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                                                  ABSTRACT 
 

           The growing resistance developed by microbes towards antimicrobial agents has driven our 

focus on developing alternative treatment modalities such as Photodynamic antimicrobial 

chemotherapy  (PACT). It would be difficult for the microbes to develop resistance towards singlet 

oxygen generated during the PACT process. Photosensitizers are the vehicles of the transfer and 

translation of light energy in to a type II chemical reaction (singlet oxygen generation) in 

photodynamic antimicrobial chemotherapy. PACT is proposed as a potential, low cost approach to 

treatment of locally occurring infection. 

          Photodynamic inactivation (PDI) of Escherichia coli and Staphylococcus aureus has been 

studied in cultures treated with photoactivated copper pthalocyanine. Phototoxic Copper 

pthalocyanine, a structural analog of porphyrin, is tested for its antibacterial activity using visible 

light.  In the presence of the visible light, the generally nontoxic copper pthalocyanine is 

photoactivated, causing cell death. The main limitation of this technique would be the uptake 

kinetics of photosensitizers in to the microorganism. Nanoencapsulated photosensitizer drug carrier 

system is believed to penetrate the polymicrobial species with in the biofilms. The generation of the 

singlet oxygen had been confirmed using the singlet oxygen sensor green studies.  
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                                              INTRODUCTION 
 

          Photodynamic therapy (PDT) is the clinical application of photodynamic inactivation (PDI). 

PDT is a non-invasive treatment modality that is used in certain superficial malignancies2. It 

employs visible light to activate photosensitive compound, called photosensitizer. The activated 

photosensitizer can directly react with molecules in its direct environment by electron or hydrogen 

transfer, which leads to the production of free radicals (Type I reaction) or by energy transfer to 

oxygen, which generates a highly reactive singlet oxygen (Type II reaction). Both pathways can 

lead to cell death. 

         Over the past few years, Photodynamic therapy has been clinically applied for various cancers 

of the lung, gastrointestinal tract, the head and neck region, bladder, prostate, nonmelanoma skin 

cancers and actinic keratosis1. Photodynamic therapy has produced a complete response in a very 

high percentage of patients, and the frequency of follow up treatments for recurrences is no greater 

than found with other treatment modalities. Successful treatment of atherosclerosis or plaque with 

PDT has also been reported. PDT is also employed in the treatment of noncancerous conditions 

such as psoriasis and age related macular degeneration (ARMD). 

        Like PDT, PACT makes use of a photosensitizer, visible or ultra-violet light in order to give a 

phototoxic response, normally via singlet oxygen3. Currently, the major application of PACT is in 

the disinfection of blood products, particularly for viral inactivation. PACT is clinically applied in 

the treatment of oral infections. This technique has been effective in vitro against bacteria 

(including drug resistant strains), yeasts, viruses and parasites. A wide range of photosensitizers, 

both natural and synthetic, are available with differing physiochemical make up and light 

absorption properties.  

 



4 
 

       The science of photodynamic antimicrobial chemotherapy (PACT) is still in its infancy, but 

follows similar principles to that of PDT. Indeed, while PDT is currently used only in the more 

accessible tumors, the use of PACT may also be limited to localized infection due to the problems 

of systemic light delivery. However, with the advent of optical fibre technology, deep-seated 

infection should become amenable to the photodynamic approach. 

         A very wide selection of light sources is available, ranging from state-of-the-art laser 

technology to basic tungsten-filament lamps. Indeed, the assumption that a laser is essential for the 

photodynamic therapy of malignant disease has hindered the growth and acceptance of this 

discipline considerably. What is important, both in PDT and PACT, is the ability to excite the 

photosensitizer at its target site with minimal photoeffect on the surrounding tissue. For example, 

the disinfection of virally contaminated blood currently carried out in parts of Europe utilizes light 

boxes containing fluorescent tubes. It should be remembered that PACT, like PDT, uses low-power 

light rather than the lasers used in ablative therapy. Microbial photo-killing is attained with 

milliwatts rather than tens (or hundreds) of watts. 

  An ideal photosensitizing agent with potentially optimal properties for the treatment of 

microbial infections should be endowed with specific features in addition to the expected 

photophysical characteristics, such as a high quantum yield for the generation of both the long-lived 

triplet state and the cytotoxic singlet oxygen species4. Such features include a large affinity for 

microbial cells, a broad spectrum of action in order to efficiently act on infections involving a 

heterogeneous flora of pathogens, a mechanism of cell inactivation minimizing the risk of inducing 

the selection of resistant strains or promoting the development of mutagenic processes, and the 

possibility to identify a therapeutic window which allows the extensive killing of the disease-

inducing microbial cells with minimal damage to the host tissue in the area of infection and the 
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prevention of the regrowth of the pathogens after the treatment. 

