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Abstract

We establish a framework for assessing the validity of a model using Monte Carlo

simulations and inferences based on sampling distributions. Using this frame-

work, we find that geometric brownian motion underestimates the skewness in

pooled monthly returns and in the cross-section of returns, but it overestimates

the asymmetry in wealth creation by individual stocks. This result is robust

to simulation specifications and the choice of metrics to represent wealth. Our

paper also represents an often overlooked departure from the traditional way of

validating asset pricing models, in which implications are derived, parameters

calibrated, and point magnitudes compared to empirical data. Instead, we lever-

age the cross-sectional features and asymmetry present in equity returns to assess

the probability that the given model can generate our realized stock market.
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1 Introduction

In this paper, we establish a framework for assessing the validity of a given model using

Monte Carlo simulations and inferences based on sampling distributions. Using this

framework, we find that geometric brownian motion underestimates the skewness in

pooled monthly returns and in the cross-section of returns, but it overestimates the

asymmetry in wealth creation by individual stocks. This result is robust to simulation

specifications and the choice of metrics to represent wealth.

Our first contribution is in expanding the set of statistics used to compare the

model’s implications to empirical data. We introduce quantitative measures for three

categories of empirical data: the distribution of pooled returns, time-series of monthly

cross-sectional moments, and the distribution of wealth creation by individual firms.

The use of such extensive set of statistics allows us to specifically identify areas in

which a given model succeeds and fails.

Our second contribution is to provide a quantitative measure of how effectively the

model captures empirical data. Albeit simple, this approach represents an often over-

looked departure from the traditional way of validating asset pricing models, in which

implications are derived, parameters calibrated, and point magnitudes compared to em-

pirical data. Instead, we leverage the cross-sectional features and asymmetry present in

equity returns to assess the probability that the given model can generate our realized

stock market. We achieve this through hypothesis testing via the sampling distribu-

tion of statistics obtained from the simulations. Instead of simply characterizing the

discrepancy as a puzzle, we can therefore specify the degree to which the model’s impli-

cations are unrealistic. It then becomes possible to examine the relative performance

of competing models for a given metric by comparing the magnitude of p-value from

each test.

1



We demonstrate the usefulness of our framework using geometric brownian motion

as a test case. We consider two strands of simulations - the first category considers

a subset of firms that have been present throughout the period January 1970 to De-

cember 2000. The second category of simulations samples 2,440 firms from the entire

CRSP universe from July 1926 to December 2016 in order to match the median num-

ber of firms in the cross-section. We show that both types of simulations assuming

geometric brownian motion fail to generate most of the statistics examined in this pa-

per. Surprisingly, they do succeed in matching the percentage of stock returns that

are positive, the magnitude of which comes as a surprise to many.1 The model also

succeeds in generating a fat-tailed distribution, while more severe, of individual firm’s

wealth creation.

The results of our simulations assuming geometric brownian motion also yields a

new empirical puzzle. The simulations heavily underestimate the skewness in both

pooled distribution of returns and the monthly cross-section. Yet they overestimate

the asymmetry in wealth creation by individual stocks. Together, they suggest that

the asymmetric distribution of firm size does not necessitate a similar asymmetric

distribution of returns. In fact, there seems to be another force at work other than the

distribution of returns that gives rise to the asymmetric distribution of firm sizes and

wealth creation, and any serious model should incorporate a process that successfully

reconciles this discrepancy.

The remainder of the paper proceeds as follows. In section 2, we review the salient

characteristics of the U.S. stock market that have been previously explored in the lit-

erature. Section 3 contains the details of simulating stock prices under the assumption

of geometric brownian motion. In section 4, we present our analysis using sampling

distributions from simulations, and section 5 concludes.

1See Bessembinder (2017)
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2 Background

2.1 Distribution of Equity Returns

The mean of equity returns — and its excess over the risk-free returns — is the most

widely explored aspect of stock returns. In particular, the equity premium and volatil-

ity puzzles refer to the inability of standard economic theory to generate the first and

second unconditional moments of equity returns: historically, equity returns have been

too high and too volatile2. This failure has led to many modifications to the features

of the original model, including alternate assumptions on preferences3, rare disasters 4,

liquidity risk 5, and market imperfections 6. These consumption-based approaches have

primarily focused on explaining various puzzles by matching analytical implications of

each model to the moments of equity returns.

Many studies also seek to explain why different securities earn vastly different re-

turns on average. The Capital Asset Pricing Model (CAPM) has been the pioneering

explanation for the cross-sectional differences. The poor empirical performance of the

CAPM 7, however, has led to a set of new unconditional multi-factor models.8. The

validity of these models have been primarily assessed by examining the R-squared and

significance of the intercept in a regression framework. Yet the presence of extensive

data mining and the lack of motivating theory have rendered many of such models

subject to doubt.

Another set of papers looks at the cross-sectional dispersion or volatility which

2See Mehra and Prescott (1985)
3See Abel (1990), Bansal and Yaron (2004), Campbell and Cochrane (1999), Epstein and Zin

(1991)
4See Barro (2006), Gabaix (2012), and Wachter (2013)
5See Alvarez and Jermann (2001)
6See Aiyagari and Gertler (1991), Constantinides, Donaldson, and Mehra (1995), Heaton and

Lucas (1996)
7See Fama and French (2004)
8See Carhart (1997), Ang, Hodrick, Xing, and Zhang (2006), Daniel and Titman (2006)
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captures the distribution of individual stock returns around the market return. Re-

cent literature has been paying attention to its role in forecasting market returns9,

implications for asset managers10, and pricing of the cross-section of stock returns11.

There is also an increasing interest regarding the skewness in asset returns, which

stems from the observation that unconditional returns distribution cannot be ade-

quately characterized by mean and variance alone 12. Kraus and Litzenberger (1976)

first extend the CAPM to incorporate the effect of skewness on valuation, illustrating

that prior empirical findings interpreted as anomalies were due to the omission of a

higher moment variable. Since then, scholars have extensively assessed both individual

stocks return skewness and the co-skewness of stock returns with the market.13

2.2 Distribution of Value Creation

The cumulative value or wealth created by individual firms over an extended period

of time also poses an interesting empirical observation. With no clear consensus, re-

searchers have explored different metrics to capture its essence, including firm size,

cumulative return, and aggregate wealth creation.

One clear measure of firm’s lifetime growth is its growth in size or market capital-

ization. The skewness in firm sizes - small number of large firms and large number of

small firms - has been robust over time, immune to new firm entries and bankruptcies

as well as mergers and acquisitions14. Recently, Gabaix (2016) has effectively used the

observed skewness in firm sizes to examine how standard economic theories fit with

the empirical data.

9See Garcia et al. (2014), Goyal and Santa-Clara (2003)
10See Gorman, Sapra, and Weigand (2010)
11See Verousis and Voukelatos (2015)
12See Harvey and Siddique (2000)
13See Mitton and Vorkink (2007), Conrad, Dittmar, and Ghysels (2013), and Amaya, Christof-

fersen, Jacobs, and Vasquez (2015).
14See Axtell (2011)
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Another intuitive measure of firm’s value creation is its cumulative return over

a period of time, and similar skewness observed in firm sizes is also exhibited. For

example, Savor and Wilson (2013) find that over 60% of the cumulative annual excess

return is earned on just 13% of the trading days when important macroeconomic news

is scheduled. Also, Bessembinder (2017) finds that lifetime holding period returns are

dominated by a very small number of firms.

