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A Compact Introduction to a Generalized Extreme Value Theorem

Nicholas A. Scoville∗

June 10, 2019

1 Introduction

Compactness is a concept that is often introduced in a first course in analysis or topology, and it

often gives students great difficulty. It can be very difficult to figure out what the standard definition

is saying and even more of a mystery what possessed someone to write down such a definition in the

first place. In this short project we will look to when compactness was first defined (albeit slightly

differently from today’s definition) and see what use it had and more importantly, the role it plays in

mathematics. This first definition was in an extremely short paper by French mathematician Maurice

Fréchet (1878–1973). Fréchet was working at a time when topology was beginning to develop into

its own branch of mathematics, due largely to his work. We will follow his paper carefully.

2 Fréchet

Fréchet began his paper [Fréchet, 1904] as follows:1

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

I. We know how important it will be, in a great number of problems, to know if a quantity

U which depends on some elements (points, functions, etc.) actually attains a minimum on

the domain under consideration. . . .

This question is resolved in the particular case when U is a simple function of x (or [a function]

of several independent variables). Weierstrass has indeed shown that any continuous function

on a limited interval attains its maximum at least once. There will be great interest in

extending this proposition so as to respond to the more general problem we have recalled

[above]. It is this extension that is the subject of the present Note.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The goal of this project is the same as Fréchet’s stated goal; that is, to extend the result of

Weierstrass to accommodate things like functions, surfaces, etc. But first, let us recall what this

result of Weierstrass is. In modern terms, the result that Weierstrass proved is the familiar “Extreme

Value Theorem” that you learned in calculus. With that in mind, answer the following:

∗Mathematics and Computer Science; 601 E. Main Street; Ursinus College; Collegeville, PA 19426;
nscoville@ursinus.edu.

1The English translation of this and all other Lagrange excerpts in this project are due to the author.
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Task 1 What must Fréchet have meant by a “limited interval”? Use a calculus textbook to recall both

the idea behind the Extreme Value Theorem and the details if you don’t remember.

Task 2 For reference, state the Extreme Value Theorem using modern language and notation.

Task 3 When Fréchet talked about “extending” the Extreme Value Theorem, what quantities in the

statement was he hoping to replace with what?

Here is the first definition in Fréchet’s paper.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

II. We assume given some collection C of arbitrary elements (numbers, surfaces, etc.), in

which we know how to distinguish distinct elements. We can say that U is a uniform function

(or functional operator) of a set E of elements of C, if to any element A of E corresponds a

well-determined number U(A).

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let us investigate Fréchet’s definition, especially in light of his initial comment about Weierstrass’

Theorem.

Task 4 (a) Let C = R and U(A) := A2. Show that this is a functional operator. Determine if U

reaches a minimum for each of the following.

(i) E = R

(ii) (0, 4)

(iii) [0, 4]

Using (i)-(iii) as evidence, under what conditions does it seem that U reaches a minimum?

Formulate a carefully worded conjecture.

(b) Let a < b be real numbers and C be all continuous functions on the closed interval [a, b].

For each f ∈ C, define U(f) := maxx∈[a,b]{f(x)}. Give an example of a set E ⊆ C on

which U does attain its maximum and a set for which it does not attain its maximum.

Can you do this with the further specification that E is infinite?

Notice the second example illustrates a functional operator that is unlike a typical function that

we study in calculus. In this context, we may not know what it would mean for a functional operator

to be continuous. Part of what Fréchet needed to do here was to define continuity in a more abstract

setting. In order to do this, Fréchet needed the concept of limit, which he next discussed.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

To arrive at the concept of continuity of such a function, we will assume we have ac-

quired a definition that gives a precise meaning to this phrase : the infinite sequence

A1, A2, . . . , An, . . . of elements of C has a limit B. It will be enough for us that this

definition, whatever it may be, satisfies the following two conditions : 1o If the sequence

A1, A2, . . . , An, . . . has a limit, each sequence Ap1 , Ap2 , . . . , formed by elements of increas-

ing index from the first sequence also has a limit which is the same; 2o If none of the elements

A1, A2, . . . of the sequence are distinct from A, this sequence has a limit which is A.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Notice that Fréchet did not actually give a definition of limit, but rather required two properties

that he thought any good definition of limit should have. In order to make this more concrete, we’ll

illustrate his conditions in R. Recall that in R, a sequence a1, a2, . . . , an, . . . of real numbers has a

limit a if for every ε > 0, there exists M such that for every m ≥M , we have |a− am| < ε.

