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Simulations of the dipole-dipole interaction between two spatially separated
groups of Rydberg atoms

Thomas J. Carroll, Christopher Daniel, Leah Hoover, and Timothy Sidie
Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA

Michael W. Noel
Physics Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA

�Received 31 July 2009; published 25 November 2009�

The dipole-dipole interaction among ultracold Rydberg atoms is simulated. We examine a general interaction
scheme in which two atoms excited to the x and x� states are converted to y and y� states via a Förster
resonance. The atoms are arranged in two spatially separated groups, each consisting of only one species of
atom. We monitor the state mixing by recording the fraction of atoms excited to the y� state as the distance
between the two groups is varied. With zero detuning a many-body effect that relies on always resonant
interactions causes the state mixing to have a finite range. When the detuning is greater than zero, another
many-body effect causes a peak in the state mixing when the two groups of atoms are some distance away from
each other. To obtain these results it is necessary to include multiple atoms and solve the full many-body wave
function. These simulation results are supported by recent experimental evidence. These many-body effects,
combined with appropriate spatial arrangement of the atoms, could be useful in controlling the energy ex-
change among the atoms.

DOI: 10.1103/PhysRevA.80.052712 PACS number�s�: 34.20.Cf, 32.80.Ee, 03.67.Lx, 37.10.Gh

I. INTRODUCTION

Mesoscopic ensembles of cold Rydberg atoms provide an
ideal laboratory for exploring quantum dynamics. In the
presence of a Förster resonance �1�, the dipole-dipole inter-
action allows for resonant energy exchange among the Ryd-
berg atoms. Due to the large dipole moments of Rydberg
atoms, the interactions are long-range and take place on ex-
perimentally reasonable time scales. The interactions can be
controlled in a number of ways, including manipulating the
spatial arrangement of the atoms �2–4�, tuning a static elec-
tric field to shift the states of the atoms into resonance, and
tailoring the mixture of Rydberg states �5,6�. The potential
for precision control has led to a great deal of interest in
using these systems for digital and analog quantum
computing �7–13�.

In order to realize the potential of these systems, it is
necessary to understand their complex many-body interac-
tions. The energy exchange does not occur through a pair-
wise sum of binary interactions but rather through the simul-
taneous interactions among many atoms. These many-body
effects were first revealed through a broadening of the reso-
nant energy exchange, which could not be accounted for by
simply considering two-body interactions �14–16�. Many-
body effects have recently been shown to play an important
role in breaking dipole blockades �17�.

Due to the potentially large number of atoms involved,
simulation has proven to be a fruitful avenue for understand-
ing these systems �4,18–21�. Previous work has shown that it
is necessary to include the full many-body wave function for
as many as 9 atoms in the calculations to reproduce experi-
mental features �4,19,20,22�.

We simulate the dipole-dipole interaction among Rydberg
atoms for the four state system shown in Fig. 1�a�. By tuning
the electric field, the states can be shifted by the Stark effect

such that the energy gap Ex−Ey and the energy gap Ey�
−Ex� are made equal. This field-tuned resonant interaction is

x + x� → y + y�, �1�

where x→y with dipole moment � and x�→y� with dipole
moment �. There are also the always resonant interactions

x + y → y + x ,

x� + y� → y� + x�. �2�

It has been suggested that the always resonant interactions
contribute to an enhancement of the resonant energy ex-
change �14,15�. A system of this type has been extensively
studied in rubidium �14,16�, where

y = 24p1/2,

x = 25s1/2,

x� = 33s1/2,

y� = 34p3/2. �3�

In a recent report �2�, van Ditzhuijzen et al. observe the
spatially resolved dipole-dipole interaction between two
groups of Rydberg atoms with the energy levels

y = 49p3/2,

x = 49s1/2,

x� = 41d3/2,
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y� = 42p1/2. �4�

To facilitate comparison to experiment, many of the simula-
tions in this report are performed with parameters similar to
the experimental values in Ref. �2�.

