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Nearness without Distance

Nicholas A Scoville*

July 26, 2019

Topology is often described as a mathematical discipline which does not have a notion of distance,
but does have a notion of nearness. At first glance, this seems like a distinction without a difference.
How can things be close to each other without any concept of distance? In this project, we will see
how three authors began to study phenomena that had a notion of a distance. We hope to show
how their studies led to defining structures which have a notion of nearness but no distance, or, as
we call them today, topological spaces.

We begin with an 1872 paper by German mathematician Georg Cantor (1845-1918), best known
today as the father of modern set theory. Cantor was studying Fourier series, a way of expanding
or approximating a given function with a series of trigonometric functions. While his study of such
functions was restricted to the real number line, Cantor ultimately needed definitions and concepts
which didn’t utilize any notion of distance. This is the first way to begin thinking about nearness
without distance. In the case of the real line, the distance is there and exists, but none of the concepts
that Cantor used actually utilized any notion of distance. Once we have a concept that doesn’t utilize
all the structure we have, a natural question to ask is “how little structure can I assume while still
having the concept make sense?” In other words, how bad does it have to get before it breaks? The
next work we study looks at this question.

After Cantor, we move to a paper written by Emil Borel (1871-1956) in 1903, over thirty years
after Cantor’s work. Many concepts in topology at this point had been fairly well established. Yet
this “nearness without distance” that Cantor constructed on the reals seemed like it could work for
other kinds of things ...lines, planes, etc. For Borel, as long as one is working with objects which
have some way to define a distance between them, then he could make sense of, for example, the set
of “limit points” of a collection of hyperplanes.

For a theory of distance, we next turn to excerpts from a textbook by Felix Hausdorff (1868-1942).
In this text, Hausdorff developed a theory of distance by specifying properties that all distances must
satisfy — properties which we now require a topological space to satisfy, as did Hausdorff himself
at the very end of his text. From Cantor and a question of Fourier Series, we thus work through a
sequence of pioneering ideas to ultimately end up at the modern day definition of a topological space
or, more colloquially, a set with nearness but no distance.

*Mathematics and Computer Science; 601 E. Main Street; Ursinus College; Collegeville, PA 19426;
nscoville@ursinus.edu.



1 Cantor

We first give a little more general background on Cantor. He was born in Saint Petersburg, Russia
in 1845. At the age of eleven, he moved to Germany. Cantor completed his education at Darmstadt,
Ziirich, Berlin and Goéttingen, before becoming a professor at University of Halle in 1869. He was the
first mathematician to understand the mathematical meaning of “sizes of infinity,” which he defined
in terms of a one-to-one correspondence. One of his notable mathematical discoveries involved using
this concept to compare the infinite set of rational numbers with the infinite set of natural numbers,
with the result that the infinite cardinalities of these two sets are actually equal.

1.1 Infinite Series

We now begin our study of Cantor’s paper [Cantor, 1872]. Cantor was studying the Fourier series of

a function f, which has the form

oo
f(z) = %bo + Z an sin(nx) + by, cos(nx)
n=1
where by, a,, b, are coefficients. Why would someone study such a strange series? You are probably
already familiar with one kind of series. In a calculus course covering sequences and series, you were
introduced to power series; that is, the idea that a function f may sometimes be written as

flx) = Z anx"
n=0

where a,, is some coeflicient for each n. This transforms what could be a fairly complex function into
a polynomial (albeit an infinite one) which allows you to approximate the function. Another reason
such a form is desirable is because under reasonable hypotheses, one can integrate and differentiate
the series term by term.

As mentioned above, Cantor was interested in studying Fourier series. Fourier series were a fairly
new and extremely powerful tool in the 19th century, for which many applications were found in
both physics and mathematics. For example, under reasonable hypotheses, one may differentiate a
Fourier series term by term, just as one can a power series in calculus.

Below is how Cantor explained the particular problem in the study of Fourier series that interested
him. This and all other quotes from Cantor are taken from his paper [Cantor, 1872].!

XXX X XXX XX XXX X XXX XX XXX XX XXX X XXX XX XXX X OXOXDXO

In the following, | will announce a certain extension of a theorem on trigonometric series
representations. [lt is a fact] that two trigonometric representations

1 1
§b0 + Z(an sin nz + b, cosnx) and 51)6 + Z(a; sinnz + b}, cosnx)

which converge for every value of = have the same coefficients. .. _ | have also shown that
the theorem holds if we give up either convergence or the representation for a finite number
of values of x. [Cantor, 1872, p. 123]

XXX X XXX X DX XXX X XXX X X XXX X X XXX X XXX X XXX DX X OXOXDXO

LAll translations of Cantor excerpts in this project, unless otherwise noted, are due to the author.



When Cantor wrote that “I have also shown” above, he was referring to a result of his from one
of his earlier papers on Fourier Series, [Cantor, 1870].

What more familiar term do we use today instead of Cantor’s phrase “give up convergence”?

Throughout this section, we will assume f is a function defined on some subset of [0, 27].

Let P C [0, 27] denote the set of points on which f is either undefined or gives up convergence.

Give a precise statement of what Cantor has “also shown.”

Let n > 0 be a positive integer. Construct a function f,, which is defined on all of [0, 27| except

for n points. Use your result from Task 2 to conclude that f,, while undefined on n points,
still has a unique Fourier series.

Cantor continued:

XXX X XXX XX XXX DX XXX XX XXX XX XXX X XXX XX XXX X OXOXTXO

The extension under discussion here asserts that the theorem remains valid even when the
assumption of the convergence of the series or the value of the limit is eliminated for an
infinite number of values of z in the interval [0, 27]. [Cantor, 1872, p. 123]

OXXDX DX X XXX X XX XXX XXX X X XXX X X XXX X XXX X XXX DX X OXOXDXO

Construct a function which is not defined on infinitely many points P for some subset P C

[0,27]. Is there any reason to believe that the function you just defined has a unique Fourier
series?

The example you just constructed may or may not have a unique Fourier Series. But as we can
see, a function like the one you just defined is what Cantor had in mind. Certainly not all infinite
sets P where the function is not defined will lend themselves well to such an extension. Interestingly,
in order to carefully construct such sets P, Cantor first took somewhat of a detour into his own
theory of constructing real numbers.

