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A LIE ALGEBRA OF INTEGRALS FOR KEPLERIAN
MOTION RESTRICTED TO THE PLANE

JASON OSBORNE

Abstract. In this paper we consider the slightly simpler problem of

Keplerian motion restricted to the plane rather than Keplerian mo-

tion in three dimensions as done in [3, page 11]. We parallel the three-

dimensional problem in that we use the same actions to find invariants

(integrals) but rather than working in a six-dimensional phase space to

find six independent integrals we restrict ourselves to a four-dimensional

phase space. In doing this, we find that we have three independent in-

tegrals and thus we have a three-dimensional Lie algebra.

1. Introduction

The two-body problem is classified as the behavior of two objects to at-
tract each other according to the inverse square law [6, page 182]. It was
Newton in 1685 who proposed that the gravitational force between two ob-
jects could be described by

FG ∝ mM

r2
,

where m and M are the masses of the objects and r is their separation [4,
page 149] 1

Over 60 years before Newton proposed the inverse square law, Kepler
had formulated his Laws of Planetary Motion which described the motion
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1To be historically correct, Newton was not the first to propose the inverse square law.

In the early 1660’s, Hooke attempted, without success, to experimentally show the inverse

square relationship. For more history refer to [4, page 147].
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of planets around the Sun. Kepler’s Laws can be summarized as follows [4,
page 166]:

1. The planets follow elliptical orbits around the Sun which is situated at
a focus.

2. A line drawn from the sun to the planet will sweep out an equal area
in an equal time.

3. The square of the period is proportional to the cube of the distance to
the planet.

Newton realized that Kepler’s first and third laws were a result of the inverse
square law of attraction, and that Kepler’s second law was a result of the
conservation of angular momentum. In the first chapter of [3] it is shown
that Kepler’s second law is a result of an O(3) symmetry, where O(3) is the
group of orthogonal 3× 3 matrices. It is also shown that Keplerian elliptical
motion in three dimensions has an O(4) symmetry.

In this paper we construct the Lie algebra for Keplerian motion in the
plane. In section 2 we define Lie algebras, Poisson brackets and actions on
phase space. Section 2 concludes with the Lie algebra and action of O(3).
In section 3 we define the concept of an integral. In section 4 we review
the results of Guillemin and Sternberg that closed orbits under the inverse
square law have an O(4) symmetry. Section 5 concludes the paper with the
main result that the span of L3, E1, E2 form a Lie algebra of integrals on
the phase space of R2.

2. The Lie algebra and Action of O(3)

A Lie Algebra is a vector space A which is closed under a bracket operation
[·, ·], where [·, ·] satisfies

1. [a, b] is bilinear in a and b
2. [·, ·] is antisymetric, that is [a, b] = − [a, b]
3. Jacobi’s Identity: [a, [b, c]] = [[a, b] , c] + [a, [b, c]]

for all a, b, c ∈ A [3, page 2]. For example, if m, p ∈Mn(R), then

[m, p] = mp− pm

is the commutator bracket of m with p. If M ⊆ Mn(R) is closed under the
commutator bracket then M is called a matrix Lie algebra. For example,
let’s consider the group Ln(R) of invertible n × n matrices. If ξ(t) is a one
parameter subgroup of Ln(R), then ξ̇(0) is an infinitesimal generator of
ξ(t). The set of generators L, is closed under the commutator bracket and
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is therefore a Lie algebra. Moreover, L is called the Lie algebra of Ln(R).
See [5, Chapter 2] for more details.

For f, g ∈ C ⊆ C∞(R2n) we define a new bracket, the Poisson bracket, of
f with g to be

{f, g} =
n∑

i=1

(
∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
.

The Poisson bracket is an operation on C∞(R2n) with the same properties
as the commutator bracket. That is, if a set is closed under the Poisson
bracket then the set is a Lie algebra. In particular, the Poisson bracket has
the following properties [3, page 8]:

1. {f, g} is bilinear in f and g
2. {·, ·} is antisymmetric, that is {f, g} = −{g, f}
3. Jacobi’s identity: {f, {g, h}} = {{f, g}, h}+ {g, {f, h}}
4. Product Rule: {f, gh} = {f, g}h+ {f, h}g

for all f, g, h ∈ C. Given a Lie algebra A, we say that σ : A → C∞(R2n) is
an action on A if

σ[a, b] = {σ(a), σ(b)}.

for all a, b ∈ A.
For example, let us construct the Lie algebra and action on the phase space

for O(3), the group of all possible rotations and reflections of the sphere.
Rotations about the x1, x2, x3 axes through angles θ, φ, ψ respectively are
one-parameter subgroups of O(3) [5, page 7]. In matrix form, these are

Rx1(θ) =

 1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 ,

Rx2(φ) =

 cos(φ) 0 sin(φ)
0 1 0
− sin(φ) 0 cos(φ)

 ,

Rx3(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0
0 0 1

 .

