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PATHS AND CIRCUITS IN G-GRAPHS OF CERTAIN
NON-ABELIAN GROUPS

A. DEWITT*, A. RODRIGUEZ*, AND J. DANIEL*

Abstract. In [BJRTD08], necessary and sufficient conditions were given for

the existence of Eulerian and Hamiltonian paths and circuits in the G-graph
of the dihedral group Dn. In this paper, we consider the G-graphs of the

quasihedral, modular, and generalized quaternion group. These groups are of

rank 2 and we consider only the graphs Γ(G, S) where |S| = 2.

1. Introduction

Let G be a finitely generated group with generating set S = {s1, · · · , sk}. For a
subgroup H of G, define the subset TH of G to be a left transversal for H if {xH |
x ∈ TH} is precisely the set of all left cosets of H in G. For each si ∈ S let Hi = 〈si〉.
Associate a simple graph Γ(G, S) to (G, S) with vertex set V = {xjHi | xj ∈ THi}.
Two distinct vertices xjHi and xlHk in V are joined by an edge if xj〈si〉 ∩ xl〈sk〉
is nonempty. The edge set E consists of pairs (xjHi, xlHk). Γ(G, S) defined this
way has no multiedge or loop. A multiedge graph was defined similarly in 2004.
Many of the results about this graph [[BG04], [BGL05], [BG05], and [BG07]] can
be modified for the simple graph, Γ(G, S), [D08]. The main object of this paper
is to study the existence of Eulerian and Hamiltonian paths and circuits in the G-
graphs of the quasihedral, modular, and generalized quaternion group. To explore
the existence of Eulerian paths and circuits in Γ(G, S), we recall a few theorems of
Euler and a result from [BJRTD08].

Theorem 1. (Euler) Let Γ be a nontrivial connected graph. Then Γ has an Euler-
ian circuit if and only if every vertex is of even degree.

Theorem 2. (Euler) Let Γ be a nontrivial connected graph. Then Γ has an Euler-
ian path if and only if Γ has exactly two vertices of odd degree. Furthermore, the
path begins at one of the vertices of odd degree and terminates at the other.

Lemma 3. [BJRTD08] If G is a group with generating set S = {s1, · · · , sn} and
Si,j = |〈si〉 ∩ 〈sj〉|, then the degree of the vertex 〈si〉, denoted deg(〈si〉), is

deg(〈si〉) =
( n∑

j=1

|si|/Si,j

)
− 1.

Remark 1. Notice that deg(〈si〉) = deg(xj〈si〉) for all xj〈si〉 in Vi.
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We consider the G-graphs of the quasihedral, modular, and generalized quater-
nion group. We start with a few examples of the graphs.

Example 1.
(i) The modular group, M , has presentation 〈s, t | s8 = t2 = e, st = ts5〉. Letting

S = {s, t}, the G graph of this group is Γ(M,S).

K2,8

(ii) The quasihedral group, QS, has presentation 〈s, t | s8 = t2 = e, st = ts3〉.
Letting S = {s, ts}, the G graph of this group is Γ(QS, S).

K2,4

(iii) The generalized quaternion group, Q2n , has presentation

〈s, t | s2n−1
= e, s2n−2

= t2, tst−1 = s−1〉.

Letting n = 3, S = {s, t}, the G graph of this group is Γ(Q23 , S).

K2,2

The next lemma pertains to all of the groups in question.

Lemma 4. Let G = M,QS, or Q2n and let j be an odd integer then

〈sj〉 = 〈s〉 = {s, s2, · · · , s|s|−1, e}.
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Proof. For each of the above groups, |s| is even. So gcd(j, |s|) = 1 and there exist
x, y ∈ Z such that jx + |s|y = 1. So

s1 = sjx+|s|y

s1 = sjxs|s|y

s1 = (sj)x(s|s|)y

s1 = (sj)x(e)y

Therefore s1 = (sj)x and 〈s〉 = 〈sj〉.

2. The Modular group

Recall that the modular group, M , has presentation
〈s, t | s8 = t2 = e, st = ts5〉. Next we determine the existence of Eulerian and Hamil-
tonian circuits and paths.

Lemma 5. If G is the modular group and n is odd, then

〈tsn〉 = 〈ts〉 = {ts, s6, ts7, s4, ts5, s2, ts3, e}.

