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Elasticity Theory of a Twisted Stack of Plates

Abstract
We present an elastic model of B-form DNA as a stack of thin, rigid plates or base pairs that are not permitted
to deform. The symmetry of DNA and the constraint of plate rigidity limit the number of bulk elastic
constants contributing to a macroscopic elasticity theory of DNA to four. We derive an effective twist-stretch
energy in terms of the macroscopic stretch ǫ along and relative excess twist σ about the DNA molecular axis.
In addition to the bulk stretch and twist moduli found previously, we obtain a twist-stretch modulus with the
following remarkable properties: 1) it vanishes when the radius of the helical curve following the geometric
center of each plate is zero, 2) it vanishes with the elastic constant K23 that couples compression normal to
the plates to a shear strain, if the plates are perpendicular to the molecular axis, and 3) it is nonzero if the
plates are tilted relative to the molecular axis. This implies that a laminated helical structure carved out of an
isotropic elastic medium will not twist in response to a stretching force, but an isotropic material will twist if it
is bent into the shape of a helix.
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Abstract

We present an elastic model of B-form DNA as a stack of thin, rigid plates
or base pairs that are not permitted to deform. The symmetry of DNA and
the constraint of plate rigidity limit the number of bulk elastic constants
contributing to a macroscopic elasticity theory of DNA to four. We derive
an effective twist-stretch energy in terms of the macroscopic stretch ǫ along
and relative excess twist σ about the DNA molecular axis. In addition to
the bulk stretch and twist moduli found previously, we obtain a twist-stretch
modulus with the following remarkable properties: 1) it vanishes when the
radius of the helical curve following the geometric center of each plate is
zero, 2) it vanishes with the elastic constant K23 that couples compression
normal to the plates to a shear strain, if the plates are perpendicular to the
molecular axis, and 3) it is nonzero if the plates are tilted relative to the
molecular axis. This implies that a laminated helical structure carved out of
an isotropic elastic medium will not twist in response to a stretching force,
but an isotropic material will twist if it is bent into the shape of a helix.
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1 Introduction

The elastic properties of DNA have become a focus of recent research [1,
2, 3, 4, 5, 6]. In particular, stretching experiments on single molecules of
DNA now provide a direct probe of the bending, stretching, and twisting
elasticity of DNA[7, 8, 10]. Understanding the elasticity of single molecules
of DNA may be relevant in vivo; e.g., the recA protein which is responsible for
homologous recombination in bacterial mitosis has been observed to stretch
and twist DNA when it is bound to the DNA molecule[9].

Marko and Siggia recently modeled DNA as a thin, uniform rod with a
linear bending elasticity and calculated the extension of the rod as a function
of the applied stretching force[2]. This worm-like chain model was appropri-
ate for stretching forces f ≪ γ, where γ ∼ AkBT/R2 ≈ 200pN is the stretch
modulus, A ≈ 50 nm is the bend persistence length, and R = 1 nm is the
radius of the molecule. Forces in this regime pull on the thermal fluctuations
of the molecular backbone but do not pull on the internal structure of DNA.
The worm-like chain model accurately predicts the extension of the molecule
to within 10% up to approximately 10 pN[7]. Above 10 pN[7, 8] there are
no longer thermal effects and DNA is stretched elastically. A strain vari-
able ǫ must be introduced to describe increases in the molecular length after
thermally induced contour length fluctuations are fully stretched[2, 11, 7, 8].

DNA is also characterized by the degree of twist of its phosphate back-
bones about the central axis. Relative twist excess or deficit from a state
of preferred twist is parameterized by a signed twist variable σ. The chi-
ral asymmetry of DNA allows for a twist-stretch coupling between σ and
ǫ; this coupling is clearly visible in the recent experiments of Strick, et.

al.[10, 4, 5]. Theoretical work has focused on calculating the extension of the
molecule as function of both the applied stretching force and the applied ex-
cess twist[3, 6, 13]. However, in this paper we investigate a more microscopic
origin of the twist-stretch coupling[14].

