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Discrete Morse functions, vector fields, and

homological sequences on trees

Ian Rand

July 2015

Abstract

The goal of this project is to construct a discrete Morse function which
induces both a specified gradient vector field and homological sequence
on a given tree. After reviewing the basics of discrete Morse theory, we
will show that the two standard notions of equivalence of discrete Morse
functions, Forman and homological equivalence, are independent of one
another. We then show through a constructive algorithm the existence of
a discrete Morse function on a tree inducing a desired gradient vector field
and homological sequence. After proving that our algorithm is correct,
we give an example to illustrate its use.

1 Introduction

Discrete Morse theory was invented by Robin Forman [8] as an analogue
of “smooth” Morse theory popularized by Milnor [11]. Many classical results in
Morse theory, such as the Morse inequalities, carry over into the discrete setting
[10]. Applications of discrete Morse theory are vast, ranging from applications
in configuration spaces [12] to computer science search problems [9].

Let f, g be two discrete Morse functions defined on a 1-dimensional sim-
plicial complex, i.e., a graph. Inspired by Nicolaescu [1], R. Ayala et al. [2]
studied the homological sequence of a discrete Morse function by introducing
the notion of f and g being homologically equivalent, and they counted the
number of excellent discrete Morse functions on all graphs [6]. In addition, the
same authors counted the number of discrete Morse functions on a graph up
to Forman equivalence in [4]. In this paper, we desire to combine these two
questions by investigating the combination of the two notions of equivalence.
To this end, let V be a fixed gradient vector field on a graph with m > 1 critical
values. How many homological sequences can have V as their gradient vector
field? Conversely, fix a homological sequence B with m > 1 critical values. How
many discrete vector fields can have B as homological sequence? In the case
that G is a tree, we show in Proposition 3.0.10 that any two gradient vector
fields and homological sequences with the same number of critical values can
be realized by a discrete Morse function. This is done in algorithmic form, the
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details of which are given in Algorithm 3. The layout of the paper is as follows.
Section 2 is devoted to introducing the notation and terminology that will be
used, as well as background results. Section 3 is the main section where we give
an algorithm that yields a desired homological sequence and gradient vector
field on a tree. Finally, in section 4, we will give an example illustrating the
utility of our algorithm.

2 Background

In this section, we establish notation and terminology that will be used
in the body of this paper. Our main reference for graph theory is [7] while we
refer the reader to [10] for the basics of discrete Morse theory. We begin with
graphs.

2.1 Graphs

Definition 2.1.1. Let V 6= ∅ be a set called the vertex set. A graph G =
(V,E) is a collection of distinct subsets of V of size 2, denoted E, called the
edge set. Elements of V are vertices while elements of E are called edges. If
e = {a, b} is any edge ∈ E, a and b are endpoints of the edge. We could also
say that a and b are incident with the edge. Usually we write ab = {a, b} for
an edge when there is no possibility of confusion.

Definition 2.1.2. Let u, v be two distinct vertices of G. A (u, v)-path is a
sequence

u = u0, e0, u1, e1, ..., en, un + 1 = v

of distinct vertices and edges such that ui, ui+1 are the endpoints of ei.
Suppose G is a graph such that for every pair of distinct vertices u, v there exists
a unique (u, v)-path. Then G is a tree. A disconnected graph in which each
component is a tree is called a forest.

2.2 Discrete Morse theory

We now define the basics of discrete Morse theory, which was originally
introduced by Robin Forman [8].

Definition 2.2.1. Let G be a graph. A discrete Morse function G is a
function f : G→ R such that for every v ∈ G, we have

|{e ∈ E : f(e) ≥ f(v), v an endpoint of e}| ≤ 1

and for every e ∈ G

|{v ∈ V : f(v) ≥ f(e), v an endpoint of e}| ≤ 1.
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Of particular interest are those vertices and edges which admit of no ex-
ception, the so-called critical values.

Definition 2.2.2. If vertex v satisfies,

|{e ∈ E : f(e) ≥ f(v), v an endpoint of e}| = 0

then v is a critical vertex and the value f(v) is a critical value. If an
edge e satisfies

|{v ∈ V : f(v) ≥ f(e), v an endpoint of e}| = 0

then e is a critical edge and f(e) is a critical value.

The critical values of a discrete Morse function tell us how to “build” the
graph G in stages. This is formally accomplished through the level subcom-
plexes.

Definition 2.2.3. For any c ∈ R, the level subcomplex G(c) is defined as
the smallest graph satisfying {e, v ∈ G : f(e), f(v) ≤ c}.

Definition 2.2.4. Let G be a forest. The number of components of a graph is
denoted b0(G) and is called the Betti number of G. Now let f : G → R be a
discrete Morse function with critical values: c0, c1, c2, ..., cm. The homological
sequence of f , denoted Bf , is given by b0(G(c0)), b0(G(c1)), ..., b0(G(cm)). To
discrete Morse functions f, g : G→ R are said to be homologically equivalent
if both f and g induce the same homological sequence.

There is an notion of equivalence of discrete Morse functions due to Robin
Forman.

Definition 2.2.5. Let f, g : G→ R be discrete Morse functions. Then f and g
are Forman equivalent if for every pair (v, e) consisting of a vertex v and an
incident edge e, we have f(v) < f(e) if and only if g(v) < g(e).

It turns out that this definition has a nice geometric characterization de-
fined in terms of a gradient vector field.

Definition 2.2.6. Let f : G → R be a discrete Morse function. The induced
gradient vector field is defined by Vf := {(v, e) : f(v) ≥ f(e), vincident with e}.

