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Topology from Analysis

Nicholas A. Scoville∗

April 19, 2021

1 Introduction

Topology is often described as having no notion of distance, but possessing a notion of nearness.
How can such a thing be possible? Isn’t this just a distinction without a difference? In this project,
we will make sense of the notion of nearness without distance by studying some work done by Georg
Cantor (1845–1918), a German mathematician best known for his work in set theory. He also made
contributions to number theory, philosophy, and as we will see in this module, topology. By looking
at Cantor’s investigation of a problem involving Fourier series, we will see that it is the relationship
of points to each other, and not their distances per se, that is the key distinction between “distance”
and “nearness.” Along the way, we will see the roots of topology organically springing from the fertile
soil of analysis.

2 Some Background

In a calculus course covering sequences and series, you were introduced to power series; that is, the
idea that a function f(x) may be written as

f(x) =

∞∑
n=0

anx
n

where an is some coefficient for each n. This transforms what could be a fairly complex function
into a polynomial (albeit an infinite one) which allows you to approximate the function using finitely
many terms of the series. Another reason such a form is desirable is because, under reasonable
hypotheses, one can integrate and differentiate the function term-by-term.

In the 19th century another kind of representation of a function was discovered, the so-called
Fourier series. The Fourier series of a function f(x) has the form

f(x) =
1

2
b0 +

∞∑
n=1

an sin(nx) + bn cos(nx)

where b0 and each an, bn are coefficients. This is also a very important representation of a function,
one often used in physics.

∗Mathematics and Computer Science; 601 E. Main Street; Ursinus College; Collegeville, PA 19426;
nscoville@ursinus.edu.
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Cantor studied Fourier series in the 1870s. In this project, we study selections from one of
his paper on this topic: “Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen
Reihen” (“On the Extension of a Theorem from the Theory of Trigonometric Series”), [Cantor, 1872].
Here is how Cantor explained the particular problem that interested him in this paper:1

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In the following, I will announce a certain extension of the theorem that trigonometric
series representations are unique. [I have shown] that two trigonometric series

1

2
b0 +

∑
(an sinnx+ bn cosnx) and 1

2
b′0 +

∑
(a′n sinnx+ b′n cosnx)

which converge for every value of x and have the same sum, agree in their coefficients . . . I
have also shown that the theorem holds if we give up either convergence or the agreement of
the series sum for a finite number of values of x.

[Cantor, 1872, p. 123]

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 1 Give a precise statement of what Cantor had “also shown.”

Cantor continued:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The extension proposed here asserts that the theorem remains valid even when the as-
sumption of the convergence of the series or the agreement of the series sum fails for an
infinite number of values of x in the interval [0, 2π].

[Cantor, 1872, p. 123]

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Cantor was thus interested in showing that the Fourier series representation of a function is unique
even when the series is undefined or divergent for an infinite number of points on the interval [0, 2π].
But is this true for every set of infinitely many points? And, if not, for what kinds of sets of infinitely
many points is it true? To follow Cantor’s answer to these questions, we will let P ⊆ [0, 2π] be the
point-set where f is either undefined or is divergent. Given such a function f , Cantor constructed a
continuous function F which depends on f . It does not concern us here what this new function F

is. What matters for our purposes is the following proposition, stated here in modern notation and
language, that Cantor established holds for F .

Proposition 1. If F is a linear function on the domain [0, 2π], then the Fourier series
for f is unique, i.e., the coefficients are uniquely determined.

1All translations of Cantor excerpts in this project were prepared by the project author.
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Fortunately, Cantor also gave us a practical way to show F is linear.

(A) If there is an interval (p, q) in which only a finite number of points of the set P lie,
then F (x) is linear in this interval.

[Cantor, 1872, p. 131]

This result (A) will be key below.

Task 2 Give two examples of non-empty sets P for which, if f is not defined or gives up convergence
on P , then the Fourier Series for f is unique.

3 Limit Points and Derived Sets

How can we use (A) to show that F is linear even when there is an infinite point-set at which we
give up convergence or the function f is not defined?

Task 3 Suppose f gives up convergence on P := { 1
n + 1 : n = 1, 2, 3, . . .} ∪ { 1

n + 2 : n = 1, 2, 3, . . .}.

