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An Introduction to a Rigorous Definition of Derivative

David Ruch∗

February 11, 2021

1 Introduction

The concept of a derivative evolved over a great deal of time, originally driven by problems in physics
and geometry. Mathematicians found methods that worked, but justifications were not always very
convincing by modern standards. A co-inventor of calculus, Isaac Newton (1642–1727), is generally
regarded as one of the most influential scientists in human history. Newton used the term fluxion for
a special case of what we now call a derivative. He developed most of his methods around 1665, but
did not publish them for many years. Newton’s later writings about his fluxion methods influenced
many mathematicians.

Newton and fluxions. The modern definition of a function had not yet been created when
Newton developed his fluxion theory. The context for Newton’s methods of fluxions was a particle
“flowing” or tracing out a curve in the x-y plane. The x and y coordinates of the moving particle
are fluents or flowing quantities. The horizontal and vertical velocities were the fluxions of x and
y, respectively, associated with the flux of time. In the excerpt below from [Newton, 1704], Newton
considered the curve y = xn and wanted to find the fluxion of y.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let the quantity x flow uniformly, and let it be proposed to find the fluxion of xn.
In the same time that the quantity x, by flowing, becomes x + o, the quantity xn will
become (x+ o)n , that is, xn + noxn−1 +

n2 − n

2
ooxn−2 + &c.1And the augments o and

noxn−1 +
n2 − n

2
ooxn−2 +&c. are to one another as 1 and nxn−1 +

n2 − n

2
oxn−2 +&c.

Now let these augments vanish, and their ultimate ratio will be 1to nxn−1.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

∗Department of Mathematical and Computer Sciences, Metropolitan State University of Denver, Denver, CO;
ruch@msudenver.edu

1In Newton’s day, mathematicians frequently wrote out a variable squared as “oo” instead of “o2”, either for emphasis
or for typeseting reasons.
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Task 1 Write out the algebraic details of Newton’s fluxion method for n = 3 using modern algebraic
notation to find the fluxion of x3. Sketch the curve y = x3 and label the key quantities for
Newton’s fluxion method.

Task 2 Convert Newton’s argument that (xn)′ = nxn−1 to one with modern limit notation for the case
where n is a positive integer. You may use modern limit laws.

It is important to remember that when Newton developed his fluxion method, there was no theory
of mathematical limits. Critics of Newton’s fluxion method were not happy with having augment o be
a seemingly nonzero value at the beginning of the method, and then having the augment o “vanish”
at the end of the argument. Indeed, the philosopher and theologian George Berkeley (1685–1753)
wrote a 1734 book attacking Newton’s methods [Berkeley, 1734]. Berkeley rejected:

“...the fallacious way of proceeding to a certain Point on the Supposition of an Increment,
and then at once shifting your Supposition to that of no Increment ... Since if this second
Supposition had been made before the common Division by o, all had vanished at once, and
you must have got nothing by your Supposition. Whereas by this Artifice of first dividing,
and then changing your Supposition, you retain 1 and nxn−1. But, notwithstanding all this
address to cover it, the fallacy is still the same. And what are these Fluxions? The Velocities
of evanescent Increments? And what are these same evanescent Increments? They are neither
finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the
ghosts of departed quantities?”

Task 3 What do you think of Berkeley’s criticisms? Is the value of o in Newton’s text both an increment
and “not an increment”? How might Newton have responded?

Some historians argue that Berkeley was attacking calculus itself, while others argue that he
was instead claiming that calculus was no more logically rigorous than theology. Certainly, many a
Calculus I student has had the same feeling that Berkeley had about the limiting process! As we
shall see in Section 2, by the early 1800s the mathematical community was closer to putting limits
and derivatives on a firmer mathematical foundation.

