# PATHS AND CIRCUITS IN $\mathbb{G}$-GRAPHS OF CERTAIN NON-ABELIAN GROUPS 

A. DEWITT*, A. RODRIGUEZ*, AND J. DANIEL*


#### Abstract

In [BJRTD08], necessary and sufficient conditions were given for the existence of Eulerian and Hamiltonian paths and circuits in the $\mathbb{G}$-graph of the dihedral group $D_{n}$. In this paper, we consider the $\mathbb{G}$-graphs of the quasihedral, modular, and generalized quaternion group. These groups are of rank 2 and we consider only the graphs $\Gamma(G, S)$ where $|S|=2$.


## 1. Introduction

Let $G$ be a finitely generated group with generating set $S=\left\{s_{1}, \cdots, s_{k}\right\}$. For a subgroup $H$ of G , define the subset $T_{H}$ of $G$ to be a left transversal for $H$ if $\{x H \mid$ $\left.x \in T_{H}\right\}$ is precisely the set of all left cosets of $H$ in $G$. For each $s_{i} \in S$ let $H_{i}=\left\langle s_{i}\right\rangle$. Associate a simple graph $\Gamma(G, S)$ to $(G, S)$ with vertex set $V=\left\{x_{j} H_{i} \mid x_{j} \in T_{H_{i}}\right\}$. Two distinct vertices $x_{j} H_{i}$ and $x_{l} H_{k}$ in $V$ are joined by an edge if $x_{j}\left\langle s_{i}\right\rangle \cap x_{l}\left\langle s_{k}\right\rangle$ is nonempty. The edge set $E$ consists of pairs $\left(x_{j} H_{i}, x_{l} H_{k}\right) . \Gamma(G, S)$ defined this way has no multiedge or loop. A multiedge graph was defined similarly in 2004. Many of the results about this graph [[BG04], [BGL05], [BG05], and [BG07]] can be modified for the simple graph, $\Gamma(G, S)$, [D08]. The main object of this paper is to study the existence of Eulerian and Hamiltonian paths and circuits in the $\mathbb{G}$ graphs of the quasihedral, modular, and generalized quaternion group. To explore the existence of Eulerian paths and circuits in $\Gamma(G, S)$, we recall a few theorems of Euler and a result from [BJRTD08].

Theorem 1. (Euler) Let $\Gamma$ be a nontrivial connected graph. Then $\Gamma$ has an Eulerian circuit if and only if every vertex is of even degree.

Theorem 2. (Euler) Let $\Gamma$ be a nontrivial connected graph. Then $\Gamma$ has an Eulerian path if and only if $\Gamma$ has exactly two vertices of odd degree. Furthermore, the path begins at one of the vertices of odd degree and terminates at the other.

Lemma 3. [BJRTD08] If $G$ is a group with generating set $S=\left\{s_{1}, \cdots, s_{n}\right\}$ and $S_{i, j}=\left|\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle\right|$, then the degree of the vertex $\left\langle s_{i}\right\rangle$, denoted $\operatorname{deg}\left(\left\langle s_{i}\right\rangle\right)$, is

$$
\operatorname{deg}\left(\left\langle s_{i}\right\rangle\right)=\left(\sum_{j=1}^{n}\left|s_{i}\right| / S_{i, j}\right)-1
$$

Remark 1. Notice that $\operatorname{deg}\left(\left\langle s_{i}\right\rangle\right)=\operatorname{deg}\left(x_{j}\left\langle s_{i}\right\rangle\right)$ for all $x_{j}\left\langle s_{i}\right\rangle$ in $V_{i}$.

[^0]We consider the $\mathbb{G}$-graphs of the quasihedral, modular, and generalized quaternion group. We start with a few examples of the graphs.

## Example 1.

(i) The modular group, $M$, has presentation $\left\langle s, t \mid s^{8}=t^{2}=e, s t=t s^{5}\right\rangle$. Letting $S=\{s, t\}$, the $\mathbb{G}$ graph of this group is $\Gamma(M, S)$.

