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Improvements to Bayesian Gene Activity State Estimation from Genome-
Wide Transcriptomics Data

Abstract
An important question in many biological applications, is to estimate or classify gene activity states (active or
inactive) based on genome-wide transcriptomics data. Recently, we proposed a Bayesian method, titled
MultiMM, which showed superior results compared to existing methods. In short, MultiMM performed
better than existing methods on both simulated and real gene expression data, confirming well-known
biological results and yielding better agreement with fluxomics data. Despite these promising results,
MultiMM has numerous limitations. First, MultiMM leverages co-regulatory models to improve activity state
estimates, but information about co-regulation is incorporated in a manner that assumes that networks are
known with certainty. Second, MultiMM assumes that genes that change states in the dataset can be
distinguished with certainty from those that remain in one state. Third, the model can be sensitive to extreme
measures (outliers) of gene expression. In this manuscript, we propose a modified Bayesian approach, which
addresses these three limitations by improving outlier handling and by explicitly modeling network and other
uncertainty yielding improved gene activity state estimates when compared to MultiMM.
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Abstract— An important question in many biological 
applications, is to estimate or classify gene activity 
states (active or inactive) based on genome-wide 

transcriptomics data. Recently, we proposed a 
Bayesian method, titled MultiMM, which showed 
superior results compared to existing methods. In 
short, MultiMM performed better than existing 

methods on both simulated and real gene expression 
data, confirming well-known biological results and 

yielding better agreement with fluxomics data. 
Despite these promising results, MultiMM has 

numerous limitations. First, MultiMM leverages co-
regulatory models to improve activity state estimates, 
but information about co-regulation is incorporated in 
a manner that assumes that networks are known with 
certainty. Second, MultiMM assumes that genes that 
change states in the dataset can be distinguished with 
certainty from those that remain in one state. Third, 

the model can be sensitive to extreme measures 
(outliers) of gene expression. In this manuscript, we 

propose a modified Bayesian approach, which 
addresses these three limitations by improving outlier 

handling and by explicitly modeling network and 
other uncertainty yielding improved gene activity 

state estimates when compared to MultiMM.  
 

Keywords—Gene Regulation, Transcriptomics, 
Bayesian Inference  

 

I. INTRODUCTION  
Many approaches to analyzing genome-wide transcriptomics 
data attempt to leverage the data by classifying genes into one 
of two gene activity states: active (roughly speaking, the gene 
product is part of an active cellular mechanism) or inactive 
(the cellular mechanism is not active) [1]–[3]. Previous 
methods were limited by (a) assuming similar activity state 
expression thresholds across genes, such as in GIMME [4] 
where a user-specified expression level is used to classify 
gene activity states in any given experiment, (b) assuming 
similar proportions of active genes across 
experiments/conditions, (c) ignoring a priori information 
about potential gene co-regulation and (d) failing to 
adequately incorporate statistical uncertainty in subsequent 
inference about gene activity states.  

Recently, we published a novel approach using a 
Bayesian Gaussian mixture model, MultiMM [5]. Grounded in 
a rigorous statistical framework, MultiMM addresses these 
limitations as demonstrated by better performance than 
existing methods on simulated and real transcriptomics data 
and higher consistency with accepted biological results and 
fluxomics data [4].The MultiMM algorithm takes as input a 
genome-wide matrix of transcriptomics data E across many 
experimental conditions and estimates the gene activity state 
of each gene i in condition j. MultiMM allows for a priori 
specification of sets of genes which are known to be co-
regulated so that they may be classified as all active or 
inactive in the same experimental condition.  Unlike previous 
methods, the estimated mixture distribution parameters can be 
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used to yield a posterior probability aij ∈ [0,1], that gene i is 
active in condition j.  Recently, we further demonstrated that 
use of gene activity estimates outperformed the use of raw 
expression data when conducting gene-set analysis approaches 
to test for differential gene expression [6]. The promising 
results of the MultiMM method, however, are tempered 
somewhat by at least three significant limitations. First, the 
MultiMM method assumed that a priori identification of co-
regulated genes was certain. This is rarely the case. Depending 
on data quality, a priori sets of co-regulated genes are likely 
often a mix of genes, which are co-regulated, are co-regulated 
only in some conditions or are not co-regulated at all. Second, 
in the first step of the method, inference about whether a gene 
is changing states (mathematically, whether expression values 
come from a one- or two-component mixture model) is taken 
to be certain, but in reality these classifications are estimates. 
Finally, inference about whether a gene’s expression values 
are from one or two components, as well as the Gibbs 
sampling method to estimate the model’s parameter values, 
can be sensitive to extreme values (outliers). In this paper we 
present enhancements to the MultiMM approach which 
address the noted shortcomings of the existing method and 
evaluate the modified method compared to the existing 
MultiMM method. 

