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Persistence equivalence of discrete Morse

functions on trees

Yuqing Liu, Nicholas A. Scoville

July 2018

Abstract

We introduce a new notion of equivalence of discrete Morse functions on

graphs called persistence equivalence. Two functions are considered per-

sistence equivalent if and only if they induce the same persistence diagram.

We compare this notion of equivalence to other notions of equivalent dis-

crete Morse functions. We then compute an upper bound for the number

of persistence equivalent discrete Morse functions on a fixed graph and

show that this upper bound is sharp in the case where our graph is a tree.

We conclude with an example illustrating our construction.

1 Introduction

Since its inception in the early 2000s, persistent homology has almost single
handedly brought topology to the forefront of mathematics. A panacea of sorts,
persistence has been used to study statistical mechanics [13], hypothesis test-
ing [6], image analysis [7], complex networks [12], and many other phenomena.
Part of the utility of persistent homology is that it can be used to recreate or
estimate some unknown. For example, there have been several recent results
allowing one to reconstruct a simplicial complex from certain collections of per-
sistence diagrams [14, 5].

A close cousin of persistent homology [4], discrete Morse theory is a topological
tool due to Robin Forman [10, 11] that can be used to simplify a simplicial com-
plex. Among other things, a discrete Morse function on a simplicial complex
naturally gives rise to a filtration, and a filtration gives rise to a persistence
diagram. The purpose, then, of this paper is to introduce and study a new no-
tion of equivalence of discrete Morse functions on graphs (although this may be
defined on any simplicial complex) called persistence equivalence. Two dis-
crete Morse functions on a graph G are called persistence equivalent if Df = Dg

where Df is the persistence diagram induced by f . We then count and construct
all discrete Morse functions up to persistence equivalence on a fixed tree. This
is a version of the realization problem, recently studied in the smooth case by
Curry [9] where he investigated a notion that he called graph-equivalence (not
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to be confused with the notion of graph equivalence in Section 3.3).

The idea is that it is easy to compute the persistent homology of a discrete Morse
function on a tree without having to resort to a matrix. This is done in Lemma
4.2.2. The critical vertices birth new components while a critical edge connecting
two trees kills a bar corresponding to the tree whose minimum value is greater
than the minimum value of the other tree. We give the background in discrete
Morse theory and persistence homology and introduce persistence equivalence
in Section 2. In Section 3, we compare our new notion of equivalence with
ones currently found in the literature. Using a slight variation of the standard
definition of a discrete Morse functions in order to ensure finiteness, we will
count the total number of discrete Morse functions with a fixed number of
critical values up to persistence equivalence on a tree. This is accomplished by
providing a combinatorial upper bound in Corollary 4.1.3. Theorem 4.2.5 then
provides a method to construct any such discrete Morse function with a desired
barcode. We end in Section 4.3 with an example illustrating our construction.

2 Graphs, discrete Morse theory, and persis-
tence

In this section, we introduce the background and notation that is needed through-
out the body of this paper. We begin by reviewing the basics of graph theory.

2.1 Graphs

A graph G = (V,E) is a non-empty finite set V along with a symmetric, ir-
reflexive relation E on V . The set V = V (G) is called the vertex set of G
while E = E(G) is called the edge set. If (u, v) 2 E, we write e = uv or
u, v < e to denote the edge e with endpoints u and v. In this case, we say
that u and v are adjacent while e and u are incident. We will use simplex

(plural: simplices) to refer to a vertex or an edge of G, and use a Greek letter
such as � to denote either a vertex or an edge.

A path in G is a list v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices and edges such that
the edge ei has endpoints vi and vi+1 for 1  i  k. We further require that no
edge is repeated. If there is a path between any two vertices of G, we define G
to be connected.

A cycle in a graph is a path with at least three edges that begins and ends at
the same vertex and never repeats a vertex (other than the starting and ending
vertex). In other words, a cycle is a path v1, e1, v2, . . . , ek, vk+1 such that no
vertex is repeated other than v1 = vk+1.

Because our main construction in Theorem 4.2.5 is on a special kind of graph
called a tree, we recall several important characterizations of trees. They will
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be utilized without further reference.

Theorem 2.1.1. (Characterization of trees) Let G be a connected graph with
v vertices and e edges. The following are equivalent:

a) Every two vertices of G are connected by a unique path.

b) v = e+ 1

c) G contains no cycles

d) b1(G) = 0

e) The removal of any edge from G results in a disconnected graph.