Lemma 6. If G is the modular group, then 〈ts2〉 = 〈ts6〉 = {ts2, s4, ts6, e}.

Lemma 7. If G is the modular group and n = 2 or 6, then |〈s〉 ∩ 〈tsn〉| = 2.

Lemma 8. If G is the modular group and n is odd, then |〈s〉 ∩ 〈tsn〉| = 4.

Theorem 9. If G is the modular group, and S is a minimal generating set, then
Γ(G, S) contains an Eulerian circuit.

Proof. Let G be the modular group and S be a minimal generating set. Then
S = {sn, tsk}, where n is odd, 1 ≤ n ≤ 7, and 0 ≤ k ≤ 7 or S = {tsn, tsm}, where
n is odd and m is even. By using the lemmas above there exists three distinct
graphs.

case i) Let S = {sn, t} where n is odd, then S1,2 = S2,1 = |〈sn〉 ∩ 〈t〉| = 1 and

deg(〈sn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
− 1 =

8
S1,1

+
8

S1,2
− 1 =

8
8

+
8
1
− 1 = 8, which is even.

Similarly deg(〈t〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

2
S2,1

+
2

S2,2
− 1 =

2
1

+
2
2
− 1 = 2, which is

even. This graph is K2,8 and contains an Eulerian circuit.
case ii) Let S = {sn, tsm} where n, m are odd, then S1,2 = S2,1 = |〈sn〉∩〈tsm〉| =

4 and deg(〈sn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
− 1 =

8
S1,1

+
8

S1,2
− 1 =

8
8

+
8
4
− 1 = 2, which is

even. Similarly deg(〈tsm〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

8
S2,1

+
8

S2,2
− 1 =

8
4

+
8
8
− 1 = 2,

which is even. This graph is K2,2 and contains an Eulerian circuit.
case iii) Let S = {sn, tsk} where n is odd and k = 2 or 6, then S1,2 = S2,1 =

|〈sn〉∩〈tsk〉| = 2 and deg(〈sn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
−1 =

8
S1,1

+
8

S1,2
−1 =

8
8

+
8
2
−1 = 4,
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which is even. Similarly deg(〈tsk〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
−1 =

2
S2,1

+
2

S2,2
−1 =

4
2

+
4
4
−1 =

2, which is even. This graph is K2,4 and contains an Eulerian circuit.
case iv) Let S = {sn, ts4} where n is odd, then S1,2 = S2,1 = |〈sn〉 ∩ 〈ts4〉| = 1

and deg(〈sn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
−1 =

8
S1,1

+
8

S1,2
−1 =

8
8

+
8
1
−1 = 8, which is even.

Similarly deg(〈ts4〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

2
S2,1

+
2

S2,2
− 1 =

2
1

+
2
2
− 1 = 2, which

is even. This graph is K2,8 and contains an Eulerian circuit.
case v) Let S = {tsn, t} where n is odd, then S1,2 = S2,1 = |〈tsn〉 ∩ 〈t〉| = 1 and

deg(〈tsn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
− 1 =

8
S1,1

+
8

S1,2
− 1 =

8
8

+
8
1
− 1 = 8, which is even.

Similarly deg(〈t〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

2
S2,1

+
2

S2,2
− 1 =

2
1

+
2
2
− 1 = 2, which is

even. This graph is K2,8 and contains an Eulerian circuit.
case vi) Let S = {tsn, tsk} where n is odd and k = 2 or 6, then S1,2 = S2,1 =

|〈tsn〉∩〈tsk〉| = 2 and deg(〈tsn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
−1 =

8
S1,1

+
8

S1,2
−1 =

8
8

+
8
2
−1 =

4, which is even. Similarly deg(〈tsk〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

2
S2,1

+
2

S2,2
− 1 =

4
2

+
4
4
− 1 = 2, which is even. This graph is K2,4 and contains an Eulerian circuit.

case vii) Let S = {tsn, ts4} where n is odd, then S1,2 = S2,1 = |〈tsn〉∩ 〈ts4〉| = 1

and deg(〈tsn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
− 1 =

8
S1,1

+
8

S1,2
− 1 =

8
8

+
8
1
− 1 = 8, which is

even. Similarly deg(〈ts4〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

2
S2,1

+
2

S2,2
− 1 =

2
1

+
2
2
− 1 = 2,

which is even. This graph is K2,8 and contains an Eulerian circuit.

