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Abstract
Gene set analysis methods continue to be a popular and powerful method of evaluating genome-wide
transcriptomics data. These approach require a priori grouping of genes into biologically meaningful sets, and
then conducting downstream analyses at the set (instead of gene) level of analysis. Gene set analysis methods
have been shown to yield more powerful statistical conclusions than single-gene analyses due to both reduced
multiple testing penalties and potentially larger observed effects due to the aggregation of effects across
multiple genes in the set. Traditionally, gene set analysis methods have been applied directly to normalized,
log-transformed, transcriptomics data. Recently, efforts have been made to transform transcriptomics data to
scales yielding more biologically interpretable results. For example, recently proposed models transform log-
transformed transcriptomics data to a confidence metric (ranging between 0 and 100%) that a gene is active
(roughly speaking, that the gene product is part of an active cellular mechanism). In this manuscript, we
demonstrate, on both real and simulated transcriptomics data, that tests for differential expression between
sets of genes using are typically more powerful when using gene activity state estimates as opposed to log-
transformed gene expression data. Our analysis suggests further exploration of techniques to transform
transcriptomics data to meaningful quantities for improved downstream inference.
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Abstract

Gene set analysis methods continue to be a popular and powerful method of evaluating genome-

wide transcriptomics data. These approach require a priori grouping of genes into biologically 

meaningful sets, and then conducting downstream analyses at the set (instead of gene) level of 

analysis. Gene set analysis methods have been shown to yield more powerful statistical 

conclusions than single-gene analyses due to both reduced multiple testing penalties and 

potentially larger observed effects due to the aggregation of effects across multiple genes in the 

set. Traditionally, gene set analysis methods have been applied directly to normalized, log-

transformed, transcriptomics data. Recently, efforts have been made to transform transcriptomics 

data to scales yielding more biologically interpretable results. For example, recently proposed 

models transform log-transformed transcriptomics data to a confidence metric (ranging between 0 

and 100%) that a gene is active (roughly speaking, that the gene product is part of an active 

cellular mechanism). In this manuscript, we demonstrate, on both real and simulated 

transcriptomics data, that tests for differential expression between sets of genes using are typically 

more powerful when using gene activity state estimates as opposed to log-transformed gene 

expression data. Our analysis suggests further exploration of techniques to transform 

transcriptomics data to meaningful quantities for improved downstream inference.
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1. Introduction

Gene set analysis methods are a popular approach to assessing statistical significance on a 
priori, biologically defined sets of genes, as opposed to on a gene by gene basis [1]. These 

approaches have now been widely applied to SNP and RNA microarrays, and, more recently, 

RNA and DNA sequencing. The hope and promise of these methods is a combination of 

both statistical and biological improvements. Statistically, by analyzing sets of genes, instead 

of each gene individually, multiple testing penalties can be reduced. Furthermore, by 

potentially aggregating multiple independent effects (in different genes in the set), the true 

signal may more easily rise above the ‘noise’ of other genes in the set. Both reduced 

multiple testing penalties and aggregated effects have the potential to improve the statistical 

power of gene set tests. Biologically, by defining gene sets using a priori defined sets of 

genes, there is the increased potential for testing specific and more complex biological 

hypotheses (e.g., defining a set of genes as all genes in a pathway).

Previously, we discussed application of gene set analysis methods to testing for differential 

levels of gene expression in a genome-wide transcriptomics setting for bacteria [2]. In 

particular, we evaluated the performance of novel methods of testing for differential gene 

expression finding that the novel methods often outperformed, other popular methods, like 

Fisher’s Exact Test (FET) [3]. These novel methods of testing for differential gene 

expression between two experiments (or bacterial strains) utilize the entire vector of 

normalized gene expression values for all genes in the set, instead of first defining an 

arbitrary cutoff (as is the case in FET). By leveraging the entire vector of expression values, 

instead of suffering from the information loss due to defining an arbitrary cutoff, the 

methods are generally more powerful than FET.

While gene set analysis typically focus on analyzing ‘raw’ gene expression data, many 

current approaches to understanding genome-wide transcriptomics data attempt to further 

leverage the data by classifying genes into one of two states: active (roughly speaking, the 

gene product is part of an active cellular mechanism) or inactive (the cellular mechanism is 

not active) [4]–[6]. We label this classification a determination of the gene activity state. 