L’Hôpital on the differential of a product. While Newton was working on his fluxion
methods, Gottfried Leibniz (1646–1716) was independently developing calculus during the same
time period. Many of Leibniz’s ideas appeared in the book Analyse des infinitment petits [L’Hôpital,
1696] , written by Guillaume L’Hôpital (1661–1701). A key idea for Leibniz was the differential.
Here is an excerpt from L’Hôpital’s book.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Definition II. The infinitely small part whereby a variable quantity is continually increased or
decreased, is called the differential of that quantity.
...
Proposition II. To find the differentials of the product of several quantities multiplied.
The differential of xy is y dx + x dy: for y becomes y + dy, when x becomes x + dx; and
therefore xy becomes xy+ y dx+ x dy+ dx dy. Which is the product of x+ dx into y+ dy,

and the differential thereof will be ydx + x dy + dx dy, that is, y dx + x dy : because dx dy

is a quantity infinitely small, in respect of the other terms y dx and x dy: For if, for example,
you divide y dx and dx dy by dx, we shall have the quotients y and dy, the latter of which is
infinitely less than the former.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 4 Use L’Hôpital’s definition of a differential, some algebra and your own words to explain why
the differential of xy is ydx+ x dy + dx dy.

Task 5 What do you think of L’Hôpital’s argument that he could eventually ignore dx dy because it is
“a quantity infinitely small, in respect of the other terms y dx and x dy” ?

A number of mathematicians were stung by Berkeley’s criticisms and attempted to define the
derivative in a more logically satisfying manner. One of the leaders of this movement was Joseph-
Louis Lagrange (1736–1813). While Lagrange was not entirely successful in his efforts, his ideas were
influential, particularly with Augustin-Louis Cauchy (1789–1857), whom he knew in Paris. Cauchy
developed a theory of limits that included the derivative and the definite integral in his textbook
Calcul Infinitésimal [Cauchy, 1823], which we will read from in Section 2 of this project. After
reading Cauchy in Section 2, you will have an opportunity to write and prove a modern version of
L’Hôpital’s Proposition II, using L’Hôpital’s ideas.

2 Cauchy’s Definition of Derivative

As a prelude to reading about Cauchy’s definition of derivative, it is worthwhile to read an excerpt
on limits from his Calcul Infinitésimal.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

When the values successively attributed to the same variable approach a fixed value indefi-
nitely, in such a manner as to end up differing from it by as little as we wish, this last value
is called the limit of all the others.
…
We obviously have, for very small numerical values2 of α,

sinα

sinα
>

sinα

α
>

sinα

tanα
.

By consequence, the ratio sinα
α , always contained between the two quantities sinα

sinα = 1,

and
sinα
tanα = cosα, the first of which serves to limit the second, will itself have unity for a limit.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 6 Use the following diagram with some basic trigonometry to justify the inequality above. Recall
that the area of a sector with radius 1 and angle α is α/2.

Task 7 Comment on Cauchy’s definition of limit and his proof that limα→0 sinα/α = 1. What adjust-
ments, if any, are needed to conform to the modern definition of limit?

Here is Cauchy on the derivative. In this passage from [Cauchy, 1823], when Cauchy used the
term “between” two values, he meant to include the two values.

2Cauchy means the magnitude of α here. Cauchy was working before the creation of absolute value by mathemati-
cians.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

When the function y = f (x) remains continuous between two given limits of the variable x,

and that we assign to this variable a value contained between the two limits in question, an
infinitely small increment attributed to the variable produces an infinitely small increment of
the function itself. By consequence, if we then set ∆x = i, the two terms of the ratio of
differences

∆y

∆x
=

f (x+ i)− f (x)

i
(1)

will be infinitely small quantities. But, while these two terms indefinitely and simultaneously
will approach the limit of zero, the ratio itself may be able to converge toward another
limit, either positive or negative. This limit, when it exists, has a determined value for each
particular value of x; but, it varies along with x. Thus, for example, if we take f (x) = xm,

m designating an integer number, the ratio between the infinitely small differences will be

(x+ i)m − xm

i
= mxm−1 +

m (m− 1)

1 · 2
xm−2i+ · · ·+ im−1,

and it will have for a limit the quantity mxm−1, that is to say, a new function of the variable
x. It will be the same in general, only the form of the new function, which will serve as the
limit of the ratio f(x+i)−f(x)

i , will depend on the form of the proposed function y = f (x) .