(ii) The quasihedral group, $Q S$, has presentation $\left\langle s, t \mid s^{8}=t^{2}=e, s t=t s^{3}\right\rangle$. Letting $S=\{s, t s\}$, the $\mathbb{G}$ graph of this group is $\Gamma(Q S, S)$.

$K_{2,4}$
(iii) The generalized quaternion group, $Q_{2^{n}}$, has presentation

$$
\left\langle s, t \mid s^{2^{n-1}}=e, s^{2^{n-2}}=t^{2}, t s t^{-1}=s^{-1}\right\rangle
$$

Letting $n=3, S=\{s, t\}$, the $\mathbb{G}$ graph of this group is $\Gamma\left(Q_{2^{3}}, S\right)$.


The next lemma pertains to all of the groups in question.
Lemma 4. Let $G=M, Q S$, or $Q_{2^{n}}$ and let $j$ be an odd integer then

$$
\left\langle s^{j}\right\rangle=\langle s\rangle=\left\{s, s^{2}, \cdots, s^{|s|-1}, e\right\} .
$$

Proof. For each of the above groups, $|s|$ is even. $\operatorname{So} \operatorname{gcd}(j,|s|)=1$ and there exist $x, y \in \mathbb{Z}$ such that $j x+|s| y=1$. So

$$
\begin{aligned}
& s^{1}=s^{j x+|s| y} \\
& s^{1}=s^{j x} s^{|s| y} \\
& s^{1}=\left(s^{j}\right)^{x}\left(s^{|s|}\right)^{y} \\
& s^{1}=\left(s^{j}\right)^{x}(e)^{y}
\end{aligned}
$$

Therefore $s^{1}=\left(s^{j}\right)^{x}$ and $\langle s\rangle=\left\langle s^{j}\right\rangle$.

## 2. The Modular group

Recall that the modular group, $M$, has presentation $\left\langle s, t \mid s^{8}=t^{2}=e, s t=t s^{5}\right\rangle$. Next we determine the existence of Eulerian and Hamiltonian circuits and paths.
Lemma 5. If $G$ is the modular group and $n$ is odd, then

$$
\left\langle t s^{n}\right\rangle=\langle t s\rangle=\left\{t s, s^{6}, t s^{7}, s^{4}, t s^{5}, s^{2}, t s^{3}, e\right\}
$$

Lemma 6. If $G$ is the modular group, then $\left\langle t s^{2}\right\rangle=\left\langle t s^{6}\right\rangle=\left\{t s^{2}, s^{4}, t s^{6}, e\right\}$.
Lemma 7. If $G$ is the modular group and $n=2$ or 6 , then $\left|\langle s\rangle \cap\left\langle t s^{n}\right\rangle\right|=2$.
Lemma 8. If $G$ is the modular group and $n$ is odd, then $\left|\langle s\rangle \cap\left\langle t s^{n}\right\rangle\right|=4$.
Theorem 9. If $G$ is the modular group, and $S$ is a minimal generating set, then $\Gamma(G, S)$ contains an Eulerian circuit.

