

DATABASE MANAGEMENT SYSTEMS

Joseph A. Kennedy / Dr. Chris Healy / Computer Science

What are Databases?

A Database is a shared, integrated computer structure that stores a collection of data.

DATA /INFORMATION

Data is raw unprocessed facts. Information is the result of processing raw data

There exist two types of Data:

Meta Data and End USEr Data

Data management and DBMS

Uses is a discipline used for the storage and retrieval of data.

DBMS – Database management systems This is a collection of programs the manages the **DB** structure

Database is like a well organized file cabinet in which DBMS help manage the cabinets

Access/My research

Microsoft access is a DBMS That combines the relational Microsoft Jet DB Engine with a GUI and software development tool.


Access uses Data Modeling as well as SQL to create Personal DBMS'.

* I used Microsoft Access to create a user friendly database, which was for the use of a lawn care service. Access proved to very interesting and useful.

DBMS Advantages

- Manages transactions between the end user and the database
- Facilitates
- Data access
- Data security and integrity
- Data sharing
- increases end user productivity
- needed for management of large systems of Data

Interaction between the End User and the Database

John Holson

Types of Databases

Single User database

Supports one user at a time

Multiuser database

 Supports multiple users at a time

Centralized Database

Data is ocated at a single site

Distributed Cloud database database

Data is

across

sites

different

distributed

 Uses cloud data services

Database challenges

- Large numbers of people want access to data, This can cause a plethora of database problems. These include, Data security, Data privacy, backup and recovery, integrity.
- All of these can be comprised with the poor setup of a DBMS.
- Ex. When the same data is given access to multiple people to change at will, they could run into data anomalies, or redundancies.

Good design in a Database

Good design in a Database includes

Encouraged data sharing

NoSQL Databases

and fault tolerance

transaction consistency

architectures

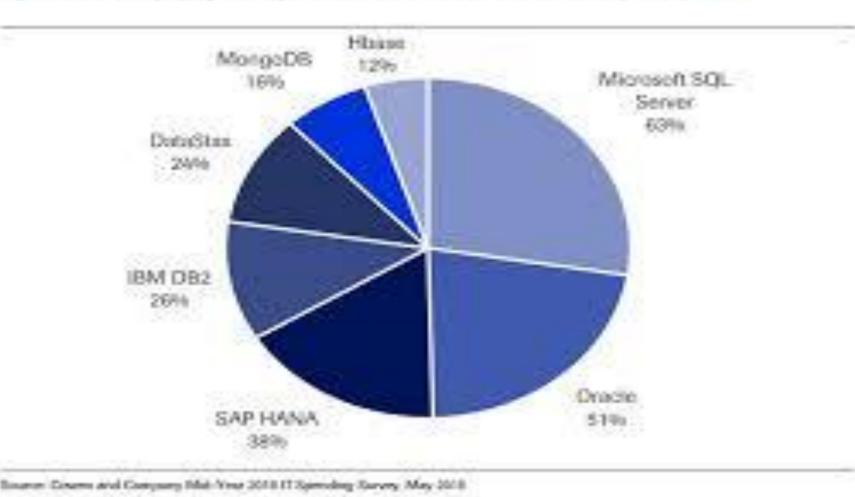
NoSQL

Has high

Low cost

data

scalability and


fault tolerance

Supports big

- Helps control data redundancy
- Helps Manage data accuracy/ integrity
- Supports concurrent/ distributed access
- Permits storage of vast volumes of data with efficient access

Top Databases for 2015

When deploying new applications which database alternatives do you evaluate?

NoSQL Vs. SQL

Not based on the relational model

* Provide high scalability, high availability,

* Support large amounts of sparse data

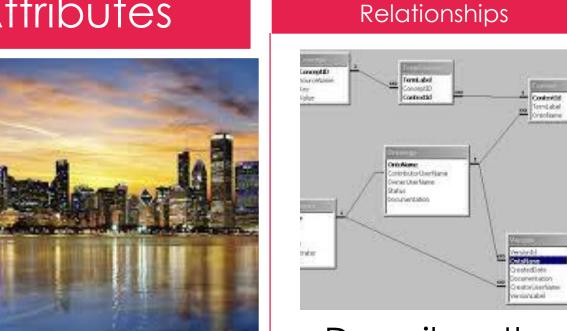
VS.

* Geared toward performance rather than

Support distributed database

Data Modeling/SQL

Entity/ Entity set



People, place, thing, or event from, which the data will be collected.

Characteristics of an entity/ used with an entity set.

Attributes

Relational data/

* 1- 1

Describes the the association among entities

*1-M *M-M

1 – 1 Relationship

 A single occurrence of one entity type can be associated with a single occurrence of the other entity type and vice versa.

One_To_Many One to Many

 A single occurrence of one entity type can be associated with a single occurrence of the other entity type and vice versa.

May – to - Many

"many" can be either an exact number or have a known maximum

SQL

- No complex programming
- There is relational support
- There is data integrity