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On Reverse Hypercontractivity

Abstract
We study the notion of reverse hypercontractivity. We show that reverse hypercontractive inequalities are
implied by standard hypercontractive inequalities as well as by the modified log-Sobolev inequality. Our proof
is based on a new comparison lemma for Dirichlet forms and an extension of the Stroock–Varopoulos
inequality.

A consequence of our analysis is that all simple operators L=Id−E as well as their tensors satisfy uniform
reverse hypercontractive inequalities. That is, for all q < p < 1 and every positive valued function f for t ≥
log (1−q)/(1−p) we have ∥e−tLf∥q ≥ ∥f∥p. This should be contrasted with the case of hypercontractive
inequalities for simple operators where t is known to depend not only on p and q but also on the underlying
space.

The new reverse hypercontractive inequalities established here imply new mixing and isoperimetric results for
short random walks in product spaces, for certain card-shufflings, for Glauber dynamics in high-temperatures
spin systems as well as for queueing processes. The inequalities further imply a quantitative Arrow
impossibility theorem for general product distributions and inverse polynomial bounds in the number of
players for the non-interactive correlation distillation problem with m-sided dice.
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ON REVERSE HYPERCONTRACTIVITY

ELCHANAN MOSSEL, KRZYSZTOF OLESZKIEWICZ, AND ARNAB SEN

Abstract. We study the notion of reverse hypercontractivity. We show that reverse hy-
percontractive inequalities are implied by standard hypercontractive inequalities as well as
by the modified log-Sobolev inequality. Our proof is based on a new comparison lemma for
Dirichlet forms and an extension of the Stroock-Varopoulos inequality.

A consequence of our analysis is that all simple operators L = Id − E as well as their
tensors satisfy uniform reverse hypercontractive inequalities. That is, for all q < p < 1 and
every positive valued function f for t ≥ log 1−q

1−p
we have ‖e−tLf‖q ≥ ‖f‖p. This should

be contrasted with the case of hypercontractive inequalities for simple operators where t is
known to depend not only on p and q but also on the underlying space.

The new reverse hypercontractive inequalities established here imply new mixing and
isoperimetric results for short random walks in product spaces, for certain card-shufflings, for
Glauber dynamics in high-temperatures spin systems as well as for queueing processes. The
inequalities further imply a quantitative Arrow impossibility theorem for general product
distributions and inverse polynomial bounds in the number of players for the non-interactive
correlation distillation problem with m-sided dice.

1. Introduction

1.1. Background. Log-Sobolev and hypercontractive inequalities play a fundamental role in
a number of areas in analysis and probability theory including the study of Gaussian processes
(see, e.g., [Gro78, Jan97]), analysis of Markov chains (see, e.g., [SC97]) and discrete Fourier
analysis starting in [KKL88, Tal94].

One of the first and most useful hypercontractive inequalities due to Bonami-Nelson-Gross-
Beckner [Bon70, Nel73, Gro75, Bec75] states that if (Ω, µ) = ({0, 1}, 12(δ0 + δ1)) then the

operator Tt = e−t(Id−Eµ) satisfies

(1.1) ‖Ttf‖p ≤ ‖f‖q, ∀f : Ω → R, p > q > 1, t ≥ 1

2
log

p− 1

q − 1
.

In probabilistic language, the operators (Tt)t≥0 form a Markov semigroup with Ttf(x) =
E[f(Xt)|X0 = x], where (Xt)t≥0 is a continuous-time Markov chain on Ω where the particle
jumps from the state y to the state z with probability µ(z) and the gaps between successive
jumps are distributed as independent exponential random variables.

The strength of a simple hypercontractive inequality like (1.1) lies in the fact that it ten-
sorizes. This led to many applications in discrete Fourier analysis (starting with [KKL88])
and even earlier in the study of Gaussian processes. Extending (1.1) to other spaces turned
out to be a non-trivial task. For the case of the spaces (Ω, µ) = ({0, 1}, αδ0 +(1−α)δ1), with
α ≤ 1/2, the first bounds were established by Talagrand [Tal94]. Exact formulas have been
obtained by Oleszkiewicz [Ole03] in the cases where either p > 2 = q or p = 2 > q > 1. Wolff
then extended these results [Wol07] to general discrete spaces and, in a slightly less precise
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2 ELCHANAN MOSSEL, KRZYSZTOF OLESZKIEWICZ, AND ARNAB SEN

form, to all p > q ≥ 2 and all 2 ≥ p > q > 1: let (Ω, µ) be a finite probability space with
α = minω∈Ω µ{ω} > 0; then there exists some universal positive constant ε such that for p, q
as above and certain t0 = t0(p, q, α), given by an explicit though complicated formula,

t ≥ t0 =⇒ ∀f : Ω → R, ‖Ttf‖p ≤ ‖f‖q =⇒ t ≥ t0 − ε.

Moreover, limα→0+ t0(p, q, α) = ∞. This dependency on the smallest atom in space is present
in many applications of hypercontractivity starting with [Tal94]. We note further that the
same dependency is arrived at using the exact calculation of the log-Sobolev constant of simple
operators (that is, operators of the form Tt = e−t(Id−Eµ) acting on the function defined on a
probability space (Ω, µ)) by Diaconis and Saloff-Coste [DSC96].

A ‘reverse’ hypercontractivity is shortly proved and discussed in a paper by Borell [Bor82]
in the 80’s. This result, proven for the measure (Ω, µ) = ({0, 1}, 12(δ0 + δ1)), states that

(1.2) ‖Ttf‖q ≥ ‖f‖p, ∀f : Ω → R+, 1 > p > q, t ≥ 1

2
log

1− q

1− p
.

This inequality which also tensorizes is indeed ‘reverse’ in many ways. Not only the inequality
goes ‘the other way’ and the roles of p and q get reversed, it is also the case that p and q are
less than 1 (indeed they may be negative(!); note, however, that the function f has to take
positive values).

As far as we know, Borell’s result was first used in a paper published more than 20 years
later [MOR+06], where it is used to analyze mixing of short random walks on the discrete
cube {0, 1}n as well as to provide tight bounds on the Non-Interactive Correlation Distillation
(NICD) problem.

Motivated by generalization of applications in [MOR+06] as well as by other applications
that will be discussed later, we wish to extend Borell’s results to other discrete probability
spaces. Noting the similarity of the inequalities (1.1) and (1.2) it is tempting to conjecture
(as the first named author have done) that the formulas for hypercontracitivity and reverse
hypercontractivity are ‘the same’: in particular, for discrete spaces there is a dependency on
the size of the smallest atom in space as in the above-mentioned results for hypercontractivity.
The conjecture is further supported by the fact that for diffusions both hypercontractivity
and reverse hypercontractivity are equivalent to the standard log-Sobolev inequality (for more
details see [Bak94]; some pioneering results relating hypercontractivity to reverse hypercon-
tractivity were obtained already in [BJ]).

The conjecture turns out to be far from true. In fact our results show that for every discrete
probability space (Ω, µ):

(1.3) ‖Ttf‖q ≥ ‖f‖p, ∀f : Ω → R+, 1 > p > q, t ≥ log
1− q

1− p
.

In particular, reverse hypercontractive inequalities hold uniformly for all probability spaces.
It is well known that hypercontractive inequalities are intimately related to logarithmic

Sobolev inequalities and our proof of (1.3) is based on extension of this connection to ‘norms’
p < 1 (such extensions were noted before, see, e.g., Bakry’s lecture notes [Bak94]). At the heart
of the proof is a new monotonicity result showing that under the appropriate normalization
log-Sobolev inequalities are monotone in the norm parameter p for all p ∈ [0, 2]. This result
in turn is based on an extension of the Stroock-Varopoulos inequality to general norms. The
result allows us to show how reverse hypercontractive inequalities follow directly from standard
hypercontractive inequalities and furthermore from standard log-Sobolev and modified log-
Sobolev inequalities.

After we develop the theory of reverse hypercontractive inequalities, we derive a number of
novel results regarding mixing of Markov chains run for short time starting from large sets,
in general cubes, the symmetric group and Ising configurations (via Glauber dynamics). We
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further derive a quantitative Arrow’s Theorem for general distributions and inverse polynomial
bounds for the NICD problem for general m-sided dice. We proceed with formal definitions
and statements of the main results.

1.2. General setup. We now turn to the general mathematical setup of the paper. Let
(Ω, µ) be a finite probability space (with a natural σ-field of all subsets of Ω). We assume
µ{ω} > 0 for ω ∈ Ω. Let E denote the expectation operator: Ef =

∫
Ω f dµ. We also use the

standard notation for the variance of f , Var(f) = Ef2 − (Ef)2, and the entropy of f > 0,
Ent(f) = E(f log f) − Ef · logEf . Let H be the space of real-valued functions on Ω. Let
H(0,∞) denote the positive functions. Let L : H → H be a linear operator such that

• L1 = 0 and
• L is self-adjoint with respect to the L2(Ω, µ) structure, i.e., EfLg = EgLf for any
f, g ∈ H, and

• L is positive semidefinite, i.e., EfLf ≥ 0 for all f ∈ H, and
• for any f ∈ H, and any ω ∈ Ω such that f ≤ f(ω) on Ω, there is (Lf)(ω) ≥ 0.

Alternatively, one can replace the fourth condition by the non-negativeness of the carré du
champ (as a function-valued quadratic form), i.e., L(f2) ≤ 2fLf for f ∈ H. The Markov
semigroup of operators (Tt)t≥0 : H → H generated by L is given by

Ttf = e−tLf,

with T0f = f and d
dtTtf = −LTtf = −TtLf . The Dirichlet form E : H ×H → R associated

with L is given by

E(f, g) = E(fLg) = E(gLf) = E(g, f) = − d

dt
EfTtg

∣∣∣
t=0

.

Recall that in this setup we have Tt1 = 1 for t ≥ 0 and E(f, 1) = 0 for f ∈ H. The operators
Tt are symmetric linear contractions in Lp-norm for every p ∈ [1,∞) and t ≥ 0. They are
mean-preserving, i.e.,

ETtf = E1Ttf = EfTt1 = Ef,

and positivity preserving, i.e., Ttf ≥ 0 for f ∈ H and f ≥ 0, thus also order preserving (f ≥ g
implies Ttf ≥ Ttg). In fact, they preserve also strict positivity: f > 0 implies Ttf > 0 for
t ≥ 0. The positivity preserving property implies that E(|f |, |f |) ≤ E(f, f) for any f ∈ H.
One can associate to a Markov semigroup (Tt)t≥0 on (Ω, µ) a time-homogenous reversible
Ω-valued Markov process (Xt)t≥0 with Xt ∼ µ for t ≥ 0, where the transition probabilities
of the process can be read from the formula P(Xt1 = ω1,Xt2 = ω2) = E(1ω1T|t1−t2|1ω2) for
ω1, ω2 ∈ Ω, and, conversely, (Ttf)(ω) = E (f(Xt)|X0 = ω) for any f ∈ H and ω ∈ Ω.

Definition 1.1. For f ∈ H and p > 0 we denote by ‖f‖p the p-th norm of f : (E|f |p)1/p.
We extend the definition to p ∈ R and f ∈ H(0,∞) by setting ‖f‖p = (Efp)1/p for p 6= 0, and
‖f‖0 = exp(E log f).

Recall that ‖ · ‖p is a true norm for p ≥ 1 but it is only a pseudo-norm (triangle inequality
fails) for p < 1 (unless |Ω| = 1). It is an easy and well-known fact that for any f ∈ H(0,∞)

the map p 7→ ‖f‖p is continuous and non-decreasing.
Following Borell [Bor82] we extend the definition of duality to p ∈ R:

Definition 1.2. For a number p ∈ R \ {0, 1} we define its (Hölder) conjugate p′ = p/(p− 1),
so that 1

p + 1
p′ = 1. We also set 0′ = 0.

Note that the map p 7→ p′ is a continuous order-reversing involution on (−∞, 1) and (1,∞)
with fixed points 0 and 2. It is worth observing that (2− p)′ = 2− p′ for p 6= 1, even though
we will not make use of this fact.
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1.3. Log-Sobolev inequalities. We now recall the definition of log-Sobolev inequalities.

Definition 1.3. For p ∈ R \ {0, 1} we say that p-logSob is satisfied with constant C > 0 if

(1.4) Ent(fp) ≤ Cp2

4(p − 1)
E(fp−1, f)

for every f ∈ H(0,∞). We will say that 1-logSob is satisfied with constant C > 0 if

Ent(f) ≤ C

4
E(f, log f)

for f ∈ H(0,∞). Finally, we will say that 0-logSob is satisfied with constant C > 0 if

Var(log f) ≤ −C
2
E(f, 1/f)

for every f ∈ H(0,∞).

Remark 1.4. Obviously, the cases p = 0 and p = 1 of the p-logSob inequality are limit cases
of the p-logSob for p ∈ R \ {0, 1} (with the same C).

Remark 1.5. Logarithmic Sobolev inequalities were introduced by Gross in his seminal paper
[Gro75]. Gross defined logarithmic Sobolev inequality for p > 1. The definition was later
extended by Bakry [Bak94] to any real p (including 1-logSob inequality). Finally, we remark
that 1-logSob inequality is also known in the literature as modified log-Sobolev inequality (see,
e.g., [Wu00, GQ03, Goe04, BT06]). The 1-logSob inequality is also called “entropic inequality”
as it implies the exponential decay of entropy along the semigroup.

Remark 1.6. Our definition uses a novel and non-standard normalization factor p2

4(p−1) in

(1.4). The choice of this normalization makes our p-logSob constants invariant under Hölder
conjugation (see Lemma 3.2). Moreover, this normalization is crucial to prove the main result
of the paper - the monotonicity of the inequality for p ∈ [0, 2] (see Theorem 1.7).

In our main result we prove a general result relating p-logSob inequalities for different
values of p.

Theorem 1.7. Let 0 ≤ q ≤ p ≤ 2. Assume that p-logSob holds with a constant C > 0. Then
also q-logSob holds true with the same constant C.

Remark 1.8. It has been proved in [Bak94, Proposition 3.1] that if 2-logSob holds with con-
stant C, then any p-logSob also holds with the same constant and for p > 0 the converse is
true in case of diffusions with invariant measure µ.

