would give us an optimal result (shortest route/time). If

the best move results in a solution better than the best known solution,

execute it or keep it as the best solution to test other combinations of

facilities and emergencies against. Else, choose and execute the best move

that does not involve any locations in the tabu list. Add the location(s)

in the move which did not get kept as an optimal location to the tabu list.

More specifically, determine the total response time to all locations from

a starting location. Next, test another location and calculate the total

response time. Those with smaller total response time will be kept, those

with greater will be assigned to a tabu list.

4. Best solution update: If the incumbent solution is feasible and better

than the best known solution, update the best known solution.

5. Tabu list update: Remove all locations with a tabu tenure larger than

the tabu tenure limit from the tabu list. Go to Step 2. Tabu tenure is

defined as the length of time t for which a move is forbidden. If t is too

small there is a risk of cycling. If t is too large, it may restrict the list too

much.

3.4 New Program - The FLP Solver (Adapted)

The FLP Spreadsheet Solver adopts an incremental flow of information, with

subsets of data being kept in separate worksheets, as depicted in Figure 5. Ini-

tially, the workbook only contains the worksheet named FLP Solver Console.

The remaining worksheets are generated in the sequence denoted by their in-

dexes. Instead of having a wizard interface, which is very easy to use but also

very restrictive, the workbook numbers the worksheets in the order of progress.

17

The parameters related to each worksheet are presented along with their se-

quence number. Any modifications to the original code will be discussed along

with each parameter which are included in the FLP Solver’s manual.

Figure 5: FLP Solver Flow of Information

Bing Maps Key: Having a Bing Maps License is optional. You can still

use the workbook without a Bing Maps License. A valid key is required for pop-

ulating the latitude/longitude, the distances and duration, and for generating

visualization of the locations and the routes on a map. You can generate a free

key at https://www.bingmapsportal.com/. The key can be copied and pasted

into the appropriate cell.

Number of locations: Limited to the interval [10, 200]. This interval was

increased to 800 based on the number of possible block locations in Oak Lawn

for an emergency facility. The code now has an interval of [10, 800].

Distance computation: This parameter describes how the distances should

be populated, if they will be. The options are Manual entry, Euclidean distances,

Rounded Euclidean distances, Geodesic approximation, Rectilinear (Manhat-

tan) distances, and Bing Maps. The option Manual entry disables the distance

population function. The option Euclidean distances computes the distance be-

tween points (x1, y1) and (x2, y2) as d1,2 =
√

(x1 − x2)2 + (y1 − y2)2, and the

results of the formula are not in kilometers but instead are in unit distance.

The option Rounded Euclidean distances uses the Euclidean distance for-

mula and rounds the result to the closest integer, and again the results of the

18

formula are not in kilometers but are measured in unit distance. The option

Geodesic approximation uses a spherical approximation for the surface of the

Earth, and the results of the formula are in kilometers. This option is useful if

you need routes for vessels or aircraft instead of vehicles. The option Rectilin-

ear (Manhattan) distances computes the distance between points (x1, y1) and

(x2, y2) as d1,2 = |x1 − x2| + |y1 − y2|, and the results of the formula are not

in kilometers but again are measured in unit distance. This does not take into

account any obstacles and assumes a complete grid. This option was used to

verify another location for the Rio Rancho problem with results discussed later

on. The option Bing Maps uses the web service (with the options of avoiding

tolls and optimizing for shortest distance), and the results of the formula are

in kilometers. This option uses real map data so it will reject routes that pass

through a pond or park like in the Rio Rancho problem. This option will be

used for the Oak Lawn data.

Bing Maps route type: This parameter describes the type of route re-

turned by Bing Maps. The options are Shortest, Fastest, and Fastest - Real

Time Traffic. Shortest option will find the shortest path, which usually goes

through city centers, is subject to strict speed limits, and ends up with a very

long duration. The recommended option is Fastest. The option Fastest - Real

Time Traffic will give you estimates at the time the distances are populated,

which may change drastically based on the traffic conditions at that instant. For

emergency vehicles, lights and sirens may be applied and are therefore not as

strongly inhibited by traffic lights, stop signs and speed limits as normal traffic

may be.

