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The Definite Integrals of Cauchy and Riemann

David Ruch∗

December 18, 2017

1 Introduction

Rigorous attempts to define the definite integral began in earnest in the early 1800’s. A major
motivation at the time was the search for functions that could be expressed as Fourier series as
follows:

f (x) =
a0
2
+
∞∑
k=1

(ak cos (kw) + bk sin (kw)) where the coeffi cients are: (1)

a0 =
1

2π

∫ π

−π
f (t) dt, ak =

1

π

∫ π

−π
f (t) cos (kt) dt , bk =

1

π

∫ π

−π
f (t) sin (kt) dt.

Joseph Fourier (1768-1830) argued in 1807 that this series expansion was valid for any function
f , and he used the expansion in his study of heat conduction. This ambitious claim was met with
considerable skepticism among mathematicians, but it certainly motivated much research into the
convergence of these infinite series.
One of the pioneers in this development was A. L. Cauchy (1789-1857). He made a study of the

definite integral for continuous functions in his 1823 Calcul Infinitésimal [C], which we will read
from in Section 2 of this project. Both Cauchy and Fourier attempted to prove that the Fourier
series would converge to f (x) under suitable conditions. Unfortunately, both proof attempts had
flaws. J. Dirichlet (1805-1859) read their work, and in an 1829 paper [D] he set out to give a rigorous
proof after pointing out an error in Cauchy’s proof.
Dirichlet gave a proof of Fourier series convergence in his 1829 paper that is valid for a piecewise

continuous function f with finitely many jump discontinuities1 and a finite number of extrema.
He then discussed the possibility of extending his proof for a function f with infinite extrema (in
a bounded interval), but he didn’t hold much hope for functions with infinite discontinuities. To
indicate why, he gave an example that quickly became famous in mathematical circles of his day. The
next passage is from Dirichlet’s discussion of the Fourier series for a function with discontinuities.

∞∞∞∞∞∞∞∞
∗Department of Mathematical and Computer Sciences, Metropolitan State University of Denver, Denver, CO;

ruch@msudenver.edu
1At each point of discontinuity, the one-sided limits exist and are finite.
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If the points of discontinuity are infinite in number, the integral ... makes sense only when the
function is given in such a way that, for any two values a and b where −π < a < b < π, we can find
two values r and s, with a < r < s < b, such that the function is continuous in the interval from r to s.
One readily feels the necessity of this restriction on considering that the various terms of the series [(1)]
are definite integrals and on returning to the fundamental concept of an integral. One then sees that
the integral of a function means something only when the function satisfies the condition set out above.
One would have an example of a function which does not fulfil this condition, if one assumes φ (x) equal
to a specific constant c when the variable x acquires a rational value, and equal to another constant d,
when this variable is irrational. The function so defined has finite and determinate values for every value
of x, and yet one does not know how to substitute it the series [(1)], seeing that the various integrals
that enter into this series will lose all meaning in this case.

∞∞∞∞∞∞∞∞

For the rest of project, we’ll refer to this example function as “Dirichlet’s function φ”.

Exercise 1 Consider the example function φ (x) Dirichlet gives in the excerpt. Dirichlet claims
this function does not satisfy the condition:

Dirichlet Condition. For any two values a and b where −π < a < b < π, we can find two values r
and s, with a < r < s < b, such that the function is continuous in the interval from r to s.

First show that Dirichlet’s function φ is not continuous at any rational x. Then prove it is not
continuous at any irrational x. Finally, use these results to verify Dirichlet’s claim that φ does not
satisfy the Dirichlet Condition.

It is important to remember that in 1829 the only definition of the definite integral was the
one given by Cauchy, and that definition was only for continuous functions. Thus we can see why
Dirichlet felt “One readily feels the necessity of ... returning to the fundamental concept of an
integral.”
While the study of Fourier series raged on for the next couple decades, it wasn’t until 1854 that

Bernard Riemann developed a more general concept of the definite integral that could be applied to
functions with infinite discontinuities. Amazingly, he also constructed an integrable function with
infinite discontinuities that does not satisfy Dirichlet’s Condition above - see the graph below. We
will read about Riemann’s work in Section 3 of this project.
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2 Cauchy’s Definite Integral

Most mathematicians before Cauchy’s time preferred to think of integration as the inverse of differ-
entiation: to evaluate

∫ b
a
f (x) dx you found an antiderivative F of f and evaluated F (b) − F (a).

However, there was plenty of 18th century mathematics evaluating diffi cult integrals approximately
using sums. Cauchy used many of their ideas in creating his new definition of the definite integral.
Cauchy was a professor at the École Polytechnique in Paris during the 1820’s when he wrote two

texts on the calculus. He developed his theory of the definite integral for continuous functions in
his 1823 Calcul Infinitésimal [C]. We will read his development over the course of several excerpts
in Section 2 of this project.