Using the fact that simple operators satisfy 1-logSob with the constant 4 (proved in [BT06];
the proof is reproduced in our Lemma 3.5 below) we obtain the following corollary:

Corollary 1.9. Assume that the semigroup (Tt)t≥0 is generated by L = Id−E or by a tensor
of simple operators. Then it satisfies the r-logSob inequality with constant 4 for all r ∈ [0, 1].

1.4. Reverse hypercontractive estimates. Using Theorem 1.7 we derive the following
general reverse hypercontractive bounds:

Theorem 1.10. If a symmetric Markov semigroup (Tt)t≥0 satisfies r-logSob with constant

C and r ≥ 1 then for all q < p < 1 and every f ∈ H(0,∞) for all t ≥ C
4 log 1−q

1−p we have

‖Ttf‖q ≥ ‖f‖p.
Using Corollary 1.9 this implies in turn that:
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Corollary 1.11. If a symmetric Markov semigroup (Tt)t≥0 has a simple generator L = Id−E

or it is a tensor product of such simple semigroups, then for all q < p < 1 and every f ∈ H(0,∞)

for t ≥ log 1−q
1−p we have ‖Ttf‖q ≥ ‖f‖p.

In fact, for simple operators we derive the following stronger result:

Theorem 1.12. Assume that a symmetric Markov semigroup (Tt)t≥0 has a simple generator
L = Id−E or it is a tensor product of such simple semigroups. Let f ∈ H be strictly positive.

Then for all q < p ≤ 0 and t ≥ log 2−q
2−p , and also for all 0 ≤ q < p < 1 and t ≥ log (1−q)(2−p)

(1−p)(2−q)

we have ‖Ttf‖q ≥ ‖f‖p.
Remark 1.13. The reverse hypercontractive inequality (1.2) for a simple operator and the
space {−1, 1} with the uniform measure was derived prior to ours by Borell. His result is
tight.

1.5. Application 1: Mixing of large sets in Markov chains. Our first application of
the new inequality is to mixing of Markov chains from large sets. The statement and proof of
the theorem below are a generalization of the main result of [MOR+06] where it was proven
for the random walk on the discrete cube {0, 1}n.

Theorem 1.14. Let (Xt)t≥0 be a continuous-time Markov chain on a finite state space Ω
which is reversible with respect to the invariant probability measure π. Let (Tt)t≥0 be the
semigroup defined by Ttf(x) = E

xf(Xt) for f ∈ H. Assume (Tt)t≥0 satisfies 1-logSob with
constant C. Let a, b ≥ 0 and let A,B ⊆ Ω with π{A} = exp(−a2/2) and π{B} = exp(−b2/2).
Let X0 be distributed according to π. Then

(1.5) P{X0 ∈ A,Xt ∈ B} ≥ exp

(
−1

2

a2 + 2e−2t/Cab+ b2

1− e−4t/C

)
.

This theorem should be compared to the two main techniques for proving lower bounds on
P{X0 ∈ A,Xt ∈ B}.

• First, the Expander Mixing Lemma (see, e.g., [AS08, Chapter 9]) implies that if
Poincaré inequality holds with constant D then:

(1.6) P{X0 ∈ A,Xt ∈ B} ≥ π{A}π{B} −
√
π{A}π{B}e−t/D.

The inequality (1.6) will be better (up to constants) than our inequality (1.5) in the

case where the sets A and B are large, say π{A}π(B) ≥ 2
√
π{A}π{B}e−t/D, since

in this case we obtain the lower bound of 1
2π{A}π{B} which is (except for the factor

2) the best that one can hope for. However, in the case where the sets A and B

are small, say π{A}π{B} ≤
√
π{A}π{B}e−t/D, the expander mixing lemma gives

nothing while (1.5) gives a lower bound that is a power of the measures of the original
sets.

• The second technique uses total variation mixing times. Indeed, if the worst total
variation distance at time t is at most ǫ, then we have:

(1.7) P{X0 ∈ A,Xt ∈ B} ≥ π{A}(π{B} − ǫ).

Again - applying this bound requires that one of the sets A or B is large (of measure
at least ǫ). Moreover, in many examples the time t when the total variation distance
is at most 1/e is much larger than the 1-logSob constant C. Therefore if t is of order
C, then the mixing time bound (1.7) gives nothing while our result (1.5) gives an
efficient lower bound.

We demonstrate this point by proving new mixing bounds from large sets for various
classical Markov chains, including:
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• Short random walks on general product spaces. In this case we derive tighter results
in subsection 9.1.

• Glauber dynamics on Ising model on finite boxes. The results of [SZ92b, SZ92a, Zeg92,
MO94a, MO94b] imply that in “high temperatures” there is a uniform bound on for
2-logSob constant in the box [−n, n]d while the mixing time of the Glauber dynamics
is tmix = Θ(log n). Thus our results provide new bounds for mixing of big sets in this
setup. Details are provided in subsection 9.3.

• The random transposition card shuffle on the symmetric group. Here it is known that
hat the 1-logSob constant C of this chain is of order n [GQ03, BT03, Goe04] while
the mixing time is Θ(n log n). Thus again, we obtain new results on mixing from
large sets. Similar logic applies to the Top-to-random transposition walk on symmetric
group, see [Goe04, DFP92] for the 1-logSob constant and the mixing time. We provide
the details in subsections 9.4 and 9.5.

• Random walk on the spanning trees of certain graphs. See subsection 9.6.
• The Bernoulli-Laplace model. See subsection 9.7.
• A natural Markovian queueing process - the q/q/∞ Markov process. The last example

is interesting since it has infinite 2-logSob constant and an infinite mixing time. More
details on this example are given in subsection 9.2

1.6. Application 2: A general quantitative Arrow theorem. Arrow’s Impossibility
Theorem [Arr50, Arr63] is a fundamental result in social choice theory. It considers n voters

who rank k candidates. Arrow considered functions F : Sn
k → {−1, 1}(k2) that aggregate

individual rankings (elements of the permutation group Sk) to result in a preference between
every pair of the k alternatives. Arrow showed that if the following desired properties hold
simultaneously when k ≥ 3:

• Transitivity - F (σ) induces a transitive ranking for all σ ∈ Sn
k ,

• Unanimity - for every pair of alternatives a and b, if all voters rank a above b then F
also ranks a above b,

• Independence of irrelevant alternatives (IIA) - for every pair of alternatives, the result-
ing outcome regarding the preference between a and b is determined by the individual
preferences between a and b,

then F is a dictator function, i.e., it is determined by a single voter.
It is natural to ask how robust is the result when considering natural distributions over

Sn
k . This question was analyzed by Kalai [Kal02] who studied it for the case of the uniform

distribution over Sn
3 and showed that for every ǫ > 0, there exists a δ > 0 such that if F

satisfies:

• δ-Transitivity: P{F (σ) is transitive} ≥ 1− δ,
• Fairness: for every pair of alternatives a and b, P{F ranks a above b} = 1/2,
• IIA,

then there exists a dictator function G such that P{F (σ) 6= G(σ)} ≤ ǫ.
Following a challenge by Kalai, Mossel [Mos12] proved a stronger result for any number of

alternatives and without the assumption that F is fair. His result shows that for k ≥ 3 and
every ǫ > 0, there exists a δ > 0 such that if F satisfies

• δ-Transitivity: P{F (σ) is transitive} ≥ 1− δ,
• IIA,

then there exists a function G, which is transitive and satisfies the IIA property, such that
P{F (σ) 6= G(σ)} ≤ ǫ. A complete characterization of all functions G that are IIA and
transitive is given by Wilson [Wil72] - these functions include dictators, functions taking two
values etc.
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A key ingredient of the proof in [Mos12] is the use of reverse hypercontractive inequalities.
It is further noted in [Mos12] that it should be possible to extend the proof to general product
distributions on Sn

k given appropriate reverse hypercontractive bounds for general two point
spaces. Our results imply the following extension.

Theorem 1.15 (Quantitative Arrow’s theorem for general distribution). Let ̺ be general
distribution on Sk with ̺ assigning positive probability to each element of Sk. Let P denote
the distribution ̺⊗n on Sn

k . Then for any number of alternatives k ≥ 3 and ǫ > 0, there exists

δ = δ(ǫ, ρ) > 0, such that for every n, if F : Sn
k → {−1, 1}(k2) satisfies

• IIA and
• P{F (σ) is transitive} ≥ 1− δ.

Then there exists a function G which is transitive and satisfies the IIA property and P{F (σ) 6=
G(σ)} ≤ ǫ

We note that considering general product distributions gives a more realistic model of
actual voting (though the independence assumption in this line of work is still problematic in
real voting scenarios).

1.7. Application 3: Non-interactive correlation distillation from dice source. The
problem of non-interactive correlation distillation deals with players who receive correlated
random strings and whose collective goal is to agree with the highest possible probability on
a random variable with a given distribution. Suppose there are k ≥ 2 players and a ‘cosmic
source’. Assume first that the source generates a string x of n i.i.d. bits. Each player gets
to receive an independent noisy copy of x. Each player then produces a single random bit
based on her input. The players wish to have unanimous agreement on their outputs but are
not allowed to communicate. The problem is to understand to what extent the players can
successfully ‘distill’ the correlations in their strings into a shared random bit.

This problem has been considered in [AMW91, MO05, Yan04, MOR+06] when the input
strings consist of i.i.d. fair coin flips. Here we consider a more general version of the problem
where each bit is an outcome of a throw of a fair dice with m-faces, m ≥ 2. Let us introduce
some notations. Let Ω = {1, 2, . . . ,m} denote the set of the possible outcomes of a dice. Let
x = (x1, x2, . . . , xn) be a random vector consisting of n i.i.d. random variables, each being
uniformly distributed over Ω. Fix ρ ∈ [0, 1). Let y be a ρ-correlated copy of x (that is, for
each j ≤ n independently, with probability ρ, yj = xj , and with probability (1− ρ), yj = x′j ,
x′ being an independent copy of x) and let (yi)1≤i≤k be conditionally independent copies of
y given x. Let player i use the function Fi : Ωn → Ω to produce her output Fi(y

i). The
functions Fi are all assumed to be balanced, that is, P{Fi(x) = j} = m−1 for all i, j.

Define

Mρ(k, n) = sup
(Fi)1≤i≤k

P{all players output the same bit},

where the supremum is taken over all choices of balanced functions (Fi)1≤i≤k. Since a balanced
function defined on n variables can be also thought of a balanced function of (n+1) variables,
for a fixed k and ρ, Mρ(k, n) is a non-decreasing function of n and so, limn→∞Mρ(k, n)
exists. One of the main results of [MOR+06] says that when m = 2, we have

lim
n→∞

Mρ(k, n) = k
− 1

ρ2
+1+o(1)

as k → ∞.

The upper bound of the above result uses an application of reverse hypercontractivity for
simple semigroup on symmetric two-point space. Here we generalize this bound and give an
inverse polynomial bounds (in k) on the agreement probability for general m.
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Theorem 1.16. Fix ρ ∈ (0, 1). Then there exist positive constants γ1 = γ1(ρ), γ2 = γ2(ρ), c1 =
c1(m,ρ) and c2 = c2(m,ρ) such that for all k ≥ 2,

c2k
−γ2 ≤ lim

n→∞
Mρ(k, n) ≤ c1k

−γ1 .

Acknowledgements. The first named author enjoyed the hospitality of Isaac Newton Institute,
Cambridge while completing part of this research. The second named author enjoyed hospital-
ity of University of California, Berkeley and Isaac Newton Institute, Cambridge while doing
this research. We thank Dominique Bakry, Franck Barthe, Nick Crawford, Michel Ledoux
and Cyril Roberto for helpful comments and discussions. We thank an anonymous referee for
numerous helpful suggestions including suggesting simpler proof of Lemma 2.3.

2. Comparison of Dirichlet forms

The following theorem extends the classical Stroock-Varopoulos inequality [Str84, Var85]
(covering the case p = 2, q ∈ (1, 2] of the present result). Theorem 2.1 is the main tool in
proving Theorem 1.7. Note that some terms in the statement below may take negative values.

Theorem 2.1. Let p, q ∈ (0, 2] \ {1} and p > q. Then

qq′E(g1/q , g1/q′) ≥ pp′E(g1/p, g1/p′)
for every g ∈ H(0,∞).

Remark 2.2. The above result has a natural extension to the case p = 1 or q = 1, with
E(log g, g) replacing the right (resp. left) hand side of the asserted inequality; then it suffices
to use functions ϕ1(x) = log x and ϕ2(x) = x (or ψ1(x) = log x and ψ2(x) = x, respectively)
in the proof. One can also simply pass to the limit.

The proof of the theorem will use the following lemmas.

Lemma 2.3. Let I be a non-empty convex subset of R. Assume that some functions ϕ1, ϕ2, ψ1, ψ2 :
I → R satisfy

(ϕ1(a)− ϕ1(b))(ϕ2(a)− ϕ2(b)) ≤ (ψ1(a)− ψ1(b))(ψ2(a)− ψ2(b))

for all a, b ∈ I. Then for every f : Ω → I there is

E(ϕ1(f), ϕ2(f)) ≤ E(ψ1(f), ψ2(f)),

where by ϕ1(f) we denote ϕ1 ◦ f ∈ H, etc.

Proof. The proof follows from the identity

(2.1) E(F,G) = −1

2

∑

x,y∈Ω
E1xL1y · (F (x)− F (y)) (G(x)−G(y))

which holds for all F,G ∈ H. Note that for x 6= y there is E1xL1y ≤ 0. Indeed, L(−1y) ≥ 0
on Ω \ {y} since the function −1y attains its global maximum at all x’s different from y.

�

Lemma 2.4. Assume that I is a convex non-empty subset of R and functions ϕ1, ϕ2, ψ1,
ψ2 : I → R are differentiable and such that

ϕ′
1(a)ϕ

′
2(b) + ϕ′

1(b)ϕ
′
2(a) ≤ ψ′

1(a)ψ
′
2(b) + ψ′

1(b)ψ
′
2(a)

for all a, b ∈ I. Then for every f : Ω → I there is

E(ϕ1(f), ϕ2(f)) ≤ E(ψ1(f), ψ2(f)).
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Proof. By Lemma 2.3 it suffices to check whether Φ : I × I → R given by

Φ(a, b) = (ψ1(a)− ψ1(b))(ψ2(a)− ψ2(b)) − (ϕ1(a)− ϕ1(b))(ϕ2(a)− ϕ2(b))

is nonnegative. Clearly, Φ(x, x) = 0 and ∂Φ
∂a (x, x) = 0 for all x ∈ I. Now it is enough to

notice that the assumptions of Lemma 2.4 yield ∂
∂b

∂
∂aΦ ≤ 0 which implies that Φ(·, x) is

non-decreasing on [x,∞) ∩ I and non-increasing on (−∞, x] ∩ I. �

We are now ready to prove Theorem 2.1.