The simulation is performed by diagonalization of the full

dipole-dipole Hamiltonian matrix Ĥ. The Hamiltonian in
atomic units is given by

Ĥ = �
m�n

�̂xy
m �̂x�y�

n ��

Rmn
3 + �̂xy

m �̂yx
n �2

Rmn
3 + �̂x�y�

m
�̂y�x�

n �2

Rmn
3 + �

m=n

�̂yy�
m

� ,

�5�

where m and n refer to individual atoms within each state
and the sum is over all atoms in each state. The operators �̂ab
take an individual atom from state a to state b, where a and
b are the states of Fig. 1�a�. We ignore any orientation or spin
effects and approximate the dipole-dipole interaction cou-
pling by �� /Rmn

3 , where Rmn is the distance between the two
atoms �this is similar to the Hamiltonian given in Ref. �20��.
The first term in Eq. �5� is the field-tuned interaction and the
next two terms are always resonant interactions. The final
term gives the diagonal elements with a detuning, or energy
defect, �= �Ex+Ex��− �Ey +Ey��. While it has been found that
dipole-dipole interactions can lead to consequential atomic
motion �23,24�, we assume that we are in the regime of a
“frozen gas.” We therefore assume that the atoms are station-
ary on the time scales and densities studied. We also simplify
the calculation by treating the dipole-dipole interaction as a
process that occurs after the excitation of the atoms to Ryd-
berg states, with no overlap in time.

The possible states ��i� of the system are enumerated in
the xx�yy� basis. The initial state is assumed to be entirely
composed of x and x� atoms and all excited states accessible
from this initial state are included. For Monte Carlo simula-
tions, the atoms are randomly placed in two groups consist-
ing of exclusively x or x� atoms and separated by a distance
d as shown in Fig. 1�b�. The results are typically averaged
over hundreds of runs. The feasibility of the Monte Carlo
simulations is limited by how quickly the number of states
scales with the total number of atoms. For this report, we
simulated up to 16 total atoms; for the case of 8x and 8x�
atoms this yields 12 870 basis states. However, we found that
the results compare well to experiment when including 12
total atoms.

II. SIMULATION RESULTS

We examine the general behavior of the energy exchange
between groups of Rydberg atoms by randomly placing the x
and x� atoms in two spherical regions �see Fig. 1�b��. The
two spherical regions have the same radius and are separated
by a distance d. We simulate the interaction for some time
�typically 10 s of �s in 0.1 �s steps� and the simulation
results are averaged over 250 runs at each value of d from
0 �m �total overlap of the two regions� to 90 �m in steps
of 1 �m. We calculate the fraction of initial x� atoms found
in the state y� since this should be proportional to the experi-
mental signal when using state selective field ionization.

Figure 2 shows the results for a detuning of zero when
including 12 total atoms in the simulation. Six different cases
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FIG. 1. �a� Energy level diagram for the resonant energy ex-
change of the xx�yy� system. �b� The geometry studied consists of
two groups of x and x� atoms separated by a distance d.
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FIG. 2. �Color online� Fraction of initial x� atoms in the y� state
as a function of the separation between two spherical groups of
randomly placed atoms for four different times. The detuning is
zero and the total number of atoms is 12. The times are: 1 �s �solid
blue�, 4 �s �dot-dashed red�, 7 �s �dotted yellow�, and 10 �s
�dashed green�. �a� When the number of x and x� atoms are equal
�6 each�, the state mixing persists to large distances. The inset
shows data out to 250 �m showing that the y� fraction eventually
reaches zero as the Rabi period increases. For the case of �b� 3x�
atoms and 9x atoms and the case of �c� 1x� atom and 11x atoms, the
fraction of atoms in the y� state drops to zero with a shorter sepa-
ration �around 50 �m�.
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were simulated: nx� atoms and �12−n�x atoms, where n
=1, . . . ,6. The dipole moments for each transition are equal,
with �=�=1000 au. Due to this symmetry, the fraction of
atoms in the y� state for n=7, . . . ,11 can be inferred from the
same data. For the case where the number of x and x� atoms
are equal, shown in Fig. 2�a�, the energy exchange persists to
large separation. For the remaining cases, two of which are
shown in Figs. 2�b� and 2�c�, the y� fraction drops to zero at
smaller separation even though the detuning is zero. The
finite range of the mixing fraction in the absence of any
detuning is due to a many-body effect that will be discussed
in Sec. III A.

The most interesting feature appears when the detuning is
greater than zero. Figure 3 shows simulation data generated
in the same way as the data in Fig. 2, with the exception that
the detuning ��2 MHz. In Fig. 3 the peak in the “strength”
of the state mixing, as measured by the y� fraction, is sig-
nificantly away from the overlap of the two regions. The
location of the peak is persistent for all times. In all cases
shown in Fig. 3, the y� fraction drops to zero with a finite
range due to the combined effect of the detuning and many-
body effects.