Remark 2. For all minimal generating sets, Γ(M, S) does not contain an Eulerian
path.

Theorem 10. If G is the modular group, and S = {sn, tsm} where n, m are odd,
then Γ(G, S) contains a Hamiltonian circuit and a Hamiltonian path.

Proof. The vertex set of Γ(M, S) is V (Γ(M,S)) = {〈sn〉, t〈sn〉, 〈tsm〉, t〈tsm〉} . A
Hamiltonian circuit is given by

〈sn〉, 〈tsm〉, t〈sn〉, t〈tsm〉, 〈sn〉.

A Hamiltonian path is given by

〈sn〉, 〈tsm〉, t〈sn〉, t〈tsm〉.
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Remark 3. S = {sn, tsm} where n, m are odd is the only minimal generating set of
M that yields a graph that contains a Hamiltonian circuit (path).

3. The Quasihedral group

Recall that the quasihedral group, QS, has presentation
〈s, t | s8 = t2 = e, st = ts3〉. Next we determine the existence of Eulerian and Hamil-
tonian circuits and paths.

Lemma 11. If G is the quasihedral group and n is 1 or 5, then 〈tsn〉 = {ts, s4, ts5, e}.
Lemma 12. If G is the quasihedral group and n is 3 or 7, then 〈tsn〉 = {ts3, s4, ts7, e}.
Lemma 13. If G is the quasihedral group and n is even, then 〈tsn〉 = {tsn, e}.
Lemma 14. If G is the quasihedral group and n is even, then |〈s〉 ∩ 〈tsn〉| = 1.

Lemma 15. If G is the quasihedral group and n is odd, then |〈s〉 ∩ 〈tsn〉| = 2.

Theorem 16. If G is the quasihedral group, and S is a minimal generating set,
then Γ(G, S) contains a Eulerian circuit.

Proof. Let G be the quasihedral group and S be a minimal generating set. Then
S = {sn, tsk}, where n is odd and 1 ≤ n ≤ 7 and 1 ≤ k ≤ 3 or S = {tsn, tsm},
where n is odd and m is even. By using the above lemmas, there exists three
distinct graphs.

case i) Let S = {sn, tsm}, where n, m are odd, then S1,2 = S2,1 = |〈sn〉∩〈tsm〉| =

2 and deg(〈sn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
− 1 =

8
S1,1

+
8

S1,2
− 1 =

8
8

+
8
2
− 1 = 4, which is

even. Similarly, deg(〈tsm〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

4
S2,1

+
4

S2,2
− 1 =

4
2

+
4
4
− 1 = 2,

which is even. This graph is K2,4 and contains an Eulerian circuit.
case ii) Let S = {sn, tsm}, where n is odd and m is even, then S1,2 = S2,1 =

|〈sn〉∩〈tsm〉| = 1 and deg(〈sn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
−1 =

8
S1,1

+
8

S1,2
−1 =

8
8

+
8
1
−1 = 8,

which is even. Similarly, deg(〈tsm〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

2
S2,1

+
2

S2,2
− 1 =

2
1

+
2
2
− 1 = 2, which is even. This graph is K2,8 and contains an Eulerian circuit.

case iii) Let S = {tsn, tsm} where n is odd and m is even, then S1,2 = S2,1 =

|〈tsn〉∩〈tsm〉| = 1 and deg(〈tsn〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
−1 =

4
S1,1

+
4

S1,2
−1 =

4
4

+
4
1
−1 =

4, which is even. Similarly deg(〈tsm〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

2
S2,1

+
2

S2,2
− 1 =

2
1

+
2
2
− 1 = 2, which is even. By applying Euler’s theorem, this graph contains an

Eulerian circuit.

Remark 4. For all minimal generating sets, Γ(QS, S) does not contain an Eulerian
path, a Hamiltonian path, or a Hamiltonian circuit.
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4. Generalized Quaternion Group

Recall that the generalized quaternion group, Q2n , has presentation 〈s, t | s2n−1
=

e, s2n−2
= t2, tst−1 = s−1〉. Next we determine the existence of Eulerian and Hamil-

tonian circuits and paths.

Lemma 17. If G is the generalized quaternion group, then t4 = e.

Proof. Let G be the generalized quaternion group. Recall that t2 = s2n−2
. Squaring

both sides,

(t2 = s2n−2
)2

t4 = s2n−1
= e.