Proof. Let $G$ be the modular group and $S$ be a minimal generating set. Then $S=\left\{s^{n}, t s^{k}\right\}$, where $n$ is odd, $1 \leq n \leq 7$, and $0 \leq k \leq 7$ or $S=\left\{t s^{n}, t s^{m}\right\}$, where $n$ is odd and $m$ is even. By using the lemmas above there exists three distinct graphs.
case i) Let $S=\left\{s^{n}, t\right\}$ where $n$ is odd, then $S_{1,2}=S_{2,1}=\left|\left\langle s^{n}\right\rangle \cap\langle t\rangle\right|=1$ and $\operatorname{deg}\left(\left\langle s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{8}{S_{1,1}}+\frac{8}{S_{1,2}}-1=\frac{8}{8}+\frac{8}{1}-1=8$, which is even. Similarly $\operatorname{deg}(\langle t\rangle)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{2}{S_{2,1}}+\frac{2}{S_{2,2}}-1=\frac{2}{1}+\frac{2}{2}-1=2$, which is even. This graph is $K_{2,8}$ and contains an Eulerian circuit.
case ii) Let $S=\left\{s^{n}, t s^{m}\right\}$ where $n, m$ are odd, then $S_{1,2}=S_{2,1}=\left|\left\langle s^{n}\right\rangle \cap\left\langle t s^{m}\right\rangle\right|=$ 4 and $\operatorname{deg}\left(\left\langle s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{8}{S_{1,1}}+\frac{8}{S_{1,2}}-1=\frac{8}{8}+\frac{8}{4}-1=2$, which is even. Similarly $\operatorname{deg}\left(\left\langle t s^{m}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{8}{S_{2,1}}+\frac{8}{S_{2,2}}-1=\frac{8}{4}+\frac{8}{8}-1=2$, which is even. This graph is $K_{2,2}$ and contains an Eulerian circuit.
case iii) Let $S=\left\{s^{n}, t s^{k}\right\}$ where $n$ is odd and $k=2$ or 6 , then $S_{1,2}=S_{2,1}=$ $\left|\left\langle s^{n}\right\rangle \cap\left\langle t s^{k}\right\rangle\right|=2$ and $\operatorname{deg}\left(\left\langle s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{8}{S_{1,1}}+\frac{8}{S_{1,2}}-1=\frac{8}{8}+\frac{8}{2}-1=4$,
which is even. Similarly $\operatorname{deg}\left(\left\langle t s^{k}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{2}{S_{2,1}}+\frac{2}{S_{2,2}}-1=\frac{4}{2}+\frac{4}{4}-1=$ 2, which is even. This graph is $K_{2,4}$ and contains an Eulerian circuit.
case iv) Let $S=\left\{s^{n}, t s^{4}\right\}$ where $n$ is odd, then $S_{1,2}=S_{2,1}=\left|\left\langle s^{n}\right\rangle \cap\left\langle t s^{4}\right\rangle\right|=1$ and $\operatorname{deg}\left(\left\langle s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{8}{S_{1,1}}+\frac{8}{S_{1,2}}-1=\frac{8}{8}+\frac{8}{1}-1=8$, which is even. Similarly $\operatorname{deg}\left(\left\langle t s^{4}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{2}{S_{2,1}}+\frac{2}{S_{2,2}}-1=\frac{2}{1}+\frac{2}{2}-1=2$, which is even. This graph is $K_{2,8}$ and contains an Eulerian circuit.
case v) Let $S=\left\{t s^{n}, t\right\}$ where $n$ is odd, then $S_{1,2}=S_{2,1}=\left|\left\langle t s^{n}\right\rangle \cap\langle t\rangle\right|=1$ and $\operatorname{deg}\left(\left\langle t s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{8}{S_{1,1}}+\frac{8}{S_{1,2}}-1=\frac{8}{8}+\frac{8}{1}-1=8$, which is even. Similarly $\operatorname{deg}(\langle t\rangle)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{2}{S_{2,1}}+\frac{2}{S_{2,2}}-1=\frac{2}{1}+\frac{2}{2}-1=2$, which is even. This graph is $K_{2,8}$ and contains an Eulerian circuit.
case vi) Let $S=\left\{t s^{n}, t s^{k}\right\}$ where $n$ is odd and $k=2$ or 6 , then $S_{1,2}=S_{2,1}=$ $\left|\left\langle t s^{n}\right\rangle \cap\left\langle t s^{k}\right\rangle\right|=2$ and $\operatorname{deg}\left(\left\langle t s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{8}{S_{1,1}}+\frac{8}{S_{1,2}}-1=\frac{8}{8}+\frac{8}{2}-1=$ 4, which is even. Similarly $\operatorname{deg}\left(\left\langle t s^{k}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{2}{S_{2,1}}+\frac{2}{S_{2,2}}-1=$ $\frac{4}{2}+\frac{4}{4}-1=2$, which is even. This graph is $K_{2,4}$ and contains an Eulerian circuit.
case vii) Let $S=\left\{t s^{n}, t s^{4}\right\}$ where $n$ is odd, then $S_{1,2}=S_{2,1}=\left|\left\langle t s^{n}\right\rangle \cap\left\langle t s^{4}\right\rangle\right|=1$ and $\operatorname{deg}\left(\left\langle t s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{8}{S_{1,1}}+\frac{8}{S_{1,2}}-1=\frac{8}{8}+\frac{8}{1}-1=8$, which is even. Similarly $\operatorname{deg}\left(\left\langle t s^{4}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{2}{S_{2,1}}+\frac{2}{S_{2,2}}-1=\frac{2}{1}+\frac{2}{2}-1=2$, which is even. This graph is $K_{2,8}$ and contains an Eulerian circuit.