To indicate this dependence, we give to the new function the name of derivative function,
and we represent it, with the help of an accent mark, by the notation

y′ or f ′ (x) .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let’s introduce some modern notation and terminology for Cauchy’s definition. First assume,
like Cauchy, that f : [a, b] → R is continuous on I = [a, b]. If f ′ exists at some x, we say f is
differentiable at x. If f is differentiable at each x in an interval I, we say f is differentiable on I.

Task 8 We have seen two explanations of the derivative rule (xn)′ = nxn−1.

(a) Compare and contrast the arguments of Cauchy and Newton.
(b) Rewrite Cauchy’s argument in your own words with modern terminology, using modern

properties of limits.

After the excerpt above, Cauchy gave some derivative examples, including:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

For y = sinx,
∆y

∆x
=

sin 1
2 i

1
2 i

cos

(
x+

1

2
i

)
, y′ = cosx (2)

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
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Task 9 (a) Use a trigonometric identity to justify Cauchy’s expression for ∆y

∆x
in (2).

(b) Use Cauchy’s expression for ∆y

∆x
, limit properties and the continuity of the cosine function

to show that y′ = cosx.

Cauchy defined the derivative f ′ (x) when the limit limi→0
f(x+i)−f(x)

i exists. Implicitly this
means f ′ (c) may not exist for some c values.

Task 10 Define f (x) = |x|.

(a) Show that f ′ (x) is 1 for x > 0, and is −1 for x < 0.
(b) Show that f ′ (0) does not exist.

The subtleties of differentiability were not universally understood in the mathematics community
for some time after Cauchy. A fine example of this comes from the correspondence between the
mathematicians Gaston Darboux (1842–1917)and Guillaume Jules Hoüel (1823–1886) during the
1870s.3 Hoüel was writing a calculus textbook and asked for Darboux’s feedback. Darboux was
unhappy with Hoüel’s proof rigor, and he introduced the function M (x) = x2 sin (1/x) near x = 0 to
make his point. This strange function, termed a “monster function” by Henri Poincaré (1894–1912),
appeared again in an 1884 correspondence between mathematicians Giuseppe Peano (1858–1932)
and Camille Jordan (1838–1932) regarding rigor in a proof of the Mean Value Theorem. Clearly an
analysis of this function is worthwhile!

Task 11 Make a sketch of the graph of Darboux’s function M near zero, using technology as needed,
and use it to help answer the following.

(a) Identify the x-intercepts for the graph of y = M (x).
(b) Identify the x values for the points where the graph of y = M (x) coincides with the graph

of y = x2 or the graph of y = −x2.

(c) Explain the relationship between the graphs of y = M (x), y = x2 and y = −x2.

Task 12 Consider Darboux’s function M.

(a) Find a value for M (0) so that M is continuous at 0. Prove your assertion.
(b) Find a value for M ′ (0) so that M is differentiable at 0. Prove your assertion with the

definition of derivative.

3A more detailed discussion of the correspondence is given in the PSP Rigorous Debates over Debatable Rigor:
Monster Functions in Introductory Analysis [Barnett, 2016].
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Task 13 Consider Darboux’s function M.

(a) Use standard calculus rules to find M ′ (x) for x ̸= 0.

(b) Is M ′ continuous at x = 0? Prove your assertion.
Hint: Consider M ′ at the intercepts of M.