(a) Use result (A) to show that F is linear on all but a finite number of points of [0, 2π]. You
will need to use the fact that F is the same linear function on each interval, a fact that
Cantor proved to hold in general.

(b) Denote by P ′ the point-sets of [0, 2π] for which we can’t (yet) conclude that F is linear.
Compute P ′.

(c) Use the fact that F is continuous on all of [0, 2π] along with (A) to conclude that F is
linear on all of [0, 2π].

The result you showed in Task 3 is the basic idea behind Cantor’s main result. Even though
P was infinite, it was relatively easy to apply result (A) to prove that F is linear on all of [0, 2π].
But what exactly was the property of P which made it a “well-behaved” kind of infinite set? Cantor
abstracted away the particulars of the example and defined the essence of what it is that makes such
an infinite set P susceptible to this kind of argument.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

For the sake of brevity, I call a given finite or infinite number . . . of points of a line, a
point-sets.

If a point-sets is given in a finite interval, a second point-sets is generally given, and with
these generally a third, etc., which are essential for the conception of the nature of the first
point-sets. . . . To define these derived point-sets, we must begin with the term limit point2

of a point-sets.
By a limit point of a point-sets P , I mean a point of the line such that there are infinitely

many points of P in every neighborhood of it, and it may happen that it also belongs to the
set itself. The neighborhood of a point means here any interval which has the point in its

2Cantor used the term “Grenzpunkt” (“boundary point”) in his 1872 paper; the French translation of that paper
(published as [Cantor, 1883]) used the term “point-set limite”. The term “limit point” has become standard in English.
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interior. Therefore, it is easy to prove that a [bounded] point-sets consisting of an infinite
number of points always has at least one limit point.

[Cantor, 1872, pp. 128–129]

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 4 Prove that a bounded subset of R consisting of an infinite number of points has at least one
limit point.

Task 5 Give an example of an unbounded point-sets of R that does not have a limit point.

Cantor next defined these other point-setss “which are essential to understanding the first set.”

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Every point of the line is now in a definite relation to a given set P , either being a limit
point of P or not, and thereby along with the point-sets P the set of limit points of P is a
set which I wish to denote by P ′ and call the first derived point-sets of P .

Unless the point-sets P ′ contains only a finite number of points, it also has a derived set
P ′′, which I call the second derived point-sets of P . By ν such transitions3 one obtains the
concept of the νth derived set P (ν) of P .

It may happen — and this is the case we are exclusively interested in at present — that
after ν transitions the set P (ν) consists of a finite number of points, and hence has no derived
set; in this case we wish to call the original point-sets P a set of type ν, so that P ′, P ′′, . . .

are of types ν − 1, ν − 2, . . . .
[Cantor, 1872, p. 128]

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Note that, according to this quote, Cantor did not seem to think that a finite set has a derived set.
Today, we would say that the derived set of a finite set is the empty set.

3In his 1872 paper, Cantor restricted the value of ν to finite integers only. At the time he wrote that paper, however,
he had already realized that, in the case where P ν is a non-empty set for every finite integer ν, he could extend the
notion of “type” for derived sets beyond the finite. To do this, he set P∞ =

∩∞
ν=1 P

ν to obtain a derived set of type ∞.
He then continued the iterative process to obtain P∞+1 = (P∞), P∞+2 = (P∞+1), and so on. This process could be
extended to even higher orders of derived sets, such as P∞∞+1 , P∞n∞ , P∞∞n

, P∞∞∞
, etc. Cantor later substituted

the symbol ‘ω’ for the ‘∞’ symbol, to distinguish the actually-infinite ordinals ω, ω + 1, ω + 2, . . . from the concept of
potential infinity associated with the ∞ symbol in calculus.

Cantor eventually connected his study of the series of “transfinite ordinals” ω, ω + 1, ω + 2, . . . associated with an
ordered iterative process to his use of one-to-one correspondences between two sets as a means to measure their relative
sizes, or cardinalites. This led him to introduce an unbounded sequence of “transfinite cardinals,” denoted (by Cantor
and today) as ℵ0, ℵ1, ℵ2, . . ., ℵω, ℵω+1, . . . . Here, ℵ0 is the cardinality of the set of natural numbers N, and also that
of the equally-large set of rational numbers Q. The problem of determining the cardinality of the set of real numbers
R preoccupied Cantor throughout much of his later life. The conjecture that R has cardinality ℵ1, known as Cantor’s
Continuum Hypothesis, continues to be of interest in set theory today. In this way, a question in analysis led not only
to the development of point-sets topology, but also to today’s modern set theory.