Remark 2. For all minimal generating sets, $\Gamma(M, S)$ does not contain an Eulerian path.

Theorem 10. If $G$ is the modular group, and $S=\left\{s^{n}, t s^{m}\right\}$ where $n, m$ are odd, then $\Gamma(G, S)$ contains a Hamiltonian circuit and a Hamiltonian path.

Proof. The vertex set of $\Gamma(M, S)$ is $V(\Gamma(M, S))=\left\{\left\langle s^{n}\right\rangle, t\left\langle s^{n}\right\rangle,\left\langle t s^{m}\right\rangle, t\left\langle t s^{m}\right\rangle\right\}$. A Hamiltonian circuit is given by

$$
\left\langle s^{n}\right\rangle,\left\langle t s^{m}\right\rangle, t\left\langle s^{n}\right\rangle, t\left\langle t s^{m}\right\rangle,\left\langle s^{n}\right\rangle
$$

A Hamiltonian path is given by

$$
\left\langle s^{n}\right\rangle,\left\langle t s^{m}\right\rangle, t\left\langle s^{n}\right\rangle, t\left\langle t s^{m}\right\rangle
$$

Remark 3. $S=\left\{s^{n}, t s^{m}\right\}$ where $n, m$ are odd is the only minimal generating set of $M$ that yields a graph that contains a Hamiltonian circuit (path).