Cost per unit distance: The distances are multiplied by this amount to

determine the cost of assigning a location to a facility. This relationship is built

into the Costs and Coverage worksheet as a formula. There is no cost associated

19

with locating a facility in this problem so the cost portion of the program was

altered so it represented demand. Total distances based on time using rectilinear

distances and using Bing Maps will be multiplied by the demand (cost) to create

a total response time to a block based on the given data.

Costs scaled by demand: Optionally, the assignment cost of a location to

a facility may depend on the demand of the location. If the option Yes is selected,

the cost formula also involves the demand of the location as a multiplier. In this

problem, demand and cost were considered multipliers for the service distance

since cost is now representing time.

Service distance limit: Assigning a location to a facility at a distance

more than the value of this parameter is prohibited, and a solution involving

such an assignment is considered infeasible. This option may be used for solving

FLP variants such as distance constrained p-median. This is not necessary in

the current problem we are investigating because the facility needs to service

the entire area.

Coverage distance limit: Assigning a location to a facility at a distance

more than the value of this parameter results in a coverage of 0. The coverage

distance limit did not apply here and so it was assigned a very large value so

that it is negligible when running the program.

Coverage type: If Step function is selected, 100% of the demand of a

location is covered if it is assigned to a facility less than or equal to the cov-

erage distance limit, and none of the demand is covered otherwise. If Linearly

decreasing coverage is selected, the percentage of the demand of a location cov-

ered by the facility it is assigned to is computed as max {0, 1 – (distance from

the facility to the location / Coverage distance limit)}. Step function will be

used for the Oak Lawn data.

Number of facilities: This parameter denotes the maximum number of

20

facilities to be located. This may be set to the number of locations if the actual

number of facilities located is to be determined by the solution algorithm.

Objective: The options are Minimize total cost, Maximize demand covered,

and Minimize maximum service distance. For both the Rio Rancho problem

and the Oak Lawn data the minimize total cost option will be selected. This is

actually based on demand since there is 0 cost associated with locating a facility.

All facilities must be located?: If Yes is selected, the solver and the

feasibility checker require the number of facilities located in a feasible solution

to be Number of facilities. If No is selected, a feasible solution may have a

smaller number of facilities located.

Visualization background: The options are Bing Maps and Blank. If

Bing Maps is selected, the workbook will download the appropriate map con-

taining the coordinates of the locations, and use it as the background image

of the scatter chart depicting the routes. This option was eliminated since the

scatter plot does not accurately visualize the routes taken by using Bing Maps.

Instead the visualization will depict all vehicles traveling using Euclidean dis-

tances even if another option for calculating distance was selected.

Location labels: The options are Blank, Location IDs, and Location

names. If Location IDs is selected, the ID number of the location will be dis-

played next to the location on the map. If Location names is selected, the name

of the location will be displayed next to the location on the map.

Warm start: If “Yes” is selected, the solution algorithm will attempt to

use the solution on the solution worksheet as a starting point.

CPU time limit: This parameter denotes the run time limit of the FLP

Spreadsheet Solver. As a general rule, a longer run gives a higher probability

of finding a good solution. The FLP Spreadsheet Solver will not stop before

completing the first iteration, which may be longer than the time limit provided.

21

The FLP Solver can be interrupted by pressing the ESC key.

3.5 Results

The FLP Solver was also run for the Rio Rancho problem and was tested under

multiple situations to find which option works best when applying the Oak Lawn

data. First, the program was run to find the optimal location for one facility

to compare with the results from the Rio Rancho VBA code. The results using

rectilinear (Manhattan) distances and the objective to minimize total cost gave

the results of (2, 4), the same results as the original program. It should be

noted that the other two objective options returned the same result as well.

This verifies that the FLP solver can determine an optimal location using a

tabu search.

Second, the program was run to locate two facility locations using the objec-

tive option, maximize demand covered and distances determined using rectilin-

ear (Manhattan) distances. For the Rio Rancho problem there were 50 different

possible locations for facilities located anywhere in a given block number (or

ordered pair). This means that the emergency facility could be located any

where within the given block number. Under these circumstances the program

determined the facilities to be located at (2, 1) and (2, 6). These two locations

maximize the demand assigned to an emergency facility location while still keep-

ing cost (distance in our case) to a minimum.

