
Introduction Results

Objectives

easily modifiable

Conclusion

Methods

Understanding the Novice Programmer
\

We identified three subgroups of computer science students based on skillsets. These were tentatively labeled -

• Writers (LC 1) – students with relatively well-developed skills in all areas assessed

• Explainers (LC 2) – students deficient in writing code, but shortcoming in writing code not affecting other areas of programming competence

• Novices (LC 3) – a low-skill group dominated by students enrolled in the introductory computer science course

All students were likely to experience difficulty on the debugging tasks (which presumably entail higher order programming skills) but this tendency tends to be

less pronounced among Writers and Explainers.

Long-Term Objectives

• Describe how novice, intermediate, and

advanced computer science students

approach programing tasks in computer

science with the use of a combination of

quantitative and qualitative

methodologies

• Describe progression in skill acquisition

with the goal to develop better working

models of relevant cognitive skills and

learner characteristics

• Develop a blueprint for more effective

instructional interventions

Objectives for Pilot Study

• Develop a preliminary typology of

problem-solving skillsets

• Pilot quantitative and qualitative data

collection procedures to identify

potential challenges in the main study

The computer science education literature

suggests that the success rate in

introductory programming courses is worse

than hoped. While the problem has been

recognized a long time ago, there is very

little agreement among computer science

educators about what should be done about

it.

In spite of some useful research on novice

programmers, customary programming

pedagogy remains largely uninformed. Most

of the research on novice programmers

concludes that novice programmers

(introductory students) think about

programming very differently from expert

programmers (their teachers). Consequently,

pedagogy based on the concepts and

mental models used by expert programmers

is not likely to be effective for instructing

novice programmers.

To develop and test potential interventions

for teaching introductory programming, it is

important to have a more detailed grasp of

the typical conceptual or mental models that

novice programmers apply to these learning

tasks. It is also useful to have a more

accurate assessment of how these

conceptual/mental models develop as the

student progresses through the

programming sequence.

Participants

• Ninety-one Furman students enrolled in a computer science course in

Fall 2015

• Sampling from multiple sections of introductory (CS 105) ,

intermediate (CS 121 & Cs 122), and advanced (CS 341) computer

science courses

Indirect Measure

• Three parallel forms of a paper and pencil test consisting of 10 short-

answer and fill-in-the blank items

• Identical concepts assessed; code segments reflect different

programming languages

Direct Measure: Think Aloud

• The method involved asking each participant to think aloud while

solving a computer science problem, documenting the process, and

analyzing the resulting verbal account

• Individual sessions with 3 problems per participant

• LivescribeTM Smartpen used for data recording purposes; it allowed

spoken words to be audio-recorded, automatically transcribed and

saved as a digital text

Table 1. Sample Items

Figure 1. Results from LCA – Three Class Solution

Table 2. Results from LCA – Three Class Solution

Probability of a
correct response
to an item for
members
belonging to a
given latent class.

Typology of Skillsets

• Latent Class Analysis (LCA) - a person-centered method used to
explains the variability in responses as a function of membership to
an unobserved, hypothetical group called a latent class.

• Participants are assigned to unique homogeneous latent classes
based on similar arrays of correct or incorrect responses.

• Members of each latent class have similar skillsets or characteristics;
clusters maximize/augment differences

 The relationship between latent class membership and type of
course was examined in a series of follow-up analyses. Results
indicate that students in the introductory sections of CS 105 were
significantly more likely (p < .05) to belong to the low-skill latent
class

Figure 2. Course by Latent Class Distribution

Trilby Hren
Supervising Faculty: Dr. Tom Allen, Computer Science & Dr. Temi Bidjerano, Education
Department of Computer Science, Furman University, Greenville, SC