1.2 Real Numbers

We tend to take the real numbers for granted, but upon some serious reflection, it can be difficult
to say what exactly we mean by a real number. For example, what does it mean to add two real
numbers? Mathematicians were still wrestling with a precise and rigorous answer to these and
related questions in 1872. One definition of the real numbers, that of using a Dedekind cut, was
due to Richard Dedekind (1831-1916). Another way to construct the real numbers involves the use
of Cauchy sequences. In order to modify the proof in the paper mentioned above, [Cantor, 1870],
Cantor amazingly developed his own theory of the real numbers based on this idea. Our purpose in

examining his theory of real numbers is to demonstrate the emergence of point-set topology, since



the conceptual distinction that Cantor made in his construction was essential to understanding this
emergence.

Why would Cantor need a new theory of the real numbers in the first place? Wasn’t such a
theory existent at the time? According to Cantor’s biographer Joseph Dauben, “Cantor was clearly

aware of the shortcomings of previous attempts to devise a theory of irrational numbers” [Dauben,
1971, p. 204]. Indeed, Cantor wrote that

XXX DX X XXX X X XXX X XXX X XXX X X XXX X XXX X XXX XX OXOXDXO

There is a logical error [in standard attempts to define the reals] because the definition of
the sum > a,, is obtained only by equating it with the necessarily already defined limit b. |
believe that this logical mistake, which was first avoided by Sir Weierstrass, was until then
very common and therefore not noticed because it is one of the rare cases where real mistakes
do not cause significant harm in a calculation.

Cantor, as quoted in [Dauben, 1971, p. 204]2

XXX XXX XXX XXX XX XXX XX DX XXX XX XXX XXX XXX IXIXIXIXO

Let us illustrate a variant of Cantor’s concern.

Counsider the number .

(a) Write out a sequence of rational numbers that seems like it ought to converge to 7; that
is, find a sequence of rationals {a,} such that for every € > 0 there is an integer N such
that for all n > N, |a, — 7| <.

(b) Use Cantor’s comments to explain how the sequence you found above does not actually
prove that m exists.

With this shortcoming in mind, we now turn to Cantor’s construction. As we do so, be sure to
consider how this avoids the error in the above task.

XXX XXX XXX XXX XX XXX XX DX XXX XX XXX XXX XX XX IXIXIXO

However, to achieve this end [the extension of the Fourier result] | have chosen to preface
a discussion, albeit one consisting mostly of indirect references, that sheds light on certain
relations that arise whenever a finite or infinite number of numerical values are given; | am
thereby led to certain definitions that are included here only in order to present the theorem
under discussion in the clearest possible form.

The rational numbers form the groundwork for the following discussion of number values®
[ZahlengroBe]. | will call this domain [of rational numbers| A (with inclusion of zero).

*Translation of this excerpt from the original German quoted in [Dauben, 1971] was done by Martin Frankland,
University of Regina, 2017.
3A more literal translation might be “numberness,” but this sounds a little funny in English.



When | speak of number values in the wider sense, | mean an infinite sequence of rational
numbers

1,02, ..y Gy - - (1)

which has the property that the difference ay,m — ay, for large n is infinitely small, whatever
the positive integer m. In other words, that for any (positive, rational) e there exists an
integer ny so that |a,4+m — an| < € when n > ny and when m is any positive integer.

[Cantor, 1872, p. 124]

Give an example of a sequence of rational numbers which is a number value. Give an example
of a sequence of numbers which is not a number value. For any rational number ¢, can you
find a sequence which would seem to converge to ¢?

Cantor continued.

XXX DX XXX X XXX X XXX X X XXX X X XXX X XXX X XXX DX X OXOXDXO

This property of sequence 1 | express in the words “Sequence 1 has a certain limit b.”

Now these words initially have no other meaning except as an expression for those properties
of the sequence, and from the fact that we associate with series 1 a special character b, it
follows that with various series, various characters b, V/, b’,... are formed.

[Cantor, 1872, p. 124]

Immediately after making this definition, Cantor was quick to note that the number value b is

simply a formal symbol associated to the sequence a1, a9, ..., an,.... Notice how this avoids the error

of assuming the existence of limits of sequences of real numbers. He simply associated a symbol to

any such sequence. Next Cantor defined a total ordering.

XXX XX XXX XX XXX DX XXX XX XXX XX XXX X XXX XX XX XX XXX

If a second sequence

ay,ay, ... an, ... (2)

»'no

is given, which has a certain limit ¢/, one finds that the two sequences (1) and (2) always have
one of the following 3 relations which exclude each other: either 1. a,, — a/, is infinitely small
as n increases or 2. for a certain n, a, — a,, always remains larger than a positive (rational)
size € or 3. for a certain n, a,, — a,, always remains smaller than a negative (rational) size —e¢



When the first condition takes place, | set
b=10

in the second b > ¥/, in the third b < ’. Similarly we find that series 1 which has a limit b to a

rational number* a has only one of the following 3 relations. Either 1. a,, —a is infinitely small
as m increases or 2. for a certain n, a, — a always remains larger than a positive (rational)
size € or 3. for a certain n, a,, — a always remains smaller than a negative (rational) size —e.

To demonstrate the existence of this relation, we set
b=a,b>ab<a

respectively.

This and the immediately following definition is a consequence of the fact that when b is a
limit of sequence 1, then b — a,, is infinitely small with growing n. To refer to the description
“b is the limit of sequence 1" a requires a certain justification.

All number values b are denoted by B.

[Cantor, 1872, p. 124]

Prove that the symbol “ =" is an equivalence relation on B.

Given Task 7, we will write B for the set of equivalence classes of number values under the
relation =. Hence an element b € B is an equivalence class of sequences.

Now Cantor was ready to define the operations of addition, subtraction, multiplication and
addition in B. For conceptual purposes, we may think of this as defining said operations on all real
numbers, but technically speaking we are only formally symbol pushing.

OXXDXIDX XX XXX DX XXX X XXX X X XXX X X XXX X XXX X XXX DX X OXOXDXO

If b,b/,b" are three numerical quantities in B, the formulas

b ”
E:b

. " .
serve as an expression amongst the numbers b, ', b which correspond to the sequences

b+ =0 0 =1,

ai,ag, . ..

/ /
a1,09, ...
" 1"

aA1,09,...

4So that a = b.



respectively and the relations

an) =0
a// _

lim(a, + a, —
lim(ay, - aj, —

hm< ) = 0 for a], # 0].
[Cantor, 1872, p. 125]

XXX XX XXX XX XXX DX XXX XX XXX XX XXX X XXX XX XX XX OXOXTXO

Give a justification for why Cantor’s definitions of addition, subtraction, multiplication, and

division are appropriate.