A connected graph that satisfies any of the above characterizations is called a
tree. Proofs of the equivalence of the statements may be found in any graph
theory textbook(e.g. [8, Chapter 2.2]).

2.2 Discrete Morse theory on graphs

We use a slightly more restrictive definition of a discrete Morse function than is
normally given in the literature. For a discussion on the reason for the choices
made in the definition, see Remark 2.3.2.

Definition 2.2.1. Let G be a graph with n vertices and edges, f : G ! [0, n]
a function. Then f is monotone if whenever v < e, then f(v)  f(e). We say
f is a discrete Morse function if f is a monotone function with min(f) = 0
which is at most 2 � 1 where if f(v) = f(e), then v < e. Furthermore, we
require that if f is 1-1 on f(�), then f(�) 2 N. Such a value is called a critical

value and � is a critical vertex or critical edge. If � is not critical, � is
called regular. If a vertex v is incident with exactly one edge e, the pair {v, e}
is called a free pair.

Under this definition, it is easy to see that min{f} = 0 will always be a critical
value. It is also not di�cult to show [10, Lemma 2.5] that regular simplices come
in pairs. Embedded in Definition 2.2.1 is the fact that the vertex/edge regular
pair is given the same value under the discrete Morse function. This condition is
called flat. For those concerned that our definition is too restrictive, Uli Bauer
has shown that every discrete Morse function is homologically equivalent to one
which is flat [4, Proposition 2.19].

One of the fundamental results in discrete Morse theory is the (weak) discrete
Morse inequalities, relating the number of critical simplices of a discrete Morse
function to the Betti numbers. We will utilize this theorem in Lemma 4.1.1.

Theorem 2.2.2. [10, Cor 3.7](Weak Morse inequalities for graphs) Let G be
a graph and f a discrete Morse function of G with the number of critical i-
simplices of f denoted by mi, i = 0, 1. Then
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(i) m0 � b0 and m1 � b1 where bi denotes the ith Betti number of G.
(ii) b0 � b1 = m0 �m1.

Let f : G ! [0, n] be a discrete Morse function. For any a 2 R, we define level

subcomplex a by Ga := {� 2 G : f(�)  a}. Note that by the fact that f
is flat, Ga is always a subgraph. If 0 = c0 < c1 < . . . < cm�1 are the critical
values of f , we consider the sequence of subcomplexes

{v} = Gc0 ✓ Gc1 ✓ . . . ✓ Gcm�1

called the filtration of G induced by the discrete Morse function f . This
induced filtration will be used in the next section.

2.3 Persistent homology

Let G be a graph. Suppose we have a filtration

G0 ✓ . . . ✓ Gm�1.

For i  j, there is an inclusion function f i,j : Gi ! Gj . Passing to homol-
ogy, we obtain a linear transformation f i,j

p : Hp(Gi) ! Hp(Gj).The pth per-

sistent homology groups, denoted Hi,j
p , is defined by Hi,j

p := im(f i,j
p ).

The pth-persistent Betti numbers are the corresponding Betti numbers,
�i,j
p := rankHi,j

p .

A class [↵] 2 Hp(Gi) is said to be born at Gi or at time i if [↵] is not in the
image of f i�1,i

p . A class [↵] 2 Hp(Gi) is said to die at Gi+1 or at time i+1 if
f i,j
p ([↵]) is not in the image of f i�1,j

p but f i,j+1
p ([↵]) is in the image of f i�1,j+1

p .
If ↵ is born at i and dies at j, we call (i, j) a persistence pair. If � is born
and never dies, then � is called a point at infinity. Plotting all persistence
pairs in the Euclidean plane along with all points at infinity (represented by
a y-value greater than the maximum death time) yields the persistence dia-

gram, denoted D.

The persistence diagram thus records the lifetime of a topological feature via
the plotting of a single point. The value on the x-axis represents the time the
topological feature is born; the value on the y-axis represents its time of death.
A point at height y = 1 means that the topological feature was born and never
died. Note that it is not possible to have any points beneath the diagonal, since
we can’t have a point born later than it died. Hence it is customary to include
the diagonal x = y.

As noted above, discrete Morse function with critical values c0 < c1 < . . . cm�1

induces a filtration
Gc0 ✓ Gc1 ✓ . . . Gcm�1
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where Gci is the level subcomplex of G at level ci. Hence, a discrete Morse
function f induces a persistence diagram Df .