However, the use of a cumulative holding period return as a measure of aggregate

wealth creation is not entirely accurate. The cumulative return calculation assumes

that equity investors reinvest dividends but make no intermediate transactions after

the initial purchase of shares. Bessembinder (2017) illustrates one way of circumvent-

ing this limitation by creating a separate measure of dollar wealth creation of each

firm. Bessembinder quantitatively measures the investor’s final wealth in excess of the

wealth the investor would have attained had she invested entirely in the risk-free asset.

Using this metric, he finds that the entire wealth creation in the U.S. stock market is

attributable to a mere four percent of listed stocks.

3 Simulation with Geometric Brownian Motion

3.1 Motivation

One goal of this paper is to examine the implications of geometric brownian motion

in light of empirical evidence. Instead of deriving analytically the expressions for the

market premium, skewness, and aggregate value creation, we adopt an approach based

on Monte Carlo simulations. Specifically, we simulate the stock prices and compute a

set of pre-determined statistics. Repeating the simulations N times yields a sampling

distribution with size N , and we can use the resulting sampling distribution to make

inferences regarding the real stock market data.
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This approach yields two major benefits. First, it enables a more robust quanti-

tative analysis. When analytical expressions are unattainable, the benefits of Monte

Carlo are obvious. Even when such analytical derivations are possible, inference using

the sampling distribution allows us to quantify how likely — or unlikely — the current

stock market can arise from the assumptions of our simulation. Second, this approach

allows us to explore a wider variety of scenarios than what historical data can pro-

vide. Stochastic stock price growth inherently implies that the observed stock market

represents only one realization; Monte Carlo allows us to overcome this limitation and

leverage the power of large numbers.

Simulating stock prices necessitates an assumption regarding the time-series behav-

ior of stock prices. We start with the simplest and most widely used model: geometric

brownian motion. Its biggest merit is its non-negative value and the independence of

expected returns from the value of the process. One can also imagine incorporating

time-changing volatility or exposures to disaster risk, but here we focus on brownian

motion with constant volatility and continuous price processes.

We consider two types of simulations. For the first type, we examine all stocks

whose returns are available in CRSP throughout the period from January 1970 to

December 2000. We restrict our universe to stocks with less than 5 days of daily

returns missing, since missing data renders the calculation of lifetime wealth creation

inaccurate. Applying the restriction yields the final universe which consists of 431

stocks that have been in existence from 1970 to 2000.

In the second type of simulations, we take a slightly different approach. We consider

all stocks with at least 60 months of returns data available in CRSP from July 1926 to

December 2016, yielding a universe of 16,087 firms. We also set the number of stocks

in our simulation to match them median number of firms at the start of each month

throughout CRSP history: 2,440. Therefore, each simulation starts by drawing 2,440
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firms from the universe of 16,087 firms, whose price movements are simulated from

July 1926 to December 2016.

3.2 Parameter Estimation

Geometric brownian motion starts with the following stochastic differential equation:

dSi(t)

Si(t)
= µidt+ σidW (t) (1)

where Si(t) is the price of a security i at time t, µi the drift parameter, σi the volatility

parameter, and Wi(t) the value of a Wiener process at time t. Its major implication is

that log returns are normally distributed:

logRi,t ∼ N

((
µi −

1

2
σ2
i

)
t, σ2

i t

)
(2)

which shows that µi and σi need to be estimated to conduct simulations of stock price.

We present three different methods of estimating µi (see Appendix B). The first method

invokes the CAPM for log returns and yields the following expression for µi:

µi = (1− βi)E [logRf ] + βi logE[RM ] (3)

The second and third methods are based on direct estimates from returns in our sample

period. They are obtained from equations (4) and (5) respectively:

µi = E [logRi] +
1

2
σ2
i (4)

µi = log[E[Ri]] (5)

The market risk premium is estimated directly by taking the mean of returns. For
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the volatility parameter σ, we base our estimate on historical log returns:

σ̂i =

√√√√ 1

n− 1

n∑
t=1

(ri,t − r̄i)2 (6)

where ri,t is the log return at time t and r̄i is the average of the n returns. Similarly,

we estimate βi for each firm using daily returns from the following regression:

logRi,t = αi + βi logRM,t + εi, (7)

3.3 Simulation Overview

We describe the process in which stock prices are simulated. We consider two types of

simulations: for the first type, we examine all stocks that had been present in CRSP

throughout the period from January 1970 to December 2000 with less than 5 days

of daily returns missing; for the second type, we consider all stocks with at least 60

months of returns in CRSP from July 1926 to December 2016, yielding a universe of

16,087 firms. For convenience, we will refer to each as Type 1 and Type 2 simulations.

In implementing both simulations, we wish to differentiate a market-wide shock

from an idiosyncratic shock to each firm. Having estimated the σi parameter for firm

i, we can decompose it into a systematic component and an idiosyncratic component:

σ2
i = β2

i σ
2
M + σ2

ε (8)

where σM denotes the market return volatility and σε denotes idiosyncratic volatil-

ity. Therefore, the stock price at time t following geometric brownian motion can be
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expressed as:

Si(t) = Si(0) · exp

((
µi −

1

2
σ2
i

)
t+ βiσMεM + σεεi

)
(9)

where εM and εi represent the market shock and idiosyncratic shock for firm i.

Type 1 simulation consists of daily stock price simulations for all 431 stocks between

January 1970 to December 2000. We conduct the simulation 300 times, and each

simulation has the same set of 431 stocks. For type 2 simulations, our universe of

eligible stocks has 16,087 firms whereas we would like to restrict the number of stocks

in any given simulation to 2,440. Therefore, for each simulation, we start by drawing

2,440 stocks without replacement. Furthermore, to reflect the history of each firm in

our data, we assign the probability of stock i being drawn as

Ni∑16,087
i=1 Ni

where Ni refers to the number of months the security is available in CRSP. Once the

2,440 firms are selected for each simulation, the price process follows equation (9)

4 Tests with Sampling Distribution

We conduct tests of geometric brownian motion using the sampling distributions from

the simulations. Our empirical testing ground is the returns and wealth creation data

in CRSP. The steps we take are the following:

1. Choose a statistic ζ. It can be any statistic that can be computed from the

returns and wealth creation data. In our study, we examine statistics pertinent

to three broad categories of data: pooled monthly returns, time-series of monthly

cross-sectional skews, and distribution of wealth creation.
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2. Compute ζdata from the CRSP data that corresponds to the simulations.

3. For each of the N stock market simulations, compute ζ isim corresponding to the

ith simulation. Consequently, we obtain a sampling distribution of ζ isim consisting

of N independent observations.