We introduce a simple elastic model of B-form DNA in which the molecule
is viewed as a stack of thin, rigid plates that represent base pairs and are
rotated and displaced relative to each other. (See Section 3 below for a review
of the geometry of B-form DNA.) The centers of mass of the plates define a
helical path around a straight central line, which we call the molecular axis.
The perpendicular distance from the molecular axis to the helix is called
the helix axis offset. Distortion energies in this model are controlled by
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an underlying continuum elastic energy with those elastic constants allowed
by the anisotropic symmetry of DNA. Our model of DNA as a collection
of thin, rigid plates has four contributing elastic constants coupling strains
with spatial variation normal to the plates. Of particular importance is the
elastic constant K23 coupling compression perpendicular to the plates to a
shear displacement parallel to the plates. K23 vanishes if the phosphate
backbones point in the same direction5 and also vanishes in the isotropic
limit in which each plate has reflection and C4 or higher symmetries.

We calculate the twist-stretch coupling in terms of its elastic constants
and the small helix axis offset. We find that the twist-stretch coupling has
terms linear and quadratic in the helix axis offset. The coefficient of the
linear term is proportional to the elastic constant K23. In the isotropic limit
or when K23 vanishes, the twist-stretch coupling is quadratic in the helix axis
offset as we calculated earlier[5, 12] in related but simpler models.

An important simplification of our model is the constraint that the plates
comprising the DNA stack are rigid and undeformable. This is equivalent to
setting to infinity all elastic constants coupling the strains within a plate. We
thus neglect propeller, buckle, opening, etc. deformations[16] of individual
base pairs and focus instead on inter-base pair deformations described by
relative rotations (roll, tilt, and twist) and translations (slide, shift, and rise)
of the base pairs[15, 16]. We believe this is a reasonable approximation for
stretching forces in the range 1 pN < f < 10 pN and relative twist excesses
σ < 0.05.

2 Description of the Model

DNA is composed of base pairs connected by two oppositely-directed sugar-
phosphate backbones that wrap in two helices around the central molecular
axis to produce the major and minor grooves. A cross-section of DNA normal
to the phosphate backbones is shown in Fig.1. To construct our model for
DNA, we first imagine unwinding the helix so that the phosphate backbones
describe two straight, parallel paths. This unwound structure is an elastic rod
characterized by an elastic constant tensor Kijkl with components constrained
by the symmetry of the rod. Each cross-section of the rod looks like Fig.

5Each phosphate backbone has a particular orientation: either 3’-5’ or 5’-3’.
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1. Let the z-axis be parallel to the phosphate backbones, and let the x-
axis pass through the midpoint and perpendicular to the line connecting the
backbones. The only symmetry operation of this rod is a rotation through
π about the x-axis that causes the axes to transform as x → x, y → −y,
and z → −z. This symmetry allows for a maximum of 13 independent
elastic constants. Our assumption of the rigid shape of each cross-section in
the x− y plane eliminates from consideration all strains that require spatial
derivatives with respect to x or y. Thus we need only consider the strains
uzz, uzx, and uzy and the four elastic constants K33 = Kzzzz, K11 = Kzxzx/4,
K22 = Kzyzy/4, and K23 = Kzyzz/2 permitted by symmetry that couple
these strains. The elastic constant K23 is allowed because the two phosphate
backbones are oppositely-directed. If they were undirected or pointed in the
same direction, the reflection y → −y would be a symmetry and K23 would
be zero. If, in addition, a rotation by π/2, which transforms x → y and
y → −x, were a symmetry, there would be only two elastic constants K33

and K = K11 = K22. We will refer to this case with two elastic constants as
the isotropic limit. We view the cross-sectional slices as rigid plates that are
coupled elastically via the elastic constants K33, K11, K22, and K23.

We now imagine that chiral forces inherent to DNA distort the straight
rod to a helical structure in which the centers of mass of the rigid plates
describe a helical path about a straight helical axis. This helical structure
can be produced by displacing and rotating neighboring plates by a constant
amount. We assume that chiral energies leading to a ground-state helical
structure are linear in strain (i.e surface terms) so that the energies of dis-
tortions from the ground state are determined by the elasticity of the original
untwisted rod, i.e., by the elastic constants K33, K11, K22, and K23. In the
following sections, we will derive the twist-stretch coupling in terms of these
constants and the helix axis offset.