II. METHODS 

A. Modifications to the existing MultiMM Approach  
The following three sections discuss limitations and 

modifications to the MultiMM approach. 
 

i. Hedging to improve inference about whether a gene is 
changing activity states 
The current MultiMM method [5] uses the Bayesian 
Information Criterion (BIC) to assess the fit of one- or two-
component Gaussian mixture models in order to determine if 
evidence exists that a gene (or co-regulated set of p genes) is 
not changing activity states across the set of experiments 
being evaluated (in which case there is only one component). 
Following Raftery [7], the MultiMM method assumes that the 
2-component distribution is assumed to be the better fit unless 
the 1-component model has at least a 12-point lower BIC. 
Genes for which the 2-component distribution is a better fit 
are classified as “changing state,” and genes for which the 1-
component distribution is a statistically significantly better fit 
are classified as “not changing state.” In some cases, the 
resulting activity state estimates vary dramatically depending 
on whether a gene is classified changing-state or not (see, for 
example, Figure 1). We would like to incorporate the 
uncertainty of whether or not a gene is changing state in 
downstream analyses. To do so, we introduce a modification 
to the algorithm that both (a) provides a smoother transition 
between the two approaches rather than a sharp cutoff; and (b) 
“hedges” its estimates in cases of uncertain classifications, 
providing more balanced predictions and more accurately 
incorporating uncertainty in downstream parts of the MultiMM 
procedure.  
 

 
 
 

Figure 1. Top: expression data for E. coli gene ymjA 
across 907 unique experiments, with its 1-component (a) 
and its 2-component (b) fit overlaid. Bottom: activity 
state estimates (aij) for ymjA in the 907 experiments, 
according to the models presented in (a) (corresponding 
to c) and (b) (corresponding to d), respectively.  The 
distribution of activity state estimates is quite different 
based on which method is used, despite only having a 
difference of 0.7 in BIC (representing strong uncertainty 
in which model (a) or (b) is correct). Graph (c) suggests 
that ymjA is inactive in most experiments, whereas graph 
(d) suggests that ymjA is active in most experiments. 
 

First, we let Ci  represent the posterior probability that gene i is 
truly changing state. We note that the current MultiMM 
approach assumes that Ci ∈ {0,1}, indicating complete 
confidence that the gene is not-changing-state (Ci =0) or is 
changing-state (Ci =1) respectively and using BIC criterion 
described above (12 point lower BIC per Raftery [7]). Next, 
we define the “Normalized Bayes Factor” of a set of p (p ≥1) 
co-regulated genes as 

 
where  is the natural log of the Bayes Factor, K, for the 
fit of the 1-component Gaussian distribution to the expression 
data over the 2-component Gaussian distribution as calculated 
by the R package Mclust [8] giving the difference in log-
likelihood between the two models. Intuitively, -2 times the 
natural log of the Bayes factor, K, is a common measure of 
statistical evidence, and scaling by N (the number of 
experiments) and p provides a standardized statistic across co-
regulated set size and number of experiments. We note that 
the highest observed value of NBF on our real set of 907 
expression arrays for over 4000 genes is approximately 0, and 
the lowest observed value is -0.913, which was observed on 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/241000doi: bioRxiv preprint first posted online Dec. 29, 2017; 

http://dx.doi.org/10.1101/241000


the three genes in the araBAD operon. Previously, it has been 
noted that strong biological and statistical evidence confirms 
the araBAD genes are changing states over these 907 
expression arrays [7]. We propose a piecewise linear mapping 
from NBF  to C,   
 