Proof. It suffices to use Lemma 2.4 with I = (0,∞), ϕ1(x) = px1/p, ϕ2(x) = p′x1/p
′
, ψ1(x) =

qx1/q, and ψ2(x) = q′x1/q
′
. Indeed, to verify the assumptions of Lemma 2.4 one needs to

check whether for all a, b > 0,

(a/b)
1
p
− 1

2 + (a/b)
−( 1

p
− 1

2
) ≤ (a/b)

1
q
− 1

2 + (a/b)
−( 1

q
− 1

2
)
.

This is, however, obvious since the function w 7→ sw + s−w is even and convex for every s > 0
and thus it is non-decreasing on (0,∞). Choosing s = a/b and recalling that 0 < 1/p− 1/2 ≤
1/q − 1/2 ends the proof. �

We further obtain the following.

Corollary 2.5. For any f ∈ H(0,∞) there is

E(log f, log f) ≤ −E(f, 1/f).
Proof. It follows immediately from Lemma 2.4 applied to I = (0,∞) with ϕ1(x) = log x,
ϕ2(x) = log x, ψ1(x) = x, and ψ2(x) = −1/x. �

Remark 2.6. For any positive g, the function u 7→ 1
u(1−u)E(gu, g1−u) is log-convex on the real

line: either it is positive and its logarithm is convex, or it is identically equal to zero (if g
is constant). It is also obviously symmetric with respect to 1/2, so that it is non-decreasing
on [1/2,∞), which is a re-formulation of Theorem 2.1. Indeed, the log-convexity follows
easily from the formula (2.1) and Hölder’s inequality, if one can first prove that the functions
u 7→ (bu − au)/u and, equivalently, u 7→ (b1−u − a1−u)/(1 − u) are log-convex for any pair of
fixed nonnegative numbers a > b. This, however, is an immediate consequence of the identity

(bu − au)/u =
∫ b
a s

u−1 ds, and Hölder’s inequality. We skip standard discussion of the cases
u = 0 and u = 1.

3. Logarithmic Sobolev inequalities

In this section we prove various properties of log-Sobolev inequalities and in particular
Theorem 1.7. We begin with a simple claim relating 0-logSob to the Poincaré inequality. We
suspect that both Lemma 3.1 and Lemma 3.2 below were previously known in the literature
but we did not find any explicit reference.

Lemma 3.1. 0-logSob holds with constant C if and only if the standard Poincaré inequality
holds with constant C/2, i.e.,

Var(g) ≤ C

2
E(g, g)

for every g ∈ H.

Proof. For g ∈ H and δ > 0 set f = eδg . Assuming that f satisfies 0-logSob with constant C
we obtain

Var(δg) ≤ −C
2
E(eδg , e−δg).
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By the homogeneity of variance and bilinearity of E we get

Var(g) ≤ C

2
E
(eδg − 1

δ
,
1− e−δg

δ

)
δ→0+−→ C

2
E(g, g).

On the other hand, let f ∈ H be positive and assume that the Poincaré inequality holds with
constant C/2. By using it for g = log f we arrive at

Var(log f) ≤ C

2
E(log f, log f) ≤ −C

2
E(f, 1/f),

where we have used Corollary 2.5. �

The following easy observation allows us to restrict study of the p-logSob inequalities to
the case p ∈ [0, 2] (also, it reveals that 1-logSob is, in a sense, a replacement for ±∞-logSob).

Lemma 3.2. If p ∈ R \ {1} and p-logSob is satisfied with a constant C then also p′-logSob
holds, with the same constant.

Proof. For p = 0 there is nothing to prove, whereas for p 6= 0 it suffices to notice that by
setting g = fp we obtain an equivalent ‘self-dual’ version of p-logSob:

(3.1) Ent(g) ≤ Cpp′

4
E(g1/p, g1/p′)

for all positive g ∈ H. �

We now prove Theorem 1.7 using the extension of the classical Stroock-Varopoulos inequal-
ity proven in Theorem 2.1.

Proof. It is a direct consequence of the ‘self-dual’ reformulation (3.1) of p-logSob, Theorem 2.1,
and Remark 2.2. The fact that p-logSob with constant C implies 0-logSob (with the same
constant) for every p 6= 0 may be proved in two natural ways. One can deduce the Poincaré
inequality with constant C/2 from p-logSob by setting f = eδg and letting δ tend to zero
(as in the first part of proof of Lemma 3.1, and use Lemma 3.1 to finish the argument).
Alternatively, one can first deduce from p-logSob the q-logSob inequalities (with the same
constant) for q arbitrarily close to zero, and then simply apply limit transition q → 0. �

In view of Lemma 3.1 and Theorem 1.7, the p-logSob inequalities, p ∈ [0, 2], can be treated
as a family interpolating in a continuous and monotone way between the classical Poincaré
and logaritmic Sobolev inequalities. Another approach to the interpolation problem may be
found in [LO00]. Relation between the two approaches seems unclear to the present authors
and perhaps it deserves some further investigation.

However, it is well known that all the p-logSob inequalties for p ∈ (1, 2] are in a sense
equivalent, at least if we do not care too much about constants (we do not know whether all
p-logSob inequalities for p ∈ (0, 1) are equivalent in a similar sense).

Proposition 3.3. Let 1 < q ≤ p ≤ 2. Assume that q-logSob holds true with a constant C > 0.

Then also p-logSob holds true, with constant (p−1)q2

(q−1)p2
C.

Remark 3.4. It follows from [Bak94, Proposition 3.1] that in case of diffusions with invariant
measure µ any q-logSob implies any p-logSob with the same constant. However, we did
not find in the literature any reference to the results of the same form as Proposition 3.3
regarding reversible Markov chains. On the other hand, one can first deduce from q-logSob a
hypercontractive inequality and then deduce 2-logSob from it, which in turn yields p-logSob.
This way around was known before but it yields much worse estimates.
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Proof. Indeed, since (p−1)q2

(q−1)p2 = qq′

pp′ it suffices to prove that E(g1/q , g1/q′) ≤ E(g1/p, g1/p′) for

every positive g ∈ H, which follows easily from Lemma 2.3 applied to I = (0,∞), ϕ1(x) =

x1/q, ϕ2(x) = x1/q
′
, ψ1(x) = x1/p, and ψ2(x) = x1/p

′
. The inequality

(ϕ1(a)− ϕ1(b))(ϕ2(a)− ϕ2(b)) ≤ (ψ1(a)− ψ1(b))(ψ2(a)− ψ2(b))

is equivalent to

(a/b)
1
p
− 1

2 + (a/b)
1
2
− 1

p ≤ (a/b)
1
q
− 1

2 + (a/b)
1
2
− 1

q .

Since for every s > 0 the function w 7→ sw + s−w is non-decreasing on [0,∞), we finish the
proof by setting s = a/b and noting that 1

q − 1
2 ≥ 1

p − 1
2 ≥ 0. �

Usually it is not easy to prove the classical logarithmic Sobolev inequality (2-logSob in our
notation). On the other hand, the following lemma provides a modified logarithmic Sobolev
inequality (1-logSob in our notation) for a large class of simple semigroups.

Lemma 3.5. ([BT06]) Assume that the semigroup (Tt)t≥0 is generated by L = Id−E. Then
it satisfies 1-logSob with constant 4, i.e., for all positive f ∈ H there is

Ent(f) ≤ E(f, log f).
Proof. Indeed, it suffices to note that the logarithm function is concave on (0,∞), so that
E log f ≤ logEf . Thus

Ent(f) = Ef log f − Ef · logEf ≤ Ef log f − Ef · E log f =

Ef(log f − E log f) = EfL log f = E(f, log f).
�

Remark 3.6. Lemma 3.5 was proved in [BT06]. We remark that the constant 4 is not always
the optimal 1-logSob constant for the semigroups generated by L = Id−E. For example, for
the two point space ({0, 1}, αδ0 + (1 − α)δ1) the best 1-logSob constant C is known [BT06]
to satisfy C ≤ 4

1+2
√

α(1−α)
< 4. For α = 1

2 , the best 1-logSob constant is 2 [BT06]. When

α 6= 1
2 , the best 1-logSob constant is not known (though the best 2-logSob constant is already

known [DSC96]).

3.1. Tensorization. The p-logSob inequalities obviously share the tensorization property of
the classical logarithmic Sobolev and Poincaré inequalities. This is a standard observation
but we include it here for reader’s convenience. For i = 1, 2, . . . , n assume that (Ωi, µi)
is a finite (this assumption may be relaxed) probability space with an associated space Hi

of real functions on Ωi, and a Markov semigroup (T
(i)
t )t≥0 : Hi → Hi generated by a self-

adjoint positive semi-definite operator Li (all of them enjoying properties described in the
Preliminaries section). Now let us consider a new semigroup (Tt)t≥0 of operators acting on a
space H = H1 ⊗H2 ⊗ . . .⊗Hn of real-valued functions on a product probability space

(Ω, µ) = (Ω1 × Ω2 × . . .× Ωn, µ1 ⊗ µ2 ⊗ . . .⊗ µn).

We obtain it by defining its generator L : H → H as

L =

n∑

i=1

IdH1 ⊗ . . .⊗ IdHi−1 ⊗ Li ⊗ IdHi+1 . . .⊗ IdHn .

Equivalently, we may define it by setting, for t ≥ 0,

Tt = T
(1)
t ⊗ T

(2)
t ⊗ . . .⊗ T

(n)
t .
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Proposition 3.7. Let p ∈ R. In the setting as above, assume that there exist positive

constants C1, C2, . . . , Cn such that the semigroup (T
(i)
t )t≥0 satisfies p-logSob with constant

Ci for i = 1, 2, . . . , n. Then the semigroup (Tt)t≥0 satisfies p-logSob with the constant
C = max(C1, C2, . . . , Cn).

Proof. We skip the proof, referring the reader to the classical tensorization argument: subad-
ditivity of entropy (or variance, if p = 0). �

4. Hypercontractivity

4.1. Control of moments under semigroup action. Let t = t(p) be a differentiable
nonnegative function defined on a convex subset of R \ {0, 1}, and let f ∈ H(0,∞). We will
study behavior of the moments of functions ft(p) := Tt(p)f . An elementary though tedious
standard calculation shows that

(4.1)
d

dp
log ‖Tt(p)f‖p =

Ent(fpt(p))− p2t′(p)E(fp−1
t(p) , ft(p))

p2Efpt(p)
.

Since, as explained in the preliminaries, ft(p) is also strictly positive, we may apply to it the
p-logSob inequality, which will yield monotonicity of the map p 7→ ‖Tt(p)f‖p upon appropriate
choice of the function t(p).

4.2. Hypercontractivity estimate.

Proposition 4.1. Let r ∈ (1, 2] and let (Tt)t≥0 be a symmetric Markov semigroup.
Assume that (Tt)t≥0 satisfies r-logSob with constant C. Let r′ ≤ q ≤ p or 1 < q ≤ p ≤ r.

Then for every t ≥ C
4 log p−1

q−1 and every f ∈ H there is ‖Ttf‖p ≤ ‖f‖q. In other words, Tt is

a linear contraction from Lq(Ω, µ) to Lp(Ω, µ).
Conversely, if there exists C > 0 such that

(4.2) ‖TC
4
log p−1

q−1
f‖p ≤ ‖f‖q

for all p and q such that 1 < q < p ≤ r, and for all positive f ∈ H then (Tt)t≥0 sastisfies
r-logSob with the constant C.

Remark 4.2. That the concepts of logarithmic Sobolev inequality and hypercontractivity are
intimately connected goes back to Gross [Gro75]. In fact, the converse part of the above propo-
sition follows from Theorem 1.2 of [Gro75] though we add a short proof here for the sake of
completeness. But the hypothesis of the forward direction (r-logSob implies hypecontractiv-
ity) of our proposition is weaker than that of [Gro75] since [Gro75] assumes that r-logSob
holds for a nonempty open interval - see Theorem 1.1 of [Gro75] for more details. We also
comment that for r = 2 we recover the part (i) and (ii) of Theorem 3.5 of Diaconis and
Saloff-Coste [DSC96] on the classical equivalence of the logarithmic Sobolev inequality and
hypercontractivity for the reversible Markov chains (with essentially the same proof).

Proof. In the proof of the first assertion without loss of generality we can assume that f ≥ 0
- indeed, since Tt is order preserving, the pointwise inequality −|f | ≤ f ≤ |f | implies that
|Ttf | ≤ Tt|f | pointwise, and thus ‖Ttf‖p ≤ ‖Tt|f | ‖p whereas f and |f | have the same q-
th norm. Furthermore, without loss of generality we may assume that f is strictly positive
(which follows by considering functions f + ε instead of f and then letting ε→ 0+).

Theorem 1.7 and Lemma 3.2 imply that (Tt)t≥0 satisfies s-logSob with constant C for all

s ∈ (1, r] ∪ [r′,∞). Let t(s) = C
4 log s−1

q−1 , so that t(q) = 0. Then s2t′(s) = Cs2

4(s−1) and (4.1)

together with the s-logSob imply that the map s 7→ ‖Tt(s)f‖s in non-increasing on [q, p].
Comparing its values at the ends of the interval we arrive at ‖Ttp,qf‖p ≤ ‖f‖q for f > 0,
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where tp,q = C
4 log p−1

q−1 . To finish the proof of the first assertion for t > tp,q it suffices to

express Tt as Tt−tp,q ◦ Ttp,q , and use the fact that the semigroup is contractive in Lp-norm
(p > 1).

To prove the second assertion let us fix some q ∈ (1, r) and some positive f ∈ H. For

p ∈ [q, r) let t(p) = C
4 log p−1

q−1 , so that t(q) = 0. Since the map p 7→ ‖Tt(p)f‖p is non-

increasing on [q, r) by using (4.1) at p = q we infer that q-logSob holds true with the constant
C. Passing to the limit q → r− ends the proof. �

5. Reverse hypercontractivity - preliminary results

In this section we prove some preliminary results regarding reverse hypercontractivity.