## 3. The Quasihedral group

Recall that the quasihedral group, $Q S$, has presentation $\left\langle s, t \mid s^{8}=t^{2}=e, s t=t s^{3}\right\rangle$. Next we determine the existence of Eulerian and Hamiltonian circuits and paths.
Lemma 11. If $G$ is the quasihedral group and $n$ is 1 or 5 , then $\left\langle t s^{n}\right\rangle=\left\{t s, s^{4}, t s^{5}, e\right\}$.
Lemma 12. If $G$ is the quasihedral group and $n$ is 3 or 7 , then $\left\langle t s^{n}\right\rangle=\left\{t s^{3}, s^{4}, t s^{7}, e\right\}$.
Lemma 13. If $G$ is the quasihedral group and $n$ is even, then $\left\langle t s^{n}\right\rangle=\left\{t s^{n}, e\right\}$.
Lemma 14. If $G$ is the quasihedral group and $n$ is even, then $\left|\langle s\rangle \cap\left\langle t s^{n}\right\rangle\right|=1$.
Lemma 15. If $G$ is the quasihedral group and $n$ is odd, then $\left|\langle s\rangle \cap\left\langle t s^{n}\right\rangle\right|=2$.
Theorem 16. If $G$ is the quasihedral group, and $S$ is a minimal generating set, then $\Gamma(G, S)$ contains a Eulerian circuit.
Proof. Let $G$ be the quasihedral group and $S$ be a minimal generating set. Then $S=\left\{s^{n}, t s^{k}\right\}$, where $n$ is odd and $1 \leq n \leq 7$ and $1 \leq k \leq 3$ or $S=\left\{t s^{n}, t s^{m}\right\}$, where $n$ is odd and $m$ is even. By using the above lemmas, there exists three distinct graphs.
case i) Let $S=\left\{s^{n}, t s^{m}\right\}$, where $n, m$ are odd, then $S_{1,2}=S_{2,1}=\left|\left\langle s^{n}\right\rangle \cap\left\langle t s^{m}\right\rangle\right|=$ 2 and $\operatorname{deg}\left(\left\langle s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{8}{S_{1,1}}+\frac{8}{S_{1,2}}-1=\frac{8}{8}+\frac{8}{2}-1=4$, which is even. Similarly, $\operatorname{deg}\left(\left\langle t s^{m}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{4}{S_{2,1}}+\frac{4}{S_{2,2}}-1=\frac{4}{2}+\frac{4}{4}-1=2$, which is even. This graph is $K_{2,4}$ and contains an Eulerian circuit.
case ii) Let $S=\left\{s^{n}, t s^{m}\right\}$, where $n$ is odd and $m$ is even, then $S_{1,2}=S_{2,1}=$ $\left|\left\langle s^{n}\right\rangle \cap\left\langle t s^{m}\right\rangle\right|=1$ and $\operatorname{deg}\left(\left\langle s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{8}{S_{1,1}}+\frac{8}{S_{1,2}}-1=\frac{8}{8}+\frac{8}{1}-1=8$, which is even. Similarly, $\operatorname{deg}\left(\left\langle t s^{m}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{2}{S_{2,1}}+\frac{2}{S_{2,2}}-1=$ $\frac{2}{1}+\frac{2}{2}-1=2$, which is even. This graph is $K_{2,8}$ and contains an Eulerian circuit.
case iii) Let $S=\left\{t s^{n}, t s^{m}\right\}$ where $n$ is odd and $m$ is even, then $S_{1,2}=S_{2,1}=$ $\left|\left\langle t s^{n}\right\rangle \cap\left\langle t s^{m}\right\rangle\right|=1$ and $\operatorname{deg}\left(\left\langle t s^{n}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{4}{S_{1,1}}+\frac{4}{S_{1,2}}-1=\frac{4}{4}+\frac{4}{1}-1=$ 4, which is even. Similarly $\operatorname{deg}\left(\left\langle t s^{m}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{2}{S_{2,1}}+\frac{2}{S_{2,2}}-1=$ $\frac{2}{1}+\frac{2}{2}-1=2$, which is even. By applying Euler's theorem, this graph contains an Eulerian circuit.

Remark 4. For all minimal generating sets, $\Gamma(Q S, S)$ does not contain an Eulerian path, a Hamiltonian path, or a Hamiltonian circuit.

## 4. Generalized Quaternion Group

Recall that the generalized quaternion group, $Q_{2^{n}}$, has presentation $\langle s, t| s^{2^{n-1}}=$ $\left.e, s^{2^{n-2}}=t^{2}, t s t^{-1}=s^{-1}\right\rangle$. Next we determine the existence of Eulerian and Hamiltonian circuits and paths.
Lemma 17. If $G$ is the generalized quaternion group, then $t^{4}=e$.
Proof. Let $G$ be the generalized quaternion group. Recall that $t^{2}=s^{2^{n-2}}$. Squaring both sides,

$$
\begin{aligned}
\left(t^{2}\right. & \left.=s^{2^{n-2}}\right)^{2} \\
t^{4} & =s^{2^{n-1}}=e
\end{aligned}
$$

Lemma 18. Let $G$ be the generalized quaternion group, then $\left(t s^{j}\right)^{2}=t^{2}$ for all $j$.
Proof. We proceed with induction on $j$. Let $j=1$, then $\left(t s^{1}\right)^{2}=t s t s=t s\left(s^{-1} t\right)=$ $t^{2}$ and the theorem holds for $j=1$. Assume that the theorem holds for $j=k$, i.e, $\left(t s^{k}\right)^{2}=t^{2}$.

Now let $j=k+1$, then $\left(t s^{k+1}\right)^{2}=t s^{k+1} t s^{k+1}=t s^{k+1} t s s^{k}=t s^{k+1} s^{-1} t s^{k}=$ $t s^{k} t s^{k}=\left(t s^{k}\right)^{2}=t^{2}$. Therefore $\left(t s^{j}\right)^{2}=t^{2}$ for all $j$.