4. We test the null hypothesis that ζdata represents a random sample from the distri-

bution of ζ isim . The rejection of the null hypothesis implies that the simulations

are unlikely to generate the observed stock market outcome. In other words, it

rejects the assumption underlying the simulations.

Expanding on previous studies in the literature that focus on a select group of statistics

to test the validity of models, we employ an extensive set of measures. The first category

of statistics pertains to the pooled monthly returns of stocks. We examine the mean,

standard deviation, skewness, and percentage of returns that are positive.

The second category of statistics is based on monthly cross-sectional skewness,

defined as the skewness of monthly returns for the firms in any given month. Computing

the skewness for each month therefore yields a time-series of monthly cross-sectional

skewness. We examine the mean and standard deviation of such time-series, which

captures the persistence of the returns skewness in the cross-section.

Finally, we are interested in the distribution of wealth creation by individual firms.

Wealth is measured in three ways: market cap growth, cumulative returns, and ag-

gregate investor wealth computed using a metric in Bessembinder (2017). Given the

asymmetric distribution of wealth creation observed in empirical data, the first statistic

we compute is the parameter α of the power law distribution fitted to the distribution

of individual firm’s wealth creation. The estimate of α, however, is sensitive to the

choice of cutoff (see Appendix D). To overcome this potential uncertainty, we compute

a second statistic, the percentage of wealth contributed to overall wealth by the top ten
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stocks with greatest wealth creation. The higher the percentage, the more concentrated

the wealth creation in a few number of stocks and the greater the asymmetry.

4.1 Pooled Monthly Returns

Table 1 reports selected statistics for the pooled CRSP common stock returns for

different time horizons and different universe. For all CRSP stocks, monthly returns

are highly skewed with skewness greater than 6 in both the population period and our

sample period. Consistent with Bessembinder (2017), we verify that more than half of

the monthly returns are negative.

When the universe is restricted to only the 431 stocks, the mean and median

monthly return increases while the standard deviation decreases. The skewness drops

significantly from 6.418 to 6.608 to 0.828, still indicating a positive skew with a smaller

magnitude. This contrast is not surprising — the 431 stocks have long lives, having

been in existence throughout the 30 years of our sample period. The monthly re-

turns seem to be clustered around a higher mean with a lower probability of obtaining

extreme positive returns. Albeit interesting, the empirical distribution of the pooled

returns is of a secondary concern to this study; the primary objective is to examine its

features in the sampling distribution obtained from our simulations.

Table 2 reports the p-values corresponding to each statistic in Type 1 Simulations.

Simulations in Panel A are conducted with the µ parameter obtained using CAPM;

simulations in panel B and C are conducted with direct estimates from individual stock

returns. In all three panels, the null hypothesis is rejected at the 0.01 significance level

for four of the six statistics computed on pooled monthly returns, indicating that

they cannot be considered a random sample from the sampling distribution. The two

statistics for which the null hypothesis cannot be rejected are the mean of pooled

monthly returns and the percentage of returns that are positive.
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The sign of the z-scores is worth a closer look. The z-score of the standard deviation

is extremely negative, indicating that the standard deviations in the sampling distri-

bution are mostly greater than the value observed in our data. On the other hand,

the z-score of the skewness is extremely positive for all three methods, implying that

our stock market exhibits skewness much greater than the skewness from our simula-

tions. This contrast is puzzling as both standard deviation and skewness measure the

dispersion of returns.

For the percentage of stock returns greater than the value-weighted and equal-

weighted market return, the null hypothesis is also rejected; the simulations under-

estimate the percentage of stocks that outperform the market. Also, note that the

simulations also underestimate the skewness of stock returns. The two observations

initially seem at contrast: simulations underestimate the number of firms that out-

perform the market, yet they also underestimate the probability of obtaining extreme

positive returns. This calls for a mechanism in which the minority of firms beating

the market cancel the effect of the majority of firms underperforming the market, but

without extreme positive returns. Such mechanism is not immediately obvious.

Table 3 reports the z-scores and p-values corresponding to each statistic in type

2 Simulations. In the first panel when CAPM is used to estimate the µ parameter,

we see that the simulations seem to reasonably generate the percentage of positive

monthly returns observed in CRSP. For all the remaining statistics, the null hypothesis

is rejected at the 0.01 significance level. In particular, the simulations fail egregiously at

generating the skewness observed in CRSP data, whose p-value is orders of magnitude

smaller than those for other rejected statistics. This observation indicates that the

skewness of pooled monthly returns is a cross-sectional feature that a model should

seek to be able to match.

In sum, the simulations seem to fail at generating, with reasonable probability,
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majority of the statistics on pooled monthly returns. The only area in which they seem

to somewhat succeed is the mean and percentage of positive returns. In particular, both

sets of simulations fail notably when the skewness of pooled returns is considered, and

this observation renders new significance to skewness as an important cross-sectional

feature of stock returns.

4.2 Time-series of Monthly Cross-sectional Skewness

We define monthly cross-sectional skew of month t for n firms as the following:

γcst =
1
n

∑n
i=1(ri,t − r̄t)3[

1
n

∑n
i=1(ri,t − r̄t)2

]3/2 (10)

where ri,t is firm i’s monthly return for month t and r̄t =
∑n

i=1 ri,t. Unlike time-

series skewness, cross-sectional skewness captures the dispersion of stock returns as a

snapshot at each point in time. Computing this metric for T months yields a time-

series of monthly cross-sectional skew. The statistics that we examine is the mean and

standard deviation of the time-series, shown in equations (11) and (12) respectively:

1

T

T∑
t=1

γcst (11)

√√√√ 1

T

T∑
t=1

(
γcst −

1

T

T∑
t=1

γcst

)2

(12)

Table ?? reports selected statistics for the pooled CRSP common stock returns

for different time horizons and different universe. For all CRSP stocks, the mean of

monthly cross-sectional skewness is 1.490 for the population period and 3.293 for the

sample period. The standard deviation of monthly cross-sectional skewness is quite

high, with 2.012 and 4.058 respectively. Of the 1,086 months from September 1926
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to December 2016, 72 months exhibit negative cross-sectional skewness. While the

skewness is generally persistent throughout our time period, it is misleading to argue

that the distribution of returns for any given month is positively skewed.

When the universe is restricted to only the 431 stocks, the mean of monthly cross-

sectional skewness drops to 0.774 and the standard deviation to 1.041. Intuitively,

the skewness should increase as the number of firms in the universe increases — the

more firms there are to attain extreme returns, the more likely that the returns will

be positively skewed. For this argument to hold, the likelihood of an extreme positive

return should be on average greater than the likelihood of an extreme negative return.

While this topic warrants a stricter investigation, explanations in favor may include

the lower bound on stock prices15, increased correlations during crises16, and positive

skewness in sector-specific return shocks17.

Table 4 reports the p-values corresponding to the mean and standard deviation of

monthly cross-sectional skew corresponding to Type 1 Simulations. In all three panels,

the null hypothesis is strongly rejected - the simulations fail to generate values that can

reasonably correspond to the observed value in our data. Most notably, the simulations

severely underestimate the average cross-sectional skewness of the actual stock market,

indicating that geometric brownian motion alone cannot generate the characteristics

of monthly cross-sectional skewness observed in the actual stock market.