Task 5 Prove that this definition satisfies Fréchet’s condition 2o. What well-known theorem from

analysis shows that the limit in R satisfies Fréchet’s condition 1o?

Next, Fréchet used the idea of a limit of a sequence of elements to define a limit for sets.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

This being so, we will call a limit element of the set E an element A which is the limit of

some sequence of distinct elements taken in E. A set E is closed if it gives rise to no limit

element or if it contains its limit elements.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 6 According to Fréchet’s definition of a closed set, are all finite sets closed? Prove or give a

counterexample.

Task 7 Use Fréchet’s definition of a closed set to show that for real numbers a < b, the interval [a, b]

is closed in R.

Fréchet next defined continuity for functional operators.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We can now say that a functional operator U on a closed set E is continuous on E if the

numbers U(An) always tend to U(A) when any sequence of elements of E : A1, . . . , An, . . . ,

has a limit A, regardless of the limit element A of E.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
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Is this really the right definition of continuity? To see if this definition makes sense, let’s once

again look at the special case of R. Recall that in calculus, a function f : R → R is continuous at

the point a ∈ R if for every ε > 0, there exists a δ > 0 such that whenever |a− x| < δ, we have that

|f(a)− f(x)| < ε.

Task 8 Prove that in R, Fréchet’s definition of continuity is equivalent to the standard ε-δ definition.

We now come to Fréchet’s definition of compactness.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Finally, we will call [countably]2 compact any set E for which there always exists at least one

common element for each infinite sequence of sets E1, E2, . . . , En . . . , contained in E, when

these (having at least one element each) are closed and each set is contained in the previous

one.3

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let’s investigate what Fréchet might have had in mind here.

Task 9 (a) Rewrite Fréchet’s definition of countably compact using modern notation.

(b) Which sets in R can you show to not be countably compact? Which sets seem to be

countably compact? (To actually show a set is countably compact from the definition is

generally difficult.)

We now come to Fréchet’s statement of his main theorem.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

III. By means of the preceding definitions, we arrive immediately at the generalization :

THEOREM 1. Each functional operator U which is continuous on a countably compact and

closed set E . . . has at least one limit superior.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We will prove Theorem 1 below. For now, some preliminaries.

2While Fréchet used the term “compact” without the “countably” adjective, the modern use of the word compact is
slightly different than Fréchet’s use, which today we would call “countably compact.” Hence in order to avoid confusion,
we add the adjective “countably” in each instance of Fréchet’s use of “compact.”

3It is interesting to note that a special case of this property is the closed nested interval property, which is equivalent
to the completeness of the real numbers. Fréchet’s result generalizes this.

4



Task 10 Explain how a functional operator having a limit superior is related to the functional operator

attaining its maximum. Use an analysis textbook to recall the definition of limit superior of a

function if you don’t remember this definition or have not seen it before.

Task 11 Give an example of a set which is countably compact but not closed.

Let’s turn now to the proof of Theorem 1.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

IV. Since the previous theorem plays an important role in the notion of a countably compact

set, it is necessary to study the properties of such a set. This is achieved more easily through

the following proposition:

The necessary and sufficient condition for a set E to be countably compact is that any set

Ei formed from an infinity of distinct elements contained in E gives rise to at least one limit

element.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 12 Prove Fréchet’s necessary and sufficient condition for countable compactness.

Task 13 Now prove Theorem 1. You may find the above necessary and sufficient condition helpful.

Fréchet continued by further explaining the way countably compact sets behave.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The definition also shows that the countably compact sets have properties similar to those of

limited sets of points of a space. In particular, any set formed by a finite number of distinct

elements is countably compact, any set formed by a finite number of countably compact sets

is itself countably compact, . . .