Before exploring the detailed behavior and origin of the
peak in Sec. III C, we note that this feature has been seen by
van Ditzhuijzen et al. in their recent work demonstrating
interactions between spatially resolved groups of Rydberg
atoms �2�. We have run simulations roughly mimicking their
experimental parameters; the results are shown in Fig. 4. The
two regions of atoms are modeled as two Gaussian beams
each with a beamwaist of 14 �m and a length of 250 �m.
To account for different numbers of x and x� atoms in each
beam, different cases for 12 total atoms that are similar to the

Rydberg populations cited in the experiment are averaged.
The detuning is ��2 MHz. With some adjustment of the
detuning, similar results can be obtained for numbers of at-
oms larger than 12.

The data in Fig. 4 is graphed for positive and negative
separations, corresponding to the beam of x atoms being dis-
placed to either side of the x� beam. While the simulation is
manifestly symmetric about the overlap of the two beams
�0 �m�, we graph Fig. 4 in this manner to facilitate com-
parison to the experimental results in Ref. �2�. Our simula-
tion data agrees well with the experimental data, particularly
on the two aforementioned prominent features. First, the
fraction of atoms excited to the y� state drops rapidly to zero
from about 40 to 50 �m. Second, the fraction of atoms ex-
cited to the y� state peaks at a separation between the beams
of about 20 �m. The simulations of Ref. �2� reproduce the
overall mixing fraction well but do not reproduce the en-
hancement in the y� fraction away from overlap. While mod-
eling 25 atoms, the simulations of Ref. �2� include only in-
teractions with the nearest two atoms. We find that it is
necessary to include interactions among all atoms in order to
reproduce the enhancement. However, our predicted mixing
fraction is less than the observed mixing fraction. It is pos-
sible that this is due to ignoring the temporal overlap of the
Rydberg excitation process and the dipole-dipole interac-
tions, which has been found to increase the mixing fraction
�20�.

III. THEORY

A. Three atom model: One x and two x� atoms
with zero detuning

When there are unequal numbers of x and x� atoms in the
two groups, the y� fraction drops to nearly zero within a
finite range �see Figs. 2�a� and 2�b��. Interference from al-
ways resonant interactions among atoms in each group sup-
presses the field-tuned interaction between the two groups
and leads to less population transfer to the y� state. In the
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FIG. 3. �Color online� Fraction of atoms in the y� state as a
function of the separation between two spherical groups of ran-
domly placed atoms after an interaction time of 5 �s. The detuning
��4 MHz and the total number of atoms is 12. The most promi-
nent feature is the peak in the y� fraction that occurs away from
overlap for configurations with 3 to 6x� atoms.
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FIG. 4. Fraction of atoms in the y� state after an interaction time
of 5 �s as a function of the separation between the two groups of
Rydberg atoms with volumes defined by excitation lasers with
Gaussian beam profiles. The detuning is ��2 MHz and the total
number of atoms is 12. The location of the peaks in the y� fraction
away from overlap at about 20 �m and the sharp decrease in the
state mixing from about 40–50 �m compare well to the data in
Ref. �2�.
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simulation it is possible to remove the always resonant terms
from the Hamiltonian in Eq. �5�, effectively turning off the
always resonant interactions. The result, when applied to the
case of 3x� atoms and 9x atoms �Fig. 2�b��, is shown in Fig.
5. At small separations, with the always resonant interactions
active, the energy exchange is enhanced and more atoms are
found in the y� state. However, at larger separations, the
energy exchange is strongly suppressed. With no always
resonant interactions the y� fraction, while smaller, persists
to large separations.

The effect of the always resonant interactions among
groups of x and x� atoms can be examined analytically with
a simple three atom model with zero detuning. An x atom is
placed a distance d from each of two x� atoms that are sepa-
rated by a distance R. This geometry is shown in Fig. 6�a�,
where the x atom is labeled 1 and the x� atoms are labeled 2
and 3. The geometries considered here are similar to those in
Ref. �17�, where the introduction of a third atom leads to an
unexpected breaking of the dipole blockade.

The field-tuned interaction between the x atom and an x�
atom is given by u=�� /d3. The always resonant interaction
between the two x� atoms is given by v=�2 /R3. For simplic-
ity, in the following analysis, we choose �=�. If ���, this
will only change the distance scale of the predicted behavior.
Numerical calculations show that the following results are
insensitive to the exact placement of the atoms.