1.3 Number line versus Number Values

Now that Cantor had constructed a rigorous theory of the reals in which one can add, subtract, etc.,
he related these number values to the geometric number line (made up of points). Recall from the
previous section that Cantor used the symbol A to denote the rational numbers, and that B denotes
for us the set of equivalence classes of number values. Cantor wrote:

The points of a straight line are determined conceptually, and assuming a unit of measure
in their abscissas i.e. their distances from a fixed point o of the straight line with 4+ or —
as their sign indicates, depending on the relevant points (previously fixed) in the positive or
negative part, is the line of 0. This distance has a rational relationship to the unit — in other

words, it is a number value of a domain A.

[Cantor, 1872, p. 127]

OXXDX DX X XXX X X XXX X XXX X X XXX X X XXX X XXX X XXX XX OXOXDXO

Note that all points on a straight line relative to some fixed point can only be, by definition,
rational points.

Give a description of what Cantor was explaining in this excerpt using modern language and

notation. What is 0?7 Why was Cantor justified in concluding that “it is a number value of a
domain A”? [Hint: Consider Task 6.]

There are, of course, other points on the number line, points that do not have a rational rela-
tionship with a fixed point. This is the “other case” that Cantor next discussed:



In the other case, if the point is known, for example by a construction, it is always possible
to give a sequence

ai,ag, ... (3)
[so that the| distance from the determined point to the point o is equal to b where b is the

corresponding number value of sequence (3).
[Cantor, 1872, p. 127]

Task 10|| Express Cantor’s assignment between points of B and the geometric line in terms of a function.

Task 10 is one half of a bijection that Cantor then created between the geometric number line
and set of number values. An assignment from the geometric number line to the set of points B was

taken by Cantor as an axiom. He wrote

...to make the geometry of the straight line complete is only to add an axiom, which simply
consists in [declaring that] any number value belongs to a certain point of the straight line
... | call this theorem an axiom because it is in its nature to not generally be provable.

[Cantor, 1872, p. 128]

XXX DX XXX X X XXX X XXX X X XXX X X XXX X XXX X XXX DX X OXOXDXO

Using the above, show that there is a bijection between the geometric number line R and the

set of number values B.

1.4 Topology in Cantor

Recall that at the end of the last section, we saw how Cantor defined a bijection between the points
of what we now call the “real number line” and the objects of the set of number values B. Cantor

further distinguished his bijection by assigning different names to corresponding objects.

XXX X XXX X X XXX X XXX XX XXX X X XXX DX XXX X XXX XX OXOXDXO

For the sake of brevity | call a given finite or infinite number of numerical values a set of
[numerical] values and, accordingly, given finite or infinite number of points on the line a
point set. While the following point set is itself distinct, it immediately corresponds to a set

of values.
[Cantor, 1872, p. 128]




With this distinction in mind, Cantor was now ready to create definitions which describe rela-

tionships among point sets.

XXX DX XXX X XXX X XXX X XXX X X XXX X XXX X XXX XX OXOXDXO

For the sake of brevity, | call a given finite or infinite number ... of points of a line, a set of

points.

If a set of points is given in a finite interval, a second set of points is generally given, and
with these generally a third, etc., which are essential for the conception of the nature of the
first set of points ... To define these derived sets of points, we must begin with the term limit
point® of a point set.

By a limit point of a point set P, | mean a point of the line such that there are infinitely
many points of P in every neighborhood of it, and it may happen that it also belongs to the
set itself. The neighborhood of a point means here any interval which has the point in its

interior.
[Cantor, 1872, p. 128]

Task 12| Use Cantor’s definitions to give examples of each of the following:

(a) a set which contains all of its limit points.
(b) a set which has limit points not in the set.

(¢) a set whose only limit point(s) are not in the set.

Task 13 || What do you think Cantor meant by “in its interior”? Give a definition.

Cantor further commented that

Therefore, it is easy to prove that a [bounded] set of points consisting of an infinite number
of points always has at least one limit point.

[Cantor, 1872, p. 129]

XXX DX XXX X DX XXX X XXX X X XXX X X XXX X XXX X XXX XX XXX

Task 14| Cantor did not give a definition of bounded. Provide a definition of “bounded” and use it to

prove that a bounded point set consisting of an infinite number of points has at least one limit

point.

Cantor used the term “boundary point” (Grenzpunkt) in 1872; the French translation of the 1883 used “point-set
limite.” The term “limit point” has become standard.



Cantor next defined these other point sets “which are essential to understanding the first set.”

Every point of the line is now in a definite relation to a given set P, either being a limit point
of P or not, and thereby along with the point set P the set of limit points of P is a set which
| wish to denote by P’ and call the first derived point set of P.

Unless the point set P’ contains only a finite number of points, it also has a derived set P”,

6

which | call the second derived point set of P. By v such transitions® one obtains the concept

of the vth derived set P™) of P.

It may happen — and this is the case we are exclusively interested in at present — that after
v transitions the set P(*) consists of a finite number of points, and hence has no derived set;
in this case we wish to call the original point set P a set of type v, so that P’, P”, ... are of
typesv —1,v—2....

[Cantor, 1872, p. 129]

Task 15|| Compute the derived sets for your examples in Task 12.

Task 16 || Continue to practice computing the derived set by finding the derived set P’ when

(a) P =1[0,1]
(b) P =(0,1]
(c) P=(0,1)
(

d) P={23}
)

(e) P=QnJ0,1]
(f) P={t:n=1,2,3...}
(g) P= {m—i—nJrl m,n € Z"}

Note that Cantor himself did not seem to think that a finite set has a derived set, as he stated
in the above excerpt. Today, we would say that the derived set of a finite set is the empty set.

Task 17 || If P has finitely many elements, show that P’ = ().

51n his 1872 paper, Cantor restricted the value of v to finite integers only. At the time he wrote that paper, however,
he had already realized that, in the case where P is a non-empty set for every finite integer v, he could extend the
notion of “type” for derived sets beyond the finite. To do this, he set P> = (72, P” to obtain a derived set of type oo.
He then continued the iterative process to obtain Pt = (P>)/, p>~*t2 = (P°°+1) and so on. This process could be

extended to even higher orders of derived sets, such as P‘X’OOH, poon™  pe®  poo™ T ate. Cantor later substituted
the symbol ‘w’ for the ‘co’ symbol, to distinguish the actually-infinite ordinals w,w + 1,w + 2, ..., from the concept of
potential infinity associated to the oo symbol in calculus.