4.3 Wealth Creation

In this section, we focus on three different metrics of wealth creation: growth in market

cap, cumulative return, and aggregate wealth creation as measured by equation in

Bessembinder (2017). First, the market cap growth ∆MCt from time 0 to time t is

15Stock prices cannot go below zero.
16See Campbell, Koedijk, and Kofman (2002)
17See Duffee (2001)

14



defined as

∆MCt =
ptNt

p0N0

(13)

where pt and p0 are the stock prices at time t and 0 and Nt and N0 are the number

of shares outstanding at time t and time 0. Furthermore, the cumulative return CRt

from time 0 to time t is defined as

CRt =
t∏
i=0

(1 + ri)− 1 (14)

where ri denotes the holding period return for month i. Finally, the aggregate wealth

creation AWCt from time 0 to time t is given as:

AWCt =
T∏
t=1

[
It−1(rt − rf )(1 + rf )

T−t] (15)

in which the beginning of period market capitalization is used in the role of It. The

idea behind the metric and its derivation is shown in Appendix C. All three metrics

are computed using CRSP data.

Table 6, 8, and ?? report the wealth creation of each firm from January 1970 to

December 2000, listing the 10 stocks with the greatest wealth creation among the

431 firms. For all three metrics, the asymmetric nature of wealth creation is clear:

ten stocks account for 39.5% of total market cap growth, 19.5% of total cumulative

returns, and 41.3% of aggregate wealth creation as measured by equation (15). This

observation is more shocking sincet he ten stocks represent in number a mere 2% of

the 431 firms in our universe.

To quantify the degree of asymmetry exhibited in these distribution, we fit a power

law distribution to the data on wealth creation and estimate the associated coefficient.
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We estimate the parameter using maximum likelihood. 18 The details of the estimation

can be found in Appendix D.

Table 12 reports the p-values corresponding to the estimated α in type 1 Simula-

tions. For market cap growth, the null hypothesis is not rejected at the 0.01 signifi-

cance level in all three panels, indicating that the asymmetric distribution of market

cap growth in our stock market can reasonably be attained from our simulations. On

the other hand, the null hypothesis is rejected when wealth creation is measured using

cumulative return and equation (15). Furthermore, the sign of the z-scores tells us

that the sampling distribution from the simulations underestimates the α. Smaller α

implies a larger probability of obtaining extreme values - in this case, a larger probabil-

ity that a few firms are responsible for a majority of wealth creation. In other words,

the simulations generate scenarios in which the asymmetry in wealth creation is much

more severe than what we observe in CRSP data.

For the type 1 simulations, table 19 also reports the p-values corresponding to the

percentage contributed to overall wealth by the top ten stocks with the greatest wealth

creation. The analysis is not carried out for equation (15) as many simulations yield

absurdly positive or negative values for the statistic.19

Evidence in this table is somewhat dubious. We can only reject the null hypothesis

for methods 2 and 3 in which the cumulative return is used as a measure of wealth

creation. Comparison against the percentile values implies that the simulations over-

estimate the contribution total wealth by the top ten stocks. This fact, consistent

with the observation from the table of power law coefficients, is quite surprising: with

just geometric brownian motion, the simulations seem to produce scenarios in which

18Methods based on a least squares fit are not suitable to estimate the parameter because they
require additional assumptions about the data set. See Hanel et al. (2017) for more discussion.

19Because equation (15) is based on excess returns, it is entirely possible for the wealth created to be
negative. When there are many firms with total negative wealth created, the percentage contributed
by the top ten stocks cannot be calculated, thereby rendering inference on it undesirable.
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the concentration of wealth creation is much more severe than what the actual stock

market exhibits.

Similar analysis is carried out for type 2 simulations. Table 15 first reports the

p-values corresponding to the estimated α. The first column represents the power law

distribution coefficient estimated for 16,087 firms that constitute our universe, and the

next columns illustrate the distribution of the same parameters estimated from our

simulations. Using market cap growth and the metric in Bessembinder (2017) as a

measure of wealth creation, we see that the null hypothesis is rejected; the simulations

produce a more severe asymmetry in wealth creation. The only case in which the

simulations successfully generate the empirical stock market is when cumulative return

is used as a wealth metric with CAPM.

One possible objection to the preceding analysis is that the empirical calculations

are based on 16,087 firms, whereas each simulation only contains 2,440 firms. To

address this concern, we conduct a similar analysis based on firm sizes that explicitly

matches the number of firms. Specifically, we choose a time point in CRSP such

that the number of firms in existence almost matches the median number of firms –

January 1972 with 2,435 firms – and examine the distribution of firm sizes. We fit a

power law distribution to the firm sizes and compare the coefficient to the distribution

of similar coefficients obtained from the simulations. Table ?? reports the p-values

corresponding to the aforementioned analysis. Once again, we see that the simulations

severely underestimate the estimated α and therefore produces a wealth asymmetry

much greater than the one found in empirical data. We reject the null hypotheses at

0.01 significance level for all three methods of parameter estimation.

In sum, we find that the simulations generated by assuming geometric brownian

motion produce scenarios in which wealth creation is more concentrated and asym-

metric than the actual stock market. Consequently, this observation shows that such
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asymmetry is a feature of our stock market that does not mandate additional shocks

such as the entry of new firms or disastrous shocks.

5 Conclusion

In this paper, we illustrate the success and limitations of geometric brownian motion by

employing a wider variety of statistics on empirical stock market data and hypothesis

testing using sampling distributions. Simulations assuming geometric brownian motion

fail to generate most of the statistics examined in this paper, especially when it comes to

the skewness of monthly stock returns. But it does seem to be sufficient in generating a

fat-tailed distribution of market cap growth during the sample period. This implies that

the asymmetric distribution of firm sizes observed in the market does not necessitate

a similar asymmetric distribution of returns.

One major puzzle arises from the results of our simulations. The simulations heavily

underestimate the skewness in both pooled distribution of returns and the monthly

cross-section. Yet they overestimate the asymmetry in wealth creation by individual

stocks. Together, they suggest that the asymmetric distribution of firm size does

not necessitate a similar asymmetric distribution of returns. In fact, there seems to

be another force at work other than the distribution of returns that gives rise to the

asymmetric distribution of firm sizes and wealth creation, and any serious model should

incorporate a process that successfully reconciles this discrepancy.

Our simulations include some immediate directions for extension that must be

noted. First, we have ignored the introduction of new listings and exclusion of firms

due to delisting, spin-offs, or bankruptcy. Consequently, our simulations do not ac-

count for the large price movements associated with initial public offerings and the
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accompanying high volatility of initial returns.20 Furthermore, incorporating the dis-

appearance and separation of firms can play a key role in understanding the wealth

created by each firm, as an investor with stake in these firms are significantly affected

by such firm activities.