Example 2.2.7. Let f be the discrete Morse function defined on the graph to
the left. The induced gradient vector field is shown on the right.
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The following Theorem, due to Ayala et al., shows that Forman equivalence
can be characterized in terms of the gradient vector field.

Theorem 2.2.8. [5, Thm. 3.1] Two discrete Morse functions f and g defined
on G are equivalent if and only if Vf = Vg.

An immediate corollary of this result is that a gradient vector field is
completely determined by the critical simplices. We will use this fact throughout
the rest of the paper without further comment.

Corollary 2.2.9. f and g are equivalent if and only if they have the same
critical simplices.

3 Algorithm

Ayala et al. counted the number of discrete Morse functions on a graph
up to Forman equivalence in [4]. In addition, the same authors began a count
counting the number of discrete Morse functions on graphs up to homological
equivalence in [3] and completed their work in [6]. As mentioned above, we
combine these two questions in this paper by investigating the combination of
the two notions of equivalence. That is, suppose we fix a gradient vector field on
a graph. How many homological sequences can have the given gradient vector
field? Conversely, suppose we fix a homological sequence. How many discrete
vector fields can have the given homological sequence? Interestingly, the result
in the case of trees turns out to be all of them in both cases! That is, we will
prove below in our algorithm that given a tree, a fixed gradient vector field,
and a homological sequence with as many critical values as the gradient vector
field, there exists a discrete Morse function on the tree inducing both the desired
gradient vector field and homological sequence. This result is now stated using
an algorithm.

Let G be a given tree, V a gradient vector field on V, and B a homological
sequence with the same number of critical values that V induces. We fix the
following notation for Algorithm 3. Let v denote a vertex, cv a critical vertex,
and ncv a non-critical. In the algorithm we will label vertices and edges, so in
order to keep track of this, let V denote the set of all labeled vertices, and V0

set of all unlabeled vertices. Similarly, e denotes an edge, ce critical edge, and
nce a non-critical edge. The set E is the set of all labeled edges, and E0 set of
all unlabeled edges.
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Algorithm 1 Forman Numbering Algorithm

Input: A tree G with a given gradient vector field V, and homological sequence
B
Output: A discrete Morse function f : G→ R such that Vf = V and Bf = B.

(a) Initiate n = 1.

(b) Choose any two vertices cvt, cvu ∈ V0 such that there exists a unique crit-
ical edge ce in the (cvt, cvu)-path. Label f(cvt) = n and f(cvu) = n + 1.
For any v ∈ V incident with any nce ∈ E0 label nce and its other
endpoint n + 1. Continue until there is no v ∈ V such that v is incident
with any nce ∈ E0.

(c) If you wish to increase the value of bn by 1, proceed to step d. If you wish
to decrease bn by 1, proceed to step e. If V0, E0 = ∅, exit the algorithm.

(d) Let v be any v ∈ V . Select one cv ∈ V0 such that there exists exactly one
ce the (v, cv)-path. Label f(cv) = n + 1, then label any nce ∈ E0 that
is incident with any v ∈ V and its opposite endpoint as n + 1. Continue
until there does not exist any v ∈ V with v incident to any nce ∈ E0. Re-
peat step d until you no longer wish to increase b0. Then, return to step c.

(e) Label any ce ∈ E0 incident with any two v ∈ V as n + 1. Repeat until
you no longer wish to decrease b0, then return to step c.

Proposition 3.0.10. Algorithm 2 is correct.

Proof. Suppose G is a tree, V a gradient vector field, and B a homological se-
quence with the same number of critical values induced by V (Recall by Corol-
lary 2.2.9 that a gradient vector field is completely determined by its critical
simplices). Algorithm 3 yields a labeling f of G. We need to show that f is a
discrete Morse function, that Vf = V, and that Bf = B. To see that the algo-
rithm yields a discrete Morse function, let v be a vertex of G. If v is critical,
then v is labeled less than all of its incident edges by step 4. If v is non-critical,
then v is part of a pair (v, e) in the gradient vector field V and f(v) = f(e),
while any incident edge with e is labeled greater than f(v). A similar argument
shows that e is critical in V if and only if e is critical under f . This shows
that f is a discrete Morse function with precisely the desired critical values.
By Corollary 2.2.9, Vf = V. That Bf = B is obvious given the nature of the
algorithm.
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4 Example

We illustrate the algorithm with an example. Let G be the following graph
along with the following gradient vector field (note that the critical values are
red).

There are seven critical values in this discrete Morse function. Consider
the following homological sequence.

c0 c1 c2 c3 c4 c5 c6
B0 : 1 2 1 2 3 2 1

We wish to construct f : G→ R with critical values c0, . . . , c6 that induce
the above gradient vector field as well as the homological sequence. Begin with
steps a and b.

3
4

5

6 71 2

3

4

5

6

7

Now, seeing that we wish to decrease the Betti number by one, proceed
with step e exactly once.

3
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7

Next, we wish to increase the Betti number two times consecutively, so
utilize step d twice.
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Lastly, we wish to decrease b0 from 3 to 1, so repeat step e twice.
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Now that the values of V0, E0 = ∅, the algorithm is complete.

5 Conclusion

This algorithm can match any gradient vector field of ≥ 1 critical value.
Any possible homological sequence can be obtained. The process doesn’t break
the discrete Morse function, and it always preserves the initial Gradient Vector
Field. The algorithm is suited for practical use.
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