The infinitesimal generators of O(3) are [5, page 21],

I =

 0 0 0
0 0 1
0 −1 0
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J =

 0 0 1
0 0 0
−1 0 0



K =

 0 1 0
−1 0 0
0 0 0

 .

Applying the commutator bracket to I, J,K yields

[I, J] = K

[J,K] = I

[K, I] = J.

Obviously the generators are closed under the commutator bracket and
thus the Lie algebra of O(3) is given by

o(3) = {αI + βJ + γK |α, β, γ ∈ R3}.

Notice that o(3) is isomorphic to R3 under the cross product. In particular
we can identify I, J,K with the standard basis vectors, i, j, k of R3, respec-
tively. Since we can identify o(3) with R3, an action on o(3) can be written
as,

(1) L(ξ) = L · ξ

where L is angular momentum and ξ ∈ R3. If x ∈ R3 is the position and
p ∈ R3 is the momentum then

L = x× p.

If for some H ∈ A ⊆ C∞(R2n)

{H, L(ξ)} = 0,

then L(ξ) is said to be invariant under H. It will be shown in section 3
that L(ξ) invariant under H implies L(ξ) is constant and hence we will
have a conservation of angular momentum. By the definition of angular
momentum,

L · x = 0,

which implies motion is in a plane. Conservation of angular momentum
along with L · x = 0 implies equal area swept out in equal times, Kepler’s
second law [3, page 10].
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3. Integrals

To show Keplerian motion has O(4) symmetry, we must first introduce
the concept of an integral. For H ∈ A ⊆ C∞(R2n) and x,p ∈ Rn we define

(2)

dqi
dt

=
∂H

∂pi

dpi

dt
= −∂H

∂xi

to be a Hamiltonian system with Hamiltonian H [5, page 41]. If F (x,p) ∈
A is constant along the trajectories of (2) we say that F (x,p) is an integral.
The following proposition relates the Hamiltonian H(x,p) to an integral via
the Poisson bracket.

Proposition 1. F (x,p) is an integral iff {F,H} = 0.

Proof. From the definition of an integral we know that F is constant and
hence

(3)
dF

dt
=

n∑
i=1

(
∂F

∂xi

dxi

dt
+
∂F

∂pi

dpi

dt

)
= 0.

From the definition of Poisson Bracket

(4) {F,H} =
n∑

i=1

(
∂F

∂xi

∂H

∂pi
− ∂F

∂pi

∂H

∂xi

)
.

Because H(x,p) is a Hamiltonian we know that (2) holds. Substituting (2)
into (4) yields

dF

dt
= {F,H} = 0

and hence F is an integral. Similarly, we can show the converse.

Our next proposition shows that the set of integrals of a Hamiltonian are
closed under the Poisson bracket and thus form a Lie algebra.

Proposition 2. If gi and gk are integrals of a Hamiltonian system with
Hamiltonian H then {gi, gk} is also an integral.

Proof. The proof follows directly from the Jacobi identity in that,

{H, {gi, gk}} = {{H, gi}, gk}+ {{H, gk}, gi}.

Since {H, gi} = 0 and {H, gk} = 0 and gi, gk trivially commute with zero
we get the desired result,

{H, {gi, gk}} = 0.

which concludes the proof.
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Our last proposition shows that the set of integrals is closed under ordi-
nary multiplication.

Proposition 3. If gi and gk ∈ A and H ∈ A such that gi and gk are integrals
and H is a Hamiltonian then gigk is also an integral.

Proof. Notice that {H, gigk}, using the product rule, reduces to

{H, gi}gk + {H, gk}gi.

Since gi, gk are integrals

{H, gigk} = 0

and thus gigk is also an integral.

4. The Lie algebra and action of O(4)

In [3, pages 13-15], it is shown that Keplerian motion has an O(4) sym-
metry. If we define F, to be

(5) F = p× L +
x
r

then

(6) F (ξ) = F · ξ

is a map from o(3) ∼ R3 → R2n. Writing (5) as

(7) F = p× (x× p) +
x
r

and expanding the triple cross product yields

(8) F = (p · p)x− (x · p)p +
x
r
.