3 Geometry of B-Form DNA

We now consider three different ways of stacking our thin, rigid plates to cre-
ate a helical model of the straight state of B-DNA. We first imagine simply
twisting the plates about the long axis passing through the center of mass
of the original rod to create shape I. In this shape, the geometric centers
of each slice lie on top of one another, the slices are rotated about the long
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axis relative to one another, and the slices remain perpendicular to the long
axis. Shape II is obtained by first twisting the plates about the long axis and
then removing material from the side of each plate opposite to the phosphate
backbones. The line connecting the new geometric centers of each slice fol-
lows a helix. The slices remain perpendicular to the helix axis about which
the geometric centers of each plate rotate. (In the discussion below we use
the terms helix axis and DNA molecular axis interchangeably.) Shape III is
obtained by bending the long axis of the sliced rod into a helix. The curve ~r
connecting the geometric centers of each plate again follows a helix, but now
the plates are perpendicular to the local tangent to ~r instead of the helix
axis.

We note that in the unstressed state of B-form DNA the plates are roughly
perpendicular to the molecular axis, and their geometric centers nearly co-
incide with the molecular axis[17]. Thus to study small deformations of
B-DNA, it suffices to restrict our attention to the case where shapes II and
III are small perturbations of shape I. In shape II, the amount of material
removed from each slice and hence the radius of the helix is small and in
shape III the bend of the rod axis away from the molecular axis is also small.
Shapes II and III can be described as twisted stacks of plates with small helix
axis offsets. If the collection of plates has a helix axis offset, the plates are
not stacked with one directly on top of the other; instead, the shift vector
has a component perpendicular to the molecular axis. We will see that in
our model the helix axis offset is the origin of the twist-stretch coupling.

4 Elasticity Theory

In what follows we will develop a long-wavelength elasticity theory for a
collection of stacked, rigid plates in terms of small deviations of the shifts
and rotations away from their unstressed values. We will then eliminate the
shift and rotation variables in favor of the stretch along the molecular axis ǫ
and the relative excess twist about the molecular axis σ. This will allow us to
find the bulk twist and stretch moduli in terms of four elastic constants and
geometric properties of the molecule. More importantly, it will also enable
us to calculate the twist-stretch coupling and determine how it scales with
the small helix axis offset.

As shown in Fig. 1 we inscribe on each plate a right-handed, orthonormal
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triad eα(n) where α = 1, 2, 3 and n is a unitless parameter which labels the
plate. In the following, Roman indices run over Cartesian space coordinates
(x, y, z) and Greek indices label the plate-fixed coordinate system (1,2,3). e1

and e2 lie in the plane of the plate, and e3 is perpendicular to the plate. The
coordinates on each plate are labeled by the pair (η1, η2) which corresponds
to the point on the plate η1e1(n) + η2e2(n). We must also specify the origin
on each plate. We choose the origin to be the geometric center (i.e., center
of mass) of the plate, but this choice is arbitrary and does not affect the
elasticity theory, as we will discuss in the Appendix. We can now describe
the trajectory in space of the plates and the associated plate-fixed triads.
We allow two sets of parameters: a vector of rotation rates ~ω and shifts ~δ.
We decompose ~ω and ~δ in the plate-fixed basis eα(n) and assume that the
components ωα and δα are constants independent of n.

~ω = ωαeα(n)
~δ = δαeα(n),

where α = 1, 2, 3. (1)

The vector of rotation rates ~ω describes the rate of change of the orientation
of neighboring plates, and thus

deα

dn
= ~ω × eα = −ǫαβγωβeγ , (2)

where ǫαβγ is the antisymmetric tensor. The second set of parameters ~δ

describes the relative displacement of two neighboring plates. We choose ~δ
to be the relative displacement of the origin ~r(n) of the (η1, η2) coordinate
system. We have

d~r(n)

dn
= ~δ = eαδα. (3)

Note that according to our definitions ~ω is unitless and ~δ has units of length.
Finally, the position in space of the point (η1, η2) on plate n is simply
~x(η1, η2, n) = ~r(n) + η1e1(n) + η2e2(n). For constant ωα and δα, these equa-
tions will, in general, describe a helical structure. We may solve (2) and (3)
to find:

~r(n) = eβ(0)

{

n
ωβ(~δ · ~ω)

ω2
+

(

δβ−ωβ

(~δ · ~ω)

ω2

)

sin(|~ω|n)

|~ω| +
ǫβαγδαωγ

ω2
cos(|~ω|n)

}

,

(4)
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Table 1: Geometric Properties of Several Helices