Recently, we published a novel approach, MultiMM [7], to address documented deficiencies 

in many of the current state of the art methods. MultiMM is a parametric Bayesian mixture 

modelling approach which addresses limitations in existing methods as demonstrated 

through a rigorously grounded statistical framework, better performance than existing 

methods on simulated and real transcriptomics data, and through improved consistency with 

well-accepted biological realities and fluxomics data. Full details of, and links to, software 

for the MultiMM method are available elsewhere [7]. Ultimately, the MultiMM method 

yields a confidence estimate, aij ∈ [0,1], that gene i is active in condition j. One stated goal 

of the MultiMM method is to improve inference in downstream interpretations of gene 

expression data.

In this manuscript we consider the performance of a variety of gene set analysis methods on 

both raw gene expression data, as well as on aij values (confidence estimates that gene i, is 

active in experiment j) in order to determine if aij values are advantageous for use when 

conducting gene set analysis.
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2. Methods

2.1. Methods of gene set testing

We consider three broad classes of gene set analysis methods [2], [3], [8].

First, we consider the burden test type of gene set testing method, with test statistic defined 

as:

(1)

Where eij is the expression value of the ith gene measured in the jth condition, m is a positive 

constant (including infinity), and k is the number of genes in the set. As is discussed 

elsewhere [8], the Burden (Bm) test class of methods of conducting gene set analysis 

assumes that the effects of the genes within the test will tend to be in the same direction. For 

example, all genes in the set of interest are either not changing in underlying expression 

values, or are increasing, but none are decreasing. In the framework of ‘activity states’ this 

means that all genes are either moving from inactive to active (across the two experiments 

being compared) or are in the same state in both experiments. When this assumption is not 

met, Burden tests tend to be low powered since effects ‘cancel out.’ As m increases, 

increasing weight is put on the most expressed genes, such that if m=∞, 

.

The Variance Components class of test methods was envisioned primarily in response to the 

fact that Burden tests could not appropriately handle changes in multiple directions within 

the same set of genes (e.g., some genes move from inactive to active and others from active 

to inactive when comparing two experiments) [9]. The general form of a Variance 

Components gene set test statistic, VCm, is given as:

Similar to the behavior for Burden tests, Variance components tests put increasing weight on 

pairwise differences in expression values as m increases, such that when m=∞, the VC 

statistic takes the value of the largest observed pairwise difference in expression values.

The third class of tests we considered was Fisher’s Exact Test (FET). In this approach, an 

arbitrary cutoff, c, is first chosen, such that if |eij1 − eij2 | > c, then the gene is coded ‘1’ 

(changing state; differentially expressed) and otherwise is coded ‘0’ (not changing state; not 

differentially expressed). The proportion of genes in the set of interest which are deemed to 

be differentially expressed (>c) is compared to the proportion of genes not in the set of 

interest which are deemed to be differentially expressed using Fisher’s Exact test, which 

uses a hypergeometric distribution to assess statistical significance.
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2.2. Implementation of methods of gene set testing

In this manuscript we consider nine different tests, applied to both raw expression data (eij) 

and gene activity state estimates (aij; see next section for details). The nine tests are B1, B2, 

B∞, VC1, VC2, VC∞, FET(1SD), FET(2SD) and FET (3SD). The test statistic equations for 

B and VC are given in the previous section, along with a description of the FET approach. 

For the FET approach, we use 1SD, 2SD and 3SD to denote how determine a cutoff value, c. 

In short, we find the average within gene SD across genes and experiments for which data is 

available, and then use that value (1SD), 2 times that value (2SD) or 3 times that value 

(3SD) to determine the cutoffs. For eij 1SD = 0.75 and, for aij, 1SD=0.3. FET determines 

statistical significance using the hypergeometric distributions. All other tests are evaluated 

for statistical significance by comparing the observed statistic to a null distribution of 10,000 

randomly generated statistics obtained by randomly choosing 10,000 sets of the same size as 

the gene set being evaluated and finding the fraction of randomly chosen sets with larger 

statistics than observed (the p-value).

2.3. Moving from raw expression values to estimates of gene activity states

The MultiMM algorithm takes as input a genome-wide matrix of transcriptomics data E 
across numerous experimental conditions, such that the entries in E are denoted eij and 

represent the estimated gene expression of gene i in condition j. Additionally, if available, 

MultiMM allows for a priori identification of sets of genes which are known to be co-

regulated such that in the same experimental condition, the co-regulated genes are all active 

or all inactive. The MultiMM algorithm starts by using the Bayesian Information Criterion 

(BIC) to assess the fit of a 1-component (univariate or multivariate) Gaussian mixture 

distribution (gene is always active or inactive in the set of conditions represented) vs. a 2-

component mixture distribution (gene is sometimes active and sometime inactive in the set 

of conditions represented) using the R package Mclust [10]. Following Raftery et al. [11] we 

require the BIC to be at least 12 points better for the 1-component model to be chosen vs. 

the 2-component model. Second, for all genes estimated to come from a 2-component 

mixture distribution, a Gaussian mixture model is fit and a Gibbs sampler is used in order to 

yield estimates of the means and standard deviations of the components of the mixture 

model, along with an estimate of the proportion of experiments for which the gene is active. 