It is nontrivial to show that if ξ, η ∈ o(4), then

(9)

{L(ξ), L(η)} = L([ξ, η])

{L(ξ), F (η)} = F ([ξ, η])

{F (ξ), F (η)} = −HL([ξ, η]),

where H is the Hamiltonian of Keplerian motion and is given by

H =
1
2
‖p‖2 +

1
r
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(see [3, pages 13-15] for details)2. Thus, H describes a conservation of energy
where

(10) Potential ∝ 1
r
.

It follows directly from (10) that

Force ∝ 1
r2
.

However, it is obvious that (9) is not closed under the Poisson bracket. Thus
we define

(11) E = φF,

where φ = 1√
−2H

. Hence we get the new set of relations

(12)

{L(ξ), L(η)} = L([ξ, η])

{L(ξ), E(η)} = E([ξ, η])

{E(ξ), E(η)} = L([ξ, η]),

where E(η) = E · η. For ξ, η ∈ g and H < 0 the action on o(4) is given by

(13) σ(ξ, η) = L · ξ + E · η.

The action of o(4) is the vector space which spans L1, L2, L3, E1, E2, E3.
That is the action of o(4) describes the portion of a six-dimensional phase
space where H < 0.

With an understanding of o(3) and o(4) we now move to the main result
of this paper, that of constructing a Lie algebra of integrals for Keplerian
motions on the phase space of R2. In this two-dimensional setting we will
not get a six-dimensional algebra and hence we not have an O(4) symmetry.
Instead we will get a three-dimensional Lie algebra isomorphic to o(3).

5. Keplerian Motion in R2

In this section we construct a Lie algebra of integrals for the Hamiltonian
system with Hamiltonian H = 1

2‖p
2‖ + 1

r such that p, r ∈ R2. That is,
we restrict Keplerian motion to the xy-plane. If we let L3 be the third
component of L, it follows that

(14) L3 = L(k) = x1p2 − x2p1.

2In actuality, the Hamiltonian for Keplerian motion is H = 1
2
‖p‖2 + k

r
, where k is a

constant (see [3, page 15] for details). For simplicity, we let k=1.
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Also we let E1, E2 be the first two components of E such that

(15)
E1 = φ

(
ζ1 +

x1

r

)
E2 = φ

(
ζ2 +

x2

r

)
where ζ1, ζ2 are the first and second components of p× L, respectively and
φ = 1√

−2H
. We now show that L3, E1, E2 are closed under the Poisson

bracket and that they commute with the Hamiltonian.
First we show that L3, E1, E2 are integrals. Beginning with L3, we write

the expression

(16) {H, L3} =
{

1
2
‖p‖2 +

1
r
, x1p2 − x2p1

}
.

The linearity of the Poisson bracket and the product rule reduce (16) to

(17) {H, L3} =
{

1
2
‖p‖2, x1

}
p2

−
{

1
2
‖p‖2, x2

}
p1 +

{
1
r
, p2

}
x1 −

{
1
r
, p1

}
x2.

Evaluating (17) yields

(18) {H, L3} = p1p2 − p2p1 −
x2x1

r3
+
x1x2

r3
= 0.

Before showing E1, E2 are integrals we notice that if we define

(19)
∂f

∂x
=

〈
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

〉
and

(20)
∂f

∂p
=

〈
∂f

∂p1
,
∂f

∂p2
, . . . ,

∂f

∂pn

〉
,

then the Poisson bracket of f with g can be expressed as [2, 1]

(21) {f, g} =
∂f

∂x
· ∂g
∂p

− ∂f

∂p
· ∂g
∂x

.

Moreover notice that

(22) F · α = (p · p)(x · α)− (x · p)(p · α) +
x · α
r

,

which reduces to

(23) F · α = Ĥ(x · α)− (x · p)(p · α)

where Ĥ = ‖p‖2 + 1
r . It can be shown that

(24)
∂(F · α)
∂x

=
∂Ĥ

∂x
(x · α) + Ĥα− p(p · α)



18 JASON OSBORNE

and

(25)
∂(F · α)
∂p

=
∂Ĥ

∂p
(x · α)− x(p · α)− (x · p)α.

Notice also that

(26) p · ∂H

∂p
= ‖p‖2

and

(27) x · ∂H

∂x
= −1

r
.

Using (24) and (25) the Poisson bracket of F · α with H is given by

(28) {F · α,H} =
∂Ĥ

∂x
· ∂H

∂p
(x · α) + Ĥ

∂H

∂p
· α

− p · ∂H

∂p
(p · α)− ∂Ĥ

∂p
· ∂H

∂x
(x · α)

+ x · ∂H

∂x
(p · α) + α · ∂H

∂x
(x · p).

Substituting (26), (27) into (28) and simplifying reduces (28) to

(29) {F · α,H} = {Ĥ,H}(x · α) + α · ∂H

∂x
(x · p).

