Toward Analog Quantum Computing: Simulating Designer Atomic Systems

Jacob L. Bigelow
Ursinus College, jabigelow@ursinus.edu
Veronica L. Sanford
Ursinus College, vesanford@ursinus.edu

Follow this and additional works at: https://digitalcommons.ursinus.edu/physics_astro_sum
Part of the Atomic, Molecular and Optical Physics Commons, and the Quantum Physics Commons
Click here to let us know how access to this document benefits you.

Recommended Citation

Bigelow, Jacob L. and Sanford, Veronica L., "Toward Analog Quantum Computing: Simulating Designer Atomic Systems" (2015). Physics and Astronomy Summer Fellows. 3.
https://digitalcommons.ursinus.edu/physics_astro_sum/3

Jacob Bigelow
Throughout the summer we spent three days a week at Ursinus college running simmulations on the super computer and two days a week we would travel to Bryn Mawr college to run experiments in their lab using their lasere apperatus. We were looking at the dipole dipole interactions of atoms in either a s or p energy state. We would write code for simulations in the language C to test different arrangements of the these atoms and look at the energy exchange that took place. We had to learn how be proffecient in C, as well as using the program Mathematica, and using the super computer here at Ursinus to run the simulations we desired. We also were required to analytically solve integrals in order to understand the energy exchange taking place.

For our final product we presented our results from the simulations we ran at Summer Fellows 17th Annual Symposium and turning in the Mathematica notebooks we used to analyze our results. The notebooks were used to study the interactions resulting from the simulations we ran on the super computer. Other notebooks were made in order to make sure our simulations would run the way we expected and needed them to. For things like making sure our atoms in the simulations were being uniformly randomly distributed, but mostly the notebooks were used to compare and contrast different arrangements of groups of p and s atoms. We were looking for any interesting effects the geomotries of these spheres might have on the energy exchange.

* Made changes ssppAngle.c to add geometries 4 and 5 which can be found in /home/jabigelow/summerFellows/multivac/source/angular
* changed header data in ssppAngle.c in order to make it work with Dr. Carrol's new version of the compilation code
* then took angular dependence out of ssppAngle.c and make it into spNoAngle.c which can be found in /home/jabigelow/sumerFellows/source/spNoAngle
* made new geometries 6 and 7 for spNoAngle.c

Plotting our data for the anistropy of the dipole-dipole interaction

Color maps for intensity plots -- just execute this cell to get some color scales for your plots

```
In[1]:= (* just the colors themselves *)
    colorBlend[u_] := Blend[{{0, RGBColor [0, 0, 9/16]}, {1/9, Blue}, {23/63, Cyan},
            {13/21, Yellow},{47/63,Orange}, {55/63, Red },{1, RGBColor [1/2,0,0]}},u];
    Graphics[Raster[{Range[100]/100}, ColorFunction-> (colorBlend[#] &)],
        AspectRatio }->\mathrm{ .1]
    (* with power law scaling *)
    cMap2[u_] := colorBlend[u];
    colorMap[u_] := colorBlend[u 0.4];
    Graphics[
        Raster[{Range[100]/100}, ColorFunction }->\mathrm{ (colorMap[#] &)],AspectRatio }->\mathrm{ . 1]
    cm = {0, 12, 27, 40, 50, 55, 63} / 63;
    colorMapDiss[u_?NumericQ ] :=
        Blend [{{cm [[1]], RGBColor [0, 0, 0.55]},{cm [[2]], Blue},
            {cm [[3]], Cyan}, {cm [[4]], Yellow}, {cm [[5]], Orange},
            {cm [[6]], Red}, {cm [[7]], RGBColor[0.5,0,0]}},u]/; 0\lequ\leq1;
colorMap[u_] := colorMapDiss[u^0.4];
Graphics[Raster[{Range[100]/100}, ColorFunction (colorMap[#] &)], AspectRatio }->\mathrm{ . 1]
Out[2]=
Out[5]=
Out[9]=
```