In the zero interaction basis, we write the states of the
atoms as

��g� = �x�1�x��2�x��3,

��e1� = �y�1�y��2�x��3,

��e2� = �y�1�x��2�y��3, �6�

where the subscripts on the right-hand side are the atom la-
bels. The initial state ��g� is connected to the “excited” states
��e1� and ��e2� via field-tuned interactions between atom 1
and either atom 2 or atom 3. The two excited states are
connected to each other via the always resonant interaction
between atoms 2 and 3.

We can write the time-dependent Schrödinger equation as

iċg = uce1 + uce2,

iċe1 = ucg + vce2,

iċe2 = ucg + vce1, �7�

where cg is the amplitude for ��g�, ce1 is the amplitude for
��e1�, and ce2 is the amplitude for ��e2�. The solutions when
the atoms are initially in state ��g� are

cg =
1

2	8u2 + v2
��	8u2 − v2 − v�e−i/2�	8u2+v2+v�t

+ �	8u2 − v2 + v�ei/2�	8u2+v2−v�t� ,

ce1 =
u

2	8u2 + v2
�e−i/2�	8u2+v2+v�t − ei/2�	8u2+v2−v�t� ,

ce2 =
u

2	8u2 + v2
�e−i/2�	8u2+v2+v�t − ei/2�	8u2+v2−v�t� . �8�

We examine the behavior of the system in terms of P12=1
− �cg�2, the probability of finding the atoms in one of the
excited states. From Eq. �8�, we find

P12 = 1 −
4u2 + v2

8u2 + v2 +
4u2

8u2 + v2cos�	8u2 + v2t� . �9�

Note that by setting the always resonant interaction v=0, we
recover standard Rabi oscillations whose only dependence
on the separation d is in the frequency.

The case where the x atom is placed equidistant between
the x� atoms �d=R /2 or u=8v� yields a solution nearly iden-
tical to standard Rabi oscillations except that the maximum
probability P12 max is slightly less than one. As we increase d
and move the x atom farther from the pair of x� atoms, the
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FIG. 5. �Color online� Fraction of atoms in the y� state as a
function of the separation between two spherical groups of ran-
domly placed atoms after an interaction time of 5 �s. In this case,
there are 3x� and 9x atoms. The solid blue line is for �=0 and is
from the same data as Fig. 2�b�. The same simulation was run with
the always resonant interactions removed and the result is shown
with the dashed red line. While the y� fraction is smaller, it also
persists to large separations, implicating the always resonant inter-
actions as the cause for the finite range of the state mixing at zero
detuning.
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FIG. 6. �a� One x atom at a distance d from two x� atoms, which
are separated by a distance R. We hold the distance R fixed and
consider what happens as d is varied. �b� The maximum probability
of the three atoms being in the one of the states ��e1� or ��e2� vs the
separation d in units of R.
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maximum probability of the system being found in one of
the excited states ��e1� or ��e2� decreases rapidly as shown
by plotting P12 max in Fig. 6�b�.

As d /R increases, the always resonant interaction increas-
ingly suppresses the field-tuned interaction even at zero de-
tuning. This effect is similar to the dark states phenomenon
�25�. The dressed states of this three atom system, which are
superpositions of the states of Eq. �6�, depend on d. As d
increases, one of the dressed states becomes nearly identical
to ��g�. The initial state ��g� thus becomes dark, totally de-
coupled from the other states. The evolution of the initial
state to a dark state plays an important role in explaining the
peak in the y� fraction as well.

B. Four atom model: Two x and two x� atoms
with zero detuning

The three atom model does not address the results of Fig.
2�a�, which show that the range of the energy exchange at
zero detuning for equal numbers of x and x� atoms is limited
only by the interaction time �see particularly the inset in Fig.
2�a��. We construct the four atom model shown in Figs. 7�a�
and 7�b� to examine the asymptotic behavior of the energy
exchange at large separations for equal numbers of x and x�
atoms. Numerical calculations show that the following re-
sults are insensitive to the particular choice of geometry so
we choose an arrangement that allows us to obtain an ana-
lytical solution. Both the two x atoms and the two x� atoms
are separated by a distance R. The distance between any x
atom and any x� atom is d. As before, the field-tuned inter-
action is given by u=�� /d3 and the always resonant inter-
action by v=�2 /d3.