The program was then run using the objective function, minimize maximum

service distance and the same distance option as the previous run and returned

the two locations of (0, 4) and (3, 4). These locations enable the emergency

vehicle to travel the smallest distance to each emergency location assigned to

it. The final run was done using the objective function minimize total cost and

returned the locations of (2, 1) and (3, 5). Since cost is not a factor in this

22

problem, this option was calculating the locations based on a sum of overall

distance and time. All results can be seen with the original map in Figure 6. It

was determined that this objective function along with the maximize demand

covered objective worked best for the Rio Rancho problem situation. Since cost

is negligible and was entered into the program as a cost of $1 per unit distance,

when the program was minimizing total cost, it was actually minimizing total

response time based on demand. It is because of this, the objective function

for minimizing total cost was used for determining facility locations for the Oak

Lawn data.

Figure 6: FLP Solver Solutions for Rio Rancho Problem

For the Oak Lawn data the program was run testing a single location for an

emergency facility and then ran again for two locations. Once the program was

updated to handle the 749 different block locations and the 561,001 different

combinations of emergency facilities and location of emergencies, the FLP so-

lution algorithm was executed and the results calculated. To run the program

23

for a data set this large, the CPU time limit needed to be set to a large number

allowing the program to run for over 2 days. The program ran a total of 252,210

different iterations to come to the conclusion that block number 425 was suit-

able for a single emergency facility. From the map in Figure 7, it can be seen

that this location is centrally located in the city and makes sense when locating

a facility based on arriving at any emergency with the shortest amount of time

(fastest option on the FLP solver). It can also be seen how this location is close

to the current Police and Fire Station. After many more iterations, the program

came to the conclusion that if there were to be two emergency facilities, they

should be located at block 487 (39% of the demand) and block 527 (61% of the

demand). It can be seen in the Figure 7 these two locations are located practi-

cally East and West of each other on opposite ends of the city. The placement

of these two facilities also makes sense when you think about how they serve the

community. Having locations on either side of town helps minimize response

time. They are also located along one of the main streets in the city enabling

the responders to quickly exit the facility and navigate towards the intended

emergency location on a main artery instead of the slower side streets.

4 Conclusion

Many factors are involved in locating emergency facilities including proximity to

community members, zoning, taxes, cost, access to roads, and more. Locating

emergency service facilities is a fundamental problem in emergency manage-

ment. In practice, major disasters (such as fire, earthquake, and flood) often

cause enormous property losses. It is the goal of city planners to reduce that

loss by locating facilities in appropriate locations. It is important to look at

past data to validate or ensure the locations are beneficial to the community for

which they serve. When making the decision on where to place an emergency

24

Figure 7: FLP Solutions for Oak Lawn Data. Black Star = Current Location,
Blue Star = FLP Solution for One Location, and Red Stars = FLP Solution for
Two Locations [13]

facility, many different options are available.

Some useful programs for solving such problems have already been created

athough further extension of the FLP solver could prove useful in smaller mar-

kets and in research. LoLA is a collection of efficient algorithms for solving

planar, network and discrete facility location problems [20]. LoLA can solve a

number of different location models including Median, Center, p-median and

p-center where p is the number of facilities in a multi-facility problem or the

number of objective functions in a multi-objective problem. SITATION is a

facility location software that accompanies Daskin’s text (Network and discrete

location: models, algorithms, and applications) [21]. The SITATION software

solves a number of different discrete and network facility location problems

including p-median, p-center, set covering, maximal covering, and more. SITA-

TION allows the user to choose from a variety of heuristics and optimization-

based approaches for each of the different models. S-distance is a standalone

25

Spatial Decision Support System, mainly focused on location-allocation anal-

ysis [22]. S-distance is able to solve quite large classical discrete and network

location-allocation problems, including, p-median, p-center, maximal covering

and multi-objective. The current version of the software (version 0.7) offers

a number of heuristic and optimization-based algorithms such as greedy and

randomized algorithms, local search heuristics, meta-heuristics, and Lagrange

relaxation.

Other facility location software is available specializing in solving specific

problems and are limited more in their functionalities than the previous three.

• RLP is a program package for solving restricted 1-facility location prob-

lems in a user friendly environment [23].