 
 

where A and B are both constants such that A<B. In our 
exploration of different cutoff choices (detailed results not 
shown), we observe that for genes that do not change states 
(true 1-component multivariate Gaussian distributions), 

 appears independent of N and rarely falls below -2p-3; 
hence, reasonable choices for A and B are: 

 and  

We now briefly describe how C  is used in the generation of 
gene activity state estimates. In short, this approach estimates 
gene activity values assuming the gene (or set of co-regulated 
genes) is from a 1-copmonent mixture and, separately, from a 
2-component mixture and then combines the estimates 
reflecting confidence in the estimates. 
Step 1. For each a priori specified set of co-regulated genes H, 
generate gene activity state estimates, a(2)ij, using the 
MultiMM approach and assuming that the set is changing 
states.  
Step 2. For each gene, i in the set, find parameters µi  and σi 
describing the best-fit 1-component Gaussian distribution 
using Mclust. Then, looking at the full list of genes for which 
transciptomics data is available, make a list L (of length n) of 
all genes g where σi ∈ σg  ± 0.1 and either µi  ∈ µ0,g ±0.1 or   
µi  ∈ µ1,g ±0.1.  
Step 3. Generate n sets of gene activity state estimates for i, 
one for each gene in L, as if i’s expression data came from the 
other gene’s best-fit 2-component distribution. Let these 
estimates be called a(1)ij for each gene i.  
Step 4. For each gene i, activity state estimates are calculated 
as  

 (3) 

 
Step 5. Following the original MultiMM approach, for each 
co-regulated gene set and each experimental condition, use the 
average activity state estimates for each gene in the set as the 
final activity state estimate for each of the set’s genes. 
Note that this method reduces to the standard MultiMM 
approach if Ci=1 or Ci =0. 

ii. Incorporating uncertainty into a priori sets of co-regulated 
genes 

The MultiMM method fits a k-dimensional multivariate 
Gaussian mixture model on expression data for a set of k 
genes that are indicated to be co-regulated; a model which 

assumes that, in any given condition j, all k genes in the set 
will either be active or inactive. In cases where k=1, a 
univariate Gaussian mixture model is fit to the data. The 
limitation of this approach is that there is no consideration of 
uncertainty in the a priori specified set of k genes [9]. To 
allow for this uncertainty, we propose ConfMM, which takes 
as input a single number Ch, ranging from 0 to 1 for each set of 
co-regulated genes, representing the posterior probability that 
the genes in h are in fact co-regulated. For a set of purportedly 
co-regulated genes, h, ConfMM first conducts the MultiMM 
approach on each gene in the set separately, producing gene 
activity estimates Uij for each gene i and experimental 
condition j, and then conducts MultiMM on the entire set of 
genes as a unit, producing gene activity estimates Mij. For each 
gene i and experimental condition j, ConfMM’s output gene 
activity estimates are then given by  
Ch*Mij + (1-Ch)* Uij, where H is the co-regulated set 
containing i. Similar to the approach for modeling 
uncertainty in whether or not a gene is changing states 
(section i), here we take a weighted average of the gene 
activity estimates to capture the uncertainty quantified by 
Ch. 
 
iii. Outlier Handling 
Gaussian mixture modelling can be sensitive to extreme 
values in the data caused by measurement and other errors, 
ultimately leading to biased estimates of gene activity status. 
The current MultiMM approach takes the view that outliers are 
biologically meaningful and not due to error. We propose two 
potential methods for mitigating the influence of outliers on 
downstream gene activity state estimates. 
- SD(d): This approach first calculates the mean  and the 
standard deviation S of the expression data for each gene, and 
then removes any observations greater than  + d*S or less 
than  - d*S . 
-Wins(d): This approach, called “winsorization” [10], is 
similar to SD(d), but does not actually remove any 
observations. Instead, any observations greater than  + d*S 
are imputed as  + d*S, and likewise any observations less 
than  - d*S  are imputed as  - d*S.  To evaluate 
winsorization, we consider d= 4 and d=5.  
 
B. Real Data Sets 
We use genome-wide expression data comprising 4329 E. coli 
genes from 907 different microarray data sets in a variety of 
diverse conditions. Raw data from Affymetrix CEL files were 
normalized using RMA [11] and these data were placed in the 
M3D data repository [12]. Further details of data processing 
are described in [13], [14]. E. coli operon predictions for 2648 
operons (co-regulated gene sets), including 1895 single gene 
operons, were obtained from Microbes Online [9]. 
 