Excerpt A from Cauchy’s Calcul Infinitésimal

∞∞∞∞∞∞∞∞

Definite Integrals.
Suppose that, the function y = f (x) , being continuous with respect to the variable x between two

finite limits x = x0, x = X, we denote by x1, x2, . . . , xn−1 new values of x interposed between these
limits, which always go on on increasing or decreasing from the first limit up to the second. We can use
these values to divide the difference X − x0 into elements

x1 − x0, x2 − x1, x3 − x2, . . . , X − xn−1, (2)

which will always be the same sign. This granted, consider that we multiply each element by the value
of f (x) corresponding to the origin of this same element, namely, the element x1 − x0 by f (x0), the
element x2 − x1 by f (x1), . . . , finally, the element X − xn−1 by f (xn−1); and, let
...

S = (x1 − x0) f (x0) + (x2 − x1) f (x1) + · · ·+ (X − xn−1) f (xn−1) (3)

be the sum of the products thus obtained. The quantity S will obviously depend upon: 1◦ the number of

elements n into which we will have divided the difference X − x0; 2◦ the values of these same elements,
and by consequence, on the mode of division adapted. Now, it is important to remark that, if the
numerical values of the elements become very small and the number n very considerable, the mode of
division will no longer have a perceptible influence on the value of S.

∞∞∞∞∞∞∞∞

Exercise 2 Consider the example f (x) = x2 − 2, x0 = 0, x1 = 1/2, x2 = 3/2, X = 2, n = 3.
(a) Find the elements x1−x0, x2−x1, x3−x2 for this example. Then calculate the sum S. How

close is S to
∫ X
x0
f (x) dx?

(b) Make and label a diagram that graphically represents what is going on with Cauchy’s con-
struction of S in (3) for this example. Does the general S formula remind you of something you’ve
seen in your Introductory Calculus courses?

3



Wewill find it convenient to give a modern name to the set of values P = {x0, x1, x2, . . . , xn−1, X} .
We will call P a partition of the interval [a, b] and require the xk values to be distinct. When
Cauchy refers to the “mode of division”, this is equivalent to choosing a partition for the interval.
Also, rather than continuing to use the letter S for different things, a handy modern notation is to
include the partition in the notation. We will use the modern notation S (f,P) for Cauchy’s sum
S to indicate the dependence of S on f and P.

Exercise 3 Observe that Cauchy makes a bold claim at the very end of the excerpt that we will call
Claim M for “mode of division”

Claim M. “the mode of division will no longer have a perceptible influence on the value of S.”

What two requirements does Cauchy place on this claim?

Exercise 4 Write Cauchy’s Claim M with modern terminology and quantifiers.

You may have noticed in the last exercise that the maximum element value will be important,
and so we will give it a modern name. Define mesh (P), the mesh of a partition P, to be its
maximum element value. For example, mesh (P) = 1 for the partition P in Exercise 2.
In order to prove his claim, Cauchy takes up the idea of partitioning each subinterval (xk−1, xk)

and considering the corresponding sum S (f,P ′) for the new partition P ′ of [x0, X]. From inside
the first subinterval [x0, x1] he chooses m points

{
x1j
}m
j=1

with

x0 < x11 < x12 < · · · < x1m < x1

and considers the sum

S1 =
(
x11 − x0

)
f (x0) +

(
x12 − x11

)
f
(
x11
)
+
(
x13 − x12

)
f
(
x12
)
+ · · ·+

(
x1 − x1m

)
f
(
x1m
)
. (4)

Cauchy uses some very clever algebra and the Intermediate value Theorem (IVT) with the continuity
of f to show that

S1 = f (c1) (x1 − x0) (5)

for some c1 between x0 and x1. He carries out this process for each subinterval and then adds up
the sums to show that

S (f,P ′) = f (c1) (x1 − x0) + f (c2) (x2 − x1) + · · ·+ f (cn) (X − xn−1)

for ck ∈ (xk−1, xk) chosen according to the IVT.

Exercise 5 Consider a function f (x) on the interval [0, 7], where part of the graph is given below.
Let x0 = 0, x1 = 3, m = 2 where we partition the first subinterval [x0, x1] as shown in the diagram.
(a) Use the figure and a rectangle area argument to estimate the value of c1 for (5) with this

example. Explain from the graph why we can be sure such a c1 exists, even without knowing a
formula for f (x).
(b) Now assume f (x) = 5 − (x− 2)2. Calculate S1 from the formula (4). Then find c1 to one

decimal place using algebra. Label c1 on the diagram and compare with your estimate of c1 in part
(a).
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Next we will read Cauchy’s description of this process of partitioning each subinterval and
deriving a new formula for the sum S.