Second, we could bolster the underlying assumption by incorporating time-varying

beta or volatility for individual stocks. Also, an alternate modification is including

rare events that result in sudden jumps in market prices. The approach undertaken in

this paper, one based on simulations and inferences using sampling distributions, can

be readily applied in both cases.

20See Lowry, Officer, and Schwert (2010)
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Table 1: Selected Statistics on Pooled Monthly Level Returns

All CRSP Stocks

(1926.07 - 2016.12)

16,807 Select Stocks

(1926.07 - 2016.12)

392 Select Stocks

(1973.01 - 2016.12)

Mean (in %) 1.111 1.315 1.330

Median (in %) 0.000 0.000 0.975

Standard Deviation (in %) 16.95 16.95 10.07

Skewness 6.418 5.846 1.256

% Positive 49.32 48.94 54.78

% ≥ VW Mkt Return 46.39 46.71 50.28

% ≥ EQ Mkt Return 45.95 46.13 49.43

Source: CRSP

Notes : The table reports selected statistics on pooled CRSP common stock monthly level
returns for different time horizons and different universe of stocks. The first column examines
pooled monthly returns of all CRSP common stocks from July 1926 to December 2016. The
second column concerns pooled monthly returns of all CRSP common stocks with at least 60
monthly returns from July 1926 to December 2016. The third column concerns pooled returns
of all CRSP common stock for which less than 5 daily returns are missing between the period
January 1973 to December 2016.
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Table 2: Inference on Pooled Monthly Returns (Simulations with 392 Firms)

Empirical

Value

Simulated Values Simulation
PopulationMin 5th Median 95th Max

Panel A: Method 1 (CAPM)

E[R]− 1 (in %) 1.330 0.397 0.539 0.835 1.135 1.520 0.826

σ[R] (in %) 10.07 10.51 10.66 10.77 10.87 10.95 10.76

skew[R] 1.256 0.443 0.472 0.510 0.549 0.602 0.511

E[logR] (in %) 0.837 -0.168 -0.027 0.262 0.556 0.987 0.258

σ[logR] (in %) 9.87 10.38 10.54 10.64 10.73 10.81 10.64

skew[logR] -0.407 -0.126 -0.106 -0.079 -0.052 -0.026 -0.078

% logR > 0 54.78 49.69 50.23 51.40 52.75 54.23 51.38

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

E[R]− 1 (in %) 1.330 0.889 1.128 1.408 1.717 2.065 1.407

σ[R] (in %) 10.07 10.71 10.76 10.86 10.96 11.03 10.86

skew[R] 1.256 0.493 0.517 0.557 0.604 0.634 0.561

E[logR] (in %) 0.837 0.323 0.556 0.834 1.142 1.476 0.831

σ[logR] (in %) 9.87 10.50 10.55 10.64 10.73 10.81 10.64

skew[logR] -0.407 -0.096 -0.064 -0.039 -0.011 0.013 -0.037

% logR > 0 54.78 51.73 52.48 53.66 54.96 56.23 53.66

Source: CRSP and simulations

Notes : Using the universe of 392 firms, we conduct 400 monthly simulations of the stock market for the two methods of
estimating µ detailed in Appendix B. Sampling distributions of each statistic are obtained from the simulations. The
first column shows the statistic for the 392 firms from January 1973 to December 2016. The next five columns show the
distribution of the statistic obtained from the simulations. The last column illustrates the statistic for the pooled values
of 100 simulations. For each statistic, the null hypothesis is that the statistic represents a random sample from the
sampling distribution.
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Table 3: Inference on Pooled Monthly Returns (Simulations with 16,807 Firms)

Empirical

Value

Simulated Values Simulation
PopulationMin 5th Median 95th Max

Panel A: Method 1 (CAPM)

E[R]− 1 (in %) 1.315 0.451 0.713 1.046 1.360 1.590

σ[R] (in %) 16.95 15.95 16.18 16.46 16.75 16.97

skew[R] 5.846 0.864 0.893 0.946 1.045 1.180

E[logR] (in %) 0.099 -0.858 -0.570 -0.258 0.058 0.291

σ[logR] (in %) 15.44 15.64 15.86 16.11 16.37 16.61

skew[logR] -0.195 -0.209 -0.192 -0.166 -0.142 -0.131

% logR > 0 48.94 49.42 49.22 50.14 51.06 51.63

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

E[R]− 1 (in %) 1.315 0.809 1.022 1.308 1.618 1.915

σ[R] (in %) 16.95 16.11 16.25 16.51 16.77 16.95

skew[R] 5.846 0.823 0.864 0.921 0.997 1.164

E[logR] (in %) 0.099 -0.491 -0.290 0.004 0.314 0.593

σ[logR] (in %) 15.44 15.75 15.90 16.16 16.39 16.53

skew[logR] -0.195 -0.248 -0.228 -0.191 -0.166 -0.153

% logR > 0 48.94 49.69 50.40 51.19 52.08 52.83

Source: CRSP and simulations

Notes : Using the universe of 16,087 firms, we conduct 400 monthly simulations of the stock market for the two methods
of estimating µ detailed in Appendix B. Each simulation consists of 2,440 stocks sampled from the universe whose
probability of being drawn is proportional to the length of its returns history. Sampling distributions of each statistic
are obtained from the simulations. The first column shows the statistic for the 16,087 firms from January 1973 to
December 2016. The next five columns show the distribution of the statistic obtained from the simulations. The last
column illustrates the statistic for the pooled values of 100 simulations. For each statistic, the null hypothesis is that
the statistic represents a random sample from the sampling distribution.
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Table 4: Inference on Monthly Cross-sectional Skew (Simulations with 392 Firms)

Average Monthly
Cross-sectional Skew

(γ̄cs)

γ̄cs from Simulated Values
% of Months with

γ̄cs ≥ Max
Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

skew[R] 0.884 0.414 0.437 0.475 0.508 0.529 54.55

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

skew[R] 0.884 0.473 0.494 0.527 0.566 0.585 52.47

Source: CRSP and simulations

Notes : We conduct 400 monthly simulations of the stock market for both methods of estimating µ detailed in
Appendix B. The first column shows the average monthly cross-sectional skewness (γ̄cs) for the 392 firms from
January 1973 to December 2016. The next five columns illustrate the distribution of γ̄cs obtained from simulations.
The final column reports the percentage of months in the period January 1973 to December 2016 in which γ̄cs is
greater than the maximum γ̄cs obtained from the simulations.
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Table 5: Inference on Monthly Cross-sectional Skew (Simulations with 16,087 Firms)

Average Monthly
Cross-sectional Skew

Simulated Values
% of Months with
skew[R] ≥ Max

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

skew[R] 2.381 0.828 0.853 0.899 0.967 1.032 68.41

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

skew[R] 2.381 0.789 0.818 0.872 0.930 0.990 69.25

Source: CRSP and simulations

Notes : We conduct 400 monthly simulations of the stock market for both methods of estimating µ detailed in
Appendix B. The first column shows the average monthly cross-sectional skewness (γ̄cs) for the 16,087 firms from
July 1926 to December 2016. The next five columns illustrate the distribution of γ̄cs obtained from simulations. The
final column reports the percentage of months in the period July 1926 to December 2016 in which γ̄cs is greater than
the maximum γ̄cs obtained from the simulations.
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Table 6: Top Ten Market Cap Growth Among the 392 CRSP Stocks