For more information about Cantor’s development of set theory, see [Dauben, 1979].
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Task 6 Let us practice computing the derived set. Find all derived sets of P when

(a) P = [0, 1] (e) P = Q ∩ [0, 1]

(b) P = (0, 1] (f) P = { 1
n : n = 1, 2, 3 . . .}

(c) P = (0, 1) (g) P = {m+ 1
n+1 : m,n ∈ Z+}

(d) P = {.2, .3} (h) P = { 1
m + 1

n : m,n ∈ Z+}

Task 7 If P has finitely many elements, show that P ′ = ∅.

4 Main Result

Let’s now go back to the question introduced in Section 2 and let f be a function represented by a
Fourier series and F the associated continuous function that Cantor defined based on f . In general,
we would like to show that, no matter what finite value we assign to n, the function F is linear on
[0, 2π] even when we give up convergence on a point-sets P of the nth kind; that is, when P (n) is a
non-empty finite set and P (n+1) = ∅. Notice that for n = 0, this assumption tells us that f gives up
convergence or is undefined only on a finite number of points; that is, (0, 2π) contains a finite number
of points of P , so that by (A), F is linear on (0, 2π). Because F is continuous on all of [0, 2π], it
then follows that F is linear on all of [0, 2π].

Cantor also established the n = 1 case in his 1872 paper. To do so, he first showed the following:

(A′) If (p′, q′) is any interval in which only a finite number of points of the set P ′ lie,
then F (x) is linear in this interval.

[Cantor, 1872, p. 131]

In this case, P ′ is finite by supposition, so that any subinterval (p′, q′) of (p, q) contains a finite
number of points x′0, x

′
1, . . . , x

′
v ∈ P ′, where x′0 < x′1 < . . . < x′v. We now quote Cantor’s argument:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Each of these subintervals generally contains infinitely many points of P so that result
(A) does not directly apply; however each interval (s, t) that falls within (x′0, . . . , x

′
1) contains

only a finite number of points from P (otherwise other points of the set P ′ would fall between
x′0 and x′1), and the function is therefore linear on (s, t) because of (A). The endpoints s and
t can be made arbitrarily close to the points x′0 and x′1 so that the continuous function F (x)

is also linear in (x′0, . . . , x
′
1).

[Cantor, 1872, p. 131]

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Cantor illustrated this situation with the following picture:

He then noted that the argument in the preceding excerpt together with the continuity of F implies
that F is linear over all of (p′, q′). (Make sure you see why this is true! Task 3, part (a), may be

5



useful here.) In the case where (p′, q′) = (0, 2π), invoking the continuity of F once more allows us to
then conclude that F must be linear over all of [0, 2π].

Cantor recognized that this strategy could easily be adapted to a proof for an arbitrary finite
integer n. The key step in doing this is to show that the following holds for every finite integer n:

(A(n)) If (p(n), q(n)) is any interval in which only a finite number of points of the set
P (n) lie, then F (x) is linear in this interval.

Task 8 Using an argument similar to Cantor’s for the n = 1 case, assume the inductive hypothesis for
(A(n)) and prove the inductive step.

Together with the proof for n = 1 given earlier, this last task completes the proof by induction
that (A(n)) holds for every finite integer n. In the case where (p(n), q(n)) = (0, 2π), combining (A(n))
with Cantor’s Proposition 1 (from page 2 of this project) now allows us to immediately see that f(x)
has a unique trigonometric representation on [0, 2π] even when convergence is given up on an infinite
point-sets P of the nth kind for a finite value of n.