This approximation can be explained by noting that, taking as elements the points of a line

for example, and adopting the ordinary definition of the limit of a sequence of points, we find

that any limited set of points of a straight line is a compact set.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Recall that in Task 1, you considered what Fréchet meant by “limited interval.” Here he used

the phrase “limited set.” Evidently, a limited interval should be a special case of a limited set.
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Task 14 Let us formalize and prove the claims that Fréchet has just outlined.

(a) Prove that a finite set is always countably compact.

(b) Prove that a finite union of countably compact sets is countably compact.

(c) Prove that any closed, bounded interval of R is countably compact.

We give Fréchet the last word, with his description of how the Extreme Value Theorem is a

special case of his main theorem.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

An interval (where the endpoints are included) is a countably compact and closed set. Thus

we discover the particular case of Weierstrass that we recalled.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

3 Conclusions

In order to generalize the Extreme Value Theorem when the domain is other then a closed real

interval, Fréchet needed the set of points to also satisfy some properties involving limits. For Fréchet,

these properties turned out to be ‘closed’ and what he called ‘compact.’ However, as mentioned above,

his definition of compact was a bit different than the one we use today. While understanding today’s

definition of compactness can be a challenge, we have hopefully seen that this concept had humble

and even natural origins in the desire to generalize the important Extreme Value Theorem.

References

M. Fréchet. Généralisation d’un Théorème de Weierstrass. Comptes Rendus de l’Académie es
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Notes to Instructors

Primary Source Project Content: Topics and Goals

This project has two main goals. The first is to generalize the Extreme Value Theorem (EVT) by

showing that it holds in structures more general than R. This has the additional effect of exposing

students to the fact that well-known results may be special cases of more general phenomena. In that

sense, it can get the student to begin to ask questions of a mathematical research nature, e.g., was

working in R necessary? Is it necessary that the function be continuous? One could even introduce

this project by reminding the students of the Extreme Value Theorem and asking them 1) why does

this work; 2) why are the given hypotheses necessary; and 3) can the hypotheses be generalized?

These questions are also teased out in some of the tasks (see below) which are fairly essential to a

successful implementation of the project.

Second, and possibly more important, is the goal of introducing compactness in a more motivated

or organic way. To tie this goal in with the previous, consider the following: This is a mini-project,

meant to be completed in a day or two of class. However, there are several exercises, and depending

on the skills and abilities of the class, students could spend a long time on a single exercise before they

“get it.” Here I discuss the exercises that are most important for drawing out the main concepts in

this project. Task 4 is key for students to be able to see why the hypotheses work in the statement of

the EVT and why changing them will not necessarily yield the conclusion of the EVT. The instructor

might find that the students benefit from working in small groups on this problem, followed by a

class discussion where slowly, the importance of the hypotheses in the EVT are drawn out for the

whole class to see. Again, understanding this is essential to appreciate why Fréchet defined this

“more general” set of hypotheses, which is precisely countable compactness. This connection can be

further investigated by the student through Task 9. In fact, it is recommended to have the students

work on this problem in groups, share their answers, and have the instructor (if a student has not

already done so) make the connection with Task 4. The hope is that the students will see how this

definition is indeed generalizing the hypotheses for the EVT and thereby gain a better understanding

of why someone would write down the definition of compactness in the first place.

Student Prerequisites

This project is appropriate for a course in either topology or analysis, and as such, students should

be familiar with the basics of proof as well as familiarity with results from calculus e.g. the Extreme

Value Theorem for Task 4. In theory, these are the minimum prerequisites. However, most students

who have had no exposure to topology or analysis might find this project challenging. For example,

Tasks 6 and 7 have students work through the definition of a limit element, while Task 8 has the

student show that a certain definition of continuity is equivalent to the standard ε-δ definition. Thus,

while there are no other formal prerequisites besides mathematical proof, more exposure to concepts

in topology or analysis beyond the basics of proof is recommended. The first three chapters in

baby Rudin or chapter 2 of Munkres, for example, would be good exposure for the students before

attempting this project.