Cantor eventually connected his study of the series of “transfinite ordinals” w,w + 1,w + 2, ... associated with an

ordered iterative process to his use of one-to-one correspondences between two sets as a means to measure their relative
sizes, or cardinalites. This led him to introduce an unbounded sequence of “transfinite cardinals,” denoted (by Cantor
and today) as No, Ny, Vo, ..., N, Nyy1.... Here, Ng is the cardinality of the set of natural numbers N, and also that
of the equally-large set of rational numbers Q. The problem of determining the cardinality of the set of real numbers
R preoccupied Cantor throughout much of his later life. The conjecture that R has cardinality Ni, known as Cantor’s
Continuum Hypothesis, continues to be of interest in set theory today. In this way, a question in analysis led not only
to the development of point-set topology, but also to today’s modern set theory.
For more information about Cantor’s development of set theory, see [Dauben, 1979].

10



1.5 Cantor’s Main Result

Recall from Task 2 that Cantor used P to denote the set of points on the interval [0, 27| on which
a function f is either undefined or gives up convergence. His primary goal in [Cantor, 1872] was to
prove that, under certain conditions on P, the Fourier series of f is unique. In particular, he was
interested in the case where P is an infinite set. In order to state and prove his main result for this
case, Cantor first constructed a new function F' associated with f. It does not concern us here what
this new function F'is. The following theorem, stated in modern notation and language, summarizes
the essential properties of I’ that we will need to understand in order to prove Cantor’s main result.

Theorem 1 (Cantor)
Let f be a function on [0, 27|. There exists a function F', based on f, which is continuous
on [0,2x]. Furthermore, if F' is linear on all of [0,27], then the Fourier series for f is

unique.

With this theorem in hand, showing f has a unique Fourier series has been kicked back to showing
that the function F' is linear. Fortunately, Cantor gave us a practical way to show this.

(A) If there is an interval (p,q) in which only a finite number of points of the set P lie, then
F' is linear in this interval.

[Cantor, 1872, p. 131]

XXX XX XXX X X XXX XX XXX X XXX X X XXX X XXX X XXX XX XXX

How can we use (A) to show that F' is linear even when we give up convergence or are not defined
on an infinite set?

Task 18|| Suppose f gives up convergence on P := {% +1:n=1,2,3,...} U {% +2:n=1,2,3,...}.

(a) Use result (A) to show that F is linear on all but a finite number of points of [0, 27]. You
will need to use the fact that F' is the same linear function on each interval, a fact that
Cantor himself proved in general.

(b) Argue that the first derived set, P’, is the set of points of [0, 27] for which we can’t (yet)
conclude that F' is linear. Then compute P’.

(c) Use the fact that F' is continuous on all of [0,27] along with (A) to conclude that F' is
linear on all of [0, 27].

The result you showed in Task 18 is the basic idea behind Cantor’s main result. Even though P
was infinite, it was relatively easy to apply result (A) to prove that F' is linear on all of [0, 27].

It turns out that F is linear on [0,27] whenever P is a point-set of the n'' kind for some finite
integer n. We will prove this by induction on n. For n = 0, we have that (0,27) contains a finite
number of points of P, so by (A), F' is linear on (0,27). Because F' is continuous on all of [0, 2], it
then follows that F' is linear on the endpoints 0 and 27 as well. Hence F' is linear on all of [0, 27].

Cantor also established the n = 1 case; to do so, he first showed that

11



(A") If (p',q') is any interval in which only a finite number of points of the set P’ lie, then F
is linear in this interval.

[Cantor, 1872, p. 132]

XXX DX XXX X XXX X XXX X X XXX X X XXX X XXX X XXX XX OXOXDXO

In this case, P’ is finite by supposition, so that any subinterval of (p/,q’) contains at most a finite
number of points xp, 2}, ..., 2, € P’, where z(; < ] < ... < z]. We now quote Cantor’s argument,
in which he used the notation (xj,...,z}) to mean the interval that we would today denote (z), z).

XXX XX XXX XX XXX DX XXX XX XXX XX XXX X XXX XX XX XX XXX

Each of these subintervals generally contains infinitely many points of P so that result (A)
does not directly apply; however each interval (s, t) that falls within (zf, ..., z}) contains only
a finite number of points from P (otherwise another point of the set P’ would fall between
x(, and ), and the function is also linear on (s,t) because of (A). The endpoints s and ¢
can be made arbitrarily close to the points xf, and 2 so that the continuous function F' is
also linear in (g, ..., 2%).

[Cantor, 1872, p. 132]

XXX X XXX X DX XXX X XXX X X XXX X X XXX X XXX X XXX XX XXX

Cantor illustrated the situation described in this excerpt with the following picture:

i e e B
o ¥ %

He then noted that it follows, from the argument in this last excerpt and the continuity of F', that
F is linear over all of (p',q¢"). (Do you see why? If not, look back at Task 18.) In the case where
(p',¢") = (0,27), invoking the continuity of F' once more allows us to then conclude that F must be
linear over all of [0, 27].

Cantor easily adapted this strategy to a proof that, for an arbitrary finite integer n, the function
F is linear on [0, 27| even when convergence fails on a point-set P of the nt™ kind; that is, when P
is finite and Pt = (). The key step in this general proof was to show that the following holds for
every finite integer n:

(AM)Y If (p™), ™) is any interval in which only a finite number of points of the set P™
lie, then F' is linear in this interval.

Task 19| Using an argument similar to Cantor’s for the n = 1 case, assume the inductive hypothesis for

(A™) and prove the inductive step.



In the case where (p(™, ¢(™) = (0, 27), combining (A™) with Theorem 1 allows us to immediately
see that f has a unique trigonometric representation on [0, 27] even when convergence is given up on
a point set P of the nt" kind for a finite integer n. The main point of this section, however, is not
so much this result, but the mathematics Cantor needed to build the result. Let us summarize what
he did. Cantor needed a structure-preserving bijection between points and sets. This relationship
turned out to be that of a limit point, and the set of all limit points was the derived set. Since this
is all based on open intervals, we don’t really think about distance anymore, although the open set
in the case of R is defined using the distance. From here, one can ask two questions. First, could
we make sense of limit point, derived set, etc. if we had a distance on some structure other than the
real number line? Second, what if we took as an axiom that we had some notion that allowed us
to define limit points, some system that did not begin with a distance? The latter question will be
taken up by Hausdorff in section 3, while the former will be the work of Borel in the next section.