C. Simulated data sets 
For some analyses, we used simulated data with 
characteristics based on the real set of 4329 E. coli genes 
across 907 different experiments, with co-regulated sets of 
genes based on prior predictions [9]. To mirror real expression 
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data as closely as possible, we first screened the simulated 
data and dropped all co-regulated sets of genes (operons) for 
which the 2-component model did not yield the highest BIC. 
A random selection of the remaining operons was chosen to be 
single component in the simulated data with each of the single 
component operons being always active or inactive with equal 
likelihood. In order to demonstrate our method’s performance 
in the face of uncertain operon classifications, we generated a 
second simulated data set. We simulated 100, 3-gene sets over 
907 experiments, where some proportion p of the 100 gene 
sets were actually co-regulated, and the other 100(1-p) gene 
sets were actually generated as independent genes. In each test 
we then assigned confidence p to each of the 100 gene sets. 
We will refer to this simulated data set as the Co-regulated 
Confidence data.  
  

 
Figure 2. (a) Expression data for E. coli gene rhaB 

across 907 diverse experiments; (b) expression data for gene 
rhaB with its 2-component fit from MultiMM overlaid. The 
current MultiMM method fits a 2-component model to this 
gene with the ‘inactive’ component of the model fit to a small 
number of very low expression values. Thus, the current 
MultiMM method suggests that rhaB is active in most 
experiments 
 
D. Alternate gene activity state estimation methods 

Following our earlier work [5], in this paper we 
consider a variety of methods for inferring gene activity states: 
MT (Median Threshold: all genes in an experiment above the 
median are deemed active and, those below, inactive), TT 
(Trichotomous Threshold: all genes below the 40th percentile 
are deemed inactive, above the 60th percentile are active, 
otherwise gene activity is deemed ‘uncertain’), and RB (Rank-
based: the activity state estimate is the percentile rank within 
the experiment). The MT approach can be found in [15]. TT is 
an extension following GIMME which allows for an 
“uncertain” classification as in [15], and RB is a further 
extension in the spirit of GIM3E [16]. Further discussion of 
such methods can be found elsewhere [5]. We also consider 
alternatives to the MultiMM method: MultiMM(12) is the 
standard MultiMM approach using a difference of 12 in BICs 
to determine if a gene is changing state; MultiMM(0) is a 
variation where no preference is given when selecting based 
on BIC. UniMM is a univariate version of MultiMM that 
simply discards all co-regulation data and processes each gene 

separately. Finally, MultiMM(NBF) is the version of MultiMM 
proposed earlier (i.) which uses NBF to estimate C. 

 
E. Validation and statistical analysis  
For simulated data, true gene activity states are known by 
nature of the simulation. For real data, predictions of gene 
activity were obtained using FVA [17] on the E. coli iJO1366 
metabolic model [18]. For the purposes of evaluating the 
performance of the methods we use the “mean square 
alignment”, defined as  

 
 where x and y represent sets (usually matrices) of 
probabilities, and the mean is taken over all i and j. Usually, x 
will be a set of gene activity state estimates from the method 
being evaluated, and y  will be either the true gene activity 
states (on simulated data) or the FVA predictions (on real 
data). Higher mean square alignment indicates improved 
agreement (that is, less difference) between the sets.  
 

III. RESULTS  
A. Hedging to improve inference about whether a gene is 
changing activity states 

Figure 3 shows the mean square alignment between 
various methods’ C estimates and the true classifications, on 
the Sim-Uniform E. coli data. This shows that UniMM(NBF) 
and MultiMM(NBF) provide the best overall performance 
(measured as mean square alignment between the C  values 
and the true classifications) among univariate and multivariate 
procedures, respectively.  

 
 

 
 
 

Figure 3. Performance of various classification procedures 
on Sim-Uniform E. coli data. 
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B. Co-regulated gene set confidence levels 

Figure 4 illustrates the performance of the ConfMM 
method on the Co-regulated Confidence simulated data 
described above. In particular, the performance of the three 
methods are evaluated as the proportion of true co- regulated 
genes in the set (p) varies. Notably, and by design, ConfMM is 
as good as, or better than, both UniMM and MultiMM in every 
case.  
 