In the zero interaction basis, we write the states of the
atoms as

��g� = �x�1�x�2�x��3�x��4,

��e1� = �y�1�x�2�y��3�x��4,

��e2� = �y�1�x�2�x��3�y��4,

��e3� = �x�1�y�2�y��3�x��4,

��e4� = �x�1�y�2�x��3�y��4,

��e5� = �y�1�y�2�y��3�y��4, �10�

where the subscripts on the right-hand side are the atom la-
bels. We can write the time-dependent Schrödinger equation
as

iċg = uce1 + uce2 + uce3 + uce4 + 4uce5,

iċe1 = ucg + vce2 + vce3 + 2�u + v�ce4 + uce5,

iċe2 = ucg + vce1 + 2�u + v�ce3 + vce4 + uce5,

iċe3 = ucg + vce1 + 2�u + v�ce2 + vce4 + uce5,

iċe4 = ucg + 2�u + v�ce1 + vce2 + vce3 + uce5,

iċe5 = 4ucg + uce1 + uce2 + uce3 + uce4, �11�

where cg is the amplitude for the initial state ��g� and cei is
the amplitude for the excited state ��ei�.

If we keep only terms that are first-order in u, the solution
for cg when the atoms are initially in state ��g� is

cg =
1

2
e4iut +

1

2
e−4iut +

3ue4iut

32v
−

3ue−4iut

32v
�12�

so that the probability of the system being found in the state
��g� is

�cg�2 = cos2�4ut� +
9u2 sin2�4ut�

1024v2 . �13�

At large separations, the only dressed states coupled to ��g�
are equal superpositions of ��g� and ��e5�. The always reso-
nant interactions have a negligible effect and the energy ex-
change resembles simple Rabi oscillations between the two
groups of atoms.

C. Peak in the y� fraction away from overlap

A three or four atom model is insufficient to model the
enhancement in the state mixing away from overlap. This is
evident if we vary the number of atoms included in the cal-
culation. Figure 8 shows simulation data for different total
numbers of atoms, from 6 to 16, with equal numbers of x and
x� atoms in each case. These data were generated in the same
fashion as the data for Figs. 2 and 3, with the exception of
the 14 and 16 atom data. Since the number of basis states is
large for these two cases �3432 and 12 870�, the 14 atom data
were generated with reduced averaging �100 runs per 1 �m�
and the 16 atom data was generated with reduced averaging
and reduced resolution �50 runs per 3 �m�. For different
total numbers of atoms the radius of the spherical regions is
adjusted to hold the density constant. The location of the
peak depends strongly on the number of atoms included in
the simulation.

With an amorphous sample of atoms, no peak in the y�
fraction is observed in the 6 atom data in Fig. 8. We will see

(a) (b)

FIG. 7. Two x atoms and two x� atoms arranged so that the
separation between any xx� pair is always d. The pair of x atoms
and the pair of x� atoms each comprise a “group” of atoms. The
separation within the pairs is R and is held fixed. �a� The two groups
of atoms at their smallest separation; all of the atoms are in the
same plane. This view is along the axis of separation. �b� A view of
the atoms from the “side.” From this view, atoms 3 and 4 are on top
of each other and the distance R between them is foreshortened.
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that under certain conditions a weak effect may be observed
in the six-atom case. However, no effect is observed for five
atoms or fewer. The presence of the peak in the y� fraction
away from overlap is therefore an intrinsically many-body
effect, requiring at least six atoms to manifest.

In order to explore the many-body interactions in more
detail, we examine the results for a simpler geometry of fixed
instead of random atom positions. The two groups of atoms
are arranged in a regularly spaced linear array, as shown in
Fig. 9�a�, with the atoms spaced by 10 �m. Using this
model, we can study the dependence of the peak position on
the detuning. Figure 10 is an intensity plot of the time-
averaged y� fraction as a function of the separation between
two lines of five atoms and the detuning. The detuning is
varied from 0 to 10 MHz, corresponding to a few orders of
magnitude smaller to a few orders of magnitude larger than
the dipole-dipole interaction matrix elements, depending on
the separation between the lines.

