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THE COLLATZ CONJECTURE AND INTEGERS OF THE FORM
2kb−m AND 3kb− 1

PATRICK WILTROUT AND ERIC LANDQUIST

Abstract. One of the more well-known unsolved problems in number theory

is the Collatz (3n + 1) Conjecture. The conjecture states that iterating the

map that takes even n ∈ N to n
2

and odd n to 3n+1
2

will eventually yield
1. This paper is an exploration of this conjecture on positive integers of the

form 2kb − m and 3kb − 1, and stems from the work of the first author’s

Senior Seminar research. We take an elementary approach to prove interesting
relationships and patterns in the number of iterations, called the total stopping

time, required for integers of the aforementioned forms to reach 1, so that our
results and proofs would be accessible to an undergraduate. Our results, then,

provide a degree of insight into the Collatz Conjecture.

1. Introduction

In 1931, Lothar Collatz, was the first to study the following function [7]. For
any n ∈ N = {1, 2, 3, . . .}, let

C(n) =
{

3n+ 1 if n ≡ 1 (mod 2) ,
n/2 if n ≡ 0 (mod 2) .

In particular, Collatz studied iterates C(k) of this function, for k ∈ N0 = N ∪ {0}.
Collatz formulated the following conjecture concerning this function, not publishing
his work until 1986 [1] because he could not prove it.

Conjecture 1 (Collatz). For all n ∈ N, ∃k ∈ N0 such that C(k)(n) = 1.

This tantalizing conjecture has attracted much attention due to its simplicity, yet
over 80 years later, it remains open. Many mathematicians believe this conjecture
to be true based on probabilistic arguments and empirical evidence. (The conjecture
has been verified experimentally for all n ≤ 5 · 260 ≈ 5.7646 · 1018 [6].)

Collatz began to circulate his problem in the 1950’s, introducing it to Kakutani,
Ulam, and Hasse, among others. As a result, this problem came to be known by
different names such as the 3x+1 (or 3n+1) Problem, the Syracuse Problem, Kaku-
tani’s Problem, Hasse’s Algorithm, and Ulam’s Problem, as it was passed around
to different circles. Kakutani circulated the problem at Yale in the 1960’s, stating,
“For about a month everybody at Yale worked on it, with no result. A similar
phenomenon happened when I mentioned it at the University of Chicago. A joke
was made that this problem was part of a conspiracy to slow down mathemati-
cal research in the U.S. [2].” This caused Erdös to offer $500 for a resolution of
the conjecture and remark, “Mathematics is not yet ready for such problems [3].”
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Thwaites, who formulated the conjecture independently in 1952 [8], offers a £1000
reward for a proof [9]. For a more complete introduction to the Collatz Conjecture
and its extensions, see [3], and for annoted bibliographies listing other articles on
this topic, see [4, 5].

Since 3n+1 is even if n is odd, it is convenient to work with the modified Collatz
function:

T (n) =
{

3n+1
2 , if n ≡ 1 (mod 2) ,

n
2 , if n ≡ 0 (mod 2) .

Terras [7] defines the total stopping time of an integer n ∈ N, denoted σ∞(n), as
the smallest k ∈ N0 such that T (k)(n) = 1, or σ∞(n) = ∞ if no such k exists.
For example, since T maps 3 7→ 5 7→ 8 7→ 4 7→ 2 7→ 1, we have T (5)(3) = 1,
so σ∞(3) = 5. Thus, the Collatz Conjecture can be restated as: for all n ∈ N,
σ∞(n) <∞.

In this paper, we will take an elementary look at the behavior of iterates of the
modified Collatz function on integers of the form 2kb − m and 3kb − 1, so that
our results and proofs would be accessible to an undergraduate. We prove new or
independently discovered properties on the total stopping time of integers of the
above forms. Our results establish some very curious patterns on the total stopping
time for certain consecutive values of k and for certain consecutive integers n.

2. Properties of σ∞

Given the definition of T (n), we first considered total stopping times of integers
of the form 2k − 1 and 3k − 1. Some examples for various k are listed in Table 1.