Load the Data

This cell will load your data files. Change simulationName to be the name you gave your simulation in the config file. Change the directory to the place on your laptop where you store your data. After you enter the cell, your data will be stored in a list of lists cleverly named data.

```
ln[10]:= simulationName = "in4Middle";
    data={};
    SetDirectory[
            "/home /jabigelow/summerFellows /simulationData/"<>simulationName <>"/"];
    For[i=0,i\leqLength[FileNames []]-1, i++,
            filename = simulationName <> "_"<>ToString[i]<>".txt";
            istrm = OpenRead[filename ];
            a = Read[istrm ];
            Close[istrm];
            data = Append[data, a];
        ];
ln[14]:= simulationName = "line355";
    data2 = {};
    SetDirectory[
            "/home /jabigelow/summerFellows /simulationData/"<>simulationName <>"/"];
    For[i=0,i\leqLength[FileNames []]-1, i++,
            filename = simulationName <>"_" <>ToString[i]<>".txt";
            istrm = OpenRead[filename ];
            a = Read[istrm];
            Close[istrm];
            data2 = Append[data2,a];
        ];
ln[18]:= simulationName = "separated433";
    data3 = {};
    SetDirectory[
            "/home /jabigelow/summerFellows /simulationData/"<>simulationName <>"/"];
    For[i=0,i\leqLength[FileNames []] -1,i++,
            filename = simulationName <> "_" <>ToString[i] <>".txt";
            istrm = OpenRead[filename ];
            a = Read[istrm ];
            Close[istrm ];
            data3 = Append[data3, a];
        ];
```


Get familiar with the data

For now, let's assume you only vary one parameter in your simulation runs.

First, enter the following cell to see the length of each of the dimensions of your data. If you have have only varied one parameter, you should get two numbers here: the first is the number of different instances of the varied parameter that you simulated. For example, if you ran the simulation for radii from $10-15 \mu \mathrm{~m}$ in steps of $1 \mu \mathrm{~m}$, you would have a 6 here. The second number is the length of each of these sub-lists of data. This should always say 2: the first element is the
actual data, and the second element is the list of parameters for that simulation.
Dimensions [data3]
$\{71,2\}$
Now enter the following cell, where we access the parameters for the first instance of the parameter that you varied (if you didn't vary any parameters, this will be the only instance!). By looking at your configuration file, you should be able to figure out what these are. This is one change you'll make to Monocle -- it would be a good deal easier if these were labeled!
data[[3, 2]]
$\{\{12,8,10,0.05,3 ., 5\},\{10,20,40,0,0,0,0\},\{708\},\{0,0,0,0,2\}\}$
data[[4, 2, 2, 2]]
10
$\{\{7,6,2,0.001 `, 3 . `, 3\},\{45,5,0,0,0,0,0\},\{100\},\{0,0,0,2,2\}\}$
$\{\{7,6,2,0.001,3 ., 3\},\{45,5,0,0,0,0,0\},\{100\},\{0,0,0,2,2\}\}$
This particular data contrains lots of stuff. The first element in the actual data for your first parameter instance is data[[1, 1,1$]]$-- the first " 1 " says access the first parameter instance, the second " 1 " says access the data (not the parameter list), and the third " 1 " says get the first element of the data.

Here, we have stored a list of ordered triplets: \{time in $\mu \mathrm{s}$, total probability of initial s atoms being in the p state, total probability of initial p atoms being in the p state $\}$

This is not what we're truly interested in, but it's a nice quick measure of what's going on. Enter the following cell to see what that data looks like.
$\ln [22]=\operatorname{data}[[1,1,1]]$;

Plot the data

Exercise 1: Plot total probability of initial \boldsymbol{s} atoms being in the \boldsymbol{p} state vs. time

The part of the data that we're really interested in is stored in data[[1,1,2]]. This is an array of $1 \mu \mathrm{~m}$ resolution (we can change that) pixels. In each pixel we store the total p state probability at that time. Note what your maximum time and time resolution were from your simulation; this tells you how many items should be in that list. You should compare your calculated length to the actual length and make sure it makes sense to you:

Length[data[[1, 1, 2]]]
201
A particular time t in your data corresponds to some item n in your list depending on the total time simulated and resolution. The results for the 9th time you simulated would be stored in data[[1, 1,2,9]].