We are now ready to give the main object of study in this paper.

Definition 2.3.1. Two discrete Morse functions f, g : G ! [0, n] are persis-

tence equivalent if Df = Dg.

Another viewpoint that we will adopt in this paper is to consider two function
persistence equivalent if their corresponding barcodes are equal, where equality
is given up to permutation of the vertical stacking of the bars.

Remark 2.3.2. When computing persistence, the definition of a discrete Morse
function (Definition 2.2.1) ensures that all births and deaths (corresponding to
critical values) occur only at integer values and that furthermore, the first birth
occurs at time 0 and that the barcode is completed by time n, where n is the
number of simplices of G. In addition, there can be at most one event (either a
birth or a death) at any time. So for example, the following could be a barcode
induced by a discrete Morse function on a graph with 11 simplices

0 1 2 3 4 5 6 7 8 9 10

b0

but this one could not

0 1 2 3 4 5 6 7 8 9 10

b0
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since there is a birth and a death at t = 4 and furthermore, there is a birth at
t = 6.5 62 Z.

Hence, given these conditions, the total number barcodes that one can obtain
from a discrete Morse function on a fixed graph is finite. In Section 4, we will
give an upper bound for the number of persistence equivalent discrete Morse
functions on a graph, and show that this estimate is sharp in the special case
where G = T is a tree. Bur first, we compare persistence equivalence with other
notions of equivalence.

3 Relation with other notions of equivalence

3.1 Forman equivalence

Recall that two discrete Morse functions f, g : G ! [0, n] defined on a graph are
Forman equivalent if and only if Vf = Vg, where Vf is the induced gradient
vector field of f [10]. It is easy to see that neither persistence nor Forman
equivalence imply each other.

Example 3.1.1. The following two discrete Morse functions are persistence
equivalent but not Forman equivalent.

1

6

5 8

7 9

0

1

2 4

6 7 9

8

5

3 9

6 7

0

2

3 9

4 6 7

Using the exact same graphs, the example below also shows that Forman equiv-
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alence does not imply persistence equivalence.

3

4

6 1

5 7

0

3

2 1

4 5 7

1

2

7 6

3 4

0

1

5 5

2 3 4

3.2 Homological equivalence

In [2], Ayala et al. introduced the notion of horological equivalence and counted
the number of discrete Morse functions up to homological equivalence in [3] on
all graphs.

Definition 3.2.1. Two discrete Morse functions f and g defined on a graph G
with critical values a0 < a1 < . . . < am�1 and c0 < c1 < . . . < cm�1 respectively
are homologically equivalent if b0(ai) = b0(ci) and b1(ai) = b1(ci) for all
0  i  m� 1.

From the definitions, the following is immediate.

Proposition 3.2.2. If f and g are persistence equivalent, then f and g are
homologically equivalent.

Of course, the converse is clearly false, as the following simple example illus-
trates.

Example 3.2.1.

1 3

0 1 2

2 3

0 1 3
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3.3 Graph equivalence

The second author introduced the following notion of equivalence of discrete
Morse functions on graphs in [1].

Definition 3.3.1. Let f, g : G ! [0, n] be two discrete Morse functions on a
graph G with critical values a0, a1, ..., am�1 and c0, c1, ..., cm�1 respectively. The
functions f and g are said to be graph equivalent if G(ai) ⇠= G(ci) for every
0  i  m� 1; that is, each level subcomplex is isomorphic as graphs.

As noted in the introduction, this is not to be confused with the notion of graph
equivalence recently introduced by Curry [9].

Although graph equivalence is quite stringent, two discrete Morse functions
which are graph equivalent are not necessarily persistence equivalent.

Example 3.3.1.

1

5

3 2

0

1

3 2

4

1

7

3 2

0

1

3 2

4

Conversely, persistence equivalence does not imply graph equivalence.
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Example 3.3.2.

1

4

5 3

0

1

5 2

4

1

5

3 4

0

1

5

2 4

4 Counting persistence equivalence classes

4.1 An upper bound

We first prove an upper bound for the number of persistence equivalence classes
for any connected graph. In general, this upper bound is not sharp, as we
illustrate in Example 4.1.1. However, we will see in Theorem 4.2.5 that this
upper bound is sharp on a certain class of graphs, namely, trees. First, a lemma.