Lemma 18. Let G be the generalized quaternion group, then (tsj)2 = t2 for all j.

Proof. We proceed with induction on j. Let j = 1, then (ts1)2 = tsts = ts(s−1t) =
t2 and the theorem holds for j = 1. Assume that the theorem holds for j = k, i.e,
(tsk)2 = t2.

Now let j = k + 1, then (tsk+1)2 = tsk+1tsk+1 = tsk+1tssk = tsk+1s−1tsk =
tsktsk = (tsk)2 = t2. Therefore (tsj)2 = t2 for all j.

Lemma 19. Let G be the generalized quaternion group, then 〈tsj〉 = {tsj , t2, t3sj , e}
for all j.

Lemma 20. If G is the generalized quaternion group and 〈tsj〉 6= 〈tsk〉, then
〈tsj〉 ∩ 〈tsk〉 = {t2, e} and |〈tsj〉 ∩ 〈tsk〉| = 2.

Theorem 21. If G is the generalized quaternion group, and S is a minimal gen-
erating set, then Γ(G, S) contains an Eulerian circuit.

Proof. Let G be the generalized quaternion group and S be a minimal generating
set. Then, S = {sk, tsj} where k is odd or S = {tsk, tsm}, where k is odd and m
is even.

case i) Let S = {sk, tsj} where k is odd, then S1,2 = S2,1 = |〈sk〉∩〈tsj〉| = 2 and

deg(〈sk〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
−1 =

2n−1

S1,1
+

2n−1

S1,2
−1 =

2n−1

2n−1
+

2n−1

2
−1 =

2n−1

2
= 2n−2,

which is even. Similarly deg(〈tsj〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
−1 =

4
S2,1

+
4

S2,2
−1 =

4
4

+
4
2
−1 =

2, which is even. This graph is K2,2n−2 and contains an Eulerian circuit.
case ii) Let S = {tsk, tsm}, where k is odd and m is even, then S1,2 = S2,1 =

|〈tsk〉∩〈tsm〉| = 2 and deg(〈tsk〉) =
( 2∑

j=1

|〈s1〉|
S1,j

)
−1 =

4
S1,1

+
4

S1,2
−1 =

4
4

+
4
2
−1 =

2, which is even. Similarly deg(〈tsm〉) =
( 2∑

j=1

|〈s2〉|
S2,j

)
− 1 =

4
S2,1

+
4

S2,2
− 1 =

4
4

+
4
2
− 1 = 2, which is even. By applying Euler’s theorem, this graph contains an

Eulerian circuit.
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Remark 5. For all minimal generating sets, Γ(Q2n , S) does not contain an Eulerian
path.

Theorem 22. If G is the generalized quaternion group, Q2n , and S = {sk, tsm}
where k is odd, then Γ(G, S) contains a Hamiltonian circuit and a Hamiltonian
path for n = 3.

Proof. The vertex set of Γ(Q23 , S) is V (Γ(Q23 , S)) = {〈sk〉, t〈sk〉, 〈tsm〉, t〈tsm〉} .
A Hamiltonian circuit is given by

〈sk〉, 〈tsm〉, t〈sk〉, t〈tsm〉, 〈sk〉.
A Hamiltonian path is given by

〈sk〉, 〈tsm〉, t〈sk〉, t〈tsm〉.

Theorem 23. If G is the generalized quaternion group, Q2n , and S = {tsk, tsm},
where k is odd and m is even, then Γ(G, S) contains a Hamiltonian circuit and a
Hamiltonian path.

Proof. The vertex set of Γ(Q2n , S) is

V (Γ(Q2n , S)) = {〈tsk〉, s〈tsk〉, · · · , s2n−2−1〈tsk〉, 〈tsm〉, s〈tsm〉, · · · , s2n−2−1 〈tsm〉}.
A Hamiltonian circuit is given by

〈tsk〉, 〈tsm〉, sk−m〈tsk〉, sk−m〈tsm〉, · · · , sk−(2n−2−1)m〈tsk〉, sk−(2n−2−1)m〈tsm〉, 〈tsk〉.
A Hamiltonian path is given by

〈tsk〉, 〈tsm〉, sk−m〈tsk〉, sk−m〈tsm〉, sk−2m〈tsk〉, sk−2m〈tsm〉, · · · ,

sk−(2n−2−1)m〈tsk〉, sk−(2n−2−1)m〈tsm〉.
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