

Digital Collections @ Dordt

Faculty Work Comprehensive List

11-5-2016

Heart Attack Physics

John Zwart Dordt College, john.zwart@dordt.edu

Follow this and additional works at: https://digitalcollections.dordt.edu/faculty_work

Part of the Biological and Chemical Physics Commons

Recommended Citation

Zwart, J. (2016). Heart Attack Physics. Retrieved from https://digitalcollections.dordt.edu/faculty_work/ 638

This Conference Presentation is brought to you for free and open access by Digital Collections @ Dordt. It has been accepted for inclusion in Faculty Work Comprehensive List by an authorized administrator of Digital Collections @ Dordt. For more information, please contact ingrid.mulder@dordt.edu.

Heart Attack Physics

Abstract

I recently had a first-hand opportunity to learn some interesting biomedical applications of physics which provide application examples for introductory classes. While there were many such applications, from X-rays to ultrasonic imaging, I'll focus on fluid flow through clogged coronary arteries and the use of radioactive materials in a nuclear stress test.

Keywords

heart attack, blood flow, arteries, radioactive substances, stress echocardiology

Disciplines

Biological and Chemical Physics

Comments

Presented at the annual meeting of the American Association of Physics Teachers Iowa Section held at the University of Iowa on November 5, 2016.

Heart Attack Physics

John Zwart, Dept. of Physics and Astronomy, Dordt College, Sioux Center, IA

John.Zwart@dordt.edu

Iowa Section AAPT 5 November 2016

Disclaimer: This is not medical advice!!!!

Background/Outline:

January - heart attack and 3 stents placed May - 3 more stents September – nuclear stress test

We'll consider: Fluid flow Nuclear tracers

Fluid Flow

Two key equations:

"Equation of Continuity" Flow rate = Av = constant A = cross sectional area v = fluid speed

"Bernoulli's Equation" $P + \rho gh + (1/2)\rho v^2 = constant$ P = pressure h = elevation $\rho = fluid density$

Flow rate = Av = constant P + (1/2) ρv^2 = constant (h is ~constant in heart)

Both equations assume ideal fluid, no viscous effects, steady flow, area not varying in time,....

So, <u>approximate</u> applications to blood flow in coronary arteries.

X-ray image of blocked right coronary artery

Note ballooning at blockage site $P + (1/2)\rho v^2 = constant$ decreased $v \rightarrow increased P$

Decreased area \rightarrow increased speed

Decreased area \rightarrow increased speed Increased speed \rightarrow decreased pressure

Decreased area \rightarrow increased speed Increased speed \rightarrow decreased pressure Decreased pressure \rightarrow surrounding tissue compresses artery

The fix - Stenting

Stents varied from 2.5 - 3.5 mm diameter, 12 - 38 mm long

Before and after January stenting

After and before May stenting

January image

Nuclear Stress Test

Regular stress test: Monitor heart while exercising on treadmill

Nuclear stress test:

 Before exercise, inject compound with radioactive isotope that is taken up by heart tissue

Use a 'gamma ray camera' to see image heart to see
if blood goes where it should

Repeat at end of exercise

The isotope

- Technetium-99 metastable state(Tc-99m) is the tracer
- Prepared by irradiating weapons grade uranium in a reactor, producing Molybdenum 99, which is shipped to nuclear pharmacies
- Mo-99 beta decays with 60 hour half life to Tc-99m which is chemically extracted
- Tc-99m gamma decays to Tc-99 with a 6 hour half-life

The test

- 9 mCi (not µCi !)Tc-99m sestamibi is injected into bloodstream
- Wait a half hour before getting first gamma image
- Wait again before stress test
- Inject 30 mCi with one minute of exercise to go
- Take second gamma image

After getting back to campus

Count rate measurements

- More scatter than counting statistics (non-point source)
- Liver area rate ~5 times heart rate
- Fit yields half-life of 5.8 hours (accepted value is 6.0 hours)

If anyone is interested in a copy of this for use in a class, see me during a break or e-mail me at john.zwart@dordt.edu

Thanks to: Laurey Zwart for recognizing the signs and getting me to ER quickly; medical staff at Sioux Center Hospital and the Avera Heart Hospital; Kayt Frisch, Ethan Brue, and Carl Fictorie for handling my classes for 5 weeks