Shape ~δ ~ω Helix Axis Offset Pitch/2π
I (0, 0, δ3) (0, 0, ω3) 0 δ3/ω3

II (0, δ2, δ3) (0, 0, ω3) δ2 δ3/ω3

III (0, 0, δ3) (0, ω2, ω3) ω2δ3/
√

ω2
2 + ω2

3 δ3ω3/(ω2
2 + ω2

3)

with ω2 = ωαωα. Examination of (4) shows that the geometric center moves
on average in the direction eβ(0)ωβ/|~ω| and traces out a helix with helix axis

offset r = |~ω × ~δ|/|~ω| and pitch p = 2π~δ · ~ω/ω2. The shift vector, rotation
vector, helix axis offset, and pitch are listed in Table 1 for each of the three
shapes of B-form DNA we are considering.

In a deformed state, the displacement and rotation rates change to ~δ′ =
~δ + ~∆(n) and ~ω′ = ~ω + ~Ω(n) and define new positions ~x′(η1, η2, n) for points
on plate n. Our goal is to calculate the energy of this deformed state relative
to the equilibrium helical state to second order in the small parameters ~∆
and ~Ω, which can in general depend on n. We consider plates of thickness
δn and calculate the energy in the deformed state of each plate to order δn,
ignoring terms of order (δn)2 or higher. We then sum over all plates to obtain
the total energy of the rod. Since the energy of each plate is proportional to
δn, the sum over all plates can be converted into an integral over n.

The energy of the nth plate will depend on the values of ~∆ and ~Ω at
n and, to the order we consider, not on their derivatives with respect to n.
The energy of each plate will be the same function of ~∆ and ~Ω for every n,
so we need only calculate the energy of a single reference plate. Our elastic
theory provides us with distortion energies of the reference plate as a function
of the strains uij = 1

2
(∂iuj + ∂jui) (i, j = x, y, z), where ~u = ~x′ − ~x is the

displacement variable and x,y, and z are the Cartesian coordinates of the
reference plate. By a suitable choice of orientation we may take e1 = x̂,
e2 = ŷ, and e3 = ẑ for the plate of interest. The free energy for a single plate
with thickness δz is (in units of kBT ):

Fplate

kBT
=

1

2

∫ z+δz

z

∫

dxdydz Kijkluijukl. (5)
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Our goal is to express this energy as a function of ~∆ and ~Ω and change
integration variables from x, y, and z to η1, η2, and n. The Jacobian relat-
ing the two coordinate systems is found by taking ηα and n derivatives of
~x(η1, η2, n) and remembering that eα · eβ = δαβ .

dxdydz = |δ3 + ǫ3βγωβηγ|dη1dη2dn. (6)

To calculate the strain tensor uij we must take the derivatives of ~u(η1, η2, n)
with respect to ηα and n and then relate these coordinates to Cartesian
coordinates x, y, and z fixed on the plate. Since the derivatives of ui with
respect to ηα only include terms proportional to δn, the only derivatives in
the strain tensor contributing to the total free energy in (5) are those in the
n-direction. We therefore only need to calculate d~u/dn. Using the equations
of motion, (2) and (3), and the expression for ~x(η1, η2, n), we have to linear
order in Ωα and ∆α

d~u(η1, η2, n)

dn
= eα

[

∆α + ǫαβγΩβηγ

]

+ (δα + ǫαβγωβηγ)
[

e
′

α − eα

]

. (7)

We can neglect the last terms in (7) since they also are proportional to δn.
(We note that deformations of the base pairs can be included if we retain
these δn contributions.)

We choose the slab at n to have its internal triad point along a Cartesian
coordinate system (x, y, z) fixed on the plate with the z-direction aligned
with e3 and the x- and y-directions aligned with e1 and e2 respectively. To
leading order in Ωα and ∆α, the only relevant components of the strain tensor
come from the derivatives

∂zui =
∂ui

∂n

∂n

∂z
= (∆i + ǫijkΩjηk)/δ3, (8)

where ∂n/∂z = 1/δ3 for the three shapes we are considering. In (8) the sums
over α, β, and γ have been replaced by sums over i, j, and k because we
chose the body-fixed coordinates to be along (x, y, z). We have now reduced
the number of effective elastic constants from 13 to 4 since only z derivatives
contribute to the free energy. The free energy of a single plate in terms of
the strains ~∆ and ~Ω and the coordinates η1, η2, and n is:

Fplate

kBT
=
∫ n+δn

n
dn

∫

d2η
|δ3 + ǫ3βγωβηγ |

2δ2
3

{

Kij(∆i+ǫilmΩlηm)(∆j+ǫjknΩkηn)
}

,

(9)
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where Kij is related to Kijkl by

Kij =











1
4
Kzizj i = j = x or i = j = y

1
2
Kzizj i = y, j = z

Kzizj i = j = z.
(10)

We see that our elasticity theory of DNA as a stack of thin, rigid plates
has four contributing elastic constants, Kxx, Kyy, Kyz, and Kzz. Below we
will refer to these elastic constants as K11, K22, K23, and K33, respectively,
since the plate-fixed axes rotate in space as we move along the helical stack.
We note that an isotropic theory has only two contributing constants, K =
K11/2 = K22/2 and K33. The total free energy for the collection of plates is
obtained by adding up the contributions to the free energy from each plate.
The total free energy will have the same form as (9) with the Cartesian
indices on the strains (x, y, z) replaced by the plate-fixed indices (1, 2, 3).

5 DNA Effective Free Energy

We now sum up the contributions from all slices and do the integrals over
η1 and η2 in (9) to get an effective theory for the DNA molecule. Before
we actually do this, we will make some further simplifications and approxi-
mations. We first use the fact that under the DNA symmetry operation η2

switches sign and hence all moments odd in η2 are zero: 〈η2〉 = 〈ηm
1 η2〉 = 0

(m = 1, 2, 3, ...) where 〈·〉 ≡ A−1
∫

d2η (·) and A is the cross sectional area
in the η1 − η2 plane. We also locate the origin of each plate at its geometric
center so that 〈η1〉 = 0.

In the unstressed configuration of B-form DNA the base pairs make an
angle of close to π/2 with the molecular axis[17]. We therefore take ω1,2 l0 ≪
δ3 where δ3 ≈ 3.4 Å is the axial rise of the base pairs. In addition, the
geometric centers of the plates are roughly located on the molecular axis [17];
we therefore also assume δ1,2/δ3 ≪ 1. We will characterize the unstressed
straight state of B-DNA by two known macroscopic parameters (the axial rise
δ3 and the twist rate of the plates about the molecular axis ω3 = 2πδ3/l0 ≈
0.63 rad) and two unknown microscopic parameters (δ2 and ω2). In what
follows we will assume that δ2/δ3, ω2/ω3, and the second moments 〈η2

1〉/l20
and 〈η2

2〉/l20 are small and work to quadratic order in these quantities.

9



The effective free energy is given below in units of kBT . We neglect the
ω2 contribution arising from the Jacobian in (9) since it yields terms that are
third order in ω2/ω3, 〈η2

1〉/l20, and 〈η2
2〉/l20. Including these terms does not

alter our findings below for the twist-stretch coupling:

FDNA

kBT
= (A/2δ3)

∫

dn
{

K11∆
2
1 + K22∆

2
2 + K33∆

2
3 + K33〈η2

2〉Ω2
1 +

K33〈η2
1〉Ω2

2 +
(

K11〈η2
2〉 + K22〈η2

1〉
)

Ω2
3 − 2K23〈η2

1〉Ω2Ω3 + 2K23∆2∆3

}

. (11)

We note from (11) that the elastic constant K33 acts as a stretch modulus
and a bend modulus.

6 Twist-Stretch Coupling

Motivated by recent stretching experiments on torsionally constrained single
molecules of DNA[10], we rewrite (11) in terms of the relative overtwist σ
about the molecular axis and the relative stretch ǫ along the molecular axis.
To accomplish this we must first find ǫ and σ in terms of the rotation and
shift variables Ωi and ∆i. After we incorporate ǫ and σ into (11), we minimize
over the remaining unconstrained variables. This gives us the twist-stretch
energy in terms of the elastic constants Kij and the geometric parameters
of the DNA helix. We can then identify the stretch modulus B, the twist
modulus C, and the twist-stretch modulus D. We note that this twist-
stretch energy neglects the effects of thermal fluctuations; these effects have
been studied recently[6, 13].

