Furman University Electronic Journal of Undergraduate Mathematics Volume 10, 1 - 4, 2005

ON THE NONEXISTENCE OF SINGULAR EQUILIBRIA IN THE FOUR-VORTEX PROBLEM

MARSHALL HAMPTON, ANDREA PETERSON, HEATHER STOLLER, AND ALBERT WANG

ABSTRACT. In this paper we provide a partial answer to a question recently posed by Hassan Aref et. al. in their article *Vortex Crystals*, namely whether there are certain singular equilibria of point vortices. We prove that there are no such equilibria in the four-vortex case.

1. INTRODUCTION

The starting point of our discussion is the set of point-vortex equations for N interacting vortices a = 1, 2, ..., N with circulations Γ_a and (complex) positions z_i :

$$\overline{\frac{dz_i}{dt}} = \frac{1}{2\pi i} \sum_{j \neq i} \frac{\Gamma_j}{z_i - z_j}.$$

This system was introduced by Helmholtz [H] to model a two-dimensional slice of columnar vortex filaments, with some refinements by Lord Kelvin [T] and Kirchhoff [K]. An extensive bibliography on the subject can be found in [N]. It is worth noting that this system can be written in Hamiltonian form with Hamiltonian $H = \sum_{i < j} \Gamma_i \Gamma_j \log |z_i - z_j|$, where the symplectic pairs of variables are multiples of the real and imaginary parts of each z_i .

A vortex equilibrium is a configuration of vortices such that $\frac{dz_j}{dt} = 0$ for all j. We are concerned here with the following special type of vortex equilibrium:

Definition 1.1. A singular equilibrium is an equilibrium such that $L = \sum_{i < j} \Gamma_i \Gamma_j |z_i - z_j|^2 = 0$, $K = \sum_{i < j} \Gamma_i \Gamma_j = 0$, and $S = \sum_i \Gamma_i \neq 0$.

It is already known that there are no singular equilibria in the three-vortex problem [ANST], where it is also shown that a rigidly rotating configuration of vortices has an angular speed of $\omega = \frac{SK}{4\pi L}$. Our introduction of the term singular equilibrium refers to the indeterminancy of this expression for the angular speed.

2. Nonexistence of the four-vortex singular equilibria

We will prove the following theorem:

Theorem 2.1. There are no four-vortex singular equilibria.

Received by the editors June 14, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 70Fxx, 37N10, 76Bxx.

Key words and phrases. Point vortices, equilibria.

This paper was written in the summer of 2004 by the first-listed author who at the time of the work was a mathematics faculty member at the University of Minnesota, and the other three authors who were high school students at the time the work was conducted.

Proof. Our calculations can be greatly simplified by a few assumptions. Since setting $z_3 = 0$ and $z_4 = 1$ simply scales the relative distances between the vortices and setting $\Gamma_4 = 1$ scales the circulations, we can work under these conventions without loss of generality. From the point-vortex equations, O'Neil [O] gives the two solutions for four-vortex equilibria:

$$z_1 = \frac{2 + \Gamma_2 \pm i\sqrt{3\Gamma_2}}{2(1 + \Gamma_2 + \Gamma_3)}$$

and

$$z_2 = \frac{2 + \Gamma_1 \mp i\sqrt{3}\Gamma_1}{2(1 + \Gamma_1 + \Gamma_3)}$$

We can use the relation $K = \sum_{i < j} \Gamma_i \Gamma_j = 0$ to eliminate Γ_3 from these equations:

$$\Gamma_3 = \frac{\Gamma_1 + \Gamma_2 + \Gamma_1 \Gamma_2}{1 + \Gamma_1 + \Gamma_2}.$$

Note that we cannot have $1 + \Gamma_1 + \Gamma_2 = 0$ since then K reduces to $-(1 + \Gamma_2 + \Gamma_2^2)$ which cannot be zero for real vorticities.