Now let's plot some of this data. The cell below uses ListDensityPlot to create a heat map of p state probability. Redder means more p state character, bluer means less p state character. Since you start
at $t=0$ with p state character only in the center, your plot at $0 \mu \mathrm{~s}$ should be some red at the center with dark blue everywhere else.

This is the main way we analyzed our data looking at the different amounts of energy exchange between the different groups in the different arrangments. We would also look to see if changing the amount of atoms in each group effected the dipole-dipole interaction.

```
data[[1, 2]]
```

$\{\{12,8,10,0.05,3 ., 5\},\{10,0,40,0,0,0,0\},\{708\},\{0,0,0,0,2\}\}$

```
dataIndex = 1;
time = 200;
ListDensityPlot[data[[dataIndex, 1, 2, time ]]/Max[data[[dataIndex, 1, 2, 1]]],
    PlotRange }->\mathrm{ All, ColorFunction }->\mathrm{ colorMap, ColorFunctionScaling False,
    AspectRatio }->\mathrm{ Length[data[[dataIndex, 1, 2, time ]]]/
            Length[data[[dataIndex, 1, 2, time , 1]]], ImageSize }->\mathrm{ Medium ]
```


ListDensityPlot [dataSum [[dataIndex, 1, 2, time]]/Max[dataSum [[dataIndex, 1, 2, 1]]], PlotRange \rightarrow All, ColorFunction \rightarrow colorMap, ColorFunctionScaling \rightarrow False,
AspectRatio \rightarrow Length[dataSum [[dataIndex, 1, 2, time]]]/
Length[dataSum [[dataIndex, 1, 2, time , 1]]], ImageSize \rightarrow Medium]

ListDensityPlot [dataSum [[dataIndex, 1, 2, time]]/Max[dataSum [[dataIndex, 1, 2, 1]]], PlotRange \rightarrow All, ColorFunction \rightarrow colorMap, ColorFunctionScaling \rightarrow False, AspectRatio \rightarrow Length [dataSum [[dataIndex, 1, 2, time]]]/ Length[dataSum [[dataIndex, 1, 2, time , 1]]], ImageSize \rightarrow Medium]

ListDensityPlot $d a t a S u m$ [[dataIndex, 1,2, time $]] / \operatorname{Max}[$ dataSum $[[$ dataIndex, $1,2,1]]]$, PlotRange \rightarrow All, ColorFunction \rightarrow colorMap, ColorFunctionScaling \rightarrow False,
AspectRatio \rightarrow Length [dataSum [[dataIndex, 1, 2, time]]]/
Length[dataSum [[dataIndex, 1, 2, time , 1]]], ImageSize \rightarrow Medium]

ListDensityPlot[data3[[dataIndex, 1, 2, time]]/Max[data3[[dataIndex, 1, 2, 1]]], PlotRange \rightarrow All, ColorFunction \rightarrow colorMap, ColorFunctionScaling \rightarrow False, AspectRatio \rightarrow ar3, Imagesize \rightarrow Medium]

These graph below looks at the sum of the p character for the s group moving away and plots the sum for a particular time as sphere moves away and the graph below this one is plotting the sum of p character in the s group that remains stationary as the other s group is moving away.

```
mm =
    Table[Sum [dataSum [[t, 1, 2, 150, i, j]],{i, (t*10)-9,t*10, 1},{j, 1, 10, 1}]/500,
        {t, 1, Length[dataSum ], 1}];
ListPlot[mm , Joined }->\mathrm{ True ]
```