5 Conclusion

In this short project, we have seen how a problem in Fourier series led Cantor to define topological
concepts that allow us to characterize different kinds of infinite point-setss. In order to apply a result
that only worked for finite sets, Cantor had to control how the points in these infinite sets behaved.
The points could not be too “bunched up” or “close together.” This notion was made precise in the
definition of the limit point and the derived set, two concepts which, although having their origins
in Fourier series, are now fundamental in topology. This transition from real numbers to a more
general “closeness” or “nearness” was just the beginning of point-sets topology.
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Notes to Instructors

PSP Content: Topics and Goals
This Primary Source Project (PSP) is intended as a transition from more familiar mathematics to
the ideas found in topology. It is best utilized on either the first or second day of an introduction
to topology course. Part of the idea is that students can see in Fourier series a kind of math that
is familiar to them, even if they have never worked with Fourier series per se. The question of
uniqueness for Fourier series is again something that they should be able to appreciate. From this
question, concepts like limit points and derived sets which are purely point-sets notions arise quite
naturally by the end of the PSP. In this way, it is hoped that the students will appreciate where
these more abstract definitions came from.

Student Prerequisites
As mentioned above, the hope is that this project can be done on the first day, or perhaps first week,
of an introduction to topology course. Hence, the necessary student background is a course in proof
writing or the equivalent exposure to proofs. Analysis may be helpful, but not strictly necessary.
As mentioned in the next section of these Notes, however, the conceptual level of this PSP is high,
and it is recommended that the students either have good mathematical maturity when it comes
to proof writing or that the instructor is willing to provide a good bit of hints and support during
implementation of the project.

The source text in this PSP are taken from Cantor’s work on the uniqueness of Fourier series
representations of functions. Although no prior knowledge of Fourier series is necessary to com-
plete the project, instructors could also preface its implementation by having students read “Joseph
Fourier: The Man Who Broke Calculus,” Chapter 6 of the open source textbook How We Got
From Here to There: A Story of Real Analysis by Robert Rogers and Eugene C. Boman (avail-
able at http://personal.psu.edu/ecb5/ASORA/chapt_interegnum.html). This can provide both
a friendly introduction to Fourier series and a seamless transition to Cantor’s work.

PSP Design, and Task Commentary
It should be noted that this PSP will be challenging for most students, so that providing scaffolding,
hints, and strong guidance is important for its success. Especially critical for student understanding is
Task 3, where students first meet the main idea behind Cantor’s argument. This task asks students to
reduce the question of the uniqueness of a Fourier series which is not defined or gives up convergence
on an infinite set to certain behavior on a finite set. It is recommended that students work on this
task in groups, then share out answers as a class. The instructor can ensure that the students stay on
track, and are guided to the correct answer. One way I do this is by drawing out from students what
we know about the function F . For instance, I might say to my students, “We know this function F

is linear. Where is it linear? At what points is it linear?” A student may choose any open interval
of [0, 2π] not containing 1 or 2, say (13 ,

1
2). You can then draw a linear function just on (13 ,

1
2). “Is

it linear anywhere else?” you might ask. If no one offers an initial interval, you can ask “Is F linear
at 1

2?” If there are again no responses, you can prompt them further by asking, “How can we tell if
it is linear? Do we have a way of knowing? Is there any theorem or result that tells us when F is
linear?” This is all to get the students to think about Theorem (A). Once they have done this, you
can coax them to offer an interval containing 1

2 but not 0 or 1. “Can we show that F is linear at
2
3? 4

3?” etc. Hopefully students will start to see that F is linear everywhere except possibly 1 and

7



2. Again, as students are offering points or sets where F is linear, draw a line on the board at those
points or sets. In the end, you should have a line which is defined on all of [0, 2π] with a hole at 1

and 2. Now the question becomes “If F is continuous on all of [0, 2π] and is linear everywhere, is F

linear at the two points 1 and 2?” To prove that this is indeed the case, it is necessary to use the
fact that F is the same linear function on each interval; as noted in the instructions for Task 3(a),
Cantor proved that this fact holds in general. Though students may not know how to prove this fact
(and are not expected to do so!), they should be able to see how it (together with F ’s continuity)
implies that F must be linear at the points 1 and 2 as well.