This gives us

$$z_1 = \frac{(2+\Gamma_2)(1+\Gamma_1+\Gamma_2) + i\sqrt{3}\Gamma_2(1+\Gamma_1+\Gamma_2)}{2(1+\Gamma_2+\Gamma_2^2)}$$

and

$$z_2 = \frac{(2+\Gamma_1)(1+\Gamma_1+\Gamma_2) + i\sqrt{3}\Gamma_1(1+\Gamma_1+\Gamma_2)}{2(1+\Gamma_1+\Gamma_1^2)}$$

for the positions of the first two vortices in a singular equilibrium.

Now we can use these expressions for z_1 and z_2 , along with our conventions $z_3 = 0$ and $z_4 = 1$ to find the squared distances $d_{ij}^2 = |z_i - z_j|^2$:

$$\begin{split} d_{12}^2 &= \frac{(\Gamma_1^2 + \Gamma_1\Gamma_2 + \Gamma_2^2)(1 + \Gamma_1 + \Gamma_2)^2)}{(1 + \Gamma_1 + \Gamma_1^2)(1 + \Gamma_2 + \Gamma_2^2)} \\ d_{13}^2 &= \frac{\Gamma_1^2 + \Gamma_1\Gamma_2 + \Gamma_2^2}{1 + \Gamma_2 + \Gamma_2^2} \\ d_{14}^2 &= \frac{(1 + \Gamma_1 + \Gamma_2)^2}{1 + \Gamma_2 + \Gamma_2^2} \\ d_{23}^2 &= \frac{\Gamma_1^2 + \Gamma_1\Gamma_2 + \Gamma_2^2}{1 + \Gamma_1 + \Gamma_1^2} \\ d_{24}^2 &= \frac{(1 + \Gamma_1 + \Gamma_2)^2}{1 + \Gamma_1 + \Gamma_1^2} \\ d_{34}^2 &= 1. \end{split}$$

Now we substitute these expressions in to the original equation for L.

$$L = 3(\Gamma_1^2 + \Gamma_1^3 + \Gamma_1^4 + \Gamma_1\Gamma_2 + \Gamma_1^2\Gamma_2 + \Gamma_1^3\Gamma_2 + \Gamma_1^4\Gamma_2 + \Gamma_2^2 + \Gamma_1\Gamma_2^2 + \Gamma_1^3\Gamma_2^2 + \Gamma_1^4\Gamma_2^2 + \Gamma_2^3 + \Gamma_1\Gamma_2^3 + \Gamma_1^2\Gamma_2^3 + \Gamma_1^2\Gamma_2^3 + \Gamma_1^4\Gamma_2^4 + \Gamma_1\Gamma_2^2 + \Gamma_1^2\Gamma_2^4)/((1 + \Gamma_1 + \Gamma_1^2)(1 + \Gamma_2 + \Gamma_2^2)).$$

The expression in the denominator is always positive. Now all that remains is to determine the sign of the numerator in parentheses, $N(\Gamma_1, \Gamma_2)$. If it is always positive on $\mathbb{R}^2 - (0,0)$ we will have proven our claim, namely that there are no four-vortex stationary equilibria with L = 0. We start with a lemma:

Lemma 2.2. $\frac{\partial^2 N}{\partial \Gamma_1^2}$ and $\frac{\partial^2 N}{\partial \Gamma_2^2}$ are non-negative.

Proof. Since N is symmetric in Γ_1 and Γ_2 it suffices the prove the lemma for $\frac{\partial^2 N}{\partial \Gamma^2}$. This is a quadratic function of Γ_1 , whose minimum (for a fixed Γ_2) is

$$\frac{(1+\Gamma_2)^2(5+2\Gamma_2^2+5\Gamma_2^4)}{8(1+\Gamma_2+\Gamma_2^2)} \ge 0.$$

This lemma implies that $\frac{\partial N}{\partial \Gamma_1}$ and $\frac{\partial N}{\partial \Gamma_2}$ are monotone functions of Γ_1 and Γ_2 respectively. Thus they have at most one zero for each fixed Γ_2 (for $\frac{\partial N}{\partial \Gamma_1}$) and Γ_1 (for $\frac{\partial N}{\partial \Gamma_2}$). We need a further lemma to reach our goal:

Lemma 2.3. For each fixed Γ_2 , $\frac{\partial N}{\partial \Gamma_1}$ has its unique zero between $\Gamma_1 = \Gamma_2$ and $\Gamma_1 = -\Gamma_2.$

Proof. We simply compute that

$$\frac{\partial N}{\partial \Gamma_1}(\Gamma_2, \Gamma_2) = \Gamma_2(3 + 6\Gamma_2 + 8\Gamma_2^2 + 10\Gamma_2^3 + 9\Gamma_2^9).$$

Using Sturm's theorem it is not hard to show that the above polynomial is always positive for $\Gamma_2 > 0$ and always negative for $\Gamma_2 < 0$. Likewise, from the calculation

$$\frac{\partial N}{\partial \Gamma_1}(-\Gamma_2,\Gamma_2) = -\Gamma_2(1+2\Gamma_2+2\Gamma_2^3+3\Gamma_2^9)$$

we can find that $\frac{\partial N}{\partial \Gamma_1}(-\Gamma_2,\Gamma_2)$ is always negative for $\Gamma_2 > 0$ and positive for $\Gamma_2 < 0$. Combined with the monotonicity of $\frac{\partial N}{\partial \Gamma_1}$ as a function of Γ_1 this completes the lemma.

Since N is symmetric, $\frac{\partial N}{\partial \Gamma_1}(\Gamma_1, \Gamma_2) = \frac{\partial N}{\partial \Gamma_2}(\Gamma_2, \Gamma_1)$. Lemma 2.3 then implies that the gradient of N can only be zero at the origin, since otherwise the two partials can only vanish in the disjoint open cones bounded by the lines $\Gamma_1 = \Gamma_2$ and $\Gamma_1 = -\Gamma_2$. Thus the origin is the only critical point of N. It is elementary to compute that the origin is a minimum of N, and thus the unique global minimum.

3. CONCLUSION

The nonexistence of singlar equilibria in the three- and four-vortex problems naturally prompts the question of whether such an equilibrium can exist for a larger number of vortices. It seems quite possible that there is a more general argument which would show the nonexistence of singular equilibria for any number of vortices, but we are unaware of a strategy for conducting such a proof.

Bibliography

- [ANST] Aref, H., Newton, P. K., Stremler, M.A., Tokieda, T., and Vainchtein, D. L., 2003, Vortex Crystals, Advances In Applied Mechanics 39, 1-79.
 - [G] Gröbli, W., 1877, Specielle Probleme über die Bewegung geradliniger paralleler Wirfbelfäden, Vierteljahrschrift der naturforschenden Gesellschaft in Zürich 22, 37-81, 129-165.
 - [H] Helmholtz, H., 1858, Uber Integrale der hydrodynamischen Gleichungen, Welche den Wirbelbewegungen entsprechen, Crelle's Journal für Mathematik 55, 25-55. English translation by Tait, P.G., 1867, On the integrals of the hydrodynamical equations which express vortex-motion, Philosophical Magazine, 485-51.
 - [K] Kirchhoff, G.R., 1876, Vorlesungen über Mathematische Physik I, Teubner, Leipzig.
 - [N] Newton, P. K., 2001 , The N-Vortex Problem: Analytical Techniques, Appl. Math. Sci. Series 145, Springer-Verlag, New York, NY.
 - [O] O'Neil, K.A., Stationary configurations of point vortices, Trans. AMS 302, 2, 383-425.
 - [S] Synge, J.L., On the motion of three vortices, Can. J. Math. 1, 257-270.
 - [T] Thomson, Sir W. (Lord Kelvin), 1867, On vortex atoms, Proc. R. Soc. Edinburgh 6, 94–105.

DEPARTMENT OF MATHEMATICS,, UNIVERSITY OF MINNESOTA DULUTH, DULUTH, MN 55812 *E-mail address:* mhampton@d.umn.edu

E-mail address: andidawn@msn.com

E-mail address: pwafithwack@ourtownusa.net

E-mail address: albertw12345@msn.com