5.1. Reverse contraction. We first state the following corollary of Jensen’s inequality es-
tablishing ‘reverse contraction’:

Lemma 5.1. Let I be a non-empty convex open subset of R and let (Tt)t≥0 be a symmetric
Markov semigroup. Then for every t > 0 and every concave Φ : I → R there is EΦ(Ttf) ≥
EΦ(f) for all f ∈ H with values in I. In particular, for every q < 1 and positive f ∈ H we
have ‖Ttf‖q ≥ ‖f‖q.
Proof. Indeed, Φ may be expressed as infimum of a family CΦ of affine functions:

Φ(x) = inf{φ(x);φ ∈ CΦ}
for x ∈ I. Thus from the pointwise inequality Φ(f) ≤ φ(f) and positivity preserving by Tt we
deduce TtΦ(f) ≤ Ttφ(f) = φ(Ttf) for all φ ∈ CΦ and hence TtΦ(f) ≤ inf{φ(Ttf);φ ∈ CΦ} =
Φ(Ttf), pointwise, again. So EΦ(f) = ETt(Φ(f)) ≤ EΦ(Ttf), and we are done. The fact that
also Ttf has values in I is a consequence of the order preservation. �

Note that the lemma used for I = R and Φ(x) = −|x|p, p ≥ 1 implies the contractivity of
(Tt)t≥0 in Lp-norm.

5.2. Duality and tensorization. The standard statement of the duality of Lp-norms is that
for p > 1 and f ∈ H we have

‖f‖p = sup{Efg; ‖g‖p′ ≤ 1}.
A slightly less known observation can be found in [Bor82]:

Lemma 5.2. Let p ∈ (−∞, 1). Then for any positive f ∈ H there is

‖f‖p = inf{Efg; g > 0, ‖g‖p′ ≥ 1}.
We skip its proof since it is an easy exercise.
The standard duality of the Lp-norms implies that Lp′(Ω, µ) is Banach space dual to

Lp(Ω, µ) for any p > 1, and from the symmetry of the semigroup (Tt)t≥0 we deduce that

‖Tt‖Lp(Ω,µ)→Lq(Ω,µ) = ‖Tt‖Lq′ (Ω,µ)→Lp′ (Ω,µ)

for any p, q > 1 and t ≥ 0.
The case p, q ∈ (−∞, 1) is less standard and a bit more delicate (in particular, note that

this is no longer the Banach space setting). We will need the following auxiliary result which
was previously used by Borell [Bor82].

Proposition 5.3. Let p, q ∈ (−∞, 1) and t ≥ 0. Assume that ‖Ttf‖q ≥ ‖f‖p for every
positive f ∈ H. Then also ‖Ttf‖p′ ≥ ‖f‖q′ for every positive f ∈ H.
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Proof. Indeed,
‖Ttf‖p′ = inf{EgTtf ; g > 0, ‖g‖p ≥ 1} =

inf{EfTtg; g > 0, ‖g‖p ≥ 1} ≥ inf{Efh; h > 0, ‖h‖q ≥ 1} = ‖f‖q′ ,
where we have used Lemma 5.2, the symmetry of Tt, assumptions of the proposition, and
again Lemma 5.2. �

Lemma 5.4. Assume the set-up of Subsection 3.1. Let −∞ < q < p < 1. If for each

1 ≤ i ≤ n, ‖T (i)
t f‖q ≥ ‖f‖p for all positive functions f ∈ Hi, then ‖Ttf‖q ≥ ‖f‖p for all

functions f ∈ H(0,∞).

Proof. The proof is an easy modification of the standard argument for showing the usual
hypercontractive inequalities tensorize where Minkowski inequality is to be replaced by the
reverse Minkowski inequality (Lemma 5.1). We omit details. �

6. Reverse hypercontractivity - general results

We establish an analogue of Proposition 4.1 for p and q below 1, extending results of Borell,
[Bor82]. Now we restrict our considerations to positive functions.

Proposition 6.1. Let r ∈ (0, 1) and let (Tt)t≥0 be a symmetric Markov semigroup.
Assume that (Tt)t≥0 satisfies r-logSob with some constant C > 0. Let r′ ≤ q ≤ p ≤ r. Then

for every t ≥ C
4 log 1−q

1−p and every positive f ∈ H there is ‖Ttf‖q ≥ ‖f‖p.
Conversely, if there exists C > 0 such that

(6.1) ‖TC
4
log 1−q

1−p
f‖q ≥ ‖f‖p

for all p and q such that 0 < q < p ≤ r, and for all positive f ∈ H then (Tt)t≥0 satisfies
r-logSob with the constant C.

Remark 6.2. Theorem 3.3 of Bakry’s lecture notes [Bak94] established similar equivalence
between reverse hypercontractivity and r-logSob when r < 1. Indeed the converse part of
Proposition 6.1 follows from that. But the forward direction, which turns out to be more
useful in practice, Theorem 3.3 of [Bak94] assumes that r-logSob holds for all r belonging to
some nonempty open interval instead of a single point.

Proof. Let us divide the proof of the first assertion into two basic cases: 0 < q ≤ p ≤ r
and r′ ≤ q ≤ p < 0 (and in fact we will need to prove only first of them since the second
follows then by Proposition 5.3). Once they are proved, the assertion for 0 ≤ q ≤ p ≤ r and
r′ ≤ q ≤ p ≤ 0 will follow by passing to a limit (q → 0+ and p→ 0−, respectively), while the
case q < 0 < p will follow from

‖Ttf‖q = ‖Tt−C
4
log 1

1−p
(TC

4
log 1

1−p
f)‖q ≥ ‖TC

4
log 1

1−p
f‖0 ≥ ‖f‖p

since t− C
4 log 1

1−p ≥ C
4 log(1−q) for t ≥ C

4 log 1−q
1−p (we "glue" the two cases together at zero).

Let us assume 0 < q ≤ p ≤ r, then. Consider a function t(q) = C
4 log 1−q

1−p defined on (0, p].

Then t(p) = 0 and q2t′(q) = Cq2

4(q−1) , so that by (4.1) the map q 7→ ‖Tt(q)f‖q is non-increasing

on (0, p] because r-logSob implies q-logSob, with the same constant C, by Theorem 1.7. At
the right end of the interval the map takes on the value ‖f‖p, so that ‖Ttp,qf‖q ≥ ‖f‖p for

tp,q =
C
4 log 1−q

1−p . For t > tp,q we simply express Ttf as Tt−tp,q (Ttp,qf) and use Lemma 5.1.

To prove the converse assertion, let us fix some p ∈ (0, r) and a positive f ∈ H. For q ∈ (0, p]

let t(q) = C
4 log 1−q

1−p , so that t(p) = 0. Since the map q 7→ ‖Tt(q)f‖q is non-decreasing on (0, p]

formula (4.1) used at q = p yields p-logSob with the constant C. Passing to the limit p→ r−

ends the proof. �
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We can now prove Theorem 1.10. In fact we will prove the following result which includes
an inverse.

Corollary 6.3. If a symmetric Markov semigroup (Tt)t≥0 satisfies r-logSob with constant C

and r ≥ 1 then for all q < p < 1 and every positive f ∈ H for all t ≥ C
4 log 1−q

1−p we have

‖Ttf‖q ≥ ‖f‖p.
Conversely, if for some C > 0 a symmetric Markov semigroup (Tt)t≥0 satisfies ‖TC

4
log 1−q

1−p
f‖q ≥

‖f‖p for all 0 < q < p < 1 and all positive f ∈ H then it also satisfies 1-logSob with the con-
stant C.

Proof. By Theorem 1.7 for all r ∈ (0, 1) also r-logSob holds, with the same constant C. The
assertion follows immediately from Proposition 6.1.

The converse assertion is easy - Proposition 6.1 implies that (Tt)t≥0 satisfies r-logSob with
the same constant C for all r ∈ (0, 1), and it suffices to pass to the limit (r → 1−). �

As in [Bor82, MOR+06] we can now obtain the two function version corollary.

Corollary 6.4. If a symmetric Markov semigroup (Tt)t≥0 satisfies 1-logSob with constant C

then for all 0 < p, q < 1 and every nonnegative f, g ∈ H for all t ≥ −C
4 log[(1− p)(1− q)] we

have E[fTtg] ≥ ‖f‖p‖g‖q .

Proof. Fix 0 < p, q < 1 and t ≥ C
4 log[(1 − p)(1 − q)]. Approximating the nonnegative

functions f and g by positive functions f + ǫ and g + ǫ and then in the end letting ǫ ↓ 0,
we can assume, without loss of generality, that the functions f, g ∈ H are positive. Applying
the reverse Hölder’s inequality (Lemma 5.2), we have E[fTtg] ≥ ‖f‖p‖Ttg‖p′ . It remains to
show that ‖Ttg‖p′ ≥ ‖g‖q , which immediately follows from Corollary 6.3 once we note that
(1− p′) = (1− p)−1. �

We conclude this section by proving Corollary 1.11.

Proof. Indeed, Lemma 3.5 and Proposition 3.7 (in the product case) imply that (Tt)t≥0 sat-
isfies 1-logSob with constant 4, so that it suffices to use Corollary 6.3. �

7. Improved reverse bounds for simple semigroups

Actually, we can significantly weaken the condition t ≥ log 1−q
1−p in Corollary 1.11 for simple

operators and prove Theorem 1.12.

Proof. It suffices to prove the claim in the case q < p ≤ 0 - Proposition 5.3 together with an
observation that for 0 ≤ q < p < 1 there is p′ < q′ ≤ 0 and

2− p′

2− q′
=

(1− q)(2− p)

(1− p)(2− q)

will do the rest. Also, we can restrict to the case L = Id − E - the product case will follow
by Lemma 5.4.

Let q < p < 0 and L = Id− E, then, so that

Ttf = e−tLf = Ef + e−t(f − Ef) = Ef + θ̃(f − Ef),

where θ̃ := e−t ≤ θ := 2−p
2−q ∈ (0, 1). For s < 0, define Ψs : (−1,∞) → [0,∞),

Ψs(x) =
1 + sx− (1 + x)s

s
.
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It is easy to check that Ψs is a convex function with Ψs(0) = Ψ′
s(0) = 0 and Ψ′′

s(x) =
(1 − s)(1 + x)s−2 (actually, the same properties hold true in the case s > 0, and in the case
s = 0 with Ψ0(x) = x− log(1 + x), but we will not need those). The inequality

(7.1) Ψq(θx) ≤ Ψp(x)

holds true for every x ∈ (−1,∞). Indeed, due to the properties of Ψs listed above it suffices
to prove that

(7.2) θ2Ψ′′
q(θx) ≤ Ψ′′

p(x).

This is equivalent to the inequality

(7.3)
(1 + x)θ

(1 + θx)
≤
( (2− q)2(1− p)

(2− p)2(1− q)

) 1
2−q

which immediately follows from the elementary inequality (1 + x)θ ≤ 1 + θx, and from the
fact that the map

s 7→ (2− s)−2(1− s) =
1

2− s
−
( 1

2− s

)2

is positive and non-decreasing on (−∞, 0). We are to prove ‖Ttf‖q ≥ ‖f‖p for every positive
f ∈ H. By the homogeneity, we may and will assume that Ef = 1, so that g = f − 1 and
g̃ = θ̃θ−1g are zero-mean and take values in (−1,∞). Then we have

‖Ttf‖pq = ‖1 + θ̃g‖pq = ‖1 + θg̃‖pq = (E(1 + θg̃)q)p/q = (1− qEΨq(θg̃))
|p|/|q| ≤

1− |p|
|q|qEΨq(θg̃) = 1 + |p|EΨq(θg̃)

(7.1)
≤ 1 + |p|EΨp(g̃) = 1 + |p|EΨp(θ̃θ

−1g) =

1 + |p|EΨp

(
θ̃θ−1g + (1− θ̃θ−1) · 0

)
≤ 1 + |p|E

(
θ̃θ−1Ψp(g) + (1− θ̃θ−1)Ψp(0)

)

≤ 1 + |p|EΨp(g) = 1− pEΨp(g) = E(1 + g)p = Efp = ‖f‖pp
which ends the proof - recall that the exponent p is negative. The first inequality above was
just an application of the elementary (1 + x)a ≤ 1 + ax, with a = |p|/|q| ∈ (0, 1), x > −1.
The last inequality follows from the fact that Ψs obtains its minimum at s = 0.

The case p = 0 follows by an obvious limit transition. �

Remark 7.1. Note that we could obtain a better reverse hypercontractivity constant than those
given in Theorem 1.12 by first maximizing the function Ψ′′

q(θx)/Ψ
′′
p(x) over x ∈ (−1,∞) and

then by trying to solve for θ in terms of p and q such that (7.2) holds. This would lead to an
equation of the form

(
1− θ

1− r

)p−q

=
1− q

1− p
θpr2−p where r = (2− p)/(2− q).

But unfortunately, in general, θ can not be recovered explicitly from the above equation.
However, in the special case when −∞ < q < p = 0, θ can explicitly be solved as

θ(q) = 1 + q(2− q)−1+2/q[4(1 − q)]−1/q =

1 +
1

2
q +

3

8
q2 +O(q3) = 1− 1

2
q′ − 1

8
(q′)2 +O((q′)3)

as q → 0− and, equivalently, q′ → 0+. Thus, under assumptions of Theorem 1.12 about
the semigroup, there exists a function η : (−∞, 0) −→ (0,∞) given by η(q) = − log θ(q),
with η(q) = −1

2q − 1
4q

2 + O(q3) as q → 0−, such that for all q < 0 and positive f we have
‖Ttf‖q ≥ ‖f‖0 for every t ≥ η(q). Also, by duality, there exists a function τ : (0, 1) −→ (0,∞)

given by τ(p) = − log θ(p′), with τ(p) = 1
2p+

1
4p

2+O(p3) as p→ 0+, such that for all p ∈ (0, 1)
and positive f we have ‖Ttf‖0 ≥ ‖f‖p for every t ≥ τ(p).
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Corollary 7.2. If a symmetric Markov semigroup (Tt)t≥0 has a simple generator L = Id−E

or it is a tensor product of such simple semigroups, then for all 0 < p, q < 1 and all nonnegative
f, g ∈ H, we have

(7.4) E[fTtg] ≥ ‖f‖p‖g‖q ,

for all t ≥ log (2−p)(2−q)
4(1−p)(1−q) .