Company Name PERMNO Growth % of Total Value Cumulative %

Southwest Airlines Co 58683 7631.95 13.67% 13.67%

Skyworks Solutions Inc 45911 3922.21 7.03% 20.69%

Applied Materials Inc 14702 2381.65 4.27% 24.96%

Unilever 28310 1522.11 2.73% 27.69%

Tyson Foods 77730 1399.29 2.51% 30.19%

Thermo Fisher Scientific Inc 62092 1360.05 2.44% 32.63%

Johnson Controls International PLC 45356 1335.74 2.39% 35.02%

Intel Corp 59328 1240.23 2.22% 37.24%

Analog Devices Inc 60871 1183.89 2.12% 39.36%

Wal Mart Stores Inc 55976 1100.91 1.97% 41.33%

Source: CRSP

Notes : The table reports market cap growth for the 392 CRSP stocks from January 1973 to December 2016. Results
pertain to the 10 stocks with the greatest market cap growth. Market cap is computed as the closing price of each
month multiplied by the number of shares outstanding, as available in CRSP. Market cap growth is computed as the
market cap in December 2016 divided by the market cap in January 1973. The company name displayed is that
associated with the PERMNO for the most recent CRSP record.
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Table 7: Top Ten Market Cap Growth Among the 16,087 CRSP Stocks

Company Name PERMNO Growth % of Total Value Cumulative %

Vulcan Materials Co 15202 68993.6 9.90% 9.90%

Pepsico Inc 13856 31842.7 4.57% 14.47%

Boeing Co 19561 26294.6 3.77% 18.25%

Schlumberger Ltd 14277 16022.0 2.30% 20.54%

Altria Group Inc 13901 14123.4 2.03% 22.57%

Johnson & Johnson 22111 11154.7 1.60% 24.17%

General Dynamics Corp 12052 10968.1 1.57% 25.75%

Pfizer Inc 21936 9062.1 1.30% 27.05%

Wyeth 15667 8295.1 1.19% 28.24%

Precision Castparts Corp 63830 8081.6 1.16% 29.40%

Source: CRSP

Notes : The table reports market cap growth for the 16,087 CRSP stocks from July 1926 to December 2016. Results
pertain to the 10 stocks with the greatest market cap growth. Market cap is computed as the closing price of each
month multiplied by the number of shares outstanding, as available in CRSP. Market cap growth is computed as its
market cap on the most recent available date divided by the market cap in the earliest available date. The company
name displayed is that associated with the PERMNO for the most recent CRSP record.
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Table 8: Top Ten Cumulative Return Among the 392 CRSP Stocks

Company Name PERMNO Growth % of Total Value Cumulative %

Holly Frontier Corp 32803 6312.39 6.85% 6.85%

Kansas City Southern 12650 5512.66 5.98% 12.83%

Southwest Airlines Co 58683 4510.04 4.89% 17.72%

Eaton Vance Corp 31500 2679.43 2.91% 20.63%

Wal Mart Stores Inc 55976 1621.78 1.76% 22.38%

Altria Group Inc 13901 1563.88 1.70% 24.08%

Tyson Foods Inc 77730 1422.68 1.54% 25.62%

Walgreen Boots Alliance Inc 19502 1382.41 1.50% 27.12%

Aqua America Inc 52898 1315.67 1.43% 28.55%

Humana Inc 48653 1304.17 1.41% 29.97%

Source: CRSP

Notes : The table reports cumulative returns among the 392 CRSP stocks from January 1973 to December 2016.
Results pertain to the 10 stocks with the greatest cumulative returns. Cumulative return is computed as the product of
total monthly returns throughout the period. The company name displayed is that associated with the PERMNO for
the most recent CRSP record.
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Table 9: Top Ten Cumulative Return Among the 16,087 CRSP Stocks

Company Name PERMNO Growth % of Total Value Cumulative %

Altria Group Inc 13901 2655968.8 53.05% 53.05%

Vulcan Materials Co 15202 215689.6 4.31% 57.36%

Boeing Co 19561 150389.9 3.00% 60.37%

International Business Machs Cor 12490 123210.6 2.46% 62.83%

Kansas City Southern 12650 100475.7 2.01% 64.83%

General Dynamics Corp 12052 96926.8 1.94% 66.77%

Walgreens Boots Alliance Inc 19502 71387.9 1.43% 68.20%

Coca Cola Co 11308 70744.31 1.41% 69.61%

Wyeth 15667 54700.0 1.09% 70.70%

Universal Corporation 16555 48921.0 0.98% 71.68%

Source: CRSP

Notes : The table reports cumulative returns among the 16,087 CRSP firms from July 1926 to December 2016. Results
pertain to the 10 stocks with the greatest cumulative returns. Cumulative return is computed as the product of total
monthly returns throughout the period that is available for each firm. The company name displayed is that associated
with the PERMNO for the most recent CRSP record.
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Table 10: Inference on Distribution of Wealth Creation using Empirical xmin (Simulations with 392 Firms)

x̂min α̂
α̂ from Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 65.84 1.925 1.406 1.687 1.998 2.657 5.496

Cumulative Return 176.6 2.353 1.478 1.763 2.133 3.699 24.70

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth 65.84 1.925 1.241 1.348 1.495 1.645 1.889

Cumulative Return 176.6 2.353 1.296 1.428 1.592 1.765 1.932

Source: CRSP and simulations

Notes : We conduct 400 monthly simulations of the stock market for the two methods of estimating µ detailed in
Appendix B. For each method, we consider the distribution of lifetime wealth creation as measured by market cap
growth and cumulative return. Using the steps outlined in Appendix C, we estimate the power law parameter α for
each distribution of wealth creation. Instead of estimating the optimal xmin for each simulation, we use the x̂min value
estimated from the power law parameter estimation on CRSP stocks, reported in the first column. We use these values
of xmin to estimate the power law parameter α for each distribution of wealth creation in simulations. The second
column shows the α estimated for the distribution of wealth creation of the 392 firms from January 1973 to December
2016. The next five columns show the distribution of the statistic obtained from the simulations.
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Table 11: Inference on Distribution of Wealth Creation using Empirical xmin (Simulations with 16,807 Firms)

x̂min α̂
α̂ from Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 255.6 2.005 1.189 1.244 1.368 1.512 1.723

Cumulative Return 3.491 1.586 1.126 1.156 1.220 1.327 1.440

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth 255.6 2.005 1.099 1.126 1.159 1.193 1.218