We now derive the twist-stretch coupling for the three shapes shown in
Table 1 by considering the general case ω2, δ2 6= 0 and then neglecting ω2δ2

cross terms. The unstressed configuration is therefore ~ω = (0, ω2, ω3) and
~δ = (0, δ2, δ3). Each of the three equilibrium shapes mentioned previously can
be obtained from this parameterization, for instance, shape II is generated
by taking δ2 6= 0 and ω2 = 0. We define the stretch along the molecular axis
as the relative deviation in the extension L along the molecular axis from its
unstressed value L0,

ǫ =
L

L0

− 1. (12)

To find ǫ in terms of ∆i and Ωi we must determine the extension L from
(4). We see that each base pair step increases the extension by an amount

10



~δ · ~ω/|~ω| in the direction ~ω/|~ω|. The total extension for N steps in the
distorted configuration is therefore

L = N~δ′ · ~ω′

|~ω′| (13)

where the primes refer to the distorted state, i.e. ~δ′ = (∆1, δ2 +∆2, δ3 +∆3).
We can now expand (12) to linear order in the Ωi and ∆i and to quadratic
order in the small parameters δ2/δ3 and ω2/ω3:

ǫ =
∆3

δ3

+
(δ2

δ3

− ω2

ω3

)Ω2

ω3

+
ω2

ω3

∆2

δ3

+
ω2

2

ω2
3

Ω3

ω3

. (14)

Note that when the helix axis offset of the helical stack is zero (δ2 = ω2 = 0),
the stretch reduces to ǫ = ∆3/δ3. We also note that when ω2 = 0 ∆3 and Ω2

are the only distortions contributing to the stretch.
We must express the relative excess link σ = (Lk/Lk0) − 1 in terms of

the Ωi, where the linking number Lk is the number of times the plates rotate
about the molecular axis over the length of the stack. In its unstressed state,
DNA has linking number Lk0 = L0/l0. (We are working in the force regime
where the molecular axis is nearly straight, and hence link and relative twist
about the molecular axis are synonymous.) We see from (4) that it takes
2π/|~ω| steps to complete one revolution about the molecular axis. Therefore
in N steps the top plate has rotated by N |~ω|/2π relative to the bottom plate.
The relative excess twist about the molecular axis is therefore

σ =
|~ω′|
|~ω| − 1, (15)

where ~ω′ = (Ω1, ω2 + Ω2, ω3 + Ω3). Expanding (15) to linear order in the Ωi

and to quadratic order in ω2/ω3, we find

σ =
ω2

ω3

Ω2

ω3

+
(

1 − ω2
2

ω2
3

)Ω3

ω3

. (16)

Note that when ω2 = 0, the base pairs are perpendicular to the molecular
axis and the relative excess twist is simply Ω3/ω3.

Solving (14) for ∆3 and (16) for Ω3, we substitute into (11) and minimize
over ∆1,2 and Ω1,2. This gives the effective twist-stretch energy per length

11



along the molecular axis:

FTS(ǫ, σ)

Nδ3kBT
=

A
2

(

Bǫ2 + Cσ2 + 2Dǫσ
)

, (17)

where N is the total number of plates, B is the stretch modulus, C is the
twist modulus, and D is the twist-stretch modulus. To zeroth order in the
small parameters δ2/δ3 and ω2/ω3 the stretch and twist moduli are:

B = K33 − K2
23/K22

C = (ω2
3/δ

2
3)
(

K11〈η2
2〉 + 〈η2

1〉(K22 − K2
23/K33)

)

. (18)

B, C, and D have dimension L−3 and therefore the coefficients of the quadratic
dimensionless strains in (17) scale as a persistence length divided by the
square of the helical pitch as found previously[5]. The twist-stretch cou-
plings Di for the three shapes given in Table 1 are shown below to lowest
order in the helix axis offsets ri:

DI = 0

DII ≈ K23

K33

(

K33 −
K2

23

K22

)rII

δ3

DIII ≈ K23

K33

(

K33 −
K2

23

K22

)rIII

δ3

+
(

K11

〈η2
2〉

〈η2
1〉

+ K22 − K33

)(rIII

δ3

)2
, (19)

where the helix axis offsets for each shape are rI = 0, rII = δ2, and rIII ≈
ω2δ3/ω3. In performing the calculation of the twist-stretch moduli we have
made two simplifications: 1) we have dropped the quadratic terms in the helix
axis offset that are proportional to K23 and 2) we have not included the ω2

contributions arising from the Jacobian in (9). This last simplification does
not affect our conclusions concerning the twist-stretch coupling (TS) shown
in Table 2 since ω2 contributions can only affect the twist-stretch coupling
of shape III and shape III already has twist-stretch couplings in both the
isotropic and anisotropic models.