Proof. Fix 0 < p, q < 1 and t ≥ log (2−p)(2−q)
4(1−p)(1−q) . Approximating the nonnegative functions

by postive functions if necessary, we can assume, without loss of generality, that the func-
tions f, g ∈ H are positive. Applying the reverse Hölder’s inequality (Lemma 5.2), we have

E[fTtg] ≥ ‖f‖p‖Ttg‖p′ . Now consider t1, t2 > 0 such that t1 = log 2−p′

2 = log (2−p)
2(1−p) and

t2 = log (2−q)
2(1−q) . Note that t ≥ t1 + t2. Thus, using the semigroup property, we can write

Tt = Tt1 ◦ Tt2 ◦ Tt−(t1+t2). Therefore we conclude that

‖Ttg‖p′ ≥ ‖Tt2 ◦ Tt−(t1+t2)g‖0 ≥ ‖Tt−(t1+t2)g‖q ≥ ‖g‖q ,
where we used Theorem 1.12 in the first and the second inequality and Lemma 5.1 in the
third inequality. �

We now obtain the following corollary regarding ρ-correlation.

Definition 7.3. Consider a product space (Ω, µ) = (
∏n

i=1 Ωi,⊗n
i=1µi) where (Ωi, µi) are finite

probability spaces. We say that (x, y) ∈ Ω2 are ρ-correlated if x is distributed according to
µ and the conditional distribution of y given x is given as follows: for each i independently,
with probability ρ, yi = xi and with probability 1− ρ, yi is sampled independently from µi.

Lemma 7.4. Let (Ω, µ) be the product probability space in Definition 7.3. Let A,B ⊆ Ω be
two sets such that µ{A}, µ{B} ≥ ǫ ≥ 0. Let x be distributed according to the product measure
µ and y be a ρ-correlated copy of x for some 0 ≤ ρ < 1. Then

(7.5) P{x ∈ A, y ∈ B} ≥ ǫ
2−√

ρ

1−√
ρ .

Proof. Let f and g be the characteristic functions of the sets A and B respectively. Note that

P{x ∈ A, y ∈ B} = E[f(x)g(y)] = E
[
f(x)E[g(y)|x]

]
= E[fTtg],

where t = log(1/ρ) and Tt = ⊗n
i=1T

i
t where T i

t = e−t(Id−E). So, by Corollary 7.2, we have

(7.6) E[fTtg] ≥ ‖f‖p‖g‖q ,

for all 0 < p, q < 1 such that ρ = 4(1−p)(1−q)
(2−p)(2−q) . We now take p = q =

2(1−√
ρ)

2−√
ρ in (7.6) to

conclude the proof. �

Remark 7.5. We can also use Corollary 6.4 which deals with general symmetric Markov

semigroups to get a lower bound ǫ
2

1−√
ρ . But this bound is worse than what we have achieved

by using Corollary 7.2 that improves on the bounds provided by Corollary 6.4 in the case of
simple semigroups.

Remark 7.6. The lower bound in Lemma 7.4 does not depend on the marginal measures
µi, 1 ≤ i ≤ n. Obviously, it is cannot be improved for ρ = 0. However, it is also quite close to
optimal for ρ close to 1. To see it, consider Ωi = {−1, 1} and µi =

1
2δ−1 +

1
2δ1 for all i’s. Let

c = c(ǫ) be such that (2π)−1/2
∫∞
c e−u2/2 du = ǫ, and let A = {z : n−1/2

∑n
i=1 zi ≤ −c} and

B = {z : n−1/2
∑n

i=1 zi ≥ c}. Finally, let (G1, G2) be a Gaussian random vector with N (0, 1)
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marginals, such that E[G1G2] = ρ. By the Central Limit Theorem µ{A} and µ{B} tend to ǫ
as n→ ∞, while P{x ∈ A, y ∈ B} tends to P{G1 ≤ −c,G2 ≥ c}. Now it suffices to note that

logǫ P{G1 ≤ −c,G2 ≥ c} ≥ logǫ P{G2 −G1 ≥ 2c} ǫ→0+−→ 2

1− ρ

and
2−√

ρ

1−√
ρ
− 1

2
≤ 2

1− ρ
≤ 2−√

ρ

1−√
ρ
,

which holds for all ρ ∈ [0, 1). We skip some tedious but straightforward calculations.

Remark 7.7. Under assumptions of Lemma 7.4 we also have

(7.7) P{x ∈ A, y ∈ B} ≥ ǫ
2

1−ρ
+κ·(1−ρ)

,

where κ is some universal constant. This is a significant strengthening when ρ is close to 1,
especially in view of Remark 7.6.

Indeed, it suffices to notice that in the proof of Corollary 7.2 one can take t1 = τ(p)
and t2 = τ(q), using Remark 7.1 rather than Theorem 1.12. Thus (7.4) holds true for all
t ≥ τ(p) + τ(q). Let us set p = q = 1 − ρ − C · (1 − ρ)3. The asymptotic behavior of τ(p)

established in Remark 7.1 implies that e−2τ(p) = 1− p+O(p3) as p→ 0+. Thus, by choosing
the constant C large enough and ρ̂ ∈ (0, 1) close enough to 1, we prove that for ρ ∈ (ρ̂, 1)

there is e−2τ(p) ≥ ρ, i.e., 2τ(p) ≤ log(1/ρ), and therefore (7.4) holds true for t = log(1/ρ). By
repeating the proof of Lemma 7.4 we arrive at

P{x ∈ A, y ∈ B} ≥ ǫ2/p = ǫ
2

1−ρ−C·(1−ρ)3

for ρ ∈ (ρ̂, 1). This, together with (7.5) used for ρ ≤ ρ̂, yields (7.7).
A similar asymptotic strengthening applies to many further results of the next two sections

(whenever one deals with simple semigroups and their tensor products, and also in Section 8
for α,α⋆ close to zero) but we will omit these generalizations for the sake of brevity.

8. Reverse hypercontractivity for some non-simple operators

For some of the applications afterwards we will be interested in operators that are not nec-
essarily simple but are obtained by composing a simple operator with a non-simple operator.
In this section we extend some of the reverse hypercontractive results to this setup.

Proposition 8.1. Assume that (Ω, µ) is a finite probability space and K is Markov kernel on
Ω. Let ν = µK and

(8.1) α := min
x,y:ν{y}>0

K(x, y)

ν{y} > 0.

Let α⋆ = − log(1− α). Let the operator K⊗n be the n-fold tensor product of the kernel K on

the product space (Ωn, µ⊗n). Then for all f : Ωn → R+, for all q < p ≤ 0 and α⋆ ≥ log 2−q
2−p ,

and also for all 0 ≤ q < p < 1 and α⋆ ≥ log (1−q)(2−p)
(1−p)(2−q) we have ‖K⊗nf‖Lq(µ⊗n) ≥ ‖f‖Lp(ν⊗n).

Proof. Some readers may find it convenient and natural to interpret the abstract operations
of this proof in terms of matrix multiplication - then measures and functions should be repre-
sented, respectively, by horizontal and vertical vectors with coordinates indexed by elements
of Ω, and Markov operators become stochastic matrices (for example Eµ should be under-
stood as a matrix with all rows equal to the vector representing measure µ). First assume
that n = 1. Let Tt = e−tI + (1 − e−t)Eµ, t ≥ 0 be the simple Markov semigroup on (Ω, µ).
We can extend the definition of Tt for t < 0 as well, though it no longer is a Markov operator
unless |Ω| = 1. However, it is easy to check that T−tK = etK − (et − 1)Eν is a Markov
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operator for small enough t > 0. First, for all t, (T−tK)1 = T−t(K1) = T−t1 = 1, so it
remains to check the positivity of T−tK. Second, to ensure positivity, we need to show that
etK(x, y)− (et − 1)ν(y) ≥ 0 for all x, y ∈ Ω which holds if 0 ≤ t ≤ − log(1− α) = α⋆.

Thus S := T−α⋆ ◦K is Markovian and the kernel K can be written as composition of two
Markov kernels in the following way:

(8.2) K = Tα⋆S.

For every probability measure ρ on Ω we have ρEµ = µ, in particular for ρ = µ, and therefore
µTt = µ for every real t. Hence (8.2) implies

µS = (µTα⋆)S = µ(Tα⋆S) = µK = ν.

Using the decomposition (8.2), by Theorem 1.12 we obtain

‖Kf‖Lq(µ) = ‖Tα⋆(Sf)‖Lq(µ) ≥ ‖Sf‖Lp(µ) ≥ ‖f‖Lp(ν),

for p and q as in the hypothesis. Since Eν [f
p] = (µS)fp = Eµ[S(f

p)], the last inequality
follows from the pointwise (coordinatewise) inequalities (Sf)p ≥ S(fp) for p ∈ (0, 1) and
(Sf)p ≤ S(fp) for p < 0. They, in turn, follow from the Markovianity of S and concavity
(resp. convexity) of the function (0,∞) ∋ t 7→ tp for p ∈ (0, 1) (resp. p < 0). The proof for
general n now follows from standard tensorization argument. �

Corollary 8.2. Consider the set-up of Proposition 8.1. Then for all 0 < p, q < 1 and all
nonnegative f, g, we have

E[fK⊗ng] ≥ ‖f‖Lq(µ⊗n)‖g‖Lp(ν⊗n),

for all α⋆ ≥ log (2−p)(2−q)
4(1−p)(1−q) .

Proof. Same as Corollary 7.2. �

Lemma 8.3. Let (xi, yi)1≤i≤n be i.i.d. Ω2-valued random variables. Let µ and ν be the
marginal distributions of xi and yi respectively and let K denote the conditional probability
kernel K(a, b) = P{yi = b|xi = a}. Assume that α > 0 where α is given in (8.1), so that
P{xi = a, yi = b} ≥ αµ{a}ν{b} for all a, b ∈ Ω and all 1 ≤ i ≤ n. Then for any two sets
A,B ⊆ Ωn such that µ⊗n{A}, ν⊗n{B} ≥ ǫ ≥ 0 we have

(8.3) P{x ∈ A, y ∈ B} ≥ ǫ
2−√

1−α
1−

√
1−α ,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are Ωn-valued random variables.

Proof. Let f and g be the characteristic function of the sets A and B respectively. Note that

P{x ∈ A, y ∈ B} = E[f(x)g(y)] = Eµ⊗n

[
f(x)E[g(y)|x]

]
= Eµ⊗n [fK⊗ng].

Now by Corollary 8.2,
Eµ⊗n [fK⊗ng] ≥ ‖f‖Lp(µ⊗n)‖g‖Lq(ν⊗n),

for all 0 < p, q < 1 such that 1−α = 4(1−p)(1−q)
(2−p)(2−q) . We take p = q = 2(1−

√
1−α)

2−
√
1−α

to conclude the

proof. �

Remark 8.4. The following example shows that the condition α > 0 cannot be dropped in
general. Take Ω = {0, 1} and µ to be the unbiased Bernoulli measure on Ω. Let the kernel K
be as follows:

K =

(
0 1
1/2 1/2

)

so that ν = (1/4)δ0 + (3/4)δ1. Now take A = {x1 = 0} and B = {y1 = 0}. Then µ⊗n{A} =
1/2 and ν⊗n{B} = 1/4 but P{x ∈ A, y ∈ B} = 0.
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9. Mixing of Markov chains for big sets

In this section we prove Theorem 1.14 which establishes mixing for Markov chains satisfying
1-logSob. We then give a number of examples where the theorem can be applied to yield new
results on mixing of Markov chains starting from big sets. We begin with a proof of the
theorem:

Proof of Theorem 1.14. Take f and g to be the characteristic functions of A and B, respec-
tively. Then by Corollary 6.4, for any choice of 0 < p, q < 1 with (1− p)(1− q) = e−4t/C , we
get

(9.1) P{X0 ∈ A,Xt ∈ B} = E[fTtg] ≥ ‖f‖p‖g‖q = exp(−a2/2p) exp(−b2/2q).

By setting p = 1−e−4t/C

1+e−2t/C(b/a)
and q = 1−e−4t/C

1+e−2t/C(a/b)
(this choice follows from a simple optimiza-

tion) we conclude the proof. �

9.1. Short walks on general product spaces. The first example is simply a random
walk on a product space. Let (Ω, µ) be a finite probability space and n ≥ 1. Consider the
hypercube (Ωn, µ⊗n). The continuous-time random walk on this space corresponds to selecting
one coordinate uniformly at random with each ring of a Poisson clock (with intensity 1) and
updating that coordinate according to the distribution µ. This is a reversible Markov chain
with invariant distribution µ⊗n. When Ω = {0, 1} and µ{0} = µ{1} = 1/2, we have the
standard continuous-time random walk on the hypercube. Let L = Id − E be the generator
of the simple Markov semigroup on (Ω, µ) and (Tt)t≥0 be the corresponding semigroup, then
the generator of the random walk on the general hypercube is given by

Lprod =
1

n

n∑

i=1

Id⊗ Id⊗ · · · ⊗ L︸︷︷︸
i

⊗ · · · ⊗ Id,

and the corresponding Markov semigroup can be expressed as

T prod
t = Tt/n ⊗ Tt/n ⊗ · · · ⊗ Tt/n, for t ≥ 0.

From Lemma 3.5, Proposition 3.7 and Theorem 1.14 it follows that:

Corollary 9.1. Let Xt be the continuous-time random walk on the general hypercube (Ωn, µ⊗n)
with X0 distributed according to the product measure µ⊗n. Let a, b ≥ 0 and τ > 0. Then for

any A,B ⊆ Ωn with µ⊗n{A} = e−a2/2 and µ⊗n{B} = e−b2/2, and for t ≥ τn, we have

P{X0 ∈ A,Xt ∈ B} ≥ exp

(
−1

2

a2 + 2e−τ/2ab+ b2

1− e−τ

)
.

In fact, a much better bound can be obtained by repeating the proof of Theorem 1.14 with
the two function bound in Corollary 6.4 which applies to simple operators and their tensors:

Proposition 9.2. Let Xt be the continuous-time random walk on the general hypercube
(Ωn, µ⊗n) with X0 distributed according to the product measure µ⊗n. Let a, b ≥ 0 and τ > 0.