Table 1. Comparison of σ∞(2k − 1) and σ∞(3k − 1) and their difference.

k σ∞(2k − 1) σ∞(3k − 1) σ∞(2k − 1)− σ∞(3k − 1)
2 5 3 2
3 11 8 3
4 12 8 4
5 67 62 5
6 68 62 6
7 31 24 7
8 32 24 8
9 41 32 9
10 42 32 10
11 100 89 11
12 101 89 12
13 102 89 13
14 103 89 14
15 85 70 15
16 86 70 16
17 144 127 17
18 145 127 18
19 116 97 19
20 117 97 20
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From Table 1, it appears that σ∞(2k − 1) − σ∞(3k − 1) = k for all k ≥ 2 and
that for even k ≥ 4, σ∞(3k − 1) = σ∞(3k−1 − 1). We will prove both of these
statements, first generalizing the former observation.

Theorem 1. If k, b ∈ N and 2kb− 1 > 1, then T (k)(2kb− 1) = 3kb− 1.

Proof. Let a ∈ N0 such that 0 ≤ a ≤ k. We proceed by induction. By definition,

T (0)(2kb− 1) = 2kb− 1 = (30 · 2k−0)b− 1 .

Thus, the base case holds. Now assume that

T (a)(2kb− 1) = (3a · 2k−a)b− 1 ,

for some a ∈ N0, 0 ≤ a < k. Since a < k, (3a · 2k−a)b− 1 is odd and at least 2, so

T (a+1)(2kb− 1) = T
(
T (a)

(
2kb− 1

))
= T ((3a · 2k−a)b− 1)

=
3((3a · 2k−a)b− 1) + 1

2
=

(3a+1 · 2k−a)b− 2
2

= (3a+1 · 2k−(a+1))b− 1 .

Thus, T (a+1)(2kb− 1) = (3a+1 · 2k−(a+1))b− 1, and the result follows.

From this, we have several immediate consequences concerning integers of the
form 2kb−m, where k, b ∈ N and m ∈ {2, 3, 4, 6}.

Corollary 1. If 2kb− 2 > 1, then T (k)(2kb− 2) = 3k−1b− 1.

Proof. Since 2kb − 2 is even, T (k)(2kb − 2) = T (k−1)(2k−1b − 1) = 3k−1b − 1, by
Theorem 1.

Corollary 2. If k > 2, then T (k)(2kb− 3) = 3k−2b− 1.

Proof. Since 2kb− 3 is odd, T (k)(2kb− 3) = T (k−1)(2k−13b− 4) = T (k−2)(2k−23b−
2) = 3k−3(3b)− 1 = 3k−2b− 1, by Corollary 1.

Corollary 3. If k > 1 and 2kb− 4 > 2, then T (k)(2kb− 4) = 3k−2b− 1.

Proof. Since 2kb − 4 is even, T (k)(2kb − 4) = T (k−1)(2k−1b − 2) = 3k−2b − 1, by
Corollary 1.

Corollary 4. If k > 3, then T (k)(2kb− 6) = 3k−3b− 1.

Proof. Since 2kb − 6 is even, T (k)(2kb − 6) = T (k−1)(2k−1b − 3) = 3k−3b − 1, by
Corollary 2.

We apply the definition of the total stopping time function to summarize these
results.

Corollary 5. If k, b ∈ N, then:
1. σ∞(2kb− 1) = σ∞(3kb− 1) + k if 2kb− 1 > 1,
2. σ∞(2kb− 2) = σ∞(3k−1b− 1) + k if 2kb− 2 > 1,
3. σ∞(2kb− 3) = σ∞(3k−2b− 1) + k if k > 2,
4. σ∞(2kb− 4) = σ∞(3k−2b− 1) + k if k > 1 and 2kb− 4 > 2, and
5. σ∞(2kb− 6) = σ∞(3k−3b− 1) + k if k > 3.

Notice parts (3) and (4) of Corollary 5. These imply the following about total
stopping times of certain consecutive integers.
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Theorem 2. If k > 2, b ∈ N, and n ≡ −4 (mod 2kb), then σ∞(n) = σ∞(n+ 1).

We turn now to our second observation from Table 1, that σ∞(3k − 1) =
σ∞(3k−1 − 1), for certain consecutive values of k. As an aside, we notice that,
as for 11 ≤ k ≤ 14, we often have common values of σ∞(3k − 1) for more consecu-
tive values of k. Table 2 shows all such runs up to k = 102.