PSP Design, and Task Commentary

See the PSP content section above for some comments on the PSP design and tasks, as well as the

sample implementation schedule below for some further commentary on project tasks.
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Suggestions for Classroom Implementation and Sample Schedule

As mentioned in the PSP content section above, there are at least a couple of options for implementing

this project, depending on the background and ability of students, instructor interests, and time

allotted. The following implementation schedule attempts to complete the entire project in two

60-minute class periods.

Day 1

• Preassignment: Assign students to read page 1 and complete Tasks 1–3 for day

1. They can possibly write up solutions for these tasks to hand in, or just prepare

notes. In either case, students should come to class prepared to discuss answers to

tasks 1-3 with the class.

• In class discussion (10 minutes): Lead a class discussion around the student

answers to Tasks 1–3. It is crucial that students have a good grasp of the statement

of the Extreme Value Theorem, as well as the ways in which Fréchet planned to

extend it (Tasks 2 and 3). To that end, help the students see out how a modern

statement of the Extreme Value Theorem can be teased out of Fréchet’s quote. Also

be sure that students come to the realization in Task 1 that Fréchet used the phrase

“limited interval” to mean what we would call a “closed and bounded interval.” This

idea is important later in the project (e.g., for understanding the excerpt related to

Task 14).

• Working in groups (15 minutes): Have students work in groups or individually

on Task 4. This will help students see more clearly what the Extreme Value Theorem

says ad furthermore, why the hypotheses are necessary.

• Debrief (10 minutes): After students have worked on Task 4, regroup as a whole

class to discuss student answers. For example, three groups can be chosen to present

their answers to parts (a-i), (a-ii), and (a-iii) on the board, while the class as a whole

can discuss part (b).

• Working in groups (15 minutes): Next have students work on Tasks 5–7. Most

likely, 15 minutes will not suffice to finish these three tasks, so as indicated below,

these can be assigned for homework along with Task 8 as an optional homework

problem.

• Debrief (10 minutes): The key points that the instructor wants to stress here are

Fréchet’s definitions of limit and closed. These can be illustrated by discussing as

a class either Task 6 or Task 7, or some other example provided by the instructor.

Also be sure to discuss the second part of Task 5 about the “well-known theorem”

from analysis4 if this is a theorem that the students have seen.

• Homework: Tasks 6, 7, 8. Have students read the Fréchet quote immediately after

Task 8 and think about Task 9.

4If a sequence converges, then every subsequence converges to the same limit.
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Day 2

• In class discussion (20 minutes): Discuss different ideas about Task 9, especially

how one might show that certain sets are or are not countably compact. Then move

to discuss Theorem 1 as a class. To help facilitate this and illustrate concepts, you

can work through Tasks 10 and 11 as a class.

• Working in groups (20 minutes): Have students work in groups on Tasks 12–14.

Students most likely will not be able to finish all three of these tasks. Have them

write up the rest for homework.

• Debrief (20 minutes): In the remaining time, discuss ideas students had for Tasks

12–14 and where they are stuck. Try to guide students in the right direction, tying

everything together.

LATEX code of this entire PSP is available from the author by request to facilitate preparation of

advanced preparation / reading guides or ‘in-class worksheets’ based on tasks included in the project.

The PSP itself can also be modified by instructors as desired to better suit their goals for the course.

Connections to other Primary Source Projects

While not about compactness or the Extreme Value Theorem, there are several other projects in

topology written by the author. Project titles along with links are given below. The last two of these

are full-lengths PSPs; all others are mini-PSPs that are intended to be completed in 1–2 class days.

• Topology from Analysis

https://digitalcommons.ursinus.edu/triumphs_topology/1/

• The Cantor Set before Cantor

https://digitalcommons.ursinus.edu/triumphs_topology/2/

• Connecting Connectedness

https://digitalcommons.ursinus.edu/triumphs_topology/3/

• The Closure Operation as the Foundation of Topology

https://digitalcommons.ursinus.edu/triumphs_topology/4/

• From Sets to Metric Spaces to Topological Spaces

https://digitalcommons.ursinus.edu/triumphs_topology/6/

• Nearness Without Distance

https://digitalcommons.ursinus.edu/triumphs_topology/7/

• Connectedness: Its Evolution and Applications

https://digitalcommons.ursinus.edu/triumphs_topology/8/
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