          When an aromatic molecule absorbs light of certain energy, it may undergo an electronic 

transition to the singlet excited state (electron spins paired). Depending on its molecular structure 

and environment, the molecule may then lose its energy by electronic or physical processes, thus 

returning to the ground state, or it may undergo a transition to the triplet excited state (electron 

spins unpaired). At this stage the molecule may again undergo electronic decay back to the ground 

state, it may undergo redox reactions with its environment, or its excitational energy may be 

transferred to molecular oxygen (also a triplet-state molecule) leading to the formation of the labile 

singlet oxygen. 

The ability of a molecule to instigate redox reactions and/or to form singlet oxygen depends 

on the production of a sufficient population of triplet state molecules. This in turn depends on the 

decay rates of both the triplet and initially-formed singlet states. Thus, for example, a highly 

fluorescent molecule which undergoes significant electronic decay from the excited singlet state 

would not be expected to form a high proportion of the triplet excited state (Figure 1 ). 

Photosensitizers are usually aromatic molecules, which are efficient in the formation of long-lived 

triplet excited states. In terms of the energy absorbed by the aromatic-system, this again depends on 

the molecular structure involved: furocoumarin photosensitizers (psoralens) absorb relatively high 

energy ultraviolet (UV) light (300–350 nm), whereas macrocyclic, heteroaromatic molecules such 

as the phthalocyanines absorb lower energy, near-infrared light (around 700 nm). 
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Figure 1 : Excited state diagram. 

 

            Microbial cells are characterized by large differences in their cellular structure and 

organization, which has obvious effects in modulating the interaction of exogenously added 

photosensitizing agents with cell constituents, hence in affecting the efficiency and the mechanism 

of the photoinactivation processes. Gram positive and Gram negative bacteria have profound 

differences in their three-dimensional architecture. Both groups of bacteria present an outer cell 

wall. In particular, in Gram positive bacteria the outer wall (15-80nmthick) contains up to 100 

peptidoglycan layers, which are intimately associated with lipoteichoic and negatively charged 

teichuronic acids. 6This wall displays a relatively high degree of porosity, since various 

macromolecules, such as glycopeptides and polysaccharides with a molecular weight in the 30,000–
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60,000 range, were found to readily diffuse to the inner plasma membrane. Thus, in this class of 

bacteria, the outer wall does not act as a permeability barrier for the most commonly used 

photosensitizers, whose molecular weight does not generally exceed 1,500–1,800 Da.  

 

 

 
 

Figure 2 : Composition of gram +ve and gram –ve bacterial outer mambrane. 

 

            On the contrary, the outer wall of Gram negative bacteria possesses an additional 10–15 nm 

thick structural element, which is external to the peptidoglycan network and has a very 

heterogeneous composition, including proteins with porin function, lipopolysaccharide trimers and 

lipoproteins giving the outer surface a quasi-continuum of densely packed negative charges. Such a 

highly organized system inhibits the penetration of host cellular and humoral defense factors and 

triggers mechanisms of resistance against several antibiotic drugs. Only relatively hydrophilic 
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compounds with a molecular weight lower than 600–700Da can diffuse through the porin channels. 

It is thus necessary to devise suitable strategies, which enhance the permeability of the outer wall in 

order to make Gram negative bacteria sensitive to the action of photodynamic processes5,7. 

              Copper pthalocyanine is an intensly blue-green coloured  aromatic macrocyclic compound. 

 

 

 
 
 
 
 
 
 
 
 
 
                                    

  Figure 3: Structure of copper pthalocyanine. 
 
 

Molecular Formula          :  C32H16CuN8 

Molecular Weight            :  576.08 g mol−1 

State                              :  Solid 

Water Solubility               :  Not soluble 

UV-VIS Absorption         : 678nm. 

 

Solubility of copper pthalocyanine dye is checked with a range of solvents like 

ethylacetate , TFA (tri-fluoro acetic acid), haxane , toulene , acetic acid, acetonitrile , mathanol and 

chloroform. Though copper pthalocyanine was partially soluble in Ethylacetate, it was found to be 

the ideal solvent. 
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                EXPERIMENTAL METHODS AND PROCEDURE 
 
 
PREPARATION OF   NANOPARTICLE 
 

• 5 mg of copper Phthalocyanine (CuPc) and 2.0 mL of surfynol- 465(to increase the solubility ) was 

added to  20mL of ethyl acetate (organic phase) over low heat with constant stirring. 

• 2gms of high molecular weight PEG (Mr > 2000 g/mol) was dissolved in 20 mL of water (water 

phase).  

• Organic phase was added to the water phase drop by drop with vigorous stirring until all the ethyl 

acetate has evaporated. Sonicatd for 30 minutes. 

Preparation of tryptic soy broth:  

•  15 gms of agar has been weighed and added  to 500 ml of distilled water over low heat with 

constant stirring. 