Excerpt B from Cauchy’s Calcul Infinitésimal

∞∞∞∞∞∞∞∞
To pass from the mode of division that we have just considered, to another in which the numerical

values of the elements of X − x0 are even smaller, it will suffi ce to partition each of the expressions in
(2) into new elements. Then, we should replace, in the second member of equation (3), the product
(x1 − x0) f (x0) by a sum of similar products, for which we can substitute an expression of the form

(x1 − x0)f [x0 + θ0 (x1 − x0)] , (6)

θ0 being a number less than unity. ...
By the same reasoning, we should substitute for the product (x2 − x1) f (x1), a sum of terms which

can be presented under the form

(x2 − x1)f [x1 + θ1 (x2 − x1)] ,

θ1 again denoting a number less than unity.
By continuing in this manner, we will finally conclude that, in the new mode of division, the value of

S will be of the form

S = (x1 − x0)f [x0 + θ0 (x1 − x0)] (7)

+(x2 − x1)f [x1 + θ1 (x2 − x1)] + · · ·
+(X − xn−1)f [xn−1 + θn−1 (X − xn−1)] .

∞∞∞∞∞∞∞∞
In modern terminology, we define a refinement of partition to describe what Cauchy calls

the new mode of division in which we partition each of the expressions in (2) into new elements. If
we let P = {x0, x1, x2, . . . , xn−1, X} be the original partition and let P ′ be the refinement, P ′ will
include X and all the xk plus some additional values between x0 and X. For example, a refinement
of the partition P = {0, 1/2, 3/2, 2} in Exercise 2 is P ′ = {0, 1/3, 1/2, 7/8, 1, 3/2, 2} .
If we let P = {x0, x1, x2, . . . , xn−1, X} be Cauchy’s original partition and let P ′ be a refinement,

then in modern terminology the sum in (3) is S (f,P) and the sum in (7) is S (f,P ′) .

5



2.1 Comparing S (f,P) and S (f,P ′) for refinement P ′.
Let’s reflect briefly on what Cauchy cleverly created with his expression (7) for the sum S (f,P ′)
with refined partition P ′. He now has

S (f,P) = (x1 − x0) f (x0) + (x2 − x1) f (x1) + · · ·+ (X − xn−1) f (xn−1) and

S (f,P ′) = (x1 − x0)f [x0 + θ0 (x1 − x0)] + · · ·+ (X − xn−1)f [xn−1 + θn−1 (X − xn−1)]

which are both expressions in terms of the original partition P values x0, x1, . . . , xn−1, X. Then he
can work more easily with the difference S (f,P)−S (f,P ′) , which is allegedly tiny, in his proof of
Claim M. Let’s see how he does it.

Excerpt C from Cauchy’s Calcul Infinitésimal

∞∞∞∞∞∞∞∞

If in this last equation [(7)] we let

f [x0 + θ0 (x1 − x0)] = f (x0)± ε0, (8)

f [x1 + θ1 (x2 − x1)] = f (x1)± ε1,
.........

f [xn−1 + θn−1 (X − xn−1)] = f (xn−1)± εn−1

we will derive

S = (x1 − x0) [f (x0)± ε0] (9)

+(x2 − x1) [f (x1)± ε1] + · · ·
+(X − xn−1) [f (xn−1)± εn−1] ;

then, by developing products,

S = (x1 − x0) f (x0) + (x2 − x1) f (x1) + · · ·+ (X − xn−1) f (xn−1) (10)

±ε0(x1 − x0)± ε1(x2 − x1)± · · · ± εn−1(X − xn−1) .

Add that, if the elements x1− x0, x2− x1, , . . . , X − xn−1 have very small numerical values, each of
the quantities ±ε0,±ε1, . . . ,±εn−1 will differ very little from zero; and as a result, it will be the same
for the sum

±ε0(x1 − x0)± ε1(x2 − x1)± · · · ± εn−1(X − xn−1) ,
which is equivalent to the product of X−x0 by an average between these various quantities. This granted,
it follows from equations (3) and (10), when compared to each other, that we will not significantly alter
the calculated value of S for a mode of division in which the elements of the difference X − x0 have
very small numerical values, if we pass to a second mode in which each of these elements are found
subdivided into several others.

∞∞∞∞∞∞∞∞
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Notice that Cauchy is not yet comparing the sums S (f,P) , S (f,Q) for two arbitrary partitions
P,Q with small mesh. For now he is working only with refinements. Let’s rewrite what Cauchy
actually proved in modern terminology with quantifiers as a lemma.

Lemma 6 Suppose f is continuous on [a, b] . For any ε > 0, we can find d > 0 such that if
mesh (P) < d and P ′ is a refinement of P, then |S (f,P)− S (f,P ′)| < ε.

Exercise 7 A key to Cauchy’s proof is his claim that “each of the quantities ±ε0,±ε1, . . . ,±εn−1
will differ very little from zero”. What property of f allows him to say this?

Exercise 8 Use Cauchy’s ideas to give a modern proof of Lemma 6.