After trading letters with Hoüel, Darboux wrote him the following in 1875:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

…You have not addressed the nature of my objection. …I have told you that, according to
(your) rule of composite functions, we obtain

dy

dx
= 2x sin

1

x
− cos

1

x
,

an expression that is indeterminate for x = 0, even though, according to first principals, the
derivative is perfectly determined, it is zero. For your methods to be sound, you will need to
explain very clearly what part of your reasoning is deficient in this particular case. Without
that your proofs are not proof.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 14 How would you advise Hoüel to respond, based on your work above?

Cauchy’s definition of derivative allows mathematicians to carefully analyze strange function
behavior, as we have seen with Darboux’s function M. It can also be used effectively to rigorously
prove important derivative rules such as the product rule.

Task 15 Suppose that f, g : [a, b] → R and both f and g are differentiable on [a, b] . Using L’Hôpital’s
proof ideas from his Proposition II (page 3), we can construct a modern proof that f · g is
differentiable on [a, b]. Viewing f and g as functions of t, we can associate L’Hôpital’s x with
f (t) and his y with g (t) . Using a small, finite increment ∆t in place of L’Hôpital’s “infinitely
small” increase, we can associate L’Hôpital’s dx with ∆f defined by ∆f = f (t+∆t) − f (t) .

Similarly associate L’Hôpital’s dy with ∆g defined by ∆g = g (t+∆t)− g (t).
(a) Note that f (t+∆t) = f (t) + ∆f and write a similar expression for g.
(b) Use part (a) to show that

f (t+∆t) · g (t+∆t)− f (t) · g (t) = g (t)∆f + f (t)∆g +∆f ·∆g.

(c) Use part (b) and modern limit properties to show that

lim
∆t→0

f (t+∆t) · g (t+∆t)− f (t) · g (t)
∆t

= g (t) f ′ (t) + f (t) g′ (t) .

Hint: You will need to use the fact that differentiable functions are necessarily continuous, an
important property that is proven in most first-year calculus textbooks.
(d) Summarize your results from parts (a)–(c).
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3 Conclusion

Mathematicians figured out how to define and apply the derivative well before they put the concept
on a firm mathematical foundation. After giving his definition of the derivative, Cauchy went on
to prove many theorems with it, including the all important Mean Value Theorem. This result is
fundamental in proving many results from an introductory calculus course. Unfortunately, Cauchy
and other great mathematicians occasionally fell into subtle traps while trying to use the definition
of derivative. From a modern point of view, Cauchy’s proof of the Mean Value Theorem appears to
be flawed due to these subtleties, and a completely correct proof was not published for several more
decades.
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4 Notes to Instructors

PSP Content: Topics and Goals
This project is designed to introduce the derivative with some historical background for a course in
Analysis. More specifically, its content goals are to help students to:

1. Learn the basics of Newton’s fluxion method and Berkeley’s criticisms.

2. Learn the basics of the differential method with the product rule.

3. Develop a modern derivative definition based on Cauchy’s definition.

4. Develop facility with the modern definition of derivative by using it to rigorously find derivatives
of some elementary functions, and to prove the necessity of continuity for differentiability.

5. Analyze subtleties of the derivative definition using Darboux’s monster function
M (x) = x2 sin (1/x).

Student Prerequisites
This project assumes students have done a rigorous study of limits and continuity for real-valued
functions.

PSP Design, and Task Commentary
Section 1 Introduction

This material is included mostly to motivate the need for a rigorous definition of the derivative,
with some historical perspective. Newton’s example of (xm)′ is also discussed by Cauchy later in the
project. L’Hôpital’s argument for the Product Rule with differentials is used to motivate a modern
proof of the Product Rule for derivatives in Task 2 near the end of the project.

Section 2 Cauchy

Cauchy is generally credited with being among the first to define and use the derivative in a near
modern fashion. His definitions of limit and lim sinα/α are given so that students have some back-
ground on his writing style and mathematical language. This latter limit reappears later in the
project, in finding (sinx)′ = cosx.