Cumulative Return 3.491 1.586 1.075 1.092 1.114 1.139 1.158

Source: CRSP and simulations

Notes : We conduct 400 monthly simulations of the stock market for the two methods of estimating µ detailed in
Appendix B. For each method, we consider the distribution of lifetime wealth creation as measured by market cap
growth and cumulative return. Using the steps outlined in Appendix C, we estimate the power law parameter α for
each distribution of wealth creation. Instead of estimating the optimal xmin for each simulation, we use the x̂min value
estimated from the power law parameter estimation on CRSP stocks, reported in the first column. We use these values
of xmin to estimate the power law parameter α for each distribution of wealth creation in simulations. The second
column shows the α estimated for the distribution of wealth creation of the 16,087 firms from July 1926 to December
2016. The next five columns show the distribution of the statistic obtained from the simulations.
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Table 12: Inference on Distribution of Wealth Creation using Optimal xmin (Simulations with 392 Firms)

α̂
α̂ from Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 1.925 1.554 1.698 1.958 2.476 3.075

Cumulative Return 2.353 1.554 1.698 1.958 2.476 3.075

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth 1.925 1.463 1.557 1.699 1.959 2.904

Cumulative Return 2.353 1.463 1.557 1.699 1.959 2.904

Source: CRSP and simulations

Notes : We conduct 400 monthly simulations of the stock market for the two methods of estimating µ detailed
in Appendix B. For each method, we consider the distribution of lifetime wealth creation as measured by
market cap growth and cumulative return. Using the steps outlined in Appendix C, we estimate the power law
parameter α for each distribution of wealth creation. Similarly, sampling distributions of α̂ are obtained from
the simulations. The first column shows the α̂ for the distribution of wealth creation of the 392 firms from
January 1973 to December 2016. The next five columns show the distribution of the statistic obtained from
the simulations For each estimated alpha, the null hypothesis is that it represents a random sample from the
sampling distribution of estimated alphas in our simulations..
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Table 13: Distribution of Thresholds from α Estimation (Simulations with 392 Firms)

x̂min
x̂min from Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 65.84 0.821 5.259 30.86 239.9 1942.3

Cumulative Return 176.6 0.821 5.259 30.86 239.9 1942.3

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth 65.84 25.45 69.55 430.7 3115.2 15385.4

Cumulative Return 176.6 25.45 69.55 430.7 3115.2 15385.4

Source: CRSP and simulations

Notes : We report the estimated threshold values used to estimate the power law parameter α in Table 12. The
first column shows the x̂min used in estimating the power law parameter for the distribution of wealth creation
of the 392 firms from January 1973 to December 2016. The next three columns show the distribution of x̂min
from the simulations.
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Table 14: Inference on Distribution of Wealth Creation using Median xmin (Simulations with 392 Firms)

α̂ x̂min
α̂ from Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 1.770 30.86 1.342 1.599 1.895 2.395 3.089

Cumulative Return 1.603 30.86 1.342 1.599 1.895 2.395 3.089

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth 2.541 430.68 1.370 1.508 1.668 1.860 2.073

Cumulative Return 2.238 430.68 1.370 1.508 1.668 1.860 2.073

Source: CRSP and simulations

Notes : For the same 400 monthly simulations as in Table 12, we estimate the power law parameter α for each
distribution of wealth creation. Instead of estimating the optimal xmin, we use the median x̂min value obtained
from the power law parameter estimation on simulations, as reported in Table 12. The first column shows the α
estimated for the distribution of wealth creation of the 392 firms from January 1973 to December 2016. The
next five columns show the distribution of the statistic obtained from the simulations For each estimated alpha,
the null hypothesis is that it represents a random sample from the sampling distribution of estimated alphas in
our simulations.
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Table 15: Inference on Distribution of Wealth Creation using Optimal xmin (Simulations with 16,087 Firms)

α̂
α̂ from Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 2.005 1.296 1.363 1.448 1.547 1.750

Cumulative Return 1.586 1.296 1.363 1.448 1.547 1.750

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth 2.005 1.177 1.198 1.219 1.243 1.261

Cumulative Return 1.586 1.177 1.198 1.219 1.243 1.261

Source: CRSP and simulations

Notes : We conduct 400 monthly simulations of the stock market for the two methods of estimating µ detailed
in Appendix B. For each method, we consider the distribution of lifetime wealth creation as measured by
market cap growth and cumulative return. Using the steps outlined in Appendix C, we estimate the power law
parameter α for each distribution of wealth creation. Similarly, sampling distributions of α̂ are obtained from
the simulations. The first column shows the α̂ for the distribution of wealth creation of the 16,087 firms from
July 1926 to December 2016. The next five columns show the distribution of the statistic obtained from the
simulations For each estimated alpha, the null hypothesis is that it represents a random sample from the
sampling distribution of estimated alphas in our simulations.
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Table 16: Distribution of Thresholds from α Estimation (Simulations with 16,087 Firms)

x̂min
x̂min from Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 255.6 13.47 129.4 2387.0 80,721.7 862,975.2

Cumulative Return 3.491 13.47 129.4 2387.0 80,721.7 862,975.2

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth 255.6 446.67 3,880.7 70,780.6 8,309,391 3,562,204,252

Cumulative Return 3.491 446.67 3,880.7 70,780.6 8,309,391 3,562,204,252

Source: CRSP and simulations

Notes : We report the estimated threshold values used to estimate the power law parameter α in Table 15. The first
column shows the x̂min used in estimating the power law parameter for the distribution of wealth creation of the
16,087 firms from July 1926 to December 2016. The next three columns show the distribution of x̂min from the
simulations.
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Table 17: Inference on Distribution of Wealth Creation using Median xmin (Simulations with 16,087 Firms)

α̂ x̂min
α̂ from Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 2.078 2,387.0 1.232 1.304 1.433 1.560 1.767

Cumulative Return 1.729 2,387.0 1.232 1.304 1.433 1.560 1.767

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth N/A 70,780.6 1.156 1.187 1.216 1.239 1.263

Cumulative Return 2.042 70,780.6 1.156 1.187 1.216 1.239 1.263

Source: CRSP and simulations

Notes : For the same 400 monthly simulations as in Table 12, we estimate the power law parameter α for each
distribution of wealth creation. Instead of estimating the optimal xmin, we use the median x̂min value obtained
from the power law parameter estimation on simulations, as reported in Table 12. The first column shows the α
estimated for the distribution of wealth creation of the 392 firms from January 1973 to December 2016. The
next five columns show the distribution of the statistic obtained from the simulations For each estimated alpha,
the null hypothesis is that it represents a random sample from the sampling distribution of estimated alphas in
our simulations.
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Table 18: Inference on Distribution of Market Cap (Simulations with 16,087 Firms)

Empirical Value
Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap 2.289 1.296 1.363 1.448 1.547 1.750

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap 2.289 1.177 1.198 1.219 1.243 1.261

Source: CRSP and simulations

Notes : We conduct 400 monthly simulations of the stock market for both methods of estimating µ detailed
in Appendix B. For each method, we examine the distribution of firm sizes as measured by market cap and
estimate the power law parameter α of the distribution. Sampling distributions of α̂ are obtained from the
simulations. The first column shows the parameter estimated for the distribution of market caps for all 2,395
firms in January 1972. The next five columns illustrate the distribution of α̂ obtained from the simulations.
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Table 19: Inference on Wealth Contribution of Top Ten Stocks (Simulations with 392 Firms)

Empirical Value
Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 41.33 27.16 34.35 49.64 74.88 92.97