2.2 Comparing S (f,P1) and S (f,P2), and defining the definite integral
Cauchy is now ready to consider two “modes of division of the difference X − x0, in each of which
the elements of this difference have very small numerical values.”That is, he wants to compare the
sums S (f,P1) , S (f,P2) for two arbitrary partitions P1,P2 with small mesh.

Excerpt D from Cauchy’s Calcul Infinitésimal

∞∞∞∞∞∞∞∞

We can compare these two modes to a third, chosen so that each element, whether from the first
or second mode, is found formed by the union of the various elements of the third. For this condition
to be fulfilled, it will suffi ce that all the values of x interposed in the first two modes between the limits
x0, X are employed in the third, and we will prove that we alter the value of S very little by passing
from the first or from the second mode to the third, and by consequence, in passing from the first to
the second. Therefore, when the elements of the difference X − x0 become infinitely small, the mode
of division will no longer have a perceptible influence on the value of S; and, if we decrease indefinitely
the numerical values of these elements, by increasing their number, the value of S will eventually be
substantially constant, or in other words, it will finally attain a certain limit which will depend uniquely
on the form of the function f (x), and the extreme values x0, X attributed to the variable x. This limit
is what we call a definite integral.

∞∞∞∞∞∞∞∞

Exercise 9 Explain what Cauchy means by “ it will suffi ce that all the values of x interposed in the
first two modes between the limits x0, X are employed in the third”. Illustrate for the example where
P1= {1, 2, 3.5, 5} and P2= {1, 1.7, 2.9, 4.7, 4.8, 5} .

Exercise 10 Suppose we are given a continuous function g on [a, b] and ε = 0.1. Further, suppose
we find the value d from Lemma 6 for ε/2, and two partitions P1,P2 each with mesh less than d.
Use Cauchy’s reasoning and Lemma 6 to prove that

|S (g,P1)− S (g,P2)| ≤ 0.1

7



Now we just need to generalize the previous exercise to finally give a modern equivalent to
Cauchy’s Claim M, that “when the elements of the difference X − x0 become infinitely small, the
mode of division will no longer have a perceptible influence on the value of S”.

Exercise 11 State and prove a modern version of Claim M that generalizes Exercise 10.

After convincing us of Claim M, Cauchy then goes on to define the definite integral
∫ b
a
f as a

limit, but he is not terribly precise about this limit. His basic idea is to choose any sequence of sums
S (f,Pn) with limn→∞mesh (Pn) = 0. Then your theorem from Exercise 11 can be used to show the
sequence {S (f,Pn)} is a Cauchy sequence in R and therefore has a limit, which we define to be the
definite integral

∫ b
a
f . The formal details of this discussion can be explored in the Supplementary

Exercises, Section 3.1.
Many of Cauchy’s ideas will work for finding integrals of functions with discontinuities, but he

uses continuity in a couple crucial spots.

Exercise 12 Reflect on Cauchy’s development of the definite integral for continuous functions.
Where did he use continuity? Which ideas would make sense even for functions with discontinuities?

To illustrate the problems with integrating functions with lots of discontinuities, we now look
at Dirichlet’s function φ and the theorem you proved in Exercise 11.

Theorem M. Suppose g is continuous on [a, b] . For any ε > 0, we can find d > 0 such that if
P1,P2 are partitions with mesh (P1) ,mesh (P2) < d, then |S (f,P1)− S (f,P2)| < ε.

Exercise 13 Prove that your theorem from Exercise 11 is not true for Dirichlet’s function φ.

While we won’t prove it here, the condition in Theorem M turns out to be necessary and
suffi cient for a function f to be integrable. We will see similar ideas developed - with some twists -
by Riemann in the next section.

8



3 Riemann’s Definite Integral

Cauchy’s 1823 development of the definite integral for continuous functions was not extended to non-
continuous functions for another three decades. While Dirichlet and others continued to research
the problem of Fourier series convergence, no one looked hard at the definite integral itself until
1854, when Dirichlet’s student Bernard Riemann took up the issue.
Riemann (1826-1866) was born near Hanover, Germany and studied mathematics at the Uni-

versity of Göttingen and Berlin University with strong influence by C. Gauss and Dirichlet. Despite
his early death from tuberculosis, Riemann made major contributions in geometry, number theory,
and complex analysis, in addition to his work with Fourier series and the definite integral that bears
his name.
Remember from the project introduction that Dirichlet was hoping to extend his Fourier series

convergence proof to the case where there are infinitely many but isolated discontinuities and
infinitely many extrema. This clearly motivated his student Riemann to develop and use a more
general definition of the definite integral, as we shall now see.
All excerpts in this section are from Riemann’s 1854 paper [R].

Riemann Excerpt A

∞∞∞∞∞∞∞∞

Vagueness still prevails in some fundamental points concerning the definite integral. Hence I provide
some preliminaries about the concept of a definite integral and the scope of its validity.
Hence first: What is one to understand by

∫ b
a
f (x) dx ?