The code below is for the purpose of making movies. We are creating a table of images like you saw above and playing those images as time goes on. The for loop is there to slow down the movie so that you can see spread of p character better, because the spreading can happen so fast sometimes we want to look at more frames than it originally gives us.

```
newData = {};
nStep = 100;
for [t=1, t \leq Length[data[[1, 1, 2]]]/5,t=t+1,
    dataA = data[[dataIndex, 1, 2, t]]/Max[data[[dataIndex, 1, 2, 1]]];
    dataB = data[[dataIndex, 1, 2, t+1]]/Max[data[[dataIndex, 1, 2, 1]]];
    diff=(dataA-dataB)/nStep;
    AppendTo[newData, dataA];
    for[s=1, s\leqnStep-1,s=s+1,
        AppendTo[newData, dataA + (s*diff)];
    ];
    ];
x = Table[ListDensityPlot[newData, PlotRange }->\mathrm{ All,
        ColorFunction }->\mathrm{ colorMap, ColorFunctionScaling False,
        AspectRatio }->\mathrm{ Length[newData[[dataIndex, 1, 2, time ]]]/
            Length[newData[[dataIndex, 1, 2, time , 1]]]],
    {j, 1, Length[newData[[1, 1, 2]]], 1}];
Export["/home /jabigelow/summerFellows /mathematica /pinMiddlegif",x];
```

ListAnimate [
Table[ListDensityPlot [data3[[dataIndex, 1, 2, i]]/Max[data3[[10, 1, 2, 1]]],
PlotRange \rightarrow All, ColorFunction \rightarrow colorMap, ColorFunctionScaling \rightarrow False,
AspectRatio \rightarrow ar3], $\{i, 1$, Length $[$ data3 $[[1,1,2]]], 10\}]]$

Above is one of the movies we created shown here in Mathematica.
Below are graphs of the p character in a particular s sphere and is plotting probablity versus time at one particular distance for the s group.

$y Y=\operatorname{Table}[\operatorname{Sum}[\operatorname{dataSum}[[1,1,2, t, i, j]],\{i, 1,10,1\},\{j, 1,10,1\}] / 2000$,
$\{t, 1$, Length[dataSum $[[$ dataIndex, 1, 2]]], 1\}];
ListPlot[yy, Joined \rightarrow True]

(*This matrix is just here to show the spheres but in the form of a matrix . This is helpful to actually see what the raw data is and can be used to help determine where to find the particular s groups.)

MatrixForm [data3[[1, 1, 2, 30]]]
$\left(\begin{array}{ccccccccccc}0 . & 0 . & 0.531699 & 0.993434 & 2.0858 & 1.55792 & 1.22694 & 0.457659 & 0 . & 0 \\ 0 . & 2.89261 & 2.37815 & 2.95454 & 5.72698 & 2.56372 & 4.68487 & 4.38629 & 1.07453 & 0 \\ 0.207387 & 2.9676 & 3.75716 & 5.08774 & 3.41291 & 4.04895 & 4.21129 & 4.28084 & 2.66156 & 0.39 \\ 1.19428 & 3.04759 & 4.431 & 7.12861 & 3.1867 & 6.17918 & 6.14816 & 4.34892 & 3.61268 & 0.84 \\ 2.90818 & 5.9414 & 5.81355 & 5.42062 & 3.70271 & 4.80109 & 4.09947 & 3.43461 & 4.33608 & 2.4 C \\ 1.79588 & 2.98337 & 5.92734 & 6.97535 & 4.20838 & 7.4832 & 6.47538 & 3.89446 & 6.13564 & 3.53 \\ 2.86522 & 4.6808 & 6.25857 & 6.04916 & 7.35362 & 5.89471 & 8.43127 & 4.66671 & 5.04561 & 3.3 \varepsilon \\ 0.696633 & 5.75915 & 5.17971 & 5.97529 & 6.15773 & 7.86624 & 5.76964 & 6.74154 & 3.8119 & 1.4 \varepsilon \\ 0 . & 2.6415 & 7.36486 & 8.24326 & 5.63153 & 9.66947 & 8.24782 & 5.88745 & 2.5236 & 0 \\ 0 . & 0 . & 0.74253 & 4.14268 & 4.47148 & 8.43068 & 7.72494 & 1.05752 & 0 . & 0 \\ 0 . & 0 . & 1.34615 & 3.32656 & 8.44476 & 8.74586 & 10.5565 & 1.8795 & 0.0 & 0 \\ 0 . & 5.58514 & 16.0604 & 20.512 & 21.5321 & 16.4502 & 17.2084 & 14.1749 & 4.22085 & 0 \\ 4.27706 & 9.55115 & 14.0327 & 28.35 & 23.6013 & 21.9918 & 27.4012 & 20.3291 & 14.8901 & 3.0 C \\ 2.90862 & 24.8075 & 18.3385 & 29.6608 & 24.4061 & 29.8928 & 25.0219 & 30.117 & 22.7743 & 4.87 \\ 14.3453 & 22.2733 & 34.7685 & 40.7101 & 22.5419 & 26.002 & 31.1374 & 27.9306 & 27.6923 & 9.61 \\ 16.7669 & 28.1902 & 34.1074 & 38.1021 & 40.8172 & 47.1654 & 28.4345 & 27.4743 & 26.1876 & 17 . C \\ 7.50211 & 23.708 & 20.4763 & 32.7158 & 33.8322 & 28.6621 & 24.932 & 25.7305 & 19.0632 & 9.3 \\ 0.62882 & 20.0852 & 8.69138 & 21.5564 & 36.9249 & 34.399 & 21.3115 & 31.2168 & 13.4255 & 4.86 \\ 0 . & 3.71416 & 22.3031 & 25.1632 & 25.6963 & 29.3716 & 20.4086 & 22.1871 & 1.00925 & 0 \\ 0 . & 0 . & 1.60617 & 6.87743 & 11.9494 & 9.21339 & 8.36878 & 3.67563 & 0 . & 0 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0\end{array}\right.$