Lemma 4.1.1. Let f : G ! [0, n] be a discrete Morse function with m critical
values on a connected graph G. Then m = 1 + b1(G) + 2k for some k 2 Z.
Proof. Let m = m0 + m1, and suppose that m = 2j + 1, as the case when m
is even is similar. By the Theorem 2.2.2 (i), m0 � b0 and m1 � b1 so that
m = b0 + b1 +h. By part (ii) of that same theorem, b0 � b1 = m0 �m1. Adding
this to 2j + 1 = m0 +m1, we obtain 2j + 2� b1 = 2m0 so that b1 = 2` is even.
But if G is connected, b0 = 1 and 2j+1 = m = 1+2`+h. Hence h is even.

Proposition 4.1.2. Let G be a connected graph on n vertices, and let m :=
1 + b1 + 2k where m  n. Then there are at most

�n�1
b1

��n�1�b1
2

��n�1�b1�2
2

��n�1�b1�4
2

�
. . .

�n�1�b1�2k+2
2

�

k!

persistence equivalence classes of discrete Morse functions with m critical values
on G.
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Proof. We compute the upper bound by counting all possible barcodes that
could be obtained. The minimum value (in this case 0) of every discrete Morse
function corresponds to a critical vertex, which in turn induces a birth at t = 0,
leaving n� 1 other times for births and deaths. Since each independent cycle is
born and never dies, we have

�n�1
b1

�
choices of times to birth cycles. The other

2k critical values correspond to persistence pairs. For the first persistence pair,
we choose a birth and death time from the remaining n � 1 � b1 options for�n�1�b1

2

�
options. There are then

�n�1�b1�2
2

�
options for the next persistence

pair. Continuing in this manner, we obtain
✓
n� 1

b1

◆✓
n� 1� b1

2

◆✓
n� 1� b1 � 2

2

◆✓
n� 1� b1 � 4

2

◆
. . .

✓
n� 1� b1 � 2k + 2

2

◆
.

However, the order in which we choose birth death pairs does not matter, so we
must divide by the number of permutations on the number of persistence pairs
chosen i.e., divide by k!. Thus the result.

Unfortunately this result is not sharp for all graphs.

Example 4.1.1. Let C6 be a cycle of length 6, and consider the barcode

0 1 2 3 4 5 6

b0

b1

This barcode is certainly counted as a possibility in Proposition 4.1.2. However,
it cannot be obtained on C6 since in order to have the cycle born at time 1, the
entire graph must be built and hence, it is impossible to have any more births
and deaths after the cycle is born. Thus, there is only one barcode with the cycle
born at t = 1 on a cycle of any length.

In the special case of trees, we obtain

Corollary 4.1.3. Let T be a tree on n simplices, m = 2k + 1 an integer 1 
m  n. Then there are at most

(n� 1)(n� 2)(n� 3) . . . (n� 2k)

2kk!

persistence equivalence classes of discrete Morse functions on T with m critical
values.
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Proof. By Theorem 2.1.1, b1(T ) = 0 so that Proposition 4.1.2 becomes

�n�1
2

��n�3
2

�
...
�n�2k+1

2

�

k!
.

Observe that
�n�`

2

�
= (n�`)(n�`�1)

2 . Hence, replace each factor in the product
and simplify to obtain

(n� 1)(n� 2)(n� 3) . . . (n�m+ 2)(n� 2k)

2kk!
.

As we will see in Theorem 4.2.5, this upper bound is attained. The next section
is devoted to constructing such discrete Morse functions.

4.2 Counting on trees

We begin by fixing some notation. Let T be a tree on n simplices. We say that
a persistence diagram D = {(ci, di)} is consistent with T if (0,1) 2 D and
for all ci, dj appearing in ordered pairs in D � {(0,1)}, we have

1. ci, dj 2 Z

2. 1  ci, dj  n

3. ci < di, ci < cj , and di < dj for all i < j

4. All ci, dj are distinct.

Given a tree T and a persistence diagram D consistent with T , we will show
that there exists a discrete Morse function on T such that Df = D.

Definition 4.2.1. Let f : T ! [0, n] be a discrete Morse function. For a fixed
level subcomplex Tcj , let S[v] denote the tree of Tcj whose minimum critical
vertex is v.

The following Lemma allows us to compute the persistence diagram using the
critical values of the discrete Morse function.

Lemma 4.2.2. Let f : T ! [0, n] be a discrete Morse function on a tree. Then
v is born at ci if and only if f(v) = ci is critical.