In order to establish this, we take a succession of values x1, x2, . . . , xn−1 between a and b arranged
in succession, and denote, for brevity, x1 − a by δ1, x2 − x1 by δ2, . . . , b − xn−1 by δn, and a positive
number less than 1 by ε. Then the value of the sum

S = δ1f (a+ ε1δ1) + δ2f (x1 + ε2δ2) + δ3f (x2 + ε3δ3) + · · ·+ δnf (xn−1 + εnδn) (11)

depends on the selection of the intervals δ and the numbers ε. If this now has the property, that however
the δ’s and ε’s are selected, S approaches a fixed limit A when the δ’s become infinitely small together,
this limiting value is called

∫ b
a
f (x) dx.

If we do not have this property, then
∫ b
a
f (x) dx is undefined. ... if the function f (x) becomes

infinitely large ... then clearly the sum S, no matter what degree of smallness one may prescribe for δ,
can reach an arbitrarily given value. Thus it has no limiting value, and by the above

∫ b
a
f (x) dx would

have no meaning.

∞∞∞∞∞∞∞∞

Observe that Riemann frequently writes ε or δ where he clearly means a set of εk or δk values.
From hereon, we will say that if

∫ b
a
f (x) dx exists according to Riemann’s definition in Excerpt

A, then f is Riemann integrable on [a, b] , and we will write
∫ b
a
f for the definite integral.

Exercise 14 Consider the example with f (x) = 2x3 − 9x2 + 12x + 1, a = 0, b = 3, partition
P = {0, 1, 3} , and ε1 = 1/2, ε2 = 3/4. Make and label a diagram that graphically represents what is
going on with Riemann’s construction of S.

9



Exercise 15 Riemann has read Cauchy’s work on the definite integral. Compare and contrast
Riemann’s definition of the sum S in (11) with Cauchy’s definition of sum S in (3) and Cauchy’s
reworked formulation of S in (7).

We’ve seen that in order to calculate the sum S for Riemann, we need to keep track of the εk
values as well as the partition values xk. For ease of notation, we will name the xk−1 + εkδk values
tags tk = xk−1 + εkδk and call the combined set of xk and tk values a tagged partition, writing
Ṗ = {xk, tk}nk=1 for the tagged partition (with x0 = a, xn = b). Then we can write S

(
f, Ṗ

)
for the

sum S in (11) and call S
(
f, Ṗ

)
a Riemann sum.

Exercise 16 What are the tags for the example in Exercise 14?

Exercise 17 Give a general inequality that relates the tags tk and partition values xk in Riemann’s
definition of

∫ b
a
f .

Exercise 18 Using appropriate quantifiers and modern notation for tagged partitions and mesh,
rewrite Riemann’s definition in Excerpt A for the existence of

∫ b
a
f .

After his definition of
∫ b
a
f, Riemann discusses the case where “the function f (x) becomes

infinitely large”. You will use his ideas in the next exercise to give a modern proof of the following
theorem:

Theorem B. If f (x) is not bounded on [a, b] then f is not Riemann integrable on [a, b] .

Exercise 19 Assume, for the sake of contradiction, that f is unbounded but integrable with A =∫ b
a
f . Since f is integrable, using ε = 1 we can find δ > 0 such that for any tagged partition Ṗ of

[a, b] with mesh
(
Ṗ
)
< δ we have ∣∣∣S (f ; Ṗ)− A∣∣∣ < 1. (12)

(a) Let P be a partition {xk}nk=1 of [a, b] with mesh (P) < δ. Explain why f must be unbounded
on at least one subinterval of [a, b] , say [xj−1, xj] .

Now we will choose tags {tk}nk=1 for P to get a contradiction to (12). Choose tk = xk except
for [xj−1, xj] where f is unbounded. Then choose tj so that

|f (tj)| >
1

xj − xj−1

(
|A|+ 1 +

∣∣∣∣∣∑
k 6=j

f (tk) (xk − xk−1)
∣∣∣∣∣
)

(b) Use part (a) and (12) to obtain a contradiction. The triangle inequality∣∣∣∣∣
n∑
k=1

f (tk) (xk − xk−1)
∣∣∣∣∣ ≥ |f (tj) (xj − xj−1)| −

∣∣∣∣∣∑
k 6=j

f (tk) (xk − xk−1)
∣∣∣∣∣

may be helpful.
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The following exercises are not needed for the flow of Riemann’s discussion, but will sharpen
your skills in working with Riemann sums and Riemann’s definition of the definite integral.

Exercise 20 Use Riemann’s definition to prove the following: Suppose g is Riemann integrable on
[a, b] and c ∈ R. Then cg is Riemann integrable on [a, b].

Exercise 21 Use Riemann’s definition to prove the following: Suppose f, g are Riemann integrable
on [a, b]. Then f + g is Riemann integrable on [a, b].