As the detuning approaches zero, the peak in the y� frac-
tion moves to larger separations and the y� fraction eventu-
ally becomes constant for all separations at �=0. In an ex-
periment, sources of detuning might include not only the
experimental choice of electric field but also the effects of
electric field inhomogeneity and potentially a trapping mag-
netic field. In our simulations, we choose � to achieve rea-
sonable agreement with experiment, as in Fig. 4; in this
sense � should be considered a free parameter. However, the
location of the peak changes rapidly only at small �. Once
��2 MHz the peak location changes slowly, so our results
are robust for a wide range of detunings.

The presence of the peak in the y� fraction away from
overlap can be understood by examining the dressed states of
our solution. In the noninteracting basis, we can write the
states of the system as

��i� = ���1���2 ¯ ���M���M+1���M+2 ¯ ���N, �14�

where �=x or y, �=x� or y�, the number of x and y atoms is
M, the number of x� and y� atoms is �N−M�, and the sub-

scripts on the right-hand side refer to individual atoms. The
initial state ��0� is composed of only x and x� atoms. At a
particular separation d between the two lines, we can write
the dressed states as a superposition of the ��i� with

�� j� = �
i

ci,j��i� .

The coefficient c0,j determines the coupling of each
dressed state to the initial state ��0�. In Fig. 9�c� the coeffi-
cients �c0,j� are plotted as a function of the separation be-
tween the two lines of atoms for the case of five atoms in
each line with a detuning of about 6 MHz and a spacing of
10 �m �see Fig. 9�a��. As in the three atom model, one of
the dressed states �solid blue� becomes nearly identical to the
initial state beyond about 30 �m. The initial state is then
dark, entirely decoupled from the other states �25�. As shown
in Fig. 9�b�, this corresponds to a region where the y� frac-
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both equally coupled to the initial state and coupled to many other
excited states. At this crossing, there is a strong peak in the y�
fraction shown in �b�.
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tion rapidly approaches zero. However, at small separations
�less than 20 �m�, the eventual dark state is weakly coupled
to the initial state. Another dressed state �dashed red� is
strongly coupled to the initial state at small separations and
thus weakly coupled to the excited states, corresponding to a
region in Fig. 9�b� where the y� fraction is small but nonzero.
At separations between 20 and 30 �m, these two dressed
states switch roles and the coefficients �c0,j� cross. In this
region, both dressed states are equally strongly coupled to
the initial state and well mixed with many excited states.
This mixing yields more population transfer to the y� state,
creating a peak in the y� fraction away from overlap in Fig.
9�b�.

Figures 11�a�–11�d� show a series of plots similar to Fig.
9, including the results for 4, 5, 6, and 8 atoms. In the 4 and
5 atom cases, shown in Figs. 11�a� and 11�b�, there is no
crossover point. The dressed state which evolves to become
identical to the initial state is the most strongly coupled to
the initial state even at small separations. Thus, there is no
peak in the y� fraction in Fig. 11�a� or Fig. 11�b�. When 6 or
more atoms are included in the simulation, as in Figs. 11�c�
and 11�d�, the coefficients cross and a peak away from over-
lap begins to form.

IV. CONCLUSION

Our results show, in agreement with other recent work,
that in order to correctly model the collective interactions
among Rydberg atoms it is necessary to calculate the full
many-body wave function. In Refs. �19,20�, the authors con-
clude that at least four or five atoms must be included to
accurately model their experiment and that summing over
binary interactions is not sufficient. Here, we find good

agreement using 12 atoms and require a minimum of six
atoms to observe a peak in the state mixing away from over-
lap. However, we note that while the full many-body wave
function is necessary to accurately model experiment, the
results in Figs. 9 and 11 suggest that only two of the dressed
states play a dominant role. Given the number of atoms and
possible states involved in the simulation, this is indicative
of the collective nature of the interactions. It also suggests
that some simplification of the analysis may be possible by
considering the atoms collectively.

While it is clear that precisely positioning the Rydberg
atoms will yield some degree of control over the energy ex-
change among them, our results show that significant control
may be possible even with amorphous samples. The peak in
the y� fraction away from overlap offers one such avenue for
experimental control. In Fig. 10 there is a large region of
parameter space where the energy exchange is nearly zero.
With appropriate choice of separation and detuning, one
could place a system in this region. By slightly adjusting the
detuning, one could then switch on the energy exchange. The
state mixing could be similarly controlled by changing the
position of one or both groups of atoms.

This work was based upon work supported by the Na-
tional Science Foundation under Grant No. 0653544.
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