Cumulative Return 29.97 27.16 34.35 49.64 74.88 92.97

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth 41.33 39.06 52.44 74.06 97.37 99.96

Cumulative Return 29.97 39.06 52.44 74.06 97.37 99.96

Source: CRSP and simulations

Notes : We conduct 400 monthly simulations of the stock market for both methods of estimating µ detailed in
Appendix B. For each method, we examine the percentage of wealth contributed by the top ten stocks with wealth
creation as measured by market cap and cumulative return. Sampling distributions of the percentages are obtained
from the simulations. A greater percentage of wealth contributed by the ten stocks implies a greater asymmetry
exhibited in the distribution of wealth creation.
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Table 20: Inference on Wealth Contribution of Top Ten Stocks (Simulations with 16,087 Firms)

Empirical Value
Simulated Values

Min 5th 50th 95th Max

Panel A: Method 1 (CAPM)

Market Cap Growth 29.40 71.48 88.99 99.63 99.99 99.99

Cumulative Return 71.67 71.48 88.99 99.63 99.99 99.99

Panel B: Method 2 (Direct Estimation using Expectation of Log Returns)

Market Cap Growth 29.40 98.69 99.92 99.99 99.99 99.99

Cumulative Return 71.67 98.69 99.92 99.99 99.99 99.99

Source: CRSP and simulations

Notes : We conduct 400 monthly simulations of the stock market for both methods of estimating µ detailed in
Appendix B. For each method, we examine the percentage of wealth contributed by the top ten stocks with wealth
creation as measured by market cap and cumulative return. Sampling distributions of the percentages are obtained
from the simulations. A greater percentage of wealth contributed by the ten stocks implies a greater asymmetry
exhibited in the distribution of wealth creation.
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Figure 1: Historical Number of CRSP Common Stocks
On the first day of each month from July 1926 to December 2016, we count the number of unique common stocks in the
cross-section, as available in CRSP. The jump between December 1972 and January 1973, from 2,623 to 5,494, corresponds
to the establishment of Nasdaq.
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Figure 2: Distribution of Monthly Cross-sectional Skew for the 392 Firms
The figures illustrate the distribution of monthly cross-sectional skewness, defined as the skewness of monthly returns for
all 392 firms in any given month.
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Figure 3: Scatterplot of α̂ and x̂min from Empirical Data and Simulations with 392 Firms
The figures illustrate the scatterplot of α̂ vs. x̂min computed from the simulations.
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Appendix

A Geometric Brownian Motion

Deriving implications of geometric brownian motion starts with the stochastic differ-
ential equation:

dS(t)

S(t)
= µdt+ σdW (t)

where S(t) is the price of a security at time t, µ the drift parameter, σ the volatility
parameter, and W (t) the value of a Wiener process at time t. Applying Ito’s lemma
to dlnS(t):

d logS(t) =
1

S(t)
dS(t)− 1

2

1

S(t)2
dS(t)2

=
1

S(t)
S(t)[µdt+ σdW (t)]− 1

2

1

S(t)2
S(t)2[σ2dW (t)2]2

= µdt+ σdW (t)− 1

2
σ2dt

Integrating each side,

logR = logS(t)− logS(0) =

(
µ− 1

2
σ2

)
t+ σW (t)

Therefore, we arrive at the normal distribution of log returns:

logR ∼ N

((
µ− 1

2
σ2

)
t, σ2t

)
We can also derive an expression for the expected total return, E[R]:

E[R] = E [exp(logR)] = exp

((
µ− 1

2
σ2 +

1

2
σ2

)
t

)
= exp(µt)
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B Estimation of Drift Parameter (µ)

Method 1. CAPM

We assume that the Capital Asset Pricing Model (CAPM) holds for log returns:

log

[
E[R]

Rf

]
= β

[
E[RM ]

Rf

]
where R is the total return on a security, Rf the total risk-free return, RM the total
return on the market, and β the market beta of the security. Defining r as logR and
following the notations regarding geometric brownian motion presented in Appendix
A, we have:

µ− rf = β (logE[RM ]− rf )
µ = (1− β)rf + β logE[RM ]

Since the risk-free rate is not constant in our data, we use E [logRf ] instead of rf .
Therefore, we arrive at the following expression for µ:

µ = (1− β)E [logRf ] + β logE[RM ]

Method 2. Direct Estimation via Expectation of Log Returns

Recall the expression for the expectation of log returns, E[logR]:

logR =

(
µ− 1

2
σ2

)
t+ σW (t)⇒ E[logR] =

(
µ− 1

2
σ2

)
t

Setting t = 1 using daily parameters, we arrive at the following expression for µ:

µ = E [logR] +
1

2
σ2
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C Aggregate Wealth Creation Metric

Bessembinder (2017) seeks to capture the experience of investors in aggregate and
creates a measure of dollar wealth creation for each firm. In this section, we outline
the derivation of his metric.

Let W0 denote the initial wealth of the investor with an investment horizon of T
periods. In each period, the investor chooses between a riskless bond with return rf
and a risky investment r̃ = r̃c + r̃d where r̃c is the capital gain and r̃d is the dividend
yield.

We assume that dividends are returned to the investeor’s bond account. We also
assume that at time t, the investor take Ft from his bond account and invests it in the
risky asset. The wealth in investor’s bond account at time t, Bt, evolves according to
the following equation:

Bt = Bt−1(1 + rf ) + It−1r̃d − Ft
and the wealth in investor’s stock (risky asset) account at time t, It, evolves as the
following:

It = It−1(1 + r̃c) + Ft

Investor’s total wealth can be expressed as Wt = Bt + It. Therefore:

Wt = Bt−1(1 + rf ) + It−1r̃d + It−1(1 + r̃c)

Wt −Wt−1(1 + rf ) = It−1(r̃t − rf )

Applying the above equation iteratively and using realized returns, we have:

Wt −W0(1 + rf )
T =

T∏
t=1

It−1(rt − rf )(1 + rf )
T−t

48



D Estimation of Power Law Parameter

The power law distribution has the following probability function defined for x ≥ xmin:

p(x) = Cx−α

where C is a constant and α the power law parameter. It is possible to derive an
expression for C through normalization, only when α > 1:

1 =

∫ ∞
xmin

p(x)dx = C

∫ ∞
xmin

dx

xα
=

C

α− 1
x−α+1
min

C = (α− 1)xα−1min

Substituting into the original equation, we therefore have the following expression,
defined only for α > 1 and x ≥ xmin:

p(x) =
α− 1

xmin

(
x

xmin

)−α
Estimating α requires the choice of xmin. We use the minimization of Kolmogorov-
Smirnov statistic D, defined as

D = max
x
|F (x|α, xmin)− F (x)|

where F (x|α, xmin) denotes the cdf of the power law distribution and F (x) the cdf
of the data. Once the optimal xmin is determined, we estimateα using the standard
maximum likelihood approach following Newman (2004). The estimate of α is therefore
given as:

α̂ = 1 +

[
n∑
i=1

log

(
xi
xmin

)]−1
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