Hence, if this goes according to plan, the natural next questions are: “How do we quantify
or characterize the infiniteness of such a set? What exactly is that property of P that makes its
infiniteness much more manageable than other infinite sets?” This last question is very important
for students to appreciate. Even if the entire class has seen, for example, Cantor’s theory of infinite
numbers, most students will still be stuck in the mindset that “infinity is infinity,” or “If a set is
infinite, then its infinite.” Part of the challenge in grasping the import of point-sets topology (and in
particular, the content contained in this PSP) is getting students to realize that not all infinite sets
are created equal. Here, the essential point is not that of transfinite cardinality, but rather the idea
that some infinite sets are nicer in that they are easier to work with than others. Can we describe
these “nice” properties of infinite sets? Once a student begins to appreciate and perhaps even to ask
that question for herself, she has made it past a large mental barrier and is ready to work with the
concepts in topology.

A couple other tasks are worth noting. Task 4 is essentially the Bolzano–Weierstrass theorem,
which students may or may not have been exposed to in a real analysis course. Even for students
who have seen it previously, the proof will be challenging. In Task 6(d), the answer depends on
whether you use Cantor’s view about the status of the derived set of a finite set (e.g., that it doesn’t
exist) or the modern one (e.g., that it is the empty set).

Suggestions for Classroom Implementation and Sample Schedule (based on 75-
minute class periods)
The following implementation plan allows for completion of this PSP in two 75-minute class periods.

Day 1

• Preassignment: Have students read the first page and the beginning of the second page up
until Task 1 and come up with an answer for Task 1 for discussion in class.

• Whole-class discussion (15 minutes): Begin class with a discussion of what the students
read the night before. More likely than not, most students will feel that they didn’t understand
much from the reading. This is to be expected, so be upfront about how they are being asking
to wrestle with something fairly delicate. This will also help set the tone for the rest of the
PSP. Then help the class as a whole understand what it is that Cantor had done previously:
what result on Fourier series did he already know and why is it important?

• Working in groups (25 minutes): Next turn to the new question that Cantor is trying to
answer; this is the section of the PSP that starts after Task 1 up until the beginning of Section
3. Working in groups or individually, have students read the rest of Section 2 and work on
Task 2, then begin Task 3.

8



• Debrief (10 minutes): As a class, discuss Proposition 1 and Theorem (A). These two results
are crucial to understanding the rest of the PSP.

• Working in groups (10 minutes): Have students work on Task 3 in groups.

• Debrief (15 minutes): As a class, talk through Task 3. See the previous section of these
Notes for several ideas and details about how to do this.

• Homework: Have students read the rest of Section 3 and do at least Task 6 for homework.
Tasks 4, 5 and 7 may also be assigned for homework, or some or all of them could done together
as a class or in groups on Day 2.

Day 2

• Initial discussion (25 minutes): Depending on the instructor interests, there are some
options for how to begin day 2. If they were not assigned for homework, students can work in
groups on any of Tasks 4, 5 and 7. Another option is to go over a few of the parts of Task 6
as a class or to have students present some of their answers for this task. The key here is to
ensure that students understand the derived set.

• Reading (25 minutes): Have students simply read through Section 4. If you wish, you can
have students read with a partner and then discuss the reading with the partner. The key here
is to understand Theorems (A′) and (A(n)).

• Debrief (25 minutes): Discuss what was read, helping students to understand Theorem (A′)

and (A(n)). Give examples and illustrations. Assign Task 8 for homework.

LATEX code of this entire PSP is available from the author by request to facilitate preparation of
advanced preparation / reading guides or ‘in-class worksheets’ based on tasks included in the project.
The PSP itself can also be modified by instructors as desired to better suit their goals for the course.

Connections to other Primary Source Projects
The following additional primary source-based projects by the author are also freely available for use
in teaching courses in point-set topology. The first three projects listed are full-length PSPs that
require 10, 5 and 3 class periods respectively to complete. All others are designed for completion in
2 class periods.

• Nearness without Distance
• Connectedness: Its Evolution and Applications
• From Sets to Metric Spaces to Topological Spaces
• The Cantor set before Cantor (Also suitable for use in Introductory Analysis courses.)
• Connecting Connectedness
• The Closure Operation as the Foundation of Topology
• A Compact Introduction to a Generalized Extreme Value Theorem

Classroom-ready versions of these projects can be downloaded from https://digitalcommons.
ursinus.edu/triumphs_topology. They can also be obtained (along with their LATEX code) from
the author.
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For Further Reading
A nice source on Cantor’s life and work is Joseph Dauben’s Georg Cantor: His Mathematics and
Philosophy of the Infinite, [Dauben, 1979].
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