Lemma 19. Let $G$ be the generalized quaternion group, then $\left\langle t s^{j}\right\rangle=\left\{t s^{j}, t^{2}, t^{3} s^{j}, e\right\}$ for all $j$.
Lemma 20. If $G$ is the generalized quaternion group and $\left\langle t s^{j}\right\rangle \neq\left\langle t s^{k}\right\rangle$, then $\left\langle t s^{j}\right\rangle \cap\left\langle t s^{k}\right\rangle=\left\{t^{2}, e\right\}$ and $\left|\left\langle t s^{j}\right\rangle \cap\left\langle t s^{k}\right\rangle\right|=2$.
Theorem 21. If $G$ is the generalized quaternion group, and $S$ is a minimal generating set, then $\Gamma(G, S)$ contains an Eulerian circuit.
Proof. Let $G$ be the generalized quaternion group and $S$ be a minimal generating set. Then, $S=\left\{s^{k}, t s^{j}\right\}$ where $k$ is odd or $S=\left\{t s^{k}, t s^{m}\right\}$, where $k$ is odd and $m$ is even.
case i) Let $S=\left\{s^{k}, t s^{j}\right\}$ where $k$ is odd, then $S_{1,2}=S_{2,1}=\left|\left\langle s^{k}\right\rangle \cap\left\langle t s^{j}\right\rangle\right|=2$ and $\operatorname{deg}\left(\left\langle s^{k}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{2^{n-1}}{S_{1,1}}+\frac{2^{n-1}}{S_{1,2}}-1=\frac{2^{n-1}}{2^{n-1}}+\frac{2^{n-1}}{2}-1=\frac{2^{n-1}}{2}=2^{n-2}$, which is even. Similarly $\operatorname{deg}\left(\left\langle t s^{j}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{4}{S_{2,1}}+\frac{4}{S_{2,2}}-1=\frac{4}{4}+\frac{4}{2}-1=$ 2, which is even. This graph is $K_{2,2^{n-2}}$ and contains an Eulerian circuit.
case ii) Let $S=\left\{t s^{k}, t s^{m}\right\}$, where $k$ is odd and $m$ is even, then $S_{1,2}=S_{2,1}=$ $\left|\left\langle t s^{k}\right\rangle \cap\left\langle t s^{m}\right\rangle\right|=2$ and $\operatorname{deg}\left(\left\langle t s^{k}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{1}\right\rangle\right|}{S_{1, j}}\right)-1=\frac{4}{S_{1,1}}+\frac{4}{S_{1,2}}-1=\frac{4}{4}+\frac{4}{2}-1=$ 2, which is even. Similarly $\operatorname{deg}\left(\left\langle t s^{m}\right\rangle\right)=\left(\sum_{j=1}^{2} \frac{\left|\left\langle s_{2}\right\rangle\right|}{S_{2, j}}\right)-1=\frac{4}{S_{2,1}}+\frac{4}{S_{2,2}}-1=$ $\frac{4}{4}+\frac{4}{2}-1=2$, which is even. By applying Euler's theorem, this graph contains an Eulerian circuit.

Remark 5. For all minimal generating sets, $\Gamma\left(Q_{2^{n}}, S\right)$ does not contain an Eulerian path.

Theorem 22. If $G$ is the generalized quaternion group, $Q_{2^{n}}$, and $S=\left\{s^{k}, t s^{m}\right\}$ where $k$ is odd, then $\Gamma(G, S)$ contains a Hamiltonian circuit and a Hamiltonian path for $n=3$.

Proof. The vertex set of $\Gamma\left(Q_{2^{3}}, S\right)$ is $V\left(\Gamma\left(Q_{2^{3}}, S\right)\right)=\left\{\left\langle s^{k}\right\rangle, t\left\langle s^{k}\right\rangle,\left\langle t s^{m}\right\rangle, t\left\langle t s^{m}\right\rangle\right\}$. A Hamiltonian circuit is given by

$$
\left\langle s^{k}\right\rangle,\left\langle t s^{m}\right\rangle, t\left\langle s^{k}\right\rangle, t\left\langle t s^{m}\right\rangle,\left\langle s^{k}\right\rangle .
$$