• Optimal locating air polluting facilities is a general modeling system to

evaluate and optimize the location of an air polluting facility [24].

• Jure Mihelic’s k-center algorithms is a program for solving k-center loca-

tion problems [25].

• Minimum enclosing circle applet is a program package for solving the Min-

imal Enclosing Circle problem [26]. It is useful for planning the location

of a shared facility.

• Excel template for facility location includes model for center-of-gravity

method for locating distribution centers [27].

• GAMBINI is a small GIS-utility which calculates draws and exports multi-

plicative weighted Voronoi diagrams [28]. A point location data structure

can be built on top of the Voronoi diagram in order to find the object that

is nearest to a given point.

26

• Mathematical programming softwares such as CPLEX, LINGO, LINDO

and GAMS which are useful when having mathematical models for facility

location problems [29] [30] [31].

5 Extension

Due to the large CPU times associated with running this program with more

than 200 locations, another algorithm would work faster when dealing with large

sets of data. Looking further into large scale p-median problems, an aggregation

heuristic could work faster. For large-scale p-median problems, it is common

to aggregate the demand points. This size reduction by aggregation makes

the problem easier to solve, but introduces error. For the Oak Lawn data, it

may make sense to aggregate the demand points so that each node represented

multiple blocks in the city. This allows for a solution to have a choice of emer-

gency facility locations which would be helpful in an already largely established

community.

For the aggregation problem, three decisions must be made: the number of

aggregate demand points, the locations of the aggregate demand points, and

the replacement rule [32]. The replacement rule is essentially how you compute

the demand for the new aggregate point. This could simply be an addition of

all of the previous demands that were aggregated into the new point. It could

also include some kind of a business factor or cost. This replacement rule can

also deal with how you assign demand to the aggregate point. Error is always in

units of the objective function. Typically this makes the most sense for a cost

problem where cost can be described in terms of distance. There are no rules

on how much error is tolerable and it’s usually relative to a previous model or

solution. The error can tell you how much the aggregation hurt your result and

you can decide if you need to analyze the original problem.

27

A possible algorithm that could be implemented in the case of the FLP

Solver could be a median-row-column (MRC) aggregation algorithm which was

presented by France, Lowe and Rayco in 1996 [32]. In their paper they describe

the process of how to aggregate demand points to reduce the common error

associated with the process. This allows the solver to compute a solution for

large data sets. The N-Median Problem, a planar rectilinear version of p-center

model is used to seek an aggregation with a small error. The algorithm finds

a row-column (rc) median that minimizes the objective function value of the

q-median problem with rectilinear distances over all possible rc-medians. MRC

is a method for making the three decisions mentioned above.

28

Appendix A Point Combination Code

Sub PointCombinations ()

Dim rInp As Range

Dim avInp As Variant ’ ragged input list

Dim nCol As Long ’ # columns in list

Dim rOut As Range ’ output range

Dim iCol As Long ’ column index

Dim iRow As Long ’ row index

Dim aiCum() As Long ’ cum count of arrangements

from right to left

Dim aiCnt() As Long ’ count of items in each

column

Dim iArr As Long ’ arrangement number

Dim avOut As Variant ’ output buffer

Application.ScreenUpdating = False

Set rInp = Range("B4:E13")

If VarType(rInp.Value) = vbEmpty Then

MsgBox Prompt :="No input!", _

Buttons :=vbOKOnly , _

Title:= sTitle

Exit Sub

End If

Set rInp = rInp.CurrentRegion

If rInp.Columns.Count < 2 Or rInp.Rows.Count < 2 Then

MsgBox Prompt :=" Must have more than one row and more

than one columns!", _

Buttons :=vbOKOnly , _

Title:= sTitle

Exit Sub

End If

With rInp

.Style = "Input"

avInp = .Value

nCol = .Columns.Count

Set rOut = .Resize (1).Offset (.Rows.Count + 1)

Range(rOut.Offset(-1, -1), Cells(Rows.Count ,

Columns.Count)).Clear

End With

ReDim aiCum(1 To nCol + 1)

ReDim aiCnt(1 To nCol)

aiCum(nCol + 1) = 1

29

For iCol = nCol To 1 Step -1

For iRow = 1 To UBound(avInp , 1)

If IsEmpty(avInp(iRow , iCol)) Then Exit For

aiCnt(iCol) = aiCnt(iCol) + 1

Next iRow

aiCum(iCol) = aiCnt(iCol) * aiCum(iCol + 1)

Next iCol

If aiCum (1) > Rows.Count - rOut.row + 1 Then

MsgBox Prompt := Format(aiCum (1), "# ,##0") & _

" is too many rows!", _

Buttons :=vbOKOnly , Title:= sTitle

Exit Sub

End If

ReDim avOut(1 To aiCum (1), 1 To nCol)

For iArr = 1 To aiCum (1)

For iCol = 1 To nCol

avOut(iArr , iCol) = avInp((Int((iArr - 1) *

aiCnt(iCol) / aiCum(iCol))) Mod aiCnt(iCol) + 1,

iCol)

Next iCol

Next iArr

With rOut.Resize(aiCum (1), nCol)

.NumberFormat = "@"

.Value = avOut

.Cells(1, 0).Value = 1

.Cells(2, 0).Value = 2

.Cells(1, 0).Resize (2).AutoFill .Columns (0)

End With

ActiveWindow.FreezePanes = False

rOut.EntireColumn.AutoFit

ActiveSheet.UsedRange

Beep

End Sub

Appendix B Total Response Time Code

Sub DemandOverResponseTime ()

Dim Distance As Double

Dim Demand As Double

Dim TRT As Double

Dim i As Long

30

’extract input from the sheet

With Sheets (" Combination of Points ")

For i = 15 To 2514

’select the cell itself

Distance = Range ("G" & i).Value

Demand = Range ("I" & i).Value

’forumla for total response time is (Distance *

Demand)

TRT = (Distance * Demand)

Range ("K" & i).Value = TRT

Next i

End With

Beep

End Sub

Appendix C Sum of Demand per Block Code

Sub SumIfs ()

Dim i As Integer , j As Integer

With Sheets (" Combination of Points ")

For i = 0 To 4

For j = 0 To 9

.Range("M15").Offset(j, i).Value = _

WorksheetFunction.SumIfs (.Range ("K15:K2514 ")

, _

.Range("B15:B2514")

, i, _

.Range("C15:C2514")

, j)

Next ’j

Next ’i

End With

With Range ("S15")

.FormulaArray = "= SMALL(IF(M15:Q24 <>0,M15:Q24),

ROWS(A1:$A1))"

.Copy .Offset(1, 0).Resize(2, 1)

End With

Beep

End Sub

31

References

[1] L. Caccetta and M. Dzator, “Heuristic methods for locating emergency
facilities,” in Proceedings Modsim, vol. 2005, Citeseer, 2005.

[2] NFPA, NFPA 1710 Standard for the Organization and Deployment of Fire
Suppression Operations, Emergency Medical Operations, and Special Oper-
ations to the Public by Career Fire Departments. Quincy, 2010 ed., 2010.

[3] M. S. Daskin and K. L. Maass, “The p-median problem,” in Location Sci-
ence, pp. 21–45, Springer, 2015.

[4] S. L. Hakimi, “Optimum locations of switching centers and the abso-
lute centers and medians of a graph,” Operations research, vol. 12, no. 3,
pp. 450–459, 1964.

[5] O. Kariv and S. L. Hakimi, “An algorithmic approach to network loca-
tion problems. i: The p-centers,” SIAM Journal on Applied Mathematics,
vol. 37, no. 3, pp. 513–538, 1979.

[6] O. Kariv and S. L. Hakimi, “An algorithmic approach to network loca-
tion problems. ii: The p-medians,” SIAM Journal on Applied Mathematics,
vol. 37, no. 3, pp. 539–560, 1979.

[7] C. Hosage and M. Goodchild, “Discrete space location-allocation solutions
from genetic algorithms,” Annals of Operations Research, vol. 6, no. 2,
pp. 35–46, 1986.

[8] B. L. Golden and C. C. Skiscim, “Using simulated annealing to solve routing
and location problems,” Naval Research Logistics Quarterly, vol. 33, no. 2,
pp. 261–279, 1986.

[9] F. Glover, “Tabu search: A tutorial,” Interfaces, vol. 20, no. 4, pp. 74–94,
1990.

[10] F. Glover, “Tabu search: Part ii,” ORSA Journal on computing, vol. 2,
no. 1, pp. 4–32, 1990.

[11] E.-G. Talbi, Metaheuristics: from design to implementation, vol. 74. John
Wiley & Sons, 2009.

[12] B. A. Fusaro, “The 1986 mathematical competition in modeling,” Mathe-
matical Modeling, vol. 7, no. 4, pp. 537–543, 1986.

[13] Google, “Map of oak lawn, illinois,” 2015.
https://www.google.com/maps/place/Oak+Lawn,+IL/@41.7090825,-
87.759552,13z/data=!4m2!3m1!1s0x880e315112a50b61:0x1e773c4106829929.

[14] F. S. Hillier. and G. J. Lieberman, Introduction to operations research. New
York: McGraw-Hill, eighth ed., 2005.

32

[15] C. R. Reeves, “Improving the efficiency of tabu search for machine sequenc-
ing problems,” Journal of the Operational Research Society, pp. 375–382,
1993.

[16] G. L. Michel Gendreau and R. Séguin, “A tabu search heuristic for the ve-
hicle routing problem with stochastic demands and customers,” Operations
Research, vol. 44, no. 3, pp. 469–477, 1996.

[17] M. Sun, “Solving the uncapacitated facility location problem using tabu
search,” Computers and Operations Research, vol. 33, no. 9, pp. 2563–2589,
2006.

[18] A. Hertz, E. Taillard, and D. D. Werra, “A tutorial on tabu search,” in
Proc. of Giornate di Lavoro AIRO, vol. 95, pp. 13–24, 1995.

[19] G. Erdogan, “Flp spreadsheet solver,” 2014.

[20] H. W. Hamacher, K. Klamroth, S. Nickel, and A. Schoebel, “Library
of location algorithms,” tech. rep., University of Kaiserslautern, 1996.
http://www.mathematik.unikl.de/ wwwwi/WWWWI/DFG/lola.html.

[21] M. S. Daskin, “Sitation-facility location software. department of indus-
trial engineer-ing and management sciences.” Northwestern University,
Evanston, IL, 2002. http://users.iems.northwestern.edu/msdaskin/.

[22] P. Y. N. Sirigos S., “S-distance software.” Department of Planning and
Regional Development (DPRD), University of Thessaly, Greece, 2005.

[23] S. Nickel and H. W. Hamacher, “Rlp: a program package for solving re-
stricted 1-facility location problems in a user friendly environment,” Euro-
pean Journal of Operational Research, vol. 62, no. 1, pp. 116–117, 1992.

[24] J. Fliege, “Olaf–a general modeling system to evaluate and optimize the
location of an air polluting facility,” OR-Spektrum, vol. 23, no. 1, pp. 117–
136, 2001.

[25] J. Mihelic, “Jure mihelic k-center algorithms.” Department of Computer
and Information Sci-ence, University of Ljubljana, 2004.

[26] J. Eliosoff and R. Unger, “Mec ? minimum enclosing circle applet,” 1998.
http://www.cs.mcgill.ca/cs507/projects/1998/jacob/welcome.html.

[27] Microsoft, “Microsoft excel,” 2010. Redmond, Washington.

[28] B. N. Boots and M. Tiefelsdorf, “Gambini-programme for
calculating multiplicative weighted voronoi diagrams,” 1997.
http://www.wlu.ca/wwwgeog/special/download/gambini.htm.

[29] IBM, “IBM CPLEX optimizer,” 2015.

[30] L. Systems, “LINGO/LINDO,” 2015. Chicago, Illinois.

33

[31] GAMS Development Corporation, “GAMS,” 2015. Washington DC.

[32] T. J. L. Richard L. Francis and M. B. Rayco, “Row-column aggregation for
rectilinear distance p-median problems,” Transportation Science, vol. 30,
no. 2, pp. 160–174, 1996.

34

	Governors State University
	OPUS Open Portal to University Scholarship
	Summer 2015

	The Facility Location Problem
	Meghan E. Csoke
	Recommended Citation

	tmp.1441030124.pdf.ELxob