• Autoclaved for 30 minuttes and allowed  to cool. 

BACTERIAL STUDY: 

Two sets of test tubes were taken for the bacterial study of gram positive and gram negative 

respectively. Each set containing six test tubes of which three labelled as dark and other three 

labelled as light. 

In all the test tubes  3 ml of tryptic soy broth, 0.5 ml of bacteria and the prepared 

nanoemulsion with different concentrations for both the sets of gram positive and gram negative 
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bacteria were taken (three test tubes with concentration of100µl, 50 µl, 25 µl as dark and other three 

test tubes with 100µl, 50 µl, 25 µl as light). 

All the  test tubes are incubated at 35˚C , after 30 minuttes of incubation the light labelled test 

tubes are irradiated to light for 45 minuttes and further incubated for 24 hours. Then all the test 

tubes are diluted 9x times individually in tryptic soy broth, each in single test tube. 

For the 9x dilution, we have set four test tubes labelled from 1 to 4, each with 9 mL of sterile 

tryptic soy broth. Then 1 mL sample is taken from the bacterial suspension that we wish to count 

and add it to the first tube.  Mix well, this is 1:10 dilution ratio as we have added 1 mL to 10mL 

total. 

Then 1mLof dilution broth suspension is removed from tube 1 and added to tube 2. Mix well, 

this dilution and each following mix increasingly will be diluted by a factor of 10. Thus, tube 2 is 

1:100 dilutions, tube 3 is 1:1000  and tube 4 is 1:10000 respectively and mixed well.  

Then 1mLof dilution broth suspension is taken from tube 4 and added it to the surface of 

sterile nutrient medium in a Petri dish. Spreaded evenly and  plates are incubated and allowed the 

bacteria to multiply for 24 to 48 hours at 37˚C 
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                                        RESULTS 
 
U.V STUDY: 
 
 

 
 
 
Figure 4 : U.V absorbance of copper pthalocyanine nanoparticle. 

 

In the above figure the blue line represents the typical UV-VIS spectrum of aqueous copper 

pthalocyanine drug.  

By observing the graph, the peak is seen in between 600 to 700 nm which coincides with the 

optimum wavelength of copper pthalocyanine (678nm). 
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FLUORESCENCE STUDY: 
 
 

 
 
Figure  5 : Fluoresecence of encapsulated nanoparticle 
 
The red line from the above graph represents the fluorescence of nanoencapsulated drug, 

shows the intensity at 4000. The blue line from the above graph representing the CuPc in solvent 

ethylacetate shows the intensity at 4800.  

The hypochromic effect of red line compared to that of blue line, indiacates the increase of 

hydrophilicity. It is evident that the copper pthalocyanine is encapsulated inside the nanoparticle. 
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SINGLET OXYGEN STUDY: 

 

 
 

Figure 6 :  Fluoresence of copper pthalocyanine nanoparticle  before and after irradiation  

 

 

Singlet oxygen study was also performed to ascertain the generation of singlet oxygen(type 

II reaction) in photodynamic antimicrobial chemotherapy. The sensor used in the singlet oxygen 

study is singlet oxygen sensor green.  

Fluorescence study of prepared CuPc nanoemulsion is done before the irradiation and after the 

irradiation. CuPc nano before irradiation shows less intensity when compared with the intensity of 

CuPc nano after irradiation. Our result shows that the prepared nanoencapsulated drug produces 

sufficient amount of singlet oxygen. 
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BACTERIAL STUDY: 

 

 
 

Figure 7 : Comparison of growth of gram –ve bacteria (E.coli)  in dark and light. 

 

After incubating the bacterial streaked petri plates for 48 – 72 hours, the plates were observed 

for the bacterial growth in dark and visible light. Bacterial colonies were seen in  the petri plates 

incubated in the dark, whereas in the petri plates which were irradiated to visible light for  45 

minutes, were devoid of bacterial growth. From the above results, we can  confirm 

nanoencapsulated copper pthalocyanine’s potential as photodynamic antimicrobial chemotherapy 

agent.  
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                                                CONCLUSION  

 
Our results shows that the nanoencapsulation was successful. PDT uses light, 

nanoencapsulated photosensitizer and the singlet oxygen to destroy the specific target cells. The 

singlet oxygen studies and the bacterial cell culture studies have confirmed the photodynamic 

inactivation of  bacteria by nanoencapsulated CuPC. We have developed a unique nanoparticle to 

increase the permeability to cross the cell barrier of bacteria. We have proven that the  

nanoemulsion  to be an effective way for drug delivery and are efficient in treating the  infections 

caused by broad spectrum of bacteria.  

In vivo studies of antibacterial activity using photodynamic antimicrobial chemotherpy should 

be done. Photodynamic antimicrobial chemotherapy of yeast, viruses and parasites using the 

encapsulated drug still needs to be investigated further. 
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