2 Borel

We now to turn to a very short but very influential paper, [Borel, 1903], written by Emile Borel.
Borel was a French mathematician who made many contributions to both measure theory (analysis)
as well as probability. In addition to a successful career as a mathematician, Borel was active in
politics and a member of the French resistance during World War II. In his 1903 paper, Borel took
some of Cantor’s ideas to the next level. Namely, he abstracted away the need to view point sets as
only “set of points” by considering sets of lines, planes, and other geometrical objects. He set the
stage for this abstraction nicely.”

XXX XX XXX XX XXX DX XXX XX XXX XX XXX XXX XX XX XX XXX

The notion of a point set is today quite classical; it seems that we are less inclined to consider
sets whose elements are other geometric elements; nevertheless, certain sets, for example the
set of lines in the plane or planes in space, present themselves in much research and their
systematic study, while easy, is almost as useful as the study of point sets ... | would like to
state some very simple and elementary properties, which | think can render service in many
questions.

[Borel, 1903, p. 272]

XXX X XXX X XX XXX XXX X X XXX X X XXX DX XXX X XXX XX OXOXDXO

We will follow Borel’s new definitions. As we do so, we will be interested not only in how they
applied for Borel, but also their interpretation in terms of Cantor’s point sets.

"All translation of excerpts from [Borel, 1903] in this section, unless otherwise noted, are due to the author.
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First of all, it is important to define what we mean by lines infinitely close to a given line; we
adopt the following geometric definition: Given a fixed line D, the variable line D’ is said to
be infinitely close to D if, for any two points A and B on D and for all ¢ > 0, the distance
from A to D’ and the distance from B to D’ are both less than €. It is easy to see that
the choice of points A and B on D can be made arbitrarily, if the definition is verified with a
particular choice of two points, it is verified with any choice of two points, provided they are
distinct.8

[Borel, 1903, p. 272]

XXX X XXX X DX XXX X X XXX X XXX X X XXX X XXX X XXX XX XXX

Borel’s phrase “the variable line D’” requires a bit of unpacking. In other words, what is a meaning

of this phrase that might make sense?

Task 20

Task 21

Task 22

Task 23

Task 24

Suppose that by “the variable line D’,” Borel simply meant a fixed line. If so, explain what D’
could be. Why is this not an interesting definition?

Give a definition of “the variable line D’” using modern language that makes Borel’s definition
interesting. [See Task 22 for a hint.]

(a) Show that the collection D = {maz +b:m > 0,b € R} is infinitely close to the z-axis.

(b) Let r > 0. Show that the collection F, = {mz + b : m > r} is not infinitely close to the
T-axis.

Why did Borel specify that two points must be chosen? Give an example to show that specifying
only one point is undesirable.

Use your definition from Task 21 to adapt Borel’s definition of “a fixed line being infinitely
close to variable line D” to define what it means for a fixed point to be infinitely close to a
variable point. Compare your definition with Cantor’s definition of a limit point. Show they
are equivalent.

XXX XXX XXX XXX XX XXX XXX XXX XX XXX XXX XXX IXDXIXTXO

Likewise, given a fixed plane P, the variable plane P’ is said to be infinitely close to P if, for
any three non-collinear points A, B, C on P, and for any positive € there are points of P’ such
that the distance from the points of P’ to the points A,B,C are less than e.

[Borel, 1903, p. 273]

8Translation of this excerpt done by Martin Frankland, University of Regina, 2017.
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As we are interested in generalizing, it will not be difficult to adapt Borel’s above definition to

any dimension.

Let H be an (n — 1) dimensional hyperplane in n dimensions. Give a definition of what it

means for H to be “infinitely close” to the variable hyperplane H’.

Given a set of lines (or planes), the derived set is, by definition, the set of lines (or planes)
such that there are lines infinitely close to these lines. We say that the set is closed if it
contains all the elements of the derived set and it is perfect if it is identical with the derived
set.

[Borel, 1903, p. 273]

XXX XX XXX X DX XXX X XXX X X XXX X X XXX X XXX X XXX XX XXX

Suppose A is a subset of the real line. Apply Borel’s definition of closed to A. In other words,
replace “lines” with “points” above and compare with Cantor’s definition. According to Borel’s
definition of “closed,” what would a closed subset of R look like? Is this consistent with your
understanding of closed sets in R?

XXX XX XXX X X XXX X XXX X X XXX X DX XXX X XXX X XXX XX XXX

A set is said to bounded when, given some point O, there exists a number A such that the
distance from the point O to any line (or plane) in the set is less than A; as is apparent, if
this property is proved for any point O, then it is proved for all the points in the space (may
vary with the selected point).

[Borel, 1903, p. 273]

XXX XXX XXX XXX XXX XX XX DX XXX XX XXX XXX XX XX IXIXTXO

Show that “if this property is proved for any point O then it is proved for all the points in the
space.”

For a set to be bounded, it is necessary and sufficient that its derived set does not contain
an infinite line, if it is a set of lines in the plane, and does not contain an infinite plane, if it
is a set of planes in space.

[Borel, 1903, p. 274]

OXXDX DX X XXX X XXX X XXX X X XXX X X XXX X XXX X XXX XX OXOXDXO
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Task 28 || Prove this last claim.

We see by these examples, which would be easy to multiply, what interest may be found in
the study of geometric sets of lines and planes.

[Borel, 1903, p. 274]

OXXDXIDX XX XXX DX XXX X XXX X X XXX X X XXX X XXX X XXX XX OXOXDXO

After applying Borel’s definitions to points, it should be clear that he is extending Cantor’s
definitions to lines and planes. But why stop at lines and planes? Why not circles, triangles, or
other geometric objects?

Task 29| Let S, :={Z € R?: ||Z]| = 1} forn =1,2,3,... and S := [J32; Sn.

(a) Draw a picture of Sy, S92, 53, and Sy.
(b) Make a conjecture as to what this “ought to be infinitely close to.”

(c) Give a definition of what it would mean for any A C R? to be infinitely close to a collection
A of sets in R?, and use it to prove your assertion in b).

As you have seen, now we have circles infinitely close to points. In all cases, this requires
computing distances between points. As can be inferred from Task 25, this could be cumbersome
for high dimensions. Thus it stands to reason that we could benefit from a notion not of distance
between individual points in the sets, but a distance between the sets themselves.