Exercise 22 Is Dirichlet’s function φ Riemann integrable on [0, 1]? Prove your assertion.

Exercise 23 Define function h (x) = 3 on [0, 1] and h (x) = 4 on (1, 2]. Is h Riemann integrable
on [0, 2]? Prove your assertion.

Exercise 24 Prove that changing the value of f (x) at a finite number of points in [a, b] will not
change whether f is integrable, and will not change the value of

∫ b
a
f when it exists.

Exercise 25 Use Riemann’s definition to prove the following: Suppose f (x) ≥ 0 on [a, b] and f is
Riemann integrable on [a, b]. Then

∫ b
a
f ≥ 0.

After Riemann gave his new definition of the definite integral, he developed an alternate condi-
tion for the existence of

∫ b
a
f . Recall from Excerpt A that the Riemann sum (11) is

S = δ1f (a+ ε1δ1) + δ2f (x1 + ε2δ2) + δ3f (x2 + ε3δ3) + · · ·+ δnf (xn−1 + εnδn) .

Riemann Excerpt B

∞∞∞∞∞∞∞∞

Let us examine now, secondly, the range of validity of the concept, or the questions: In which cases
can a function be integrated, and in which cases can it not?
We suppose that the sum S converges if the δ’s together become infinitely small. We denote by

D1 the greatest fluctuation of the function between a and x1, that is, the difference of its greatest
and smallest values in this interval, by D2 the greatest fluctuation between x1 and x2, . . . , by Dn that
between xn−1 and b. Then

δ1D1 + δ2D2 + · · ·+ δnDn (13)

must become infinitely small when the δ’s do.

∞∞∞∞∞∞∞∞

Exercise 26 Consider the example from Exercise 14 with f (x) = 2x3−9x2+12x+1, a = 0, b = 3,
and partition P = {0, 1, 3} . Calculate D1, D2 and the “fluctuation” (13) for this partition P. Are
the tags relevant for (13)?

Exercise 27 Try to give a brief “big picture”summary of this excerpt.

11



Exercise 28 Since f is not assumed to be continuous in general, we must actually define the Dk a
bit differently than Riemann does. Explain why. Then give a definition of the Dk using set notation.

Note the expression in (13) appears frequently in Riemann’s discussion, and roughly measures
the total fluctuation of f across the entire partition P. We will name this expression Fluc (f,P), a
function of f and P:

Fluc (f,P) = δ1D1 + δ2D2 + · · ·+ δnDn (14)

We saw in Exercise 28 that the tags are not relevant for Fluc (f,P).

Exercise 29 Use quantifiers and Fluc (f,P) to rewrite Riemann’s claim that the fluctuation (13)
“must become infinitely small when the δ’s do”for integrable f .

Exercise 30 Consider the example from Exercise 14 with f (x) = 2x3−9x2+12x+1, a = 0, b = 3.
For fixed ε = 0.1, find a d > 0 such that for any partition P with mesh (P) < d, you can guarantee
that Fluc (f,P) < ε.

Exercise 31 Now give a modern proof of Riemann’s claim that (13) “must become infinitely small
when the δ’s do”for integrable f , using Exercises 28, 29 and 18.

Observe that what Riemann is stating here is an indirect condition for integrability that doesn’t
involve

∫ b
a
f itself: if f is integrable, then for any ε > 0 we can find d > 0 so that for any partition

P with mesh (P) < d we are guaranteed that the total fluctuation of f across P is less than ε. It
turns out this condition is necessary and suffi cient, which we record as a theorem.

Theorem 32 A function f is Riemann integrable on [a, b] if and only if for all ε > 0 there exists
δ > 0 such that if P is a partition of [a, b] with mesh (P) < δ then

Fluc (f,P) < ε (15)

You have shown the necessity of this condition (15) for integrability. The proof of suffi ciency
is a bit technical. The basic idea is much the same as we outlined in Cauchy Section 2.2. We
construct a sequence of partitions with mesh approaching zero and Riemann sums that converge,
and prove, using Theorem 32, that the limit of these Riemann Sums is

∫ b
a
f . The details are given

in the Supplementary Exercises, Section 3.1.
This characterization of integrability is very powerful. In the next two exercises you will use it

to give fairly easy proofs that all continuous and monotone functions are integrable.

Exercise 33 Use Theorem 32 to prove that if f is continuous on [a, b], then
∫ b
a
f exists.

Exercise 34 Use Theorem 32 to prove that if f is monotone on [a, b], then
∫ b
a
f exists.

It may seems obvious that
∫ b
a
f =

∫ c
a
f+
∫ b
c
f for a < c < b, but the technical proof is challenging.

Exercise 35 Use Theorem 32 to prove the following theorem.