We see from (19) that the twist-stretch coupling in our rigid plate model
vanishes when the helix axis offset r vanishes. However, calculations for a
pretwisted rod of material with a three-dimensional isotropic elasticity yield
a twist-stretch coupling for zero helix axis offset provided the rod cross-
section is not circular[18]. To achieve consistency with our results, it seems

12



Table 2: Determination of the twist-stretch coupling for each shape of B-
form DNA is shown below. The symbol TS signifies that there is a nonzero
twist-stretch coupling.

Helix Axis Isotropic Model Anisotropic Model
Shape Offset (K23 = 0) (K23 6= 0)

I 0 0 0
II δ2 0 TS
III ω2δ3/ω3 TS TS

likely that the magnitude of this coupling decreases as the elastic constants
coupling in-plane strains (i.e., uxx, uxy, uyy) increase. We can thus view our
calculation as the limit when these elastic constants diverge.

We also see that in the isotropic limit (K23 = 0) the twist-stretch coupling
for shape III scales quadratically with the small helix axis offset as found
previously in Refs. [5, 12]. However, when the K23 anisotropy is nonzero,
the twist-stretch coupling scales linearly with the small helix axis offset. We
note that the twist-stretch coupling in the isotropic limit vanishes for shape
II since it has ω2 = 0. However, shape III yields a twist-stretch coupling in
both the isotropic and anisotropic cases since it has ω2 6= 0. This may be
explained by considering the manner in which the plates are stacked in the
two different geometries. In shape II the plates are stacked perpendicular to
the molecular axis. In this case, the plates can move along the molecular axis
without rotating in response to the stretching force. In shape III the plates
are not perpendicular to the molecular axis, but are instead perpendicular
to the local tangent d~r/dn. In order to align the plates perpendicular to the
molecular axis, they must twist. This implies that an isotropic rod bent into
the shape of a helix will have a twist-stretch coupling, but carving a helical
shape out of isotropic material will not produce a twist-stretch coupling.

13



7 Comparison to the Ribbon Model of DNA

We compare our plate model to a ribbon model of DNA recently discussed
in Ref. [12]. There we modeled DNA as a thin helical ribbon that is only
allowed to stretch along the ribbon axis. Changes in extension along the
molecular axis arose from changes in the angle the ribbon tangent makes
with the molecular axis and from stretching the ribbon axis. We showed
that the twist-stretch coupling scaled quadratically with the helix axis offset
if the twist-bend, twist-stretch, and bend-stretch couplings for twists and
bends about and stretches along the ribbon axis were set to zero.

To make a direct comparison between the two models we consider the
unstressed configuration ~δ = (0, 0, δ3) and ~ω = (0, ω2, ω3) and do not allow
stretch along the 1 and 2 axes of each plate by setting ∆1 = ∆2 = 0. This
corresponds to a helical stack of plates with the planes of the plates per-
pendicular to the tangent to the curve ~r connecting the geometric centers of
the plates and stretching only allowed along the tangent d~r/dn. When we
set ∆1 = ∆2 = 0 in (11), we find a free energy identical to the one studied
previously[12]. We see below that our expression for the free energy ad-
mits all of the couplings found in the ribbon model, namely the bend-stretch
(Ω2∆3), twist-bend (Ω2Ω3), and twist-stretch (Ω3∆3) couplings. (We have
included the ω2 contributions from the Jacobian and kept each coupling to
lowest order in ω2/ω3 and the second moments.)