Then for any A,B ⊆ Ωn with µ⊗n{A} = e−a2/2 and µ⊗n{B} = e−b2/2, and for t ≥ τn, we
have

P{X0 ∈ A,Xt ∈ B} ≥ exp

(
−(2− e−τ )(a2 + b2) + 2e−τ/2ab

4(1− e−τ )

)
≥ e−

a2+b2−ab
4 exp

(
− (a+ b)2

4(1 − e−τ )

)
.

Proof. Note that the pair (X0,Xt) is ρ-correlated in the sense of Definition 7.3, with ρ = e−t/n.

Let p = (2−2ρ)a
b
√
ρ+(2−ρ)a and q = (2−2ρ)b

a
√
ρ+(2−ρ)b , so that p, q ∈ (0, 1) and 4(1−p)(1−q)

(2−p)(2−q) = ρ. By
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Corollary 7.2 applied to f = 1A and g = 1B we have

P{X0 ∈ A,Xt ∈ B} = E[fT prod
t g] ≥ ‖f‖p‖g‖q = exp

(
−a

2

2p
− b2

2q

)

and the first inequality of the assertion follows easily. The second inequality in the assertion
of the proposition is elementary. �

Remark 9.3. The bound of Proposition 9.2 is quite tight, especially for small values of τ ,
µ⊗n{A}, and µ⊗n{B}. Indeed, let us fix t = τn, choose α = α(a), β = β(b) such that

(2π)−1/2
∫∞
α e−u2/2 du = e−a2/2 and (2π)−1/2

∫∞
β e−u2/2 du = e−b2/2, and then define two

subsets of the discrete cube, A = {z : n−1/2
∑n

i=1 zi ≤ −α} and B = {z : n−1/2
∑n

i=1 zi ≥ β}.
Now it suffices to use the CLT as in Remark 7.6 (recall that in our setting ρ = e−τ ) and
observe that

(1− e−τ ) log P{G1 ≤ −α,G2 ≥ β} ≤ (1− e−τ ) log P{G2 −G1 ≥ α+ β} τ→0+−→ −(α+ β)2/4

while lima→∞ α(a)/a = 1 and limb→∞ β(b)/b = 1. We skip tedious but quite standard
calculations.

We note that the mixing time of the above walk is of order n log n. Therefore using the
mixing time it is impossible to obtain effective bounds even when one of the sets A or B has
a large measure and t is of order n.

9.2. An example from queueing theory. In this subsection, we will give an example where
we will show reverse hypercontractivity for Markov semigroup arising from a standard q/q/∞
process (defined below). We will not use any knowledge about the p-logSob constants of the
semigroup but establish reverse hypercontractivity by taking Poissonian limit of the reverse
hypercontractive estimate for n-dimensional hypercube with product Bernoulli measure (p =
λ/n). The example is of interest for a number of reasons:

• It deals with a Markov chain defined on an infinite state space.
• It is an example where the 2-logSob and the mixing time are both infinite (see [BL98],

the fact that the mixing time is infinite is trivial), yet it is possible to obtain reverse
hypercontractive and mixing estimates.

• It is a natural example for queueing theory.

Let µp be the Bernoulli measure (1 − p)δ0 + pδ1 on {0, 1}. Let (X
(n)
t )t≥0 be the Markov

process on state space {0, 1} corresponding to the simple semigroup generated by I−E w.r.t.
the measure µp with p = λ/n, λ > 0 fixed. Let Xn,1,Xn,2, . . . , Xn,n be i.i.d. copies of X(n).

The process Y
(n)
t := Xn,1

t + Xn,2
t + . . . + Xn,n

t is again Markov (with state space N) whose

generator L(n) satisfies

L(n)f(x1 + x2 + . . .+ xn) = (I − Eµλ/n
)⊗nf̂(x1, x2, . . . , xn), xi ∈ {0, 1},

where f̂ : {0, 1}n → R is given by the relation f̂(x1, x2, . . . , xn) = f(x1 + x2 + . . . + xn).

Clearly, νn = µ∗nλ/n, the n-fold convolution of µλ/n, is the reversible measure of Y (n). A simple

calculation yields

L(n)f(k) =
(
1− λ

n

)
k
(
f(k)− f(k − 1)

)
+ λ

n(n − k)
(
f(k)− f(k + 1)

)
.

So, as n→ ∞, the sequence of generators L(n) converges to the generator L which is given by

Lf(k) = −(k + λ)f(k)− kf(k − 1)− λf(k + 1),

for all f : N → R. One can easily recognize the above generator as the generator for the
well-known q/q/∞ process which we denote by (Yt)t≥0. Thus (Yt)t≥0 is a continuous time
Markov process taking values in non-negative integers where Yt represents the number of
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customers in the queue at time t in the following set-up. There are infinite number of servers,
the customers arrive according to a Poisson process with rate λ and the service time of each
customer follows an independent exponential with mean 1. This process is reversible w.r.t.
limn νn = Poisson(λ). Since convergence of the generator implies the convergence of the
process, we have, for each t ≥ 0,

(9.2) Y
(n)
t

d→ Yt, when Y
(n)
0 = Y0.

Here
d→ means the convergence in distribution.

Let (T
(n)
t )t≥0 (resp. (Tt)t≥0) be the semigroup corresponding to the Markov process (Y

(n)
t )t≥0

(resp. (Yt)t≥0).
By Theorem 1.12, for any bounded f : N → R+, 0 ≤ q < p < 1 and n ≥ 1 ,

‖T (n)
t f‖Lq(νn) ≥ ‖f‖Lp(νn), for t ≥ log

(1− q)(2− p)

(1− p)(2− q)
.

Letting n→ ∞, by (9.2), we conclude that

‖Ttf‖Lq(Poi(λ)) ≥ ‖f‖Lp(Poi(λ)), for t ≥ log
(1− q)(2 − p)

(1− p)(2 − q)
.

Similarly by approximating the process (Yt)t≥0 by the process Y (n) and applying Proposi-
tion 9.2, we obtain

P{Y0 ∈ A,Yt ∈ B} ≥ exp

(
−(2− e−t)(a2 + b2) + 2e−t/2ab

4(1− e−t)

)
.

Note again that this result holds in an example where the mixing time and 2-logSob constant
are infinite (see [BL98] where it is shown that the 1-logSob is finite).

9.3. Glauber dynamics on Ising model on finite boxes of Z
d. The Ising model on a

finite graph (V,E) has the state space Ω = {−1,+1}V . The probability of a spin configuration
σ ∈ Ω is given by the Gibbs distribution,

µ(σ) =
1

Z(β, h)
exp

(
−β

∑

uv∈E
σ(u)σ(v) − h

∑

u∈V
σ(u)

)
,

where Z(β, h) is the normalizing constant. The parameters β ≥ 0 and h are called the inverse
temperature and the external field respectively. These definitions extend to infinite locally
finite graphs like Z

d.
The Glauber dynamics for the Ising model is a family of continuous time Markov chains

on the state space Ω, reversible with respect to Gibbs distribution, given by the generator

(Lf)(σ) =
∑

u∈V
c(u, σ)(f(σu)− f(σ)),

where σu is the configuration σ with the spin at u flipped. We consider the two examples of
transition rates c(u, σ):

(1) Metropolis: c(u, σ) = exp
(
2hσ(u) + 2βσ(u)

∑
uv∈E σ(u)

)
∧ 1.

(2) Heat-bath: c(u, σ) =
[
1 + exp

(
− 2hσ(u) − 2βσ(u)

∑
uv∈E σ(u)

)]−1
.

Let Λ := [−n, n]d ⊆ Z
d be a finite box in the d-dimensional lattice. Let ∂+Λ ⊆ Λc be

the vertex boundary of Λ in Z
d. Let µ be the Gibbs distribution on Z

d. Given a boundary
condition τ ∈ {−1,+1}∂+Λ, we define a Gibbs distribution on Λ as a conditional measure:

µτΛ = µ(·|σ∂+Λ = τ).
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Suppose that the inverse-temperature β and external field h are such that the Ising model
on Z

d has strong spatial mixing. Then there exists a constant K, independent of n, such
that given any boundary condition, the 2-logSob constant for the Glauber dynamics for the
Ising model on the finite box Λ is bounded above by K, independent of n (see [MO94a,
MO94b] which succeed [SZ92b, SZ92a, Zeg92] where uniform bound for 2-logSob constant
was established under stronger Dobrushin-Shlosman mixing conditions). It is also known
that in the regime of strong spatial mixing, the mixing time of the Glauber dynamics is
tmix = Θ(log n).

The example above can be easily extended to other spin systems and other graphs as long
as 1-logSob inequality is established.

9.4. Random transposition walk on symmetric group. The random transposition walk
on the group Sn of permutations of n elements is the walk generated by the set of all transpo-
sitions Cn = {(i, j) : 1 ≤ i < j ≤ n}. The Markov transition from any σ ∈ Sn is described by
picking a transposition τ uniformly at random from Cn and compose it with σ to get a new
permutation τ ◦ σ ∈ Sn. It was shown in [GQ03, BT03, Goe04] that the 1-logSob constant C
of this chain is of order n. More precisely,

n− 1

2
≤ C ≤ 2(n − 1).

On the other hand, it is well known (see [DS81]) that the mixing time tmix = Θ(n log n). It’s
worth mentioning that the 2-logSob constant of the random transposition walk was determined
in [LY98] to satisfy C ′ = Θ(n log n).

9.5. Top-to-random transposition walk on symmetric group. This is a random walk
on Sn generated by the set of transpositions Dn = {(1, j) : 2 ≤ j ≤ n}. Again the 1-logSob
constant C of this chain satisfies [Goe04]

n− 1

2
≤ C ≤ 2(n − 1),

whereas the mixing time is tmix = Θ(n log n) (see [DFP92]).

9.6. Random walk on spanning trees. This is a natural random walk on the space of all
spanning trees of a graph G = (V,E). Suppose T be our current spanning tree. We choose an
edge e ∈ E and another edge f ∈ T uniformly at random. If T ′ = T ∪{e} \ {f} is a spanning
tree of G, we update T to T ′, otherwise we remain at T . It was shown in [JS02] that the
2-logSob constant of this walk satisfies

C ≤ |V ||E|,
and consequently, tmix = O(|V ||E| log |V |). In general, the upper bound for the mixing time
is tight. For example, consider a line of length n and replace each edge by a double edge.
Thus the new graph has |v| = n+ 1 and |E| = 2n. The mixing time for the random walk on
the spanning trees of this graph is same as the coupon collector problem with a delay of Θ(n)
between successive moves.

9.7. Bernoulli-Laplace model. This is natural random walk on the subsets of size r of the
ground set {1, 2, . . . , n}, 1 ≤ r < n. So, the state space has size

(n
r

)
. If the current state

of Markov chain is an r-set A, we pick an element i uniformly at random from A and pick
an element j uniformly at random from {1, 2, . . . , n} \A and switch the elements to obtain a
new r-set A′ = A∪ {j} \ {i}. This is also known as simple exclusion process on the complete
graph on n vertices. The 1-logSob constant of this chain satisfies [GQ03, BT03, Goe04]

r(n− r)

2n
≤ C ≤ 2r(n− r)

n
.
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The mixing time for Bernoulli-Laplace model is tmix = O( r(n−r)
n log log

(n
r

)
).

10. A quantitative Arrow theorem for general ranking distributions

Our goal in this section is to prove Theorem 1.15. We begin by briefly introducing some
additional notation. Let A = {a, b, . . . , } be a set of k ≥ 3 alternatives. A transitive preference
over A is a ranking of the alternatives from top to bottom where ties are not allowed. Such
a ranking naturally corresponds to a permutation σ of the elements 1, . . . , k. The group of
all rankings will be denoted by Sk. A constitution is a function F that associates to every n-
tuple σ = (σ(1), . . . , σ(n)) of transitive preferences, and every pair of alternatives a, b ∈ A, a
(strict) preference between a and b. Some key properties of constitutions include Transitivity,
Independence of Irrelevant Alternatives (IIA), Unanimity (all defined at the introduction).
Recall that the constitution F is a dictator on voter j, if F (σ) = σ(j), for all σ, or F (σ) =
σ(j)−1, for all σ, where σ(j)−1 is the inverse of the permutation σ(j).

We will assume each voter chooses one ranking from Sk according to some fixed distribution
̺, independently of others. We will write P for the product measure ̺⊗n on Sn

k and E for the
corresponding expected value. We now quickly sketch how one can prove Theorem 1.15 with
the explicit bound

(10.1) δ = exp

(
−Cα

−72α
−2
(log(1/ǫ))2

ǫ2+
1

2α2

)
.

We begin with some notation and definitions from [Mos12].
Given σ = (σ(1), . . . , σ(n)) ∈ Sn

k and for each pair of alternatives a, b ∈ A, we define binary

vectors xa>b = xa>b(σ) in the following manner:

xa>b(j) = 1, if voter j ranks a above b;

and

xa>b(j) = −1, if voter j ranks b above a.

Thus, if F satisfies the IIA property then there exist functions fa>b for every pair of candidates
a and b such that

F (σ) = ((fa>b(xa>b) : {a, b}, a 6= b ∈ A)

where fa>b : {−1, 1}n → {−1, 1} is such that fa>b = +1 if F ranks a over b and fa>b = −1
otherwise and where we have fa>b(x) = −f b>a(x) for all a, b and all x.

We define PX(f1, f2, f3) (PX stands for paradox) for three function f1, f2, f3 : {−1, 1}n →
[−1, 1] by letting

PX(f1, f2, f3) =
1

4

(
1+E[f1(x

a>b)f2(x
b>c)] + E[f2(x

b>c)f3(x
c>a)]

+E[f3(x
c>a)f1(x

a>b)]
)
.

Note that for k = 3, the probability of non-transitive outcome is given by

P (F ) := P
{
(fa>b, f b>c, f c>a) ∈ {(1, 1, 1), (−1,−1,−1)}

}

= PX(fa>b, f b>c, f c>a).

In the rest of the subsection, we denote by α, the probability mass of smallest atom of
the distributions of the random vectors (xa>b(1), xb>c(1), xc>a(1)) on {−1, 1}3 for triplets of
distinct alternatives a, b, c ∈ A.
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We now quickly discuss the notions of influences that are needed in the proof. For a
function f : {−1, 1}n → R where {−1, 1}n equipped with n-fold product of some biased
measure µp = (1− p)δ−1 + pδ1, define the influence of variable i on f by

Infi(f) := µ⊗n
p

{
f(x1, . . . , −1︸︷︷︸

i

, . . . , xn) 6= f(x1, . . . , +1︸︷︷︸
i

, . . . , xn)
}
.