In the case of co-regulated sets of genes this mixture model is multivariate, whereas for 

genes that are not known to be co-regulated with other genes, the mixture model is 

univariate. Finally, the estimated mixture distribution parameters can be used to yield a 

confidence estimate, aij ∈ [0,1], that gene i is active in condition j. For genes inferred as 

being always active or always inactive in the dataset in step one of the algorithm, multiple 

imputation is used to impute aij values. Full details of, and links to, software for the 

MultiMM method are available elsewhere [7].

2.4. Simulation of gene expression data

We simulated expression data with ‘known’ gene activity states (active/inactive). The 

simulation of expression data was informed by the E. coli expression data described later. 

We first ran the Screening Method described above (BIC with MClust) and dropped all 

operons (co-regulated gene sets), including single gene operons, for which the two-
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component model did not yield the highest BIC (n=697 dropped). We then randomly 

selected 26.3% (=697/2648) of the remaining 1951 operons to be single component in the 

simulated data, with each of the single component operons having an equal likelihood of 

being always active or always inactive.

To calculate the mixing parameter, π, used in the simulation for the 1438 two-component 

operons we chose a random value for π between 0.2 and 0.8. Values for μ⃗0, μ⃗1, Σ0=Σ1 are all 

as estimated by the MultiMM method computed on the real expression data. To generate 

simulated expression values, , we drew 907(πi) random values from a multivariate normal 

distribution (μ⃗1i, Σ1i) and 907(1 − πi) random values from a multivariate normal distribution 

(μ⃗0i, Σ0i). Thus, we generated a 907 by 3435 matrix of  values. Prior analysis has shown 

this simulated data to have good properties and behave in reasonable ways [7].

2.5. Simulation of gene sets for analysis

We used the simulated gene expression data described above to generate random sets of 

genes for evaluation of different methods of gene set analysis. We selected random sets of 8, 

20 or 40 genes from among genes which were not changing or changing states between the 

two experiments of interest. In particular, we looked at the following proportions of genes in 

the set which were not changing state (0, 25, 50, 75 and 100%), and either 0%, 50% or 

100% of the genes in the set active in the first experiment. Thus, we explored 45 simulation 

settings (3 (set size) by 5 (not changing) by 3 (starting state). Of these 45 simulation 

settings, 9 represent settings for which we can evaluate the empirical type I rate and 36 will 

be used to evaluate statistical power. Each of the nine test statistics is computed for the set, 

and then each of the nine statistics is compared to a distribution of the same statistic across 

10,000 randomly selected sets of the same size (an approach termed ‘gene sampling’ which 

uses a ‘competitive null hypothesis’[12]). We considered 1000 randomly selected sets at 

each of the 45 simulation settings. Full simulation results are available in Supplemental File 

#1. We also analyzed 574 a priori defined operon (co-regulated) sets based on operon 

definitions for E. coli as provided by Microbes Online [13]. Full results are available in 

Supplemental File #2. Supplemental Files are available at: http://homepages.dordt.edu/

ntintle/gsa_supp.zip

2.6. Real data

We also used genome-wide gene expression data from 907 different microarray data sets 

collected on 4329 Escherichia coli genes via the M3D data repository [14]–[16] both to 

inform simulated data analysis and when considering the actual performance of the methods. 

Raw data from Affymetrix [17] CEL files were normalized using RMA [18]. Details of data 

processing are described elsewhere [19], [20].

2.7. Statistical analysis

Empirical power and type I error rate estimates are computed as the proportion of times that 

the p-value was less than the significance level for a particular test and simulation setting. 

We considered significance levels of 5%, 0.5% and 0.05%.
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Results

Across 36 simulation settings where at least one gene in the set changed activity states, 

power was consistently better when using gene activity state estimates, than raw expression 

data (see Table 1 for overall summary). Across the 9 simulation settings where none of the 

genes in the set changed state (type I error setting), the Type I error rate was generally 

controlled for all methods (detailed results not shown). Table 1 shows that gains in power 

can be high across all methods, whereas when power is worse when using activity states, the 

reduction in power is usually quite minimal (19 to 82 average percentage point increase vs. 