Furthermore, v dies at cj if and only if there exists a critical edge e with f(e) =
cj where e joins trees S[v], S[u] in Tcj with f(u) < f(v).

In other words, when two trees are joined by a critical edge, the vertex that dies
is the one that belongs to the tree with larger value.
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Proof. Suppose vertex v is born at Tci . Then [v] 62 im(f ci�1,ci
0 ). We claim that

v is critical. If not, then v is regular and hence part of a free pair, v < e. Write
e = uv, and suppose that u 2 Tci�1 . Then f

ci�1,ci
0 ([u]) = [v], a contradiction. If

u 62 Tci�1 , then u is part of a free pair, and the result follows inductively. For
the converse, we clearly have that [v] 62 im(f ci�1,ci

0 ) since v 62 Tci�1 and there
does not exist a path from v to any other vertex in Tci .

Suppose that v dies at Tcj and write f(e) = cj . For the same reason as above,
e must be critical. Now e connects two trees S(v) and S(u) which were discon-
nected in Tcj�1 . By definition of v dying at cj , f

ci,cj
0 (v) is the class [u] that

existed at Tci�1 . Since f(�)  ci�1 for every � 2 Tci�1 , f(u)  ci�1 < f(v).

Our construction will break a tree down into a forest and build a discrete Morse
function with a single critical value on each tree of the forest. The following
lemma allows us to accomplish this. For the purposes of this lemma, we allow
a discrete Morse function to take on any non-negative value for its minimum.

Lemma 4.2.3. Given a tree T and a vertex v 2 T , a single value f : {v} !
[f(v), n], and some number n0 satisfying n � n0 > f(v) � 0, we can extend
f : T ! [f(v), n] such that f is a discrete Morse function with unique critical
simplex v and max(f) < n0.

Proof. If T is a tree with a single vertex, it follows that f(v) < n0. Otherwise,
let T be a tree with ` vertices and let n0 be as above. Define ↵0 := f(v) <
↵1 < . . . < ↵` recursively by ↵i := n0+↵i�1

2 for 1  i  `. We show that

f(v) < ↵i < n0. We prove this by induction on i. When i = 1, ↵1 = f(v)+n
2 .

So it is obvious that f(v) < ↵1 < n0. When i > 1, assume that our claim holds
for i = k, we show it holds for i = k + 1. Now we have f(v) < ↵k < n0, and
↵k+1 = n0+↵k

2 , so ↵k < ↵k+1 < n, and hence f(v) < ↵k+1 < n0. Therefore by
induction, we have f(v) < ↵i < n0.

Now we wish to extend f to all of T . Define f by the following:

i. for any vertex u 6= v, label f(u) := ↵d(v,u) + f(v)

ii. for any edge e = uw, label f(e) := max{f(u), f(w)}.

We still need to verify that f is a discrete Morse function with unique critical
simplex v and max(f) < n0.

Clearly, v is critical since for any edge e = uv, we have f(e) = max{f(u), f(v)} =
↵(v,u) + f(v) > f(v).

Next, we show that any vertex u 6= v is regular. Let v1, . . . , vj be the neigh-
bors of u. We claim that f(u) < f(vi) for all i other than exactly one value.
Since T is a tree, there is a unique path from v to u. Moreover, this path must
pass through exactly one of the vi. Now the unique path from v to any other

12



neighbor vk of u, must go through u. Otherwise, we obtain a cycle. That indi-
cates d(v, vi) < d(v, u) < d(v, vk) for some i with 1  i  j and for all k with
1  k  j, k 6= i. It follows that f(vi) < f(u) < f(vk). Hence f(u) < f(vi) for
all but exactly one value and we know that all vertices u 6= v are regular.

Finally, for any edge e = uw in T , f(e) = max{f(u), f(w)}. Hence we need
to show that f(u) 6= f(w). By contradiction, assume that f(u) = f(w). Then
d(u, v) = d(u,w), which implies that the path from v to u and the path from
v to w along with edge e, is a cycle, a contradiction. We conclude that f is a
discrete Morse function with the desired properties.

The following lemma is clear.

Lemma 4.2.4. Let T be a tree, E := {e1, e2, . . . , ek} a set of edges of T , and

F := T � E the resulting forest. Let eT be any tree in F . Then there exists an
edge e 2 E with one endpoint in eT , and the other endpoint in a di↵erent tree of
the forest.