Fribbon

kBT
=

(A/2δ3)
∫

dn
{

K33〈η2
2〉Ω2

1 + K33〈η2
1〉Ω2

2 +
(

K11〈η2
2〉 + K22〈η2

1〉
)

Ω2
3 + K33∆

2
3 +

2K33

ω2

δ3

〈η2
1〉Ω2∆3 − 2K23〈η2

1〉Ω2Ω3 − 2K23

ω2

δ3

〈η2
1〉Ω3∆3

}

. (20)

We find that the presence of the the last two terms leads to twist-stretch
couplings that scale linearly with the helix axis offset D ∼ (K23/K33)rIII/δ3.
If we set K23 = 0, the lowest order contribution is quadratic in the helix axis
offset and we obtain the result D ∼ K33(rIII/δ3)

2 found previously[5, 12].
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8 Conclusion

We have presented an elasticity theory for B-form DNA modeled as a stack of
thin, rigid plates. The symmetry of the DNA molecule and the assumption
of plate rigidity enabled us to reduce the number of contributing elastic
constants to four. We then derived an effective twist-stretch energy for DNA
in terms of the relative excess twist σ about the molecular axis and the stretch
ǫ along the molecular axis. We found an effective twist-stretch coupling with
terms that scale linearly and quadratically with the small helix axis offset.
We have argued that deformations of the base pairs are more costly than
deviations in the shifts and rotations of the base pairs from their unstressed
values. We therefore conclude that in the force regime where deformations
of the plates are negligible, the twist-stretch coupling is due to a nonzero
helix axis offset. We have also found that shape II, in which the normals to
the base pairs parallel to the molecular axis, does not have a twist-stretch
coupling in the limit K23 = 0. Since recent experiments show that there is
a large twist response to stretch, this implies that either the coupling K23 is
relevant for an elastic description of B-DNA or that the unstressed straight
state of B-DNA is composed of base pairs that tilt relative to the molecular
axis.

An important next step is to estimate the elastic constant K23 to deter-
mine the relative magnitudes of the isotropic and anisotropic terms in the
twist-stretch coupling. One might also calculate the twist-stretch coupling
for DNA plasmids where the unstressed state of the molecular backbone is
circular rather than linear. This calculation could provide a theoretical es-
timate of the twist-stretch coupling found in experiments on complexes of
Rec-A protein with DNA plasmid[9].
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Appendix: Translational Invariance of the Plate Origin

We comment here on the invariance of our model under the choice of the
plate origin. This is an important feature since a twisted stack of plates can
be described by an infinite number of one-dimensional curves depending on
the choice of the reference point on each plate. We proceed by considering a
change in the origin, or, in particular a change in the coordinate system such
that ~x = (η1, η2, s) → x̃ = (η1, η2, s)+ ~R where ~R is an arbitrary vector. While
this translation does not affect the relative rotation of two consecutive plates
~ω, it does affect the relative translation. Consider the action of g = (~ω,~δ) on
~x:

~x
g−→~x + ~δ − ~ω × ~x. (21)

We now consider the transformation in (21) shifted by ~R and compare it to
the transformation g̃ = (ω̃, δ̃) written in terms of the new coordinate system
x̃.

~x + ~R = x̃ + δ̃ − ω̃ × x̃ ≡
[(

x̃ − ~R
)

+ ~δ − ~ω ×
(

x̃ − ~R
)]

+ ~R (22)

In order for g and g̃ to act the same way, we must choose ω̃ = ~ω and
δ̃ = ~δ − ~ω × ~R. We note that not only does (~ω,~δ) transform as above, but

in addition, due to the linearity of the transformation, (~Ω, ~∆) transforms the
same way. As a result, we see that the derivatives of interest in (8) transform
as

∂zui = [∆i − ǫijkΩjηk]/δ3 −→
[

∆i + ǫijkΩj

(

ηk − Rk

)

+ ǫijkΩj
~Rtr

k

]

/δ3, (23)

where ~Rtr
k is the projection of ~R onto the η1 − η2 plane. Since changing the

base point on each slab only requires components of ~R in that plane, we
see that the last two terms in (23) cancel and the relevant derivatives are
invariant with respect to the choice of the origin on the plate. Thus we are
free to choose the most convenient origin for any calculation of interest.
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Figure 1: Schematic cross section of DNA taken perpendicular to the sugar-
phosphate backbones. e1 is perpendicular to the line connecting the two
phosphate backbones and points from the geometric center of the plate to-
ward the minor groove and e2 points from the geometric center toward the
backbone running in the positive e3 direction. Each slice has a coordinate
system (x, y, z) with e1 as the x-axis, e2 as the y-axis, and e3 as the z-axis.
Also, each slice is labeled by an integer n.
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