Yet this is not as easy as it first seems. We may be tempted to define distance as “the minimum
(or infimum) value over all pairs of points.” But consider first the two lines y = 1 and y = 1.1. Now
consider y = |z| and the z-axis. Intuitively, which of the two sets of lines ought to be closer to each
other? Most likely any good notion of distance should say that y = 1 and y = 1.1 are very close to
each other while y = |z| and z-axis are not close to each other. But if we use the above definition,
we would get that there is no distance between y = |z| and the z-axis. (Verify this!) Clearly more
care is needed.

Finally, in an attempt to further generalize Borel’s work, we wish to leave R™ and work in any
setting with a distance. Hausdorff will help guide us through this.
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3 Hausdorff

Born in 1868 to Jewish parents, Felix Hausdorff is known as one of the founders of modern topology.
Hausdorff studied mathematics and astronomy mainly in the city of Leipzig. He graduated from
the University of Leipzig in 1891 and completed his habilitation thesis (a second doctoral degree
required to teach at the university level in Germany) there in 1895. He taught at the University of
Leipzig until 1910, when he accepted a position at the University of Bonn. Hausdorff continued to
teach as a university professor, primarily in Bonn, until he was forced to retire by the Nazi regime in
1935. After being informed that they were to be placed in an internment camp, Hausdorff committed
suicide, together with his wife and his wife’s sister, in 1942.

In addition to his contributions to point-set topology, Hausdorff made significant contributions
to set theory, measure theory, and functional analysis. He developed, for example, the concepts of
Hausdorff spaces, metric spaces and topological spaces. The development of the idea of closeness
independent of the ability to be measured also interested Hausdorff.

3.1 Metric spaces

In this section, we study excerpts from Hausdorff’s textbook titled Set Theory [Hausdorff, 1957].
This was one of the first book-length treatments of topology, and remains a classic to this day. In
the following, Hausdorff will guide the reader through the different viewpoints by which we might
view topology.?

XXX X XXX X X XXX X XXX XX XXX X DX XXX X XXX XX XX XX OXOXDXO

Set theory has celebrated its loveliest triumphs in the application to point sets in space, and in
the clarification and sharpening of foundational geometric concepts, which will be conceded
even by those who have a skeptical attitude towards abstract set theory....Based on the
concept of distance, one can for instance define the concept of a convergent sequence of
points and its limit, and this concept can be chosen fresh as the foundation of point set
theory, with elimination of the concept of distance. Then it would formally concern a set
M, in which a function f (a1,a2,...,an,...) of sequences of elements is defined, namely to
certain sequences (the convergent ones) an element of M itself (the limit) is assigned.. ..

Now a theory of spatial point sets would, by dint of the numerous properties of ordinary space
coming into the picture, naturally carry a very special character, and if one wanted to settle
from the start upon this single instance, one would have to develop a new theory for each
of the point sets of a line, a plane, a sphere, etc. Experience has shown that one can avoid
this pleonasm and establish a more general theory, which encompasses not only the cases
mentioned, but also yet other sets (Riemann surfaces, spaces of finite and infinitely many
dimensions, curve and function sets, among others). In fact this gain of generality is not
linked with a raised complication, rather exactly conversely, it is linked with a considerable
simplification, in which we, at least for the essentials of the theory, only have to make use of
very few and simple assumptions (axioms).

[Hausdorff, 1914, p. p. 209-210]

XXX X XXX XX XXX X XXX XX XXX XX XXX X XXX XX XX XX OXOXTXO

9 All translations of excerpts from [Hausdorff, 1914] in this section were done by David Pengelley, New Mexico State
University (retired), 2017.
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What do you think Hausdorff was trying to say here? Do you agree with him?

In the above excerpt, Hausdorff discussed using a distance to construct topological spaces. Notice
the import of the phrase “one can ...establish a more general theory, which encompasses not only the
cases mentioned, but also yet other sets . . . this gain of generality is not linked with a raised complication,

rather exactly conversely, it is linked with a considerable simplification.” This is done, according to

Hausdorff, by making use of axioms. We will first investigate his axiomatic theory of distance and,

ultimately, the axioms for a topological space to which that theory of distance led Hausdorff.

XXX DX XXX XX XXX X XXX XX XXX XX XXX X XXX XX XXX X XXX

Let E be a set, whose elements we now refer to as points. To each pair (x,y) we assign a
real number zy, the distance between points, that is, a real function xy = f(x,y) defined
in (E, E). We require of this function that the following distance axioms or postulates, be
satisfied:

(o) zz =0
(B8) zy=yx >0forx #vy
(V) zy +yz > zz

The axiom (7). .. is called the triangle inequality. .. the set E is called a point set or metric
space. [Hausdorff, 1957, p. 109]

XXX XXX XXX XXX XXX XX XXX XXX XX XXX XXX XX XX IXXTXO

Explain Hausdorf’s distance axioms in words. Are they appropriate? Are they what you would
expect a good notion of distance to satisfy?

Prove that E := R" with 2y := /(1 — y1)% + ... (2, — y,)? satisfies the distance axioms.

From Hausdorff’s distance point of view, he next reconstructed the concepts with which we are

familiar.

OXXDXIDX X XXX X XXX X XXX X X XXX X X XXX X XXX X XXX XX OXOXDXO

If x is a point and § a positive number, then the set of points v whose distance from z is < §
is called a neighborhood of x and § is its radius. It will be denoted by U,, or more precisely,
by U, (9).

In terms of the concept of a neighborhood the fact that a point is a limit point (point of
accumulation) of the sequence z is expressed by saying: Every neighborhood U, contains
almost all (infinitely many) points of the sequence x,,. For, in fact, for every 6 > 0 we have
ultimately (infinitely often) zz,, < § or z,, € Uy(9).

Let A be a point set. If a point x is such that there exists a neighborhood U, C A, then
it is called an interior point, otherwise, it is called a border point [heron “boundary point”]
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of A. Let A; be the set of interior points, A; the set of boundary points. Then we have a

decomposition
A=A, UA

of A into disjoint summands. Let us call A; the interior of A, and A, the border [heron
“boundary”] of A. A set that consists entirely of interior points will be called an open set
(Ap = 0); one that consists entirely of boundary points (A; = 0) will be called a border set
[heron “boundary set].

[Hausdorff, 1957, p. 127]

XXX X XXX X XX XXX XXX X X XXX X X XXX X XXX X DX XXX X OXOXDXO

Task 33 || Using Hausdorff’s definitions, define “derived set.”