12



Split Interval Theorem. Let f : [a, b]→ R and a < c < b. Then f is Riemann integrable over
[a, b] if and only if f is Riemann integrable over both [a, c] and [c, b] . In this case,∫ b

a

f =

∫ c

a

f +

∫ b

c

f

Later in his paper, Riemann constructs a integrable function with infinite discontinuities that
does not satisfy Dirichlet’s Condition 1 (the graph is displayed in the project Introduction). Well
after Riemann’s work, the mathematician Carl Thomae (1840-1921) devised another function with
infinite discontinuities that is easier to show is integrable with the tools we’ve developed so far.
Thomae’s Function. Define T (x) : [0, 1] → R by T (x) = 0 for irrational x , T (0) = 1, and

T (m/n) = 1/n for rational x = m/n where m/n is in reduced form.

Exercise 36 Show that T is continuous at all irrationals and discontinuous at all rationals.

Exercise 37 Use Theorem 32 to prove that T is integrable.

3.1 Appendix: Supplementary exercises on the Fluc (f,P) suffi ciency
condition

We saw in Section 2 that Cauchy defined the definite integral
∫ b
a
f for continuous f in a rather

imprecise way as a limit of sums S (f,P). He also showed that if two partitions P1,P2 had suffi ciently
small mesh, then we could make the difference S (f,P1)− S (f,P2) arbitrarily small.
Riemann also gave a condition for integrability in Theorem 32 using Fluc (f,P) instead of

S (f,P1)−S (f,P2) and in Section 3 we proved the necessity but not the suffi ciency of that condition.
In the exercises below, you will prove the suffi ciency. That is:
If for all ε > 0 there exists d > 0 such that

if P is a partition with mesh (P) < d, then Fluc (f,P) < ε (16)

holds, then f is Riemann integrable on [a, b].

To carry out this proof, a “Fluctuation Refinement Lemma”will be useful:

Fluctuation Refinement Lemma. Suppose f is bounded on [a, b] and that partition P ′ is a
refinement of P. Then

1. Fluc (f,P ′) ≤ Fluc (f,P)

2.
∣∣∣S (f, Ṗ ′)− S (f, Ṗ)∣∣∣ ≤ Fluc (f,P) for any tags of P ′ and P .
A complete proof by induction on the number of additional points in refinement is appropriate

here. For ease of notation, the following exercise is for the case where P ′ adds just one point to P
between a and x1.

13



Exercise 38 Prove this lemma for the case P = {a, x1, x2, . . . , xn−1, xn} and
P ′ = {a, x′, x1, x2, . . . , xn−1, xn}.

Now we don’t yet have a candidate for
∫ b
a
f, so we will construct one using a Cauchy sequence

of Riemann sums. To do this, first note that by (16) we can construct, for each n ∈ N, a dn > 0 so
that:

1. dn ≤ dn−1 , and

2. for any partition P with mesh (P) < dn we have Fluc (f,P) < 1/n

Next define a sequence of tagged partitions
{
Ṗn
}
by

1. Pn+1 is a refinement of Pn , and

2. mesh
(
Ṗn+1

)
≤ mesh

(
Ṗn
)
< dn.

We will see that any tags will do for the Ṗn.

Exercise 39 Prove that
{
S
(
f, Ṗn

)}
is a Cauchy sequence in R.

Now let A denote limn→∞ S
(
f, Ṗn

)
, the limit for this Cauchy sequence of real numbers. This

is our candidate for the integral of f ! We will show this using the properties of Fluc (f,P) .
If Q̇ is an arbitrary tagged partition with small mesh, we need to show its Riemann sum S

(
f, Q̇

)
is close to A. To do this, we will show S

(
f, Q̇

)
is close to some S

(
f, ṖK

)
where K is large enough

to guarantee that
∣∣∣S (f, ṖK)− A∣∣∣ is tiny. The following exercises will be useful.

Exercise 40 Let Q̇ be a tagged partition. For K ∈ N and any tags of partition PK , choose Ṗ∗ to
be a refinement of both Q̇ and ṖK with any tags. Then show that∣∣∣S (f, Q̇)− A∣∣∣ ≤ ∣∣∣S (f, Q̇)− S (f, Ṗ∗)∣∣∣+ ∣∣∣S (f, Ṗ∗)− S (f, ṖK)∣∣∣+ ∣∣∣S (f, ṖK)− A∣∣∣ .
Exercise 41 Fix ε > 0. Choose K > 1/3ε. Choose d appropriately and use the Fluctuation Refine-
ment Lemma and above exercises to show that∣∣∣S (f, Q̇)− A∣∣∣ < ε.