Table 2. Values of σ∞(3k − 1) for consecutive k ≤ 102.

σ∞(3k − 1) Range of k length
89 11 ≤ k ≤ 14 4

257 29 ≤ k ≤ 32 4
303 33 ≤ k ≤ 42 8
333 43 ≤ k ≤ 52 10
490 57 ≤ k ≤ 64 8
528 69 ≤ k ≤ 74 6
528 77 ≤ k ≤ 80 4
837 81 ≤ k ≤ 86 6
837 89 ≤ k ≤ 102 14

Theorem 3. If k ≥ 4 is even, then
• σ∞(2k − 1) = σ∞(2k−1 − 1) + 1 and
• σ∞(3k − 1) = σ∞(3k−1 − 1).

Proof. We will show that T (k+1)(2k−1 − 1) = T (k+2)(2k − 1), from which the first
result follows. The second result follows from the first via Theorem 1. By Theorem
1, T (k+1)(2k−1 − 1) = T (2)(3k−1 − 1). Since k is even, 3k−1 − 1 ≡ 2 (mod 4), so

T (2)(3k−1 − 1) =
3

(
3k−1−1

2

)
+ 1

2
=

3k − 1
4

.

Now by Theorem 1, T (k+2)(2k − 1) = T (2)(3k − 1). Since k is even, 3k − 1 ≡ 0
(mod 4), so T (2)(3k − 1) = 3k−1

4 . Thus, T (k+1)(2k−1 − 1) = T (k+2)(2k − 1).

Furthermore, Theorem 3 can be generalized.

Theorem 4. If b ≥ 3 is odd, then σ∞(2kb− 1) = σ∞(2k−1b− 1) + 1 and σ∞(3kb−
1) = σ∞(3k−1b− 1) if
• b ≡ 1 (mod 4) and k ≥ 2 is even and
• b ≡ 3 (mod 4) and k ≥ 3 is odd.

Proof. As in Theorem 3, σ∞(2kb− 1) = σ∞(2k−1b− 1) + 1 implies σ∞(3kb− 1) =
σ∞(3k−1b−1) by Theorem 1. We will show that T (k+1)(2k−1b−1) = T (k+2)(2kb−1),
from which it follows that σ∞(2kb− 1) = σ∞(2k−1b− 1) + 1.

By Theorem 1, T (k+1)(2k−1b−1) = T (2)(3k−1b−1). If either b ≡ 1 (mod 4) and
k is even or b ≡ 3 (mod 4) and k is odd, then 3k−1b− 1 ≡ 2 (mod 4), so

T (2)(3k−1b− 1) =
3

(
3k−1b−1

2

)
+ 1

2
=

3kb− 1
4

.

Now by Theorem 1, T (k+2)(2kb−1) = T (2)(3kb−1). If either b ≡ 1 (mod 4) and
k is even or b ≡ 3 (mod 4) and k is odd, then 3kb−1 ≡ 0 (mod 4), so T (2)(3kb−1) =
3kb−1

4 . Thus, T (k+1)(2k−1b− 1) = T (k+2)(2kb− 1).
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3. Conclusions

At first glance, the total stopping time function appears to have random and
unpredictable behavior. However, our results show that this function is not random
and that there are several relationships between its values for integers of the form
2kb −m and 3kb − 1. One observation that has been made on the total stopping
time function is that it takes on very few values on a restricted domain [3]. Our
results help to explain that phenomenon. For example, 134 = 33 · 5− 1 and 404 =
34 · 5− 1 = 23 · 51− 4, so by Theorems 3 and 4, it must be the case that σ∞(134) =
σ∞(404) = σ∞(405), and in fact they are all 20.

4. Open Problems and Future Work

Obviously, the Collatz Conjecture is the most significant open problem at hand.
One unresolved question that has resulted from our work is if one could find an ex-
plicit formula for σ∞(2kb−m) or σ∞(3kb−1), where k, b ∈ N and m ∈ {1, 2, 3, 4, 6}.
Such a result would serve as a partial proof of the Collatz Conjecture. It also re-
mains open if one could find and prove a pattern for σ∞(3kb − 1) or explain the
common values of σ∞(3kb− 1) for longer ranges of values of k. We would also like
to find larger families of integers with common total stopping times.
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