Hausdorff next gave examples, computing boundary points and interior point of several sets. How
about you do this?

Task 34|| Compute the interior and boundary points of the following sets:

(a) a circular disk including the circumference, i.e. % + 22 < 1.

b) a circular disk without the circumference, i.e. 2 + 22 < 1.

)
)
(c) the circumference of a circle, i.e. 22 + 23 = 1.
(d) the set of rational points.

)

(e) the set of irrational points.

Task 35|| Apply Hausdorff’s definitions in the special case of Borel’s infinitely close set of lines. Are these

consistent?

Task 36 || Use Hausdorff’s definition of “open” to show that the complement of a closed set (in the sense

of Borel) is an open set.

In order to make a deeper investigation into these concepts, Hausdorff next introduced continuity.
He used the notation [f > 0] to represent the set of all values z in the domain of f such that f(x) > 0.

OXXDX DX X XXX X X XXX X XXX X X XXX X X XXX X XXX X XXX DX X OXOXDXO

If we assign to each point = of E a unique point y = f(x) in another metric space (or
in the same metric space), then the function is said to be continuous at the point x...if
y = f(z),n = f(&), then yn can be made arbitrarily small by making x¢ sufficiently small;
that is, for every o > 0, it is possible to find some ¢ > 0 such that if x§ < g, thenyn < o...If
f(z) isreal [f: E — R] and continuous, then the set [f > 0] is open.

[Hausdorff, 1957, p. 128]
OXXDX DX X XXX X X XXX X XXX X X XXX X X XXX X XXX X XXX XX OXOXDXO
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Task 37| Using his definition of continuity, prove Hausdorff’s assertion that if f is real and continuous,

then [f > 0] is open.

We shall now try to convince ourselves that all the open sets can be obtained by this method.
For a point x and a non-empty set B, let us define a lower distance

o(z, B) = inf ay,

the greatest lower bound of the distances of the point = from the points y of B.

[Hausdorff, 1957, p. 128]

XXX X XXX XX XXX X XXX XX XXX X X XXX X XXX XX XXX X XXX

Task 38 || Fix a non-empty set B. Prove that §(z, B) is a continuous function of z.

Task 39 || Prove that §(z, B) > 0 if and only if x is an interior point of A = E — B.

Thus for the continuous function f(x) = §(z, B), the set [f > 0] is identical with A; and if
A = A; is open, identical with A. In the exceptional case B = 0, A = E, we can use the
constant function f(x) = 1. Therefore we have:

I1. For every open set A there exists a function f(x) continuous in E such that the set [f > 0]
is identical with A. ...If A C B then of course A; C B;; A; is a monotone function of A.
The set A; is always open . ..[and] A; is the greatest open subset of A.

[Hausdorff, 1957, p. 128-129]

XXX X XXX XX XXX X XXX XX XXX XX XXX X XXX XX XXX X OXOXDXO

Task 40|| What does the term “monotone” mean in this context? Why does the term make sense here?

Task 41 || State precisely what Hausdorff meant by “A; [is to be] the greatest open subset of A.”!Y Then

prove that it is.

107t does not mean A; is better than all the other subsets of A.
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If A, B,... are any number of sets, not necessarily a finite number, and if
S=AUBU...,D=ANBnN...

are their [union]| and intersection, then the property of monotonicity implies in either case

that
S; DA UB;U. .. [and] D, CANB;,N....

For a finite number of sets, however, a stronger result holds. . ..

[Hausdorff, 1957, p. 129]

XXX DX XXX X DX XXX DX XXX X X XXX X X XXX X XXX XX XXX X OXOXDXO

Task 42| The “stronger” result that Hausdorff had in mind concerns a statement that can be deduced

when one assumes that D = AN B. What is this claim? Prove it.

XXX XX XXX X DX XXX X XXX X X XXX X X XXX DX XXX X XXX XX XXX

It follows immediately that

[Il. The [union] of any number of open sets and the intersection of a finite number are

themselves open sets.
[Hausdorff, 1957, p. 129]

OXXDXIDX X XXX X DX XXX X XXX X X XXX X X XXX X XXX X XXX XX OXOXDXO

Hausdorff then went on to point out that this is not the case for infinite sets.

XXX XX XXX XX XXX X XXX XX XXX X X XXX X XXX XX XXX X XXX

In the Euclidean plane the intersection of concentric open circular discs with radii o+ %(n =
1,2,...) is the disk of radius g inclusive of the circumference.

[Hausdorff, 1957, p. 129]

Task 43 || Prove that this is a counterexample to III.
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XXX DX XXX X DX XXX X XXX X X XXX X X XXX X XXX X XXX XX XXX

Let A be a point set in the space E and x a point of E (not necessarily of A). We make the
following definition: x is called a -point of A if every neighborhood U, contains infinitely
many points of A. The set of [all] 3 points will be denoted by Ag.

[Hausdorff, 1957, p. 130]

Task 44 || What familiar concept are the “3 points of A”? What is another name for Ag?

XXX XX XXX X DX XXX X XXX X X XXX X DX XXX X XXX X XXX XX XXX

We say that the set A is dense-in-itself if A C Ag, closed if A D Ag, perfect if A= Ag.

It follows that
[1. Open and closed sets are the complements of one another.

[Hausdorff, 1957, pp. 133-134]

XXX XX XXX XX XXX DX XXX XX XXX XX XXX X XXX XX XX XX XXX

Prove II.

Task 46 || Using III and II, prove Hausdorff’s claim that

“l. The [union] of a finite number of closed sets and the intersection of an arbitrary number of
closed sets is closed.”

3.2 Topological spaces

As promised, we now turn to Hausdorff’s theory of topological spaces, driven by his theory of distance.

XXX XXX XXX X XXX X XXX X X XXX X X XXX X XXX X XXX DX X XXX

The mathematical discipline concerned with [topological invariance| is called Topology or
Analysis Situs. (The latter term, due to Leibniz, was re-introduced by Riemann.). . . this seems
like a suitable occasion to touch, in all brevity, on those point-set theories that emphasize
the topological point of view from the very beginning and work only with the topologically
invariant concepts. . . What are primary in the topological space E are the sets that are closed
(in E) and their complements, the open sets... The closed or open sets can be taken as
our starting point and left undefined, or they can be defined from related concepts (limit
point, neighborhood), but always derived in such a way as to keep invariant their topological
character; the more detailed nature of the space is then determined by axioms.