Let {ψ0 ≡ 1, ψ1} form a basis of L2({−1, 1}, µp). Then we can express f in its Fourier
basis as follows:

f(x) =
∑

S⊆[n]

f̂(S)
∏

i∈S
ψ1(xi).

We define variance-influence of variable i on f as

Ii(f) :=
∑

S:i∈S
f̂(S)2.

When f is ±1-valued, it can be easily checked that the above two notions of influences are
equivalent up to a multiplicative factor (independent of n) as follows:

Ii(f) ≤ Infi(f) ≤
1

4p(1− p)
Ii(f).

We also need the notion of low-degree variance-influences. For d > 0, this is defined as follows:

I≤d
i (f) :=

∑

S:i∈S,|S|≤d

f̂(S)2.

Under our assumption on the minimum atom of ̺, it’s not difficult to show that for any
three distinct alternatives a, b, c ∈ A and any voter i, we have

|Corr(xa>b(i), xb>c(i))| ≤ 1− 4α.

The following lemma is a consequence of the reverse hypercontractivity in the biased space.
It is the key ingredient needed to extend the argument of [Mos12] to the nonuniform case.

Lemma 10.1. Consider a social choice function on 3 candidates a, b and c and n voters
denoted 1, . . . , n. Assume that the social choice function satisfies that IIA condition and that
voters vote independently according to ̺ whose atoms are bounded below by a constant α > 0.
Assume further that Inf1(f

a>b) > ǫ and Inf2(f
b>c) > ǫ. Let

A = {σ : 1 is pivotal for fa>b}, B = {σ : 2 is pivotal for f b>c}.
Then

P{A ∩B} ≥ ǫ
2−

√
1−α

1−
√

1−α .

Here voter j is called ‘pivotal’ for fa>b at σ if fa>b is a non-constant function of the jth

variable when we freeze the other (n− 1) variables at xa<b(σ).

Proof. Clearly, (xa>b(i), xb>c(i))1≤i≤n are i.i.d. with a joint distribution on {−1, 1}2 deter-
mined by ̺. Let µ and ν be the marginal distributions of xa>b(i) and xb>c(i) respectively.
Note that the event A is determined by xa>b and the event B is determined by xb>c and the
their intersection probability is determined by the joint probability distribution of the random
vectors xa<b and xb<c. Let A0 and B0 be the subsets of {−1, 1}n defined by:

A0 = {xa<b ∈ {−1, 1}n : fa<b(xa<b) 6= fa<b(xa<be1)},
and

B0 = {xb<c ∈ {−1, 1}n : f b<c(xb<c) 6= f b<c(xb<ce2)},
where e1 = (−1, 1, . . . , 1) and e2 = (1,−1, 1, . . . , 1) so that (x1, . . . , xn)e1 = (−x1, x2, . . . , xn)
and (x1, . . . , xn)e2 = (x1,−x2, x3 . . . , xn).
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Observe that µ⊗n{A0} = Inf1(f
a>b) > ǫ and ν⊗n{B0} = Inf2(f

b>c) > ǫ, and our goal is
to obtain a bound on P{A0 ∩ B0}. But now we are exactly in the set-up of Lemma 8.3. If
K denotes the conditional distribution of xb<c(i) given xa<b(i), then we have the following
lower bound on

min
u,v∈{−1,1}

K(u, v)

ν{v} = min
u,v∈{−1,1}

P{xa<b(i) = u, xb<c(i) = v}
µ{u}ν{v} ≥ α.

The proof now follows from Lemma 8.3. �

The reminder of the proof is a straightforward (though somewhat tedious) generalization
of the proof given in [Mos12] that does not use reverse hypercontractivity. A sketch of the
modifications needed is given in Appendix A.

11. Non-interactive correlation distillation for dice

The proof of Theorem 1.16 is a generalization of the proof given in [MOR+06]. The proof
of the upper bound uses reverse hypercontractivity while the lower bound is based on the
analysis of a simple protocol that is based on the plurality function and the analysis relies
the on normal approximation. Here we give the proof of the upper bound. The proof of the
lower bound is an easy (if tedious) adaptation of [MOR+06] and is given in Appendix B.

Proof of upper bound of Theorem 1.16. Note that the probability of all players output j ∈ Ω
is

(11.1) E

[
k∏

i=1

P{Fi(y) = j|x}
]
,

where y is a ρ-correlated copy of x. Let fi,j(x) := 1{Fi(x)=j}. Thus if t = log(1/ρ) and Tt is
the simple semigroup on Ω with the uniform measure, then we have

(11.1) = E

[
k∏

i=1

E[fi,j(y)|x]
]
= E

[
k∏

i=1

Ttfi,j(x)

]
≤

k∏

i=1

‖Ttfi,j‖k,

where the last step follows from the Hölder’s inequality. Since Efi,j = m−1 for all i, j, we
conclude, by Lemma 11.1 below, that the probability of total agreement among k players is

bounded above by
∑

j∈Ω
∏k

i=1 ‖Ttfi,j‖k ≤ Cmk−γ1 for some γ1 > 0 depending on ρ. �

Lemma 11.1. Let Ω = {1, 2, . . . ,m} and µ be the uniform measure on Ω. Fix any ρ ∈ (0, 1].
Then there exist constants C = C(ρ) > 0, β = β(ρ) > 0 such that for any f : Ωn → [0, 1] and
for any k ≥ 1 such that Ef ≤ 1/2,

‖Ttf‖kk ≤ Ck−β.

Proof of Lemma 11.1. Suppose ‖Ttf‖kk ≥ 2δ. Define S = {x ∈ Ωn : [Ttf(x)]
k ≥ δ}. Since Ttf

is bounded between 0 and 1, it follows that E[1S ] ≥ δ. If we write f̄ for 1− f , then the set S
has the following equivalent description

S = {x ∈ {0, 1}n : Ttf̄(x) ≤ 1− δ1/k}.
Thus clearly we have

(11.2) E[1STtf̄ ] ≤ (1− δ1/k)P{S}.
On the other hand, Corollary 7.2 gives us that

E[1STtf̄ ] ≥ ‖1S‖p‖f̄‖q for any 0 < p, q < 1 satisfying ρ ≤ 4(1 − p)(1− q)

(2− p)(2− q)
.



REVERSE HYPERCONTRACTIVITY 27

If we take p = q =
2(1−√

ρ)
2−√

ρ in the above inequality, we have

(11.3) E[1STtf̄ ] ≥ P{S}
2−√

ρ

2(1−√
ρ) (Ef̄)

2−√
ρ

2(1−√
ρ) ,

where we have used the fact that E[f̄ q] ≥ Ef̄ for any q ∈ (0, 1). Now, comparing (11.2) and
(11.3), we have

P{S}
√

ρ

2(1−√
ρ) (Ef̄)

2−√
ρ

2(1−√
ρ) ≤ 1− δ1/k.

Since, P{S} ≥ δ and Ef̄ ≥ 1/2, we have

δ

√
ρ

2(1−√
ρ) 2

− 2−√
ρ

2(1−√
ρ) ≤ 1− δ1/k,

which implies that δ ≤ k−β for any 0 < β <
2(1−√

ρ)√
ρ and k sufficiently large. �

Remark 11.2. It is an interesting problem to find the exact exponent γ in Theorem 1.16 for
which limn→∞Mρ(k, n) = k−γ+o(1) as k → ∞. A priori such an exponent might depend on
m.

12. Observations and open problems

Our main result on the monotonicity of r-logSob inequalities implies that the Poincaré
(0-logSob) inequality is the weakest among them.

However several open problems regarding monotonicity:

(I) Are there intervals I such that r-logSob inequalities are equivalent for all reversible
Markov semigroups and all r ∈ I. In other words, for which intervals I, there exist
constants c(I) such that for all r, s ∈ I, r-logSob with constant C implies s-logSob with
constant c(I)C? Note that Proposition 3.3 implies a positive answer to this question
with the interval [1+ǫ, 2] for any ǫ > 0. Note that this interval can not be extended to
[1, 2]. This follows for example from the fact that for the random transposition card
shuffling on the symmetric group Sn, 2-logSob constant is Θ(n log n) [LY98] whereas
1-logSob constant is known to be Θ(n) [GQ03, Goe04].

(II) Can one establish similar monotonicity property for hypercontractive inequalities?

12.1. Reverse hypercontractivity implies spectral gap. Here we show that the Poincaré
inequality may be deduced from reverse hypercontractivity for fixed q < p < 1. This provides
a partial answer to question (II) above.

Lemma 12.1. Let q < p < 1 and t > 0. Assume that a symmetric Markov semigroup
satisfies the reverse hypercontractivity estimate ‖Ttf‖q ≥ ‖f‖p for every f ∈ H(0,∞). Then it
also satisfies the Poincaré inequality

Var(g) ≤ 2t

log(1− q)− log(1− p)
· E(g, g)

for every g ∈ H.

Proof. Let λ = inf σ(L|1⊥), so that E(g, g) ≥ λVar(g) for all g belonging to 1⊥, where 1⊥

denotes the L-invariant subspace of H consisting of all functions orthogonal (in the standard
L2(Ω, µ) setting) to the constant function 1, i.e., zero-mean functions. For a zero-mean g ∈ H
choose ε > 0 small enough to make f = 1 + εg > 0. The inequality

(‖Ttf‖q − 1)/ε2 ≥ (‖f‖p − 1)/ε2

upon passing to the limit ε→ 0+ yields E[ge−2tLg] = E[(Ttg)
2] ≤ 1−p

1−qE[g
2]. Since this bound

holds for all g ∈ 1⊥ we infer that e−2tλ ≤ (1− p)/(1 − q) which ends the proof. �
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12.2. Spectral gap does not imply 1-logSob. Here we show that the 0-logSob inequality
does not imply the 1-logSob inequality. In particular it gives a partial answer to question (I)
above by showing that the r-logSob inequalities in the interval [0, 1] are not all equivalent.
Recall that a family graphs G = {G1, G2, . . .} is called a d-regular (spectral) expander if

(1) For each n, Gn = (Vn, En) is a d-regular graph on n vertices.
(2) The random walk on Gn satisfies a Poincaré inequality with constant C0 that does

not depend on n.

Assume, by way of contradication that there exists a constant C1 such that for each n, 1-
logSob constants for the random walks on Gn are bounded above by C1. Let (Xn

t )t≥0 be the
continuous-time random walk on Gn. Since the underlying graph is d-regular, the stationary
distribution π is the uniform measure on Gn. So, if we take A = {u} and B = {v} for
u, v ∈ Vn in (1.5), then we have

P{Xn
0 = u,Xn

1 = v} ≥ n−α ∀u, v ∈ Vn,

where α > 0 is a constant that depends on C1. This implies that

(12.1) P
u{Xn

1 = v} ≥ n−α+1 ∀u, v ∈ Vn.

Clearly the diameter of the graph Gn has to be at least c log n/ log d for some constant c > 0.
We choose u, v ∈ Vn so that their graph distance is at least c log n/ log d. So, starting from
u, a discrete time random walk on Gn needs at least c log n/ log d many jumps before it can
reach the vertex v. Note that the number of jumps made by the continuous-time walk Xn

t

during the time interval [0, 1] is distributed according to Poisson random variable with mean
1. Hence, from the tail bound for the Poisson distribution,

P{X0 = u,X1 = v} ≤ P{Poisson(1) ≥ c
log n

log d
} ≤ n

− c′
log d

(log logn−log log d)

for some constant c′ > 0. Since the right hand side of the above inequality decays faster than
any polynomial, it contradicts (12.1). This proves that 1-logSob constant for the random walk
on Gn tends to infinity as n→ ∞.

Remark 12.2. Explicit lower bounds on 1-logSob constants for connected d-regular graphs on
n vertices can be found in [Goe04, BT06]. But our proof is different in the sense that it relies
on the new mixing bounds implied by reverse hypercontractivity.

12.3. Generalizations to infinite spaces. It is straightforward to generalize most of the
result of Sections 1-9 of the paper to infinite probability spaces. The only point which requires
some care is to work with the appropriate classes of functions. Since the applications in the
current paper deal mainly with finite spaces we omit this straightforward extension.
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Appendix A. Proof of Theorem 1.15

We continue in the proof of the general quantitative Arrow theorem following [Mos12].
The next step is to replace Theorem 7.1 and Theorem 11.11 in [Mos12] by the following

two lemmas respectively.

Lemma A.1. For every ǫ > 0 there exist δ(ǫ) > 0 and τ(δ) > 0 such that the following
hold. Let f1, f2, f3 : {−1, 1}n → {−1, 1} and let F be the social choice function defined by
fa>b = f1, f

b>c = f2 and f c>a = f3. Assume that for all 1 ≤ i ≤ 3 and j > 1 it holds that

(A.1) I
≤log(1/τ)+1
j (fi) < ατ/2.

Then either

(A.2) PX(f1, f2, f3) ≥ αδ,

or there exists a social choice function G which is either a dictator or always ranks one
candidate at top/bottom such that D(F,G) ≤ 9ǫ. Moreover, one can take

δ =
1

4
(ǫ/2)2+1/(2α2), τ = δC

log(2/α)
α

log(1/δ)
δ .

Lemma A.2. For every ǫ > 0, there exist δ(ǫ) > 0 and τ(δ) > 0 such that the following hold.
Let f1, f2, f3 : {−1, 1}n → [−1, 1]. Assume that for all 1 ≤ i ≤ 3 and all u ∈ {−1, 1} it holds
that

(A.3) min(uE[fi],−uE[fi+1]) ≤ 1− 3ǫ (with convention f4 = f1)



REVERSE HYPERCONTRACTIVITY 31

and for all 1 ≤ j ≤ n it holds that

(A.4) |{1 ≤ i ≤ 3 : I
≤(log(1/τ))2

j (fi) > τ}| ≤ 1.

Then we have

PX(f1, f2, f3) ≥ δ.

Moreover, one can take:

δ =
1

8
(ǫ/2)2+1/(2α2), τ = δC

log(2/α)
α

log(1/δ)
δ .

The proofs of the above two lemmas are almost identical to those given in [Mos12]. The
only difference is that instead of Theorem 11.10 of [Mos12] we now use its modified version
as follows.