We now come to our main result.

Theorem 4.2.5. Let T be a tree, D := {(ci, di)} a persistence diagram con-
sistent with T . Then there exists a discrete Morse function f : T ! [0, n] such
that Df = D.

Proof. Let T be a tree and D := {(ci, di)} a persistence diagram consistent
with T . Order and label the values in each persistence pair of the persistence
diagram as 0 = a0 < a1 < . . . < am�1 < am = 1. Remove any m�1

2 edges E
from T and write F := T � E. We will label T with a discrete Morse function
by inducing on ci, the birth times, and continually extending the function f on
subgraphs of T until it is defined on all of T .

For c0 = 0, pick any tree T0 in F and any vertex v0 of T0. Define f(v0) := 0.
Applying Lemma 4.2.3 on T0 with n0 = a1, we obtain a discrete Morse function
on T0 with v0 the unique critical vertex. In the case where a1 = 1, pick any
finite n > 0 to obtain a labeling of the entire tree T .

In the case where c1 = a1 6= 1, let (c1, d1) 2 D. Apply Lemma 4.2.4 on T

and E with eT = T0 to obtain an edge e1 joining T0 and an unlabeled tree T1.
Pick any v1 2 T1 and again applying Lemma 4.2.3 on T1 with f(v1) := c1 and
n0 = a2. Then we extend f to obtain a discrete Morse function on T0 [ T1

with v1 also critical. Furthermore, since max f < a2 and a2  d1, if we label
f(e1) := d1, it follows that e1 is a critical edge.

In general, let (ci, di) 2 D with i > 1 and suppose that ci = aj . We again apply

Lemma 4.2.4 to T on eE, the subset of E consisting of currently unlabeled edges,
and let eF := T � eE be the resulting forest. Then there is a unique tree eT of eF
which is labeled by f . The Lemma then guarantees that there is an edge ei with
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one endpoint in eT and the the other in a di↵erent (unlabeled) tree Ti. Choosing
a vertex vi 2 Ti, label f(vi) := ci, and apply Lemma 4.2.3 with n := aj+1 to

obtain a discrete Morse function on eT [ Ti. Furthermore, since max{f} < aj
and aj  di, if we label f(ei) := di, it follows that ei is a critical edge. In this
way, we obtain a discrete Morse function on all of T . Using the language of
Definition 4.2.1, note that Ti = S[vi] by the above construction.

Finally, we need to show that Df = D. For this, we apply Lemma 4.2.2. The
critical vertices are exactly those labeled ci so that the birth times are correct.
Consider level subcomplex Tdi . By construction, di = f(ei) with edge ei joining
trees S[vi] and S[vj ] and f(vj) < f(vi). Hence vi dies at di i.e. (ci, di) is a
persistence pair of Df .

4.3 An example

We illustrate the construction given in Theorem 4.2.5. Let T be the tree

and barcode given by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

We will use the method of Theorem 4.2.5 to construct a discrete Morse function
f of T that induces the above barcode. Following the proof, we first order the
critical values from the barcode

0 < 3 < 5 < 6 < 9 < 10 < 11 < 14 < 15 < 16 < 20 < 1.
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Next we remove m�1
2 = 11�1

2 = 5 edges from T to obtain the forest F below.

Our first step in labeling is to pick a tree in F and label a vertex 0. We then
apply Lemma 4.2.3 with n0 = a1 = 3 to obtain

1

2

0

1

2

The first persistence pair with both values finite is (3, 6). By Lemma 4.2.4,
there is a removed edge connected the labeled tree with an unlabeled tree (in
this case, there is only one such edge). We pick a vertex in the unlabeled tree
and label it 3. Applying the same Lemma as above with n0 = a2 = 5 and
furthermore labeling the connecting edge by 6, we have

15



1

2

6

4

4.5

0

1

2

3

4

4.5

We continue in this manner. The next persistence pair is (5, 10). Choosing the
lowest tree, we label the sole vertex 5 and the edge 10.

1

2

6

4

4.5

10

0

1

2

4

4.5

5

3

Three more iterations of this step yields the following discrete Morse function.

1

2

6

4

4.5

16

11

10

14.5

20

0

1

2

4

4.5

5

9

14

14.5

15

3
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While Theorem 4.2.5 gurantees this discrete Morse function induces the desired
barcode, it can alos be checked by hand.
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