The graphs below show the p character for the total system as time goes by. Each line is a different distance the second s group is from the other two groups for various simulations.

Here we again are just loading more data from different simulations so we can more easily look at the results from the various simulations

```
simulationName = "spreadSpheres";
data4 = {};
SetDirectory[
    "/home /jabigelow/summerFellows /simulationData/"<>simulationName <>"/"];
For[i=0,i\leqLength[FileNames []] -1, i++,
    filename = simulationName <> "_" <>ToString[i] <>".txt";
    istrm = OpenRead[filename ];
    a = Read[istrm ];
    Close[istrm];
    data4 = Append[data4, a];
    ];
simulationName = "separated344";
data5 = {};
SetDirectory[
    "/home /jabigelow/summerFellows /simulationData/"<>simulationName <> "/"];
For[i=0,i\leqLength[FileNames []] -1, i++,
    filename = simulationName <> "_" <>ToString[i] <>".txt";
    istrm = OpenRead[filename ];
    a = Read[istrm];
    Close[istrm];
    data5 = Append[data5, a];
    ];
simulationName = "separated544";
data6 = {};
SetDirectory[
    "/home /jabigelow/summerFellows /simulationData/"<>simulationName <>"/"];
For[i=0,i\leqLength[FileNames []]-1, i++,
    filename = simulationName <> "_" <> ToString[i] <>".txt";
    istrm = OpenRead[filename ];
    a = Read[istrm ];
    Close[istrm ];
    data6 = Append[data6, a];
    ];
simulationName = "line455";
data7 = {};
SetDirectory[
    "/home /jabigelow/summerFellows /simulationData/"<>simulationName <> "/"];
For[i=0,i\leqLength[FileNames []]-1, i++,
    filename = simulationName <>"_"<>ToString[i]<>".txt";
    istrm = OpenRead[filename ];
    a = Read[istrm];
    Close[istrm ];
    data7 = Append[data7, a];
    ];
```

```
simulationName = "separated533";
data8 = {};
SetDirectory[
    "/home /jabigelow/summerFellows /simulationData/"<>simulationName <>"/"];
For[i=0, i\leq Length[FileNames []]-1, i++,
    filename = simulationName <> "_"<>ToString[i]<>".txt";
    istrm = OpenRead[filename];
    a = Read[istrm];
    Close[istrm];
    data8 = Append[data8, a];
    ];
simulationName = "spreadSpheres3atoms ";
data9 = {};
SetDirectory[
    "/home /jabigelow/summerFellows /simulationData/"<>simulationName <>"/"];
For[i=0, i\leqLength[FileNames []]-1, i++,
    filename = simulationName <> "_"<>ToString[i]<>".txt";
    istrm = OpenRead[filename ];
    a = Read[istrm];
    Close[istrm];
    data9 = Append[data9, a];
    ];
dataSum = (data + data2 + data3 + data4 + data5 + data6 + data7 + data8 + data9)/9;
ListPlot[Table[{#[[1]], #[[2]]} &/@dataSum [[i, 1, 1]],{i, 1,4}],
    Joined }->\mathrm{ True, PlotRange }->\mathrm{ All]
```