Exercise 42 Use the exercises above to prove that if f satisfies (16) then f is integrable on [a, b].
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4 Conclusion

Riemann’s definite integral raised new questions about the nature of
∫ b
a
f as well as answering

some old ones. On the one hand, he showed that you could integrate a function that has an infinite
number of discontinuities densely packed into a bounded interval. This was mind-boggling for many
mathematicians of his era! His necessary and suffi cient conditions give new insight into how much
a function can fluctuate at discontinuities and still remain integrable.
On the other hand, new questions about rules for handling integrals and infinite series occur

naturally from his work. For example, can you evaluate his function legitimately by interchanging
the integration and infinite sum? That is, can you integrate term by term:

∞∑
n=1

∫ b

a

E (nx)

n2
dx

???
=

∫ b

a

∞∑
n=1

E (nx)

n2
dx

This general question does not have an easy answer, and mathematicians in the 1800’s had ex-
amples where term by term integration works fine, and other examples where it does not. The
mathematician Henri Lebesgue (1875-1941) became convinced that an entirely new type integral
was needed, and developed his own theory of integration, largely developed in his 1902 thesis. The
Lebesgue integral has become very important in many fields of mathematics and statistics, and is
frequently studied in graduate school.
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5 Instructor Notes

This project is designed to introduce the definite integral with some historical background for a
course in Analysis. The project starts with Cauchy’s definite integral. Cauchy gives a more detailed
development than Riemann, even if some aspects are specific to continuous functions. The first few
Cauchy excerpts ease students into the ideas and notation of partitions, mesh, and refinements. It
may interest students to see that Riemann’s definition for a Riemann sum is identical to Cauchy’s
reworked formulation (7).

Project Content Goals

1. Learn the basics of Cauchy’s definite integral, including the concepts of partition, mesh,
refinements and (Riemann) sums.

2. Learn the basics of Riemann’s definite integral definition.

3. Develop elementary properties of the Riemann integral.

4. Learn about and use Riemann’s “fluctuation”condition for integrability.

Preparation of Students

Students have done a rigorous study of limits, continuity and derivatives for real-valued functions.

Preparation for the Instructor

This is roughly a two week project under the following methodology (basically David Pengelley’s
“A, B, C”method described on his website):

1. Students do some advanced reading and light preparatory exercises before each class. This
should be counted as part of the project grade to ensure students take it seriously. Be careful
not to get carried away with the exercises or your grading load will get out of hand! Some
instructor have students write questions or summaries based on the reading.

2. Class time is largely dedicated to students working in groups on the project - reading the
material and working exercises. As they work through the project, the instructor circulates
through the groups asking questions and giving hints or explanations as needed. Occasional
student presentations may be appropriate. Occasional full class guided discussions may be
appropriate, particularly for the beginning and end of class, and for diffi cult sections of the
project. I have found that a “participation”grade suffi ces for this component of the student
work. Some instructors collect the work. If a student misses class, I have them write up
solutions to the exercises they missed. This is usually a good incentive not to miss class!

3. Some exercises are assigned for students to do and write up outside of class. Careful grading
of these exercises is very useful, both to students and faculty. The time spent grading can
replace time an instructor might otherwise spend preparing for a lecture.

If time does not permit a full implementation with this methodology, instructors can use more
class time for guided discussion and less group work for diffi cult parts of the project.
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Section 1 Introduction

This material is included mostly to motivate the need for a rigorous treatment of the definite inte-
gral, especially for integrands with discontinuities. Analysis students have most likely encountered
Dirichlet’s function φ while studying continuity, but may not be aware of Dirichlet’s motivations in
creating this nowhere-continuous function.

Section 2 Cauchy

Cauchy’s development of the integral with “new modes of division”(partition refinements) is quite
useful for developing techniques for working with the Riemann integral, especially since Riemann
does not spend much time developing properties of the integral.
Cauchy’s argument in Excerpt C uses the uniform continuity of integrand f ; this will be needed

again in a Section 3 exercise showing that continuous functions are Riemann integrable.

Section 3 Riemann

Since Riemann does not spend much time developing properties of the integral, some elementary
properties are inserted between Excerpts A and B. While these are not essential for reading the rest
of Riemann’s work, instructors may sample the set for classroom examples or homework problems.
A detailed exploration of Riemann’s “fluctuation”expression (13) is important. He explicitly

uses this fluctuation in a necessary condition for a function being integrable. He doesn’t show the
suffi ciency (which is diffi cult and left to Supplementary Exercises Section 3.1), but uses it later in his
paper. Some modern authors develop oscillation expressions very much like Riemann’s fluctuation
expression. It is interesting to note Riemann uses the maximum of various expressions where a
modern treatment requires a supremum.
Riemann’s work through Excerpt B, summarized in Theorem 32, can be used to develop a great

number of integration properties, some of which are given in the exercises. Thomae’s function is
given as a relatively simple example of an integrable function despite being discontinuous on the
rationals.

LaTeX code of this entire PSP is available from the author by request to facilitate preparation
of ‘in-class task sheets’based on tasks included in the project. The PSP itself can also be modified
by instructors as desired to better suit their goals for the course.
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