Lemma A.3. For every ǫ > 0, there exist δ(ǫ) > 0 and τ(δ) > 0 such that the following hold.
Let f1, f2, f3 : {−1, 1}n → [−1, 1]. Assume that for all 1 ≤ i ≤ 3 and all u ∈ {−1, 1} it holds
that

(A.5) min(uE[fi],−uE[fi+1]) ≤ 1− 3ǫ (with convention f4 = f1)

and for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ n it holds that

I
log(1/τ)
j (fi) < τ,

Then we have

PX(f1, f2, f3) > δ.

Moreover, one can take:

δ =
1

4
(ǫ/2)2+1/(2α2), τ = δC

log(2/α)
α

log(1/δ)
δ .

The proof of Lemma A.3 depends on Gaussian Arrow’s theorem (see Theorem 11.7 of
[Mos12]) and the following generalization of some Gaussian invariance result proved in [Mos12]
(see Theorem 11.9). The latter may be of independent interest.

Lemma A.4 (Invariance principle). Let ǫ > 0,−1 < ρ < 1. Then for every measurable

function f : {−1, 1}n → [−1, 1] there exists a measurable function f̃ : Rn → [−1, 1] such that
the following holds for any n ≥ 1. Let (X,Y ) be distributed on {−1, 1}n × {−1, 1}n where
(Xi, Yi)1≤i≤n are i.i.d. with Corr(Xi, Yi) = ρ. Let γ > 0 be a lower bound for the smallest
atoms of the random variables Xi and Yi on {−1, 1}. Consider (N,M) jointly Gaussian and
distributed in R

n × R
n with (Ni,Mi)1≤i≤n are i.i.d. with

E[Ni] = E[Mi] = 0, E[N2
i ] = E[M2

i ] = 1, E[NiMi] = ρ.

Then

• For the constant functions 1 and −1 it holds that 1̃ = 1 and −̃1 = −1.
• If f and g are two functions such that for all 1 ≤ i ≤ n, it holds that

max(I
≤log(1/τ)
i (f), I

≤log(1/τ)
i (g)) < τ,

then

(A.6)
∣∣E[f(X)g(Y )]− E[f̃(N)g̃(M)]

∣∣ ≤ ǫ,

whenever

(A.7) τ ≤ ǫ
C log(2/γ)

(1−|ρ|) · log(1/ǫ)
ǫ ,

for some absolute constant C > 0.
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Proof of Lemma A.4. The proof is same as Theorem 11.9 of [Mos12]. The only difference is
that we now need to apply the version of Theorem 3.20 in [MOO10] under hypothesis H3
instead of hypothesis H4. �

Proof of Theorem ??. We will only give a brief sketch the proof of theorem for k = 3. The
proof for k > 3 follows from a general argument given in [Mos12].

Take τ = τ(ǫ) = δ
C log(2/α)

log(1/δ0)
αδ0

0 , δ0 = 1
8 (ǫ/2)

2+1/(2α2) as in Lemma A.2 and η = ατ/2.

Let fa>b, f b>c, f c>a : {−1, 1}n → {−1, 1} be the three pairwise preference functions. Let
η = δ (where the values of C will be determined later). We will consider three cases:

• There exist two voters i 6= j ∈ [n] and two functions f 6= g ∈ {fa>b, f b>c, f c>a} such
that

(A.8) I
≤(log(1/τ))2

i (f) > η, I
≤(log(1/τ))2

j (g) > η.

• For every two functions f 6= g ∈ {fa>b, f b>c, f c>a} and every i ∈ [n], it holds that

(A.9) min(I
≤(log(1/τ))2

i (f), I
≤(log(1/τ))2

i (g)) < η.

• There exists a voter j′ such that for all j 6= j′

(A.10) max(I
≤(log(1/τ))2

j (fa>b), I
≤(log(1/τ))2

j (f b>c), I
≤(log(1/τ))2

j (f c>a)) < η.

First note that each F satisfies at least one of the three conditions (A.8), (A.9) or (A.10).
Thus it suffices to prove the theorem for each of the three cases.

In (A.8), we have Infi(f) > η and Infj(g) > η. By Lemma 10.1 combined with Barbera’s
Lemma [Bar80] (see Proposition 3.1 of [Mos12]), we obtian

P (F ) > α2η
2−

√
1−α

1−
√

1−α ≥ α2η
4
α .

We thus obtain that P (F ) > δ where δ is given in (10.1) by taking large C.
In case (A.9), by Lemma A.2, it follows that Either (if (A.3) does not hold) there exists

a function G which always puts a candidate at top/bottom and D(F,G) < 3ǫ, Or, P (F ) >
1
8(ǫ/2)

2+1/(2α2) ≫ δ.
Similarly in the remaining case (A.10), we have by Lemma A.1 that Either D(F,G) < 9ǫ

Or P (F ) > 1
4(ǫ/2)

2+1/(2α2) ≫ δ. The proof follows. �

Remark A.5. Keller [Kel11] proved that one may take δ = Cǫ3 in the special case when ̺ is
uniform. It’s an interesting open question to see whether such polynomial dependence of δ
on ǫ holds for general distribution ̺.

Appendix B. A lower bound for the NICD problem using a plurality function

Proof of the lower bound for the NICD problem. We will analyze the protocol where all play-
ers use some balanced plurality function PLUn that we are going to described below. De-
fine nj = #{i : xi = j} to be the number of times j is present in the string x and set
R = {j ∈ Ω : nj = maxl∈Ω nl}. Then we define our pluraity function as

PLUn(x) = xi∗ where i∗ = min{i : xi ∈ R}.
Note that if j is the unique value in Ω which occurs most frequently in string x, that is, if
R = {j}, then PLUn(x) = j. Also, note that if σ is any permutation of Ω then

PLUn(σ(x1), σ(x2), · · · , σ(xn)) = σ(PLUn(x)),

which implies that PLUn is balanced.

Define Wj =W
(n)
j := n−1/2

∑n
i=1(1{xi=j}−m−1) and W ′

j =W ′
j
(n) := n−1/2

∑n
i=1(1{yi=j}−

m−1) where y is a ρ-correlated of x.
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The probability of total agreement among k players is bounded below by the probability
event that they all output 1 which is at least

(B.1) E

[
P{W ′

1 > max
j 6=1

W ′
j |Wj, 1 ≤ j ≤ m}k

]
.

Next we proceed to bound lim infn P{W ′
1 > maxj 6=1W

′
j|A} where A = {W1 ≥ 2a

ρ and Wj ≤
0 for all 2 ≤ j ≤ m} and a = a(k,m) =

√
2 log(km)√

m
. Note that

P{W ′
1 > max

j 6=1
W ′

j|A} ≥ P{W ′
1 > a|A} −

m∑

j=2

P{W ′
j ≥ a|A}

= P{W ′
1 > a|W1 ≥ 2a

ρ } −
m∑

j=2

P{W ′
j ≥ a|Wj ≤ 0}.

The last step is justified by the fact that Wj is a sufficient statistics for the conditional
distribution of W ′

j given x.
Note that for all 1 ≤ j ≤ m

E1{xi=j} = E(1{yi=j} = m−1, Var(1{xi=j}) = Var(1{yi=j}) = m−1(1−m−1)

and for all 1 ≤ j 6= j′ ≤ m

Cov(1{xi=j},1{yi=j}) = ρm−1(1−m−1),Cov(1{xi=j},1{xi=j′}) = −m−2.

It now follows from multidimensional Central Limit Theorem that

(Wj ,W
′
j)

d→ N2(0,Σ)

and

(Wj , 1 ≤ j ≤ m)
d→ Nm(0,Γ)

as n → ∞, where N2(0,Σ) (resp. Nm(0,Γ)) is the two-dimensional (resp. m-dimensional)
normal distribution with mean zero and covariance matrix Σ (resp. Γ) given by

Σ = m−1(1−m−1)

(
1 ρ
ρ 1

)
and Γ = m−1Im −m−2

11
′.

Moreover, for any any convex regions R1 ⊆ R
2 and R2 ⊆ R

m, we have the Berry-Esséen-type
error bound [Saz81] as the following:

(B.2)
∣∣P{(Wj,W

′
j) ∈ R1} − P{(Z1, Z2) ∈ R1}

∣∣ = O(n−1/2),

and

(B.3) |P{(Wj , 1 ≤ j ≤ m) ∈ R2} − P{(Xj , 1 ≤ j ≤ m) ∈ R2}| = O(n−1/2),

where (Z1, Z2) ∼ N2(0,Σ) and (Xj , 1 ≤ j ≤ m) ∼ Nm(0,Γ). From (B.2), it follows that as
n→ ∞,

P{W ′
1 > a|W1 ≥ 2a

ρ } → P{Z2 > a|Z1 ≥ 2a
ρ }

and
P{W ′

j ≥ a|Wj ≤ 0} → P{Z2 ≥ a|Z1 ≤ 0}.
Recall that the conditional distribution Z2 given Z1 is N(ρZ1, σ

2
2.1) where σ22.1 = (1 −

ρ2)m−1(1 − m−1) ≤ m−1. Also recall that if N is a standard normal random variable,
then

P{N > x} ≤ x−1e−x2
for x > 0,

and this bound is sharp in the asymptotic sense

P{N > x} = Θ(x−1e−x2/2) as x→ ∞.
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Now for any m ≥ 2,

P

{
Z2 > a

∣∣∣Z1 ≥ 2a
ρ

}
≥ P

{
Z2−ρZ1

σ2.1
> − a

σ2.1

∣∣∣Z1 >
2a
ρ

}

≥ P

{
N > −

√
2 log(km)

}
≥ 1− 1

mk .

Similarly,

P

{
Z2 ≥ a

∣∣∣Z1 ≤ 0
}
≤ 1

mk .

Therefore,

lim
n

P{W ′
1 ≥ max

j 6=1
W ′

j |A} ≥ 1− 1
k .

Consequently, for k ≥ 2, we have

lim
n

Mρ(k, n) ≥
(
1− 1

k

)k
lim inf

n
P{A}

≥ 1
4P
{
X1 ≥ 2a

ρ and Xj ≤ 0 for all 2 ≤ j ≤ m
}
[by (B.3)].

The proof of the lower bound is now complete by Lemma B.1. �

Lemma B.1. Fix ρ ∈ (0, 1). Let (Xj , 1 ≤ j ≤ m) ∼ Nm(0,m−1Im − m−2
1m1

′
m) and

a = a(k,m) =

√
2 log(km)√

m
. Then there exists γ2 = γ2(ρ) > 0 such that for k ≥ 2,

P{X1 ≥ 2a
ρ and Xj ≤ 0 for all 2 ≤ j ≤ m} ≥ c2(m)k−γ2 ,

where c2(m) → 0 as m→ ∞.

Proof of Lemma B.1. Note that X1 +X2 + . . .+Xm = 0 with probability one. Therefore,

P{X1 ≥ 2a
ρ ,Xj ≤ 0 ∀j ≥ 2} = P{

m∑

j=2

Xj ≤ −2a
ρ ,Xj ≤ 0 ∀j ≥ 2}

≥ P{X2 ≤ −2a
ρ ,− 1

m3/2 ≤ Xj ≤ 0 ∀j ≥ 3}.(B.4)

The conditional distribution of X2 given Xj , j ≥ 3 is given by

N


−1

2

m∑

j=3

Xj ,
1

2m


 .

Hence, it can be easily seen that

(B.4) ≥ P{X2 +
1
2

m∑

j=3

Xj ≤ −2a
ρ − 1√

m
}P{− 1

m3/2 ≤ Xj ≤ 0, j ≥ 3}

≥ P{N ≤ −4
√

log(km)

ρ −
√
2}P{− 1

m3/2 ≤ Xj ≤ 0, j ≥ 3}

where N ∼ N(0, 1). The lemma now follows from the normal tail estimate. �



REVERSE HYPERCONTRACTIVITY 35

Elchanan Mossel, Statistics and Computer Science, 367 Evans Hall, University of Califor-

nia, Berkeley, CA, USA & Faculty of Mathematics and Computer Science, Weizmann Institute,

Israel

E-mail address: mossel@stat.berkeley.edu, elchanan.mossel@weizmann.ac.il

Krzysztof Oleszkiewicz, Institute of Mathematics, University of Warsaw, ul. Banacha 2,

02-097, Warsaw, Poland

E-mail address: koles@mimuw.edu.pl

Arnab Sen, Statistical Laboratory, DPMMS, Wilberforce Road, Cambridge, CB3 0WB,

United Kingdom

E-mail address: a.sen@statslab.cam.ac.uk


	University of Pennsylvania
	ScholarlyCommons
	6-2013

	On Reverse Hypercontractivity
	Elchanan Mossel
	Krzysztof Oleszkiewicz
	Arnab Sen
	Recommended Citation

	On Reverse Hypercontractivity
	Abstract
	Disciplines


	1. Introduction
	1.1. Background
	1.2. General setup
	1.3. Log-Sobolev inequalities
	1.4. Reverse hypercontractive estimates
	1.5. Application 1: Mixing of large sets in Markov chains
	1.6. Application 2: A general quantitative Arrow theorem
	1.7. Application 3: Non-interactive correlation distillation from dice source

	2. Comparison of Dirichlet forms
	3. Logarithmic Sobolev inequalities
	3.1. Tensorization

	4. Hypercontractivity
	4.1. Control of moments under semigroup action
	4.2. Hypercontractivity estimate

	5. Reverse hypercontractivity - preliminary results
	5.1. Reverse contraction
	5.2. Duality and tensorization

	6. Reverse hypercontractivity - general results
	7. Improved reverse bounds for simple semigroups
	8. Reverse hypercontractivity for some non-simple operators
	9. Mixing of Markov chains for big sets
	9.1. Short walks on general product spaces
	9.2. An example from queueing theory
	9.3. Glauber dynamics on Ising model on finite boxes of Zd
	9.4. Random transposition walk on symmetric group
	9.5. Top-to-random transposition walk on symmetric group
	9.6. Random walk on spanning trees
	9.7. Bernoulli-Laplace model

	10. A quantitative Arrow theorem for general ranking distributions
	11. Non-interactive correlation distillation for dice
	12. Observations and open problems
	12.1. Reverse hypercontractivity implies spectral gap
	12.2. Spectral gap does not imply 1-logSob
	12.3. Generalizations to infinite spaces

	References
	Appendix A. Proof of Theorem 1.15
	Appendix B. A lower bound for the NICD problem using a plurality function