This code was made in order to test to see if we were correctly distributing different atoms among a circle which we then used to make sure we could uniformily randomly distribute atoms among a sphere.

```
file=
    "/home /jabigelow/summerFellows /multivac /experiment /cppExercise/test.dat";
numbers = BinaryReadList[file, "Real64"];
x = {};
y = {};
Length[numbers ]
10000
```

graph = \{ \};
size= Length[numbers];
For $[i=1, i \leq s i z e, i=i+2$,
r = numbers [[i]] ;
$\theta=$ numbers [[i+1]];
$x=r * \operatorname{Cos}[\theta] ;$
$y=r * \operatorname{Sin}[\theta] ;$
AppendTo[graph, Graphics[Point[\{x, y\}]]];
] ;
Show [graph]


```
Show[Graphics[Point[{3,4}]],Graphics[Point[{2, 7}]]]
```

Also used was the final projcet for our fall 2014 research which we altered in order to look at different effects of a 2 atom system with one p and one s in order to better understand the energy exchange.

This program was written for the final of the fall semester of 2014. Using the matrix H , where δ originally was 0, we composed S using the eigenvectors of H . We then achieved the time operator with matrix multiplication of S el and Sdag, giving us $U[t]$. Then we created a loop to graph the increments of t over the evolution.(in 107)

Plot 1 is $\delta=0.1$, plot 2 is $\delta=5$, plot 3 is $\delta=10$

```
deltaplot = \{\};
For \([\delta=-10, \delta \leq 10, \delta=\delta+1\),
    \(h=1\);
    \(\mathrm{u}=1\);
    \(\mathrm{H}=\left(\begin{array}{ll}0 & \mathrm{u} \\ \mathrm{u} & \delta\end{array}\right) ;\)
evec = Normalize /@Eigenvectors[H];
eval = Eigenvalues[H];
    S = Transpose[evec] ;
    Sdag = ConjugateTranspose[S];
\(U\left[t_{-}\right]:=S \cdot\left(\begin{array}{cc}e^{-i \dot{i} \operatorname{eval}[[1]] t / h} & 0 \\ 0 & e^{-i \operatorname{eval}[2]] t / h}\end{array}\right) \cdot\) Sdag;
        initState \(\{1,0\}\);
        probSum = 0;
        count = 0;
        For \([t=0, t \leq 10, t=t+.1\),
            currentState \(=\mathrm{U}[\mathrm{t}]\). initState
            probs = currentState[[2]] * Conjugate[currentState[[2]]];
            probSum += probs;
            count++;
        ];
        AppendTo[deltaPlot, \(\{\delta\), probSum /count \(\}\) ];
    ];
deltaPlot
```

$\{\{-10,0.0189551+0 . \tilde{\boldsymbol{j}}\},\{-9,0.0236747+0 . \tilde{i}\},\{-8,0.0289284+0 . \dot{\tilde{i}\}}$,
$\{-7,0.0379628+0 . \tilde{0}\},\{-6,0.0492217+0 . \tilde{\boldsymbol{j}}\},\{-5,0.0694644+0$. ㅁ $\}$,

$\{-1,0.406237+0 . \tilde{0}\},\{0,0.473992+0 . \tilde{0}\},\{1,0.406237+0 . \tilde{0}\},\{2,0.250086+0 . \tilde{i}\}$,
$\{3,0.157308+0 . \dot{\tilde{u}}\},\{4,0.0976727+0 . \tilde{i}\},\{5,0.0694644+0 . \tilde{0}\},\{6,0.0492217+0 . \overline{0}\}$,


```
plot1 = ListPlot[deltaPlot, Joined }->\mathrm{ True, PlotRange }->\mathrm{ All]
```