Instructors may sample the task set after Cauchy’s definition for classroom examples or homework
problems. Most investigate nice properties, and then subtle behavior is investigated using Darboux’s
monster function M (x) = x2 sin (1/x). More detailed exploration is given in Janet Barnett’s PSP
Rigorous Debates over Debatable Rigor: Monster Functions in Introductory Analysis. This mon-
ster function M appears in nearly every Introductory Analysis text, but its interesting historical
significance is rarely mentioned.
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Suggestions for Classroom Implementation
This is roughly a one week project under the following methodology (basically David Pengelley’s “A,
B, C” method described on his website):

1. Students do some advanced reading and light preparatory exercises before each class. This
should be counted as part of the project grade to ensure students take it seriously. Be careful
not to get carried away with the exercises or your grading load will get out of hand! Some
instructor have students write questions or summaries based on the reading.

2. Class time is largely dedicated to students working in groups on the project - reading the
material and working exercises. As they work through the project, the instructor circulates
through the groups asking questions and giving hints or explanations as needed. Occasional
student presentations may be appropriate. Occasional full class guided discussions may be
appropriate, particularly for the beginning and end of class, and for difficult sections of the
project. I have found that a “participation” grade suffices for this component of the student
work. Some instructors collect the work. If a student misses class, I have them write up
solutions to the exercises they missed. This is usually a good incentive not to miss class!

3. Some exercises are assigned for students to do and write up outside of class. Careful grading of
these exercises is very useful, both to students and faculty. The time spent grading can replace
time an instructor might otherwise spend preparing for a lecture.

If time does not permit a full implementation with this methodology, instructors can use more
class time for guided discussion and less group work for difficult parts of the project.

LATEXcode of this entire PSP is available from the author by request to facilitate preparation of
‘in-class task sheets’ based on tasks included in the project. The PSP itself can also be modified by
instructors as desired to better suit their goals for the course.

Connections to other Primary Source Projects
Other projects for real analysis written by the author of this PSP (Dave Ruch) are listed below.
“Mini-PSPs,” designed to be completed in 1–2 class periods, are designated with an asterisk (*).

• Investigations into Bolzano’s Bounded Set Theorem
https://digitalcommons.ursinus.edu/triumphs_analysis/14/

• Bolzano on Continuity and the Intermediate Value Theorem
https://digitalcommons.ursinus.edu/triumphs_analysis/9/

• Investigations Into d’Alembert’s Definition of Limit ∗
https://digitalcommons.ursinus.edu/triumphs_analysis/8

• The Mean Value Theorem
https://digitalcommons.ursinus.edu/triumphs_analysis/5/

• The Definite Integrals of Cauchy and Riemann
https://digitalcommons.ursinus.edu/triumphs_analysis/11/

• Euler’s Rediscovery of e ∗

https://digitalcommons.ursinus.edu/triumphs_analysis/3/
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• Abel and Cauchy on a Rigorous Approach to Infinite Series
https://digitalcommons.ursinus.edu/triumphs_analysis/4/

Additional PSPs that are suitable for use in introductory real analysis courses include the following;
the PSP author name for each is listed parenthetically.

• Why be so Critical? 19th Century Mathematics and the Origins of Analysis* (Janet Barnett)
https://digitalcommons.ursinus.edu/triumphs_analysis/1/

• Topology from Analysis* (Nick Scoville)
Also suitable for use in a course on topology.
https://digitalcommons.ursinus.edu/triumphs_topology/1/

• Rigorous Debates over Debatable Rigor: Monster Functions in Real Analysis (Janet Barnett)
https://digitalcommons.ursinus.edu/triumphs_analysis/10/

• The Cantor set before Cantor* (Nick Scoville)
Also suitable for use in a course on topology.
https://digitalcommons.ursinus.edu/triumphs_topology/2/

• Henri Lebesgue and the Development of the Integral Concept* (Janet Barnett)
https://digitalcommons.ursinus.edu/triumphs_analysis/2/
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