Substituting in the expression for Ĥ and using the Product Rule, (29) re-
duces to

(30) {F · α,H} =
{

1
2
‖p‖2,H

}
(x · α) + α · ∂H

∂x
(x · p).

Using the definition of the Poisson bracket and

(31)
∂H

∂x
=
∂Ĥ

∂x
=

x
r3
,

we can write (30) as

(32) {F · α,H} = −(x · p)(x · α)
r3

+
(x · p)(x · α)

r3
= 0.

Hence, F1, F2 are integrals. Since φ is trivially an integral, Proposition 3
says that E1, E2 are also integrals.

To show closure we begin with

(33) {L3, E1} =
{
L3,

(
ζ1 +

x1

r

)
φ
}
.

Using the linearity property of the Poisson bracket and the product rule we
can rewrite (33) as

(34) {L3, E1} = {L3, ζ1}φ{L3, φ}ζ1
{
L3,

x1

r

}
φ+ {L3, φ}

x1

r
.
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It can be shown for any integral L and some function of H, g(H) that

(35) {L, g(H)} = 0.

It can also be shown that
{L3, ζ1} = ζ2

{L3, ζ2} = −ζ1
{L3, x1} = x2

{L3, x2} = −x1.

(36)

Using (35) and (36) reduces (34) to

(37) {L3, E1} = φ
(
ζ2 +

x2

r

)
= E2.

In a similar manner,

(38) {L3, E2} = φ
(
−ζ1 −

x1

r

)
= −E1.

To show {E1, E2} = L3 we return to the Poisson bracket defined in (21).
Using (23) we can write

(39) {F · α,F · β} = {Ĥ(x · α)− (x · p)(p · α), Ĥ(x · β)− (x · p)(p · β)}.

Using the linearity of the Poisson bracket (39) yields

{F · α,F · β} =

(a)︷ ︸︸ ︷
{Ĥ(x · α), Ĥ(x · β)}

+

(b)︷ ︸︸ ︷
{Ĥ(x · α),−(x · p)(p · β)}

+

(c)︷ ︸︸ ︷
{−(x · p)(p · α), Ĥ(x · β)}

+

(d)︷ ︸︸ ︷
{−(x · p)(p · α),−(x · p)(p · β)} .

(40)

Notice that

(41) x · ∂Ĥ

∂x
= −1

r

and

(42)
∂Ĥ

∂p
= 2p.

Using (41) and (42), (a) becomes

(43) {Ĥ(x · α), Ĥ(x · β)} = −2Ĥ[(x · α)(p · β)− (x · β)(p · α)].
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Computing (b) is similar to (a), but we will need

(44) p · ∂Ĥ

∂p
= 2‖p‖2

and

(45) Ĥ(α · β)(x · p) = 0.

The end result of (b) is

(46) {Ĥ(x · α),−(x · p)(p · β)} = ‖p‖2(x · α)(p · β)−β · ∂Ĥ

∂x
(x · α)(x · p).

In a similar fashion, (c) reduces to

(47) {−(x · p)(p · α), Ĥ(x · β)}

= −‖p‖2(p · α)(x · β)− α · ∂Ĥ

∂x
(x · β)(x · p).

Finally, using strictly the Poisson bracket and the distributive law (d) re-
duces to

(48) {−(x · p)(p · α),−(x · p)(p · β)}

= (p · x)(p · α)(p · β) + (p · β)(p · α)(x · p)

− (x · p)(p · α)(p · β)− (p · α)(x · p)(p · β) = 0.

Adding (46) and (47), factoring out ‖p‖2, and substituting (31) (which will
help cancel two terms), we are left with

(49) (b) + (c) = ‖p‖2[(x · α)(p · β)− (x · β)(p · α)].

Finally, adding (49) and (43) and using the definition of Ĥ we get

(50) {F · α,F · β} = −2H[(x · α)(p · β)− (x · β)(p · α)].

If α = i and β = j, then

(51) {F1, F2} = −2HL3.

By definition,

(52) {E1, E2} = {φF1, φF2}.

Moreover, it can be shown that

(53) {E1, E2} = φ2{F1, F2} = L3,

since φ = 1√
−2H

.
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We have shown that E1, E2, L3 commute with

H =
1
2
‖p‖2 +

1
r
,

the Hamiltonian of Keplerian elliptical motion and hence are integrals. We
have also shown that E1, E2, L3 are closed under the Poisson bracket and
thus form a three-dimensional Lie algebra. Moreover, we leave it to the
reader to show that the Lie algebra generated by E1, E2, L3 is isomorphic
to O(3).
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