0.3 to 2.3 average percentage point decrease).

For each of the thirty-six simulation settings used to estimate power, the power was always 

highest across all 18 methods (nine different test statistics using either eij or aij) for a method 

using gene activity state estimates. This was true for each of the 3 different significant levels. 

VC∞ was frequently the most powerful approach (16 out of 36 times for significance level 

5%; 26 out of 36 times for significance level 0.5% and 33 times for significance level 

0.05%). While other B and VC methods were periodically most powerful, notably, the FET 

methods were never the most powerful, even when using gene activity state estimates (aij).

Figure 1 illustrates typical performance of the VC methods as the proportion of genes in the 

set changes, by highlighting the performance of the methods on sets of size 8. VC∞ is most 

robust to lower proportions of genes in the set changing state, while all methods perform 

well when the proportion of genes in the set changing state is relatively large.

Analysis of the 574 real, operon based sets of genes showed similar performance to the 

randomly generated gene sets, with even better performance of the activity state informed 

methods in many cases (detailed results not shown).

Real data example

The L-arabinose (ara) operon is a well-studied set of three co-located genes (araB, araA, 
araD) which encode enzymes needed for the catabolism of arabinose in E. coli [52]. Across 

the 907 experiments in our dataset, L-arabinose is present in the media in 227 cases. We 

randomly selected 1000 pairs of experiments where one experiment had L-arabinose present 

in the media and one experiment did not. We then computed different gene set analysis test 

statistics for the L-arabinose operon using both raw expression data and activity state 

estimates, as compared to 100,000 randomly selected sets of 3 genes. Table 2 illustrates that 

methods using activity state estimates were always more powerful than methods which were 

based on raw expression values.

4. Discussion

Gene set analysis remains a statistically promising and biological relevant approach to the 

analysis of genome-wide transcriptomics data. Here we demonstrate that, in line with 

previous work [2], methods which don’t arbitrarily introduce a cutoff and lose information, 

are generally more powerful than methods that do (e.g., Fisher’s exact test). We also 

demonstrate that using a more statistically grounded metric to quantify gene expression 
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(activity state estimates, aij) generally leads to more powerful tests than using raw gene 

expression data (eij) on simulated data, with promising results also observed on real data in 

well-understood biological systems.

We note that the VC∞ method performed particularly well, especially at low significance 

thresholds. This finding reflects the use of gene-sampling (a competitive null hypothesis). 

Briefly, when using gene sampling to assess statistical significance, test statistics generated 

for the gene set of interest, are compared to randomly chosen gene sets. The VC∞ method 

performs relatively better as compared to other methods as the significance level decreases 

because it is focused on the most extreme observed difference in activity state estimates and, 

thus, is more robust than other methods to small numbers of randomly selected sets of genes 

with extreme values of the test statistic. This performance was particularly notable in the 

example with the L-arabinose operon, where the VC∞ method using activity state estimates 

(aij) outperformed its performance on raw expression values (eij) by nearly 100%. While 

other test statistics did not show as large of a difference, in all cases the power was higher 

when using activity state estimates. Thus, when attempting to determine if sets of genes are 

differentially active in two conditions, inferring gene activity state estimates prior to 

applying gene set analysis methods will maximize the likelihood of identifying differential 

activity. In short, use of these methods will maximize our ability to identify sets of genes 

associated with differential activity between two conditions.

We note numerous opportunities for future work, including (1) the ability to expand these 

methods to incorporate information from multiple, similar experimental conditions, instead 

of only comparing two conditions, (2) integrating directionality and/or gene set topology, (3) 

potential improvements by further leveraging the statistical properties of well-calibrated aij 

(the posterior likelihood that gene i is active in gene j), (4) potential further improvements in 

power by using non-competitive null hypotheses, which may be possible through statistical 

quantification of the null distributions of particular methods when using well-calibrated aij’s 

and (5) use of this general framework to test for whether a set of genes in a single 

experiment shows evidence of significant ‘activity’ (vs. only a change in activity levels 

between two experiments, as we considered here).

The most notable limitation of our analysis here is the limited application to real data, 

though initial results are promising and performance on real (operon-based sets) was also 

quite encouraging. Further work is necessary to ensure transferability of these promising 

initial findings to additional organisms. For example, to determine if these methods will 

successfully distinguish sets of differentially active genes between diseased and non-

diseased tissue. Furthermore, further work is necessary to explore validation in other well-

understood biological systems and as compared to the results of other –omics data (e.g., 

genome-scale metabolic models; fluxomics, etc.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power of different VC tests as the proportion of genes in the set changing state varies
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