A Hamiltonian path is given by

$$
\left\langle s^{k}\right\rangle,\left\langle t s^{m}\right\rangle, t\left\langle s^{k}\right\rangle, t\left\langle t s^{m}\right\rangle .
$$

Theorem 23. If $G$ is the generalized quaternion group, $Q_{2^{n}}$, and $S=\left\{t s^{k}, t s^{m}\right\}$, where $k$ is odd and $m$ is even, then $\Gamma(G, S)$ contains a Hamiltonian circuit and $a$ Hamiltonian path.
Proof. The vertex set of $\Gamma\left(Q_{2^{n}}, S\right)$ is
$V\left(\Gamma\left(Q_{2^{n}}, S\right)\right)=\left\{\left\langle t s^{k}\right\rangle, s\left\langle t s^{k}\right\rangle, \cdots, s^{2^{n-2}-1}\left\langle t s^{k}\right\rangle,\left\langle t s^{m}\right\rangle, s\left\langle t s^{m}\right\rangle, \cdots, s^{2^{n-2}-1}\left\langle t s^{m}\right\rangle\right\}$.
A Hamiltonian circuit is given by
$\left\langle t s^{k}\right\rangle,\left\langle t s^{m}\right\rangle, s^{k-m}\left\langle t s^{k}\right\rangle, s^{k-m}\left\langle t s^{m}\right\rangle, \cdots, s^{k-\left(2^{n-2}-1\right) m}\left\langle t s^{k}\right\rangle, s^{k-\left(2^{n-2}-1\right) m}\left\langle t s^{m}\right\rangle,\left\langle t s^{k}\right\rangle$.
A Hamiltonian path is given by

$$
\begin{gathered}
\left\langle t s^{k}\right\rangle,\left\langle t s^{m}\right\rangle, s^{k-m}\left\langle t s^{k}\right\rangle, s^{k-m}\left\langle t s^{m}\right\rangle, s^{k-2 m}\left\langle t s^{k}\right\rangle, s^{k-2 m}\left\langle t s^{m}\right\rangle, \cdots, \\
s^{k-\left(2^{n-2}-1\right) m}\left\langle t s^{k}\right\rangle, s^{k-\left(2^{n-2}-1\right) m}\left\langle t s^{m}\right\rangle
\end{gathered}
$$

## References

[BJRTD08] C. Bauer, C. Johnson, A. Rodriguez, B. Temple, J. Daniel Paths and Circuits in $\mathbb{G}$-Graphs, Involve 1 (2008), no. 2, 135-144.
[BG04] A. Bretto, L. Gillibert Graphical and Computational Representation of Groups, Lect. Notes in Comp. Sci. 3039 (2004), 343-350.
[BGL05] A. Bretto, L. Gillibert, B. Laget Symmetric and Semisymmetric Graphs Construction Using G-graphs, Proceedings of the 2005 international symposium on Symbolic and algebraic computation (2005), 61-67.
[BG05] A. Bretto, L. Gillibert Symmetry and Connectivity in G-graphs Electronic Notes in Discrete Mathematics 22 (2005), 481-486.
[BG07] A. Bretto, L. Gillibert G-graphs: a new representation of groups, J. Symbolic Comput. 42 (2007), no. 5, 549-560.
[D08] J. Daniel The $\mathbb{G}$-Graph of a Group, to appear.
Department of Mathematics, Lamar University, Beaumont, TX 77710
E-mail address: aldewitt@my.lamar.edu
Department of Mathematics, Lamar University, Beaumont, TX 77710
E-mail address: amrodriguez1@my.lamar.edu
Department of Mathematics, Lamar University, Beaumont, TX 77710
E-mail address: Jennifer.Daniel@lamar.edu


[^0]:    Received by the editors October 5, 2008.
    2000 Mathematics Subject Classification. 20F05, 05C25.
    Key words and phrases. Groups, graphs, generators.
    *Author is partially supported by a CURM mini-grant funded by the NSF grant DMS-0636648.
    *Author is partially supported by a CURM mini-grant funded by the NSF grant DMS-0636648.