 
Figure 4. Performance of UniMM, MultiMM and ConfMM 
with varying levels of operon certainty. 
 
C. Outlier Handling  

Performance of each of the gene activity state 
estimation methods with each of the outlier-handling 
approaches, as measured by mean square alignment with the 
FVA predictions on the real data, is given in Figure 5. We can 
see an illustration of the effects of outlier-handling by 
returning to rhaB, the gene from Figure 2. The raw expression 
data for rhaB was shown in Figure 2(a); the expression data 
after SD(4) or Wins(4) preprocessing is shown in Figure 6(a) 
and 6(b) respectively. The series of unusually low 
observations in Figure 2(a) were partially removed (by SD(4)) 
or made less extreme (by Wins(4)). In Figure 2(b) we saw that 
in the raw expression data for rhaB (no outlier handling), the 
series of unusually low observations was interpreted as an 
‘inactive’ cluster, with the entire rest of the observations then 
interpreted as ‘active’; this results in the gene activity 
estimates shown in Figure 6(c) whereby rhaB is very 
confidently identified as ‘active’ in the vast majority of 
experiments. After SD(4) preprocessing, the expression data 
for rhaB (shown in Figure 6(a)) was classified by MultiMM(0) 
as not-changing-state, whereas the original expression data for 
rhaB (shown in Figure 2(a)) had been classified by those 
methods as changing-state, leading to the interpretation 
explained earlier. This leads to substantially different gene 
activity estimates, shown in Figure 6(d). If Wins(4) 
preprocessing is used rather than SD(4), a third interpretation 
results (see Figure 6(e)) in which rhaB is classified changing-
state, but not due to the outliers on the left; instead, the overall 
right-skewness of the expression data is interpreted as a large 
‘inactive’ cluster and a small ‘active’ cluster, producing the 
estimates shown in Figure 6(f). The outlier handling yields a 

more biologically meaningful result as rhamnose is rarely 
present in the 907 experiments considered here. 
 

 
 Figure 5. Performance of various outlier-handling 
methods on real data. Coin flip is a random choice as to 
whether the gene is active (50% chance) or inactive (50% 
chance). In general, outlier handling improves mean square 
alignment with SD and Wins methods performing relatively 
similarly across methods. 
 
 
 

 
Figure 6. (a) and (b) Expression data for gene 
rhaB following SD(4) and Wins(4) preprocessing 
respectively; compare to Figure 2(a). (c) and (d) 
Activity state estimates for rhaB in the 907 
experiments according to MultiMM(0), with no 
preprocessing or SD(4) preprocessing respectively. 
(e) and (f) MultiMM(0) Wins(4) interpretation: 2-
component fit and generated activity state 
estimates. 

 
IV. Discussion 

 
In this manuscript we have addressed three 

limitations of the recently published MultiMM method for 
inferring gene activity states from genome-wide 
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transcriptomics data: (1) accounting for uncertainty in initial 
inference about whether a gene is changing states, (2) 
uncertainty in whether a set of genes is co-regulated and (3) 
robustness to extreme gene expression values (outlier 
handling). We demonstrated that on both real and simulated 
data the new method performed better compared to the 
existing MultiMM method.  

The Bayesian modeling framework that we present in 
this manuscript provides a flexible and adaptable approach to 
infer gene activity. Thus, as additional sources of biological 
information are obtained, they can be easily integrated into the 
framework. Next steps include leveraging both empirical 
estimates of gene co-regulation (e.g., correlation estimates 
from the set of expression data) and more precise information 
about regulatory relationships. One such relationship comes 
from the Transcription Regulatory Network (TRN). A full 
integration of TRN information would require the integration 
of the relationships themselves and explicit incorporation of 
TRN uncertainty into the Bayesian framework of the 
MultiMM model.  

Additional validation of these method refinements 
and the original method are still necessary on organisms 
beyond E. coli. Furthermore, many additional refinements are 
possible including the incorporation of additional biological 
information into the Bayesian model (e.g., cross-species gene 
orthology, metabolic pathway information, etc.). Ultimately, 
these gene activity estimates can be used in multiple 
downstream applications including gene set analysis [6] and 
metabolic flux modeling, among others. Software for the 
methods illustrated here is available as supplemental files to 
this manuscript and found here: http://www.dordt.edu/statgen. 
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