[Hausdorff, 1957, p. 257]

OXXDXIDX X XXX X XXX X XXX X XX XXX X XXX X XXX X XXX XX OXOXDXO
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Hausdorff then stated his axioms for a set to be a topological space.

OXXDXIDX DX XXX X DX XXX X XXX X X XXX X X XXX X XXX X XXX DX X XXX

The closed sets must, regardless of anything else, satisfy the following conditions:

(1) The space E and the null set () are closed.
(2) The union of two closed sets is closed.

(3) The intersection of any number of closed sets is closed.

[Hausdorff, 1957, p. 258]

Task 47 || Prove that the closed sets induced by a distance form a topological space.

These are the same conditions that are given today except with closed replaced with open and
“union” replaced with “intersection.” (and “intersection” replaced with “union.”)

Task 48|| Are Hausdorft’s “closed” set axioms equivalent to what we use today with “open”? Why or

why not?

4 Conclusion

From 1872-1914, we have seen topology evolve from a specialized concept in analysis to its own
branch of mathematics, studied for its own sake and interest. Today, topology is one of the main
branches of mathematics, and its mastery is necessary to pursue other areas of math. We hope that
this project has shown that definitions and concepts do not fall from the sky or are written down
for no reason. Rather, the development of ideas and concepts is organic, starting with a particular
problem in a well-established area of math (Cantor and the uniqueness of Fourier series), being
generalized to the “next obvious” larger class of objects (Borel’s nearness of lines and planes), and
developing into a full blown theory in its own right (Hausdorff’s book on the subject).
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Notes to Instructors
PSP Content: Topics and Goals

This project is meant to have the student work through multiple problems in order to build up to
the modern axioms for a topology. It is meant to be one of the first things that a student of topology
sees. Students will be exposed to limit points, the derived set, open sets, closed sets, and continuous
functions. The main goals of the project are not only for students to learn this material, but almost
just as important, to “bridge the gap” between topology and other mathematics. Students often
have a hard time understanding what it is they are doing when they are doing topology, and why
they are doing what they are doing. The hope is that this project will naturally lead the student
into the ideas and concepts in topology so that the “why” is no longer a question.

Student Prerequisites

This project is for a first course in point-set topology, and it is assumed that the student has
familiarity with the basic proof techniques (direct proof, proof by contradiction, induction, etc.) as
well as equivalence relations and partitions. Furthermore, these are high-level concepts that are
being explored and hence a good deal of mathematical maturity and a desire to think deeply and
about abstract concepts is also needed.

PSP Design, and Task Commentary

Beginning with Cantor, the idea is that the students can see in Fourier series a kind of math that is
familiar to them, even if they have never worked with Fourier series per se. The question of uniqueness
and convergence of Fourier series is again, something that they should be able to appreciate. From
this natural question, concepts like limit points and derived sets which are purely point-set notions
arise by the end of the Cantor section. In this way, it is hoped that the students will appreciate
where these more abstract definitions come from.

The next section on Borel is meant to take the ideas of Cantor to which students were exposed
and bring them to the next level. This section can be quite challenging, but part of the purpose is
indeed for the student to struggle through the ideas put forth by Borel. We begin by attempting
to say what it means for a set of lines to converge to a line. His definition is a little bit odd if we
understand it from a modern point of view, and so the students are expected to struggle through it
until they grasp what Borel must have meant in order to make the definition non-trivial. However,
once this mental block is removed, it can be much easier for the student to think about limit points
and derived sets abstractly, in a setting where the kinds of objects don’t really matter, so long as
there are notions of distances. This moves into the last section on Hausdorff.

The section on Hausdorff is taken from his textbook, and it does have a more modern feel to it in
terms of the way he proceeds. Still, there is much to be gleaned from the way Hausdorff thinks. He
begins with distance axioms, the perfect next step after Borel’s generalizations. With an abstract
notion of distance also comes an abstract notion of continuity, a notion that students of analysis will
recognize. By the time Hausdorff has completed his thoughts, he has showed that any metric space
satisfies what we would today recognize as the axioms for a topological space.

IXTEX code of this entire PSP is available from the author by request to facilitate preparation of
advanced preparation / reading guides or ‘in-class worksheets’ based on tasks included in the project.
The PSP itself can also be modified by instructors as desired to better suit their goals for the course.
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Sample Implementation Schedule (based on a 50 minute class period)

The actual number of class periods spent on each section naturally depends on the instructor’s goals
and on how the PSP is actually implemented with students.

Day Preparatory Homework Classroom Plan
1 Read through Section 1.1 Students do Tasks 1-1.1
2 Do Task 5 Review student questions on Task 5; do Tasks 6-8.
3 Complete Tasks 6-8; read Section 1.3 Do Tasks 9-11.
4 Read Section 1.4; do Tasks 12-13. Do Tasks 14-17
5 Read section 1.5 Do Tasks 18-19
6 Read Section 2; do Tasks 20-21 Review Tasks 20-21; do Tasks 22-24.
7 Do Tasks 25-26 Review Tasks 25-26. Do Tasks 27-29
8 Read Section 3.1; do Tasks 30-32 Do Tasks 33-36
9 Do Tasks 37-38 Review Task 37. Do Tasks 39-42
10 Read Section 3.2; do Tasks 43-45 Do Tasks 46-48

Connections to other Primary Source Projects

There are several other projects in topology written by the author. Project titles along with links
are given below. The last project listed is another full-length Primary Source Project (PSP). All
others are mini-PSPs, intended to be completed in 1-2 class periods.

e Topology from Analysis
https://digitalcommons.ursinus.edu/triumphs_topology/1/

e The Cantor set before Cantor
https://digitalcommons.ursinus.edu/triumphs_topology/2/

e (Connecting Connectedness
https://digitalcommons.ursinus.edu/triumphs_topology/3/

o The Closure Operation as the Foundation of Topology
https://digitalcommons.ursinus.edu/triumphs_topology/4/

e A Compact Introduction to a Generalized Extreme Value Theorem

https://digitalcommons.ursinus.edu/triumphs_topology/5/

e From Sets to Metric Spaces to Topological Spaces
https://digitalcommons.ursinus.edu/triumphs_topology/6/

e Connectedness: Its Evolution and Applications
https://digitalcommons.ursinus.edu/triumphs_topology/8/

For Further Reading

A nice source on Cantor’s life and work is Joseph Dauben’s Georg Cantor: His Mathematics and
Philosophy of the Infinite, [Dauben, 1979].
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