
Governors State University
OPUS Open Portal to University Scholarship

All Capstone Projects Student Capstone Projects

Fall 2015

Graph Database
George Dovgin
Governors State University

Follow this and additional works at: http://opus.govst.edu/capstones

Part of the Databases and Information Systems Commons

For more information about the academic degree, extended learning, and certificate programs of Governors State University, go to
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/

Visit the Governors State Computer Science Department
This Project Summary is brought to you for free and open access by the Student Capstone Projects at OPUS Open Portal to University Scholarship. It
has been accepted for inclusion in All Capstone Projects by an authorized administrator of OPUS Open Portal to University Scholarship. For more
information, please contact opus@govst.edu.

Recommended Citation
Dovgin, George, "Graph Database" (2015). All Capstone Projects. 147.
http://opus.govst.edu/capstones/147

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Governors State University

https://core.ac.uk/display/214310196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opus.govst.edu?utm_source=opus.govst.edu%2Fcapstones%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/capstones?utm_source=opus.govst.edu%2Fcapstones%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/student_capstones?utm_source=opus.govst.edu%2Fcapstones%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/capstones?utm_source=opus.govst.edu%2Fcapstones%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=opus.govst.edu%2Fcapstones%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/capstones/147?utm_source=opus.govst.edu%2Fcapstones%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/
http://www.govst.edu/cas/cpsc/ms
mailto:opus@govst.edu

GRAPH DATABASE

By

George Dovgin

B.S., Southern Illinois University, Edwardsville, 1992

GRADUATE PROJECT

Submitted in partial fulfillment of the requirements

For the Degree of Master of Science,

With a Major in Computer Science

Governors State University

University Park, IL 60484

 2015

1 | P a g e

Abstract ... 2

Getting Started .. 3

Setup a graph database .. 3

Running Neo4j in the Browser .. 3

Running Neo4j at the Console .. 4

Graph Database Background .. 4

Graph nodes and relationships ... 4

CRUD – Create, Retrieve, Update, Delete ... 7

Create .. 7

Retrieve ... 8

Update ... 9

Delete .. 9

Relational Database .. 10

Creating a Graph Database ... 10

Constructing the Graph Database ... 10

Creating Nodes .. 10

Create Indexes .. 11

Creating Relationships .. 12

Final Result .. 13

Reference Table – Industry ... 13

Reference Table – VendorIndustry ... 13

Data Table – Vendors .. 14

Parent Data Table – Invoices... 14

Child Data Table – Invoice Line Items ... 14

Appendix: Helpful Cypher commands .. 15

Appendix: Graph Style Sheet ... 15

Appendix – Helpful tips for using Neo4j browser ... 17

References .. 17

2 | P a g e

Abstract

This project will review the new technology of graph databases. Graph databases, which model data using
nodes and relationships, utilize a different paradigm than the rows and columns of relational databases.

The main goals of this project are to provide the basic background information on graph database technology
and then use this knowledge to convert an RDBMS into a GDBMS. The RDBMS used will be the sample
Accounts Payable (AP) relational database used in the Murach SQL 2012 book. The following will be
accomplished:

- Explore graph database versus relational for querying and updating the Accounts Payable

database. Review Cypher (Neo4j graph query language) and run CRUD queries against the AP graph

database.

- Show step by step instructions to convert the Murach SQL 2012 Accounts Payable database into the

graph database.

3 | P a g e

Getting Started

Setup a graph database
The graphs database used for this project is called Neo4j. It’s java based so be sure to download the Java Development

Kit (JDK). The community edition is open sourced and can be downloaded for free. There is also an advanced server

edition too for commercial purposes. Just visit the website called http://www.neo4j.com and select download. After

installing, run the startup application program. Note: The real application program is a browser-based application.

Figure 1 Main Window for Neo4j

The database server will be in a stopped stated because the default database has not been created. Press start and the

database will be created for you in the database location. The database status will then provide a hyperlink to browser-

based application. Press the hyperlink and it will launch the browser application.

Running Neo4j in the Browser
Most work will be accomplished in the extremely functional browser application. Here is where queries are run, files are

imported and most importantly the graph database nodes and relationships are displayed.

http://www.neo4j.com/

4 | P a g e

Running Neo4j at the Console
For some, the console is preferred. To launch the console, go the Main Window for Neo4j and press the Options button.

Then press the Command Prompt button.

Graph Database Background

Graph nodes and relationships

Data structured in graphs rather than in tables represent a paradigm shift for connection data. Graphs use
node and relationships, not rows and columns.

5 | P a g e

Nodes are like rows in a table. A node has a type (like a table name in relational) and some properties
(key/value pairs), like name, id, and state. See the figure below for a graphical representation of nodes.

Relationships are used to connect nodes together. Just like nodes, relationships can have properties
(key/value pairs) too. This is in contrast to RDBMS that use foreign keys and join table to connect data. In the
figure below, this relationship has one property called Joined with a value of 1/1/15.

Putting the two key components together, we can say that node (a) Vendor “belongs to” node (b) Industries.
See figure below.

One advantage when drawing nodes and relationships into more complex data models is that the actual graph
database almost exactly follows the whiteboard model. In the example below for the AP database, the left
side is a drawing done in Microsoft Visio whereas the right side is an actual graph database in Neo4j. See
figure below.

6 | P a g e

As you can see the white board drawing is almost identical to the actual working graph database!

Lastly to provide insights into the powerful expressiveness of graph databases, the figure below is graph of a
graph database structure. A graph records nodes and relationships. Nodes and relationships have properties
and relationships organize nodes.

7 | P a g e

To wrap up the rules for nodes and relationships, Ian Robinson and James Webber in Graph Databases, 2nd Ed

summarize a graph database succinctly:

CRUD – Create, Retrieve, Update, Delete

Create

Since we now know how graphs are structured, let’s use Cypher (the DML SQL equivalent language) for

creating a node, in this case Vendor. Use the keyword “create” followed by an open parenthesis, then the

properties (key/value pairs) surround by curly braces, then a close parenthesis. The open/close parenthesis

encapsulate a node.

There is another way to create a node by use of “merge” which combines a match and create, i.e., don’t

create if a match is found.

The neo4j console provides a template to help you create nodes and relationships. An example below is

provided that will create two nodes, a Vendor called Packt and an Industry of Publishing and then create a

relationship of Belongs_To between these nodes. See figure below.

8 | P a g e

Retrieve

Retrieval as mentioned above use the match keyword, match needs a label (which is like a table name in SQL)

and specific properties to search on. The identifier used with the label is then used to store the return value.

A powerful feature of Cypher is an easy way to retrieve all the relationships between all the nodes. The way

to specify a match on (a)-[r]->(b) where any node is related to any other node. See figure below.

9 | P a g e

You can also retrieve a graph structure by using similar syntax above but in this case return the identifiers used

to store the labels of connecting nodes:

One final example of retrieval is a multi-join that can return all line items for a vendor. It will match on “vendor-

>Invoice->InvoiceLineItems”

.

Update

Updates in Cypher follow the same pattern as create and retrieve, namely find a match first. In the update, simply set

the property associated with the identify used for a particular label.

Delete

When deleting a node, make sure you also remove the connecting relationships, otherwise the remove will fail. In the

case below, LineItem with InvoiceID 33, Sequence 1 should be deleted. However, since the InvoiceLineItem is connected

via a relationship to an Invoice, that relationship must be deleted too. So in the Cypher statement below, both the node

and relationship are deleted.

10 | P a g e

Relational Database

In contrast to an Entity Relationship Diagram (ERD) for a database, there is no schema for a graph database. A

graph database is “schema-less” but it is still possible to abstract the node and relationship details into a

diagram. Also, when exporting data from Relational it is not necessary to export the database schema.

Creating a Graph Database

Constructing the Graph Database

From SQL Server, export each database table (with Headers included) as a CSV file. Then execute the LOAD

statement in Neo4j. For this project there are four tables thus there are four CSV files. Each CSV file will be

loaded into Neo4j. Note: Neo4j provides an example of importing the NorthWind database. This helpful step-

by-step example can be found in the information page of the browser application.

Creating Nodes
Color Code

Manual way to create a node:

Command: CREATE (vendor3:Vendor { id:3, name: 'Register of Copyrights', city:'Washington DC',

state:'',defaultTerm:3, defaultAccount:403})

Response: Added 1 label, created 1 node, set 6 properties

Query: match (v:Vendor { id : 1 }) return v

Response:

Set Query: match (v:Vendor { id : 2 }) set v.state='DC' return v

11 | P a g e

Response: . When clicking on node, Vendor information confirms state change:

CSV alternative:

load csv with headers from "file:///C:/AP/Vendors.CSV" as row create (n:Vendor) set n = row

Added 122 labels, created 122 nodes, set 1464 properties,

Note that vendors have no relationships yet.

$load csv with headers from "file:///C:/AP/Invoices.CSV" as row create (n:Invoice) set n = row

Note that Invoices display InvoiceID, similar to Vendors

displaying VendorID. We’ll see later on the node’s display is configurable and in fact with graph

style sheets can have multiple properties displayed for a single node.

Create Indexes
Now we will create indexes on the node Labels. This will allow faster retrieval when filtering by

Lables.

12 | P a g e

Creating Relationships
The next step will create a relationship between Invoice and Vendor. It will do so without the

usage of foreign keys, but instead with a create relationship statement, that is invoked after the

same IDs from Invoices and Vendors are matched together.

match (i:Invoice),(v:Vendor) where i.VendorID = v.VendorID create (v)-[:FULFILLS]->(i)

Response: Created 114 relationships, statement executed in 136 ms.

Next the Invoice Line Items will be added.

$load csv with headers from "file:///C:/AP/InvoiceLineItems.CSV" as row create (n:InvoiceLineItems)

set n = row

Response: Added 118 labels, created 118 nodes, set 590 properties

Again the relationships will be created to “join” each Invoice with its associated Line Items.

match (i:Invoice),(l:InvoiceLineItems) where i.InvoiceID = l.InvoiceID create (i)-[:CONTAINS]->(l)

Response: Created 118 relationships.

Now to add complexity to the graph database, I created an Industry table that stored 10 unique industries.

To tie a Vendor to an Industry this requires a many-to-many relationship from Vendors to Industries. To

model this in SQL, a juncture table for VendorIndustry would need to be created expressly to store the

foreign keys of Vendors and Industries. However in Neo4j, fortunately direct relationships are created

between Vendors and Industries.

load csv with headers from "file:///C:/AP/Industry.CSV" as row create (n:Industry) set n = row

Response: Added 10 labels, created 10 nodes, set 20 properties.

Check an example industry: match (i:Industry {Name: "Technology"}) return i

Response:

Now to link Vendors to Industries, a match of both types is followed by equivalence checks on respective

ID values, then followed by a create relationship command of Vendors belong to Industries.

load csv with headers from "file:///C:/AP/VendorIndustry.CSV" as row

match (v:Vendor), (i:Industry)

13 | P a g e

where v.VendorID = row.VendorID AND i.IndustryID = row.Industry.ID

create (v)-[vendors:BELONG_TO]->(i)

set vendors = row

Response: Set 244 properties, created 122 relationships.

Final Result
When all nodes and relationships are imported, the result is

Figure 2 Actual Graph Database of Accounts Payable

Reference Table – Industry
IndustryID Name

0 Oil and Gas

1 Basic Materials

2 Industrials

3 Consumer Goods

4 Health Care

5 Consumer Services

6 Telecommunications

7 Utilities

8 Financials

9 Technology

Reference Table – VendorIndustry

VendorID IndustryID Name
 1 5 US Postal Service

 2 9 National Information Data Ctr
 3 4 Register of Copyrights
 4 5 Jobtrak

 5 3 Newbrige Book Clubs
 6 5 California Chamber Of Commerce

7 5 Towne Advertiser's Mailing Svcs

14 | P a g e

8 0 BFI Industries
 9 7 Pacific Gas & Electric

 10 5 Robbins Mobile Lock And Key
 11 7 Bill Marvin Electric Inc
 12 7 City Of Fresno

 13 8 Golden Eagle Insurance Co

This table is only needed for the Import and is not modeled as a separate join table (as it is in relational).

Data Table – Vendors

vendorid vendorname city state zip

1 US Postal Service Madison WI 53707

2 National Information Data Ctr Washington DC 20090

3 Register of Copyrights Washington DC 20559

4 Jobtrak Los Angeles CA 90025

5 Newbrige Book Clubs Washington NJ 7882

Parent Data Table – Invoices
Invoic
eID

Vendo
rID

InvoiceNumbe
r

InvoiceDate InvoiceT
otal

PaymentT
otal

CreditT
otal

Terms
ID

InvoiceDue
Date

PaymentD
ate

1 122 989319-457 12/8/2011
00:00

3813.33 3813.33 0 3 1/8/2012
00:00

1/7/2012
00:00

2 123 263253241 12/10/2011
00:00

40.2 40.2 0 3 1/10/2012
00:00

1/14/2012
00:00

3 123 963253234 12/13/2011
00:00

138.75 138.75 0 3 1/13/2012
00:00

1/9/2012
00:00

4 123 2-000-2993 12/16/2011
00:00

144.7 144.7 0 3 1/16/2012
00:00

1/12/2012
00:00

5 123 963253251 12/16/2011
00:00

15.5 15.5 0 3 1/16/2012
00:00

1/11/2012
00:00

6 123 963253261 12/16/2011
00:00

42.75 42.75 0 3 1/16/2012
00:00

1/21/2012
00:00

7 123 963253237 12/21/2011
00:00

172.5 172.5 0 3 1/21/2012
00:00

1/22/2012
00:00

8 89 125520-1 12/24/2011
00:00

95 95 0 1 1/4/2012
00:00

1/1/2012
00:00

9 121 97/488 12/24/2011
00:00

601.95 601.95 0 3 1/24/2012
00:00

1/21/2012
00:00

Child Data Table – Invoice Line Items
InvoiceID InvoiceSequence AccountNo InvoiceLineItemAmount InvoiceLineItemDescription

1 1 553 3813.33 Freight

2 1 553 40.2 Freight

3 1 553 138.75 Freight

15 | P a g e

4 1 553 144.7 Int'l shipment

5 1 553 15.5 Freight

6 1 553 42.75 Freight

7 1 553 172.5 Freight

Appendix: Helpful Cypher commands

Purpose Command Note

Get all nodes / relationships start n=node(*) return n

Delete all nodes / relationships MATCH (n)
OPTIONAL MATCH (n)-[r]-()
DELETE n,r;

New command in Version 2.3 is:
MATCH n
DETACH DELETE n

Appendix: Graph Style Sheet
This allows great customization of the nodes and relationships.

node {

 diameter: 75px;

 color: #A5ABB6;

 border-color: #9AA1AC;

 border-width: 2px;

 text-color-internal: #FFFFFF;

 font-size: 10px;

}

relationship {

 color: #A5ABB6;

 shaft-width: 1px;

 font-size: 8px;

 padding: 3px;

 text-color-external: #000000;

16 | P a g e

 text-color-internal: #FFFFFF;

 caption: '<type>';

}

node.Vendor {

 color: #6DCE9E;

 border-color: #60B58B;

 text-color-internal: #FFFFFF;

 caption: '{VendorName} in {VendorState}';

}

node.Invoice {

 color: #FFD86E;

 border-color: #EDBA39;

 text-color-internal: #604A0E;

 caption: '${InvoiceTotal} due on {InvoiceDueDate}';

}

node.InvoiceLineItems {

 color: #DE9BF9;

 border-color: #BF85D6;

 text-color-internal: #FFFFFF;

 caption: '{InvoiceLineItemDescription}';

}

node.Industry {

 color: #68BDF6;

 border-color: #5CA8DB;

 text-color-internal: #FFFFFF;

 caption: '{Name}';

17 | P a g e

}

relationship.BELONG_TO {

 shaft-width: 8px;

}

Appendix – Helpful tips for using Neo4j browser
http://neo4j.com/blog/neo4j-2-0-0-m06-introducing-neo4js-browser/

Just type in a single-line query and hit <enter>. You’ll get a result frame in the stream, showing either a

table of property data or a graph visualization of nodes and relationships.

Type another query, get another frame. Tap the up arrow to retrieve a previous entry, edit, and then run it

again.

For larger queries, hit <shift-enter> to switch into multi-line editor mode. Now you’ll need to use

<ctrl-enter> to run, and <ctrl> up or down arrow to navigate history (the modifier also works in

single-line mode).

Finally, and thankfully, you can save scripts. Hit the star button to save the current editor content, which
will be available in the sidebar. By convention, the first line can be a comment which will be used as the
name of the query. You can even drag-and-drop in scripts, for sharing queries or small-scale data import.

References
Importing data into Neo4j: http://neo4j.com/developer/guide-importing-data-and-etl/

Neo4j Cypher Refcard 2.3.1 : http://neo4j.com/docs/stable/cypher-refcard/

Robinson, Ian, and James Webber. Graph Databases: New Opportunities for Connected Data. Second ed.

http://neo4j.com/developer/guide-importing-data-and-etl/
http://neo4j.com/docs/stable/cypher-refcard/

	Governors State University
	OPUS Open Portal to University Scholarship
	Fall 2015

	Graph Database
	George Dovgin
	Recommended Citation

	tmp.